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Systematic identification of significantly mutated regions reveals a rich landscape of
functional molecular alterations across cancer genomes
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One Sentence Summary: Identification of multi-scale mutational hotspots in cancer exomes
facilitates understanding of mutations both within coding and non-coding elements.

Abstract:

Cancer genome sequencing studies have identified cancer-driver genes from the increased
accumulation of protein-altering mutations. However, the positional distributions of coding
mutations, and the 79% of somatic variants in exome data that do not alter protein sequence or
RNA splicing, remain largely unstudied. We employed density-based clustering methods on ~4,700
exomes from 21 tumor types to detect variably-sized significantly mutated regions (SMRs). SMRs
reveal recurrent alterations across a diverse spectrum of coding and non-coding elements,
including microRNAs, transcription factor binding sites, and untranslated regions that are
individually mutated in up to ~15% of samples in specific cancer types. SMRs often associated with
changes in gene expression and signalling. Mapping SMRs to protein structures revealed spatial
clustering of somatic mutations at known and novel cancer-driver domains and molecular
interfaces. Mutation frequencies in SMRs demonstrate that distinct protein regions are
differentially mutated among tumor types. The functional diversity of SMRs underscores both the
varied mechanisms of oncogenic misregulation and the advantage of unbiased driver identification.
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In cancer, somatic driver mutations alter functional elements of diverse nature and size. For
example, melanoma drivers include hyper-activating mutations at single amino acid residues (e.g.
BRAF V6001), inactivating mutations along tumor suppressor exons (e.g. PTEN?), and regulatory
mutations (e.g. TERT promoter?). Cancer genomics projects, such as the The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium (ICGC), have substantially expanded our
understanding of the landscape of somatic alterations by identifying frequently mutated protein
coding genes3-5. However, these studies have focused little attention on systematically analyzing the
positional distribution of coding mutations or characterizing non-coding alterationss.

Most algorithms to identify cancer-driver protein-coding genes examine non-synonymous
to synonymous mutation rates across the gene body or recurrently mutated amino acids called
mutation hotspotsS, as observed in BRAF7, IDH18, and DNA polymerase € (POLE)°. Yet, these
analyses ignore recurrent alterations in the vast intermediate scale of functional coding elements,
such as protein subunits or interfaces. Moreover, where mutation clustering within genes has been
examined!0-12, analyses have employed fixed base-pair windows or identified clusters of non-
synonymous mutations, assuming driver mutations exclusively impact protein sequence and
ignoring the importance of exon-embedded regulatory elements13-17,

Indeed, a significant proportion of regulatory elements in the genome occurs in, or proximal
to, exons!418, suggesting many may be captured by whole-exome sequencing (WES). Such data
makes the investigation of regulatory elements especially attractive, as our understanding of non-
coding mutations in cancer remains significantly underdeveloped, despite clear examples of
importance (i.e. TERT promoter). Recent efforts to begin to characterize non-coding variation in
cancer genomes have examined either (1) pan-cancer whole-genome sequencing (WGS) data, or (2)
predefined regions —such as ETS binding sites, splicing signals, promoters, and untranslated regions
(UTRs)- or mutation types!9-21, These approaches either presume the relevant targets of
disruption, or disregard the established heterogeneity among tumor types at the level of cancer-
driver genes and pathways522, as well as in nucleotide-specific mutation probabilities34. Systematic
analyses of metazoan regulatory activity have revealed substantial tissue and developmental stage
specificity?3-25, suggesting that mutations in cancer-type-specific regulatory features may be
significant non-coding drivers of cancer.

To address these diverse limitations, we employed density-based spatial clustering
techniques utilizing cancer and gene-specific mutation models to identify and assess the
significance of clusters of recurrent coding and non-coding mutations in 21 cancer types. This
approach permitted the unbiased identification of variably-sized genomic regions recurrently
altered by somatic mutations, which we term significantly mutated regions (SMRs). We identified
SMRs in numerous well-established cancer-drivers as well as in novel genes and functional
elements. Moreover, SMRs were associated with non-coding elements, protein structures,
molecular interfaces, and transcriptional and signaling profiles, providing insight into the molecular
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importance of accumulating somatic mutations in these regions. Overall, SMRs revealed a rich
spectrum of coding and non-coding elements recurrently targeted by somatic alterations that
complement gene-centric analyses.

Results:

Multi-scale detection of regions of high mutation density in cancer exomes

We re-annotated ~3 million previously identified> somatic, single nucleotide variants (SNVs) from
4,735 cancers of 21 tumor types (Supplementary Fig. 1a). We recorded2é the impact of each
mutation on protein-coding sequences, other transcribed sequences, and adjacent regulatory
regions (Supplementary Fig. 1b). Fully 79.0% (n=2,431,360) of these somatic mutations do not
alter protein-coding sequences or their splicing and thus were not previously considered in the
analysis of cancer-driver mutationss (Fig. 1a).

To systematically discover both coding and non-coding cancer-drivers, we applied an
annotation-independent, density-based clustering technique?? to identify 198,247 variably-sized
clusters of somatic mutations within exon-proximal domains of the human genome (Fig. 1b;
Supplementary Methods). Notably, we included synonymous mutations within coding regions
because functionally important non-coding features such as miRNAs13, regulatory RNA features?s,
and transcription factor (TF) binding sites!4 can be embedded within these regions.

Mutation density scores within each identified cluster were derived as the Fisher’s
combined p-value of the individual binomial probabilities of observing k or more mutations for
each mutation type within the region across independent samples of each cancer type
(Supplementary Methods). We evaluated mutation density for each cluster using gene-specific and
genome-wide models of mutation probability (Supplementary Fig. 2), which were well-correlated
(Supplementary Fig. 3a), and selected the more conservative estimate for each cluster as the final
density score (Supplementary Methods). Gene-specific mutation probability models accounted for
sequence composition (GC-content) as well as differences in local gene expression and replication
timing, which have been shown to correlate with somatic mutation rate4. To avoid skewed mutation
probability estimates due to selection pressure on exons, we applied a Bayesian framework to
derive gene-specific mutation probabilities given intronic mutation probabilities in cancer WGS
data319 while controlling for differences in sensitivity in WES and WGS (Supplementary Methods).

Increasing density scores correlated with stronger enrichments (up to 120x) for somatic
SNV-driven cancer genes (n=158) as determined by the Cancer Gene Census (CGC)(Supplementary
Fig. 3b)2930, Although most somatic SNV-driven cancer genes do not display signals of high somatic
mutation density (Supplementary Fig. 3c), ~10% of genes associated with regions of extreme
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density scores (P < 10-20) were not found previously in a gene-level analysis5 or in the CGC. Thus,
high density scores are enriched for known cancer genes but also nominate novel cancer-driver
genes.

We applied Monte Carlo simulations to select density score thresholds that control the false
discovery rate (FDR) to < 5% (Supplementary Fig. 4, Supplementary Table 1). We selected 872
regions (Fig. 1c), termed Significantly Mutated Regions (SMRs), that were altered in 22% of patients
in 20 cancer types for further characterization (Fig. 1d, Supplementary Fig. 5). SMRs span 735
genomic regions, which are assigned unique SMR codes (e.g. TP53.1); note that some SMRs appear
in more than one cancer type. We classified SMRs into “high”, “medium”, and “low” confidence sets
on the basis of their density scores and contribution from mutator samples (Supplementary Table
2, Supplementary Methods). We observed correspondingly high (63.3x, P = 2.5 x 10-46), medium
(6.2x, P = 2.6 x 10-19), and low (5.0x, P = 5.0 x 10-4) enrichments for somatic SNV-driven cancer
genes in these sets. Over 87% of SMRs were contained within mappable (100 bp) regions of the
genome, and an analysis of 6,179 recently-published breakpoints from 7 cancer types3! yielded a
single SMR (in PTEN) within 50 bp of a resolved breakpoint, suggesting that the observed mutation
density in SMRs is not attributable to mapping artifacts.

SMRs displayed a wide range of sizes (Fig. 1e, median = 17 bp), are robust to distinct
mutation background models (Fig. 1f, Supplementary Methods), and are enriched in protein-
coding, 5" UTR and splice-site mutations (Fig. 1g, P < 0.01). Importantly, SMRs are not driven by
samples that contribute large numbers of mutations per region (Fig. 1h). This is in contrast to
recently proposed regions of recurrent alteration!® where as little as five were driven exclusively by
distinct tumor samples (P = 6.0 x 1045, Wilcoxon rank sum test). Thus, we have identified a
functionally diverse set of variably-sized SMRs targeted by recurrent somatic alterations.

SMRs are enriched in known cancer-drivers and implicate many novel cancer genes

SMRs, which harbor a diverse representation of predicted functional impacts on 610 genes, are
significantly enriched in known cancer-driver genes (Lawrence et al.5 or CGC, P = 1.3 x 10-34,
hypergeometric test), affecting a total of 91 known cancer-driver genes, including canonical
oncogenes (e.g. BRAF, KRAS, NRAS, PIK3CA, and CTNNB1) and tumor suppressors (e.g. PTEN, TP53,
and APC). SMR-associated genes also include 17 CGC genes previously undetected in a gene-level
analysis®, such as established oncogenes like BCLZ and PIM1 and the cancer-associated non-coding
gene MALATI. Most coding region SMRs are driven by protein altering mutations (Supplementary
Fig. 6), demonstrating coding SMRs capture positive selection primarily acting on protein
alterations. In total, SMRs implicate 26 known cancer-driver genes to an additional 31 gene-to-
cancer type associations not uncovered by a gene-level analysis> (Supplementary Table 3). We
note, however, that most known cancer-driver genes do not harbor regions of dense mutation
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recurrence within this data (see Supplementary Discussion, Supplementary Fig. 7), suggesting
that SMR identification complements gene-level approaches.

We discovered SMRs in multiple novel cancer-driver genes, including the breast cancer-
associated antigen and putative transcription factor ANKRD30A32, in which ~21% of melanomas
harbor mutations within one or more of three SMRs. Mutations in these SMRs were validated in
WGS data from 6 of 17 cutaneous melanomas319. Within the entire gene-body, 27 of 118 WES and
10 of 17 WGS datasets from melanoma patients harbor somatic protein-altering mutations in
ANKRD3O0A. Overall, of the 185 high confidence SMRs, 16 were associated with novel cancer-driver
genes (Supplementary Table 4). As expected on the basis of methodological differences, these
putative novel cancer-drivers are primarily (~81%) driven by non-coding alterations, as discussed
in the next section.

SMRs implicate diverse non-coding regulatory features

A significant proportion (31.2%; P < 2.2 x 10-16, proportions test) of SMRs are not predicted to
affect protein sequences, highlighting the potential for the discovery of pathological non-coding
variation in WES data. In total, 130 SMRs lay within DNase I hypersensitive (DHS) sites25 and are
enriched in promoter (Q = 4.0 x 10-9) and 5’ UTR features (Q = 4.4 x 10-19; Supplementary Table
5). Three promoter SMRs (n=29) coincide with regions deemed significantly mutated in a pan-
cancer analysis of WGS datal®. Across all cancer types, small (<25 bp) non-coding SMRs were
enriched in binding sequences for ETS oncogene family (Q = 2.6 x 10-6) and winged-helix repressor
(Q = 2.0 x 10-4) TFs (Fig. 2a, Supplementary Table 6). We also detected cancer-specific TF motif
enrichments within SMRs from diffuse large B-cell lymphoma, melanoma, and rhabdosarcoma (Fig.
2b, Supplementary Table 7).

We discovered (4 and 5 bp) SMRs within DHS sites of the KIAA0907 and YAE1D1 promoters
that were altered in 10.2% and 9.3% of WES melanomas (Fig. 2c,d), respectively. Somatic
mutations in these SMRs were confirmed in WGS data of melanomas (n=1 for KIAA0907 and n=2 for
YAE1D1 of n=17, respectively)319. Yet, these regions did not reach significance in a pan-cancer
analysis?9, highlighting cancer-specificity in non-coding alterations. In both SMRs, mutations alter
core-recognition sequences within in vivo ETS factor binding sites, with varying effects on ETS
primary sequence preferences. KIAA0907 encodes a largely uncharacterized putative RNA-binding
protein. However, intronic sequences in this gene harbor SNORA42, an H/ACA class snoRNA with
increased expression in lung cancer33, suggesting promoter SMR alterations may enhance
transcription at this locus. RNA-level overexpression of YAEID1 has previously been observed in
lower crypt-like colorectal cancer34, and a small cohort of melanoma samples showed increased
YAE1D1 protein levels compared to untransformed melanocytes3’, suggesting that YAEID1 may
also be upregulated in melanomas.
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In addition to SMRs that impact promoter regions, we observed 32 SMRs in 5’ and 3’ UTRs.
Most strikingly, we discovered a 3 bp SMR in the 5" UTR of TBC1D12 that is mutated in ~15% of
bladder cancers (Fig. 2e). Recurrent mutations were positioned near the start codon (Kozak region
positions -1 and -3), suggesting a role in translational control. Mutations in this SMR were
validated in whole-genome sequences of 7 cancer types, including 2 of 20 bladder cancers, 2 of 40
lung adenomas, and 3 of 172 breast cancers319. Bladder tumors with mutations in this SMR display
altered RPS6KA1 (p90RSK) phosphorylation (P = 0.0005, t-test, Benjamini-Hochberg), a signal of
increased cell-cycle proliferation3é, and a-Tubulin (P = 4.3 x 10-5, t-test, Benjamini-Hochberg)
levels, as determined by reverse-phase protein array (RPPA) assays3” (Fig. 2f, Supplementary
Methods). These results establish the utility of WES data for identifying recurrently mutated non-
coding regions and our SMR identification method in pinpointing potentially functional non-coding
alterations in cancer.

SMRs permit high-resolution analysis of protein coding alterations

As expected, most exome-derived SMRs lay within protein-coding regions, offering the opportunity
to study recurrent somatic alterations within proteins. Although many protein domains share high
burdens of somatic mutation in multiple cancers, protein domains can show remarkable cancer-
type specific burdens of mutation as exemplified by VHL in kidney clear-cell carcinoma and SET in
diffuse large B-cell lymphoma (Fig. 3a). The identification of SMRs across multiple cancer types
permitted a systematic analysis of differential mutation frequencies with sub-genic and cancer

specific resolution.

Among genes (n=94) with multiple SMRs, we detected 48 SMRs that are differentially
mutated between cancer-types (Supplementary Table 8). A striking example of this differential
targeting occurs within the catalytic subunit of the phosphoinositide 3-kinase, PIK3CA (p110«), a
key oncogene implicated in a range of human cancers3839. We detected six SMRs in PIK3CA across
eight tumor-types (Fig. 3b), with multiple cancer types displaying SMRs in the helical (PIK3CA.5)
and kinase (PIK3CA.6) domains. In contrast, we observed cancer-specific SMRs (PIK3CA.Z2,
PIK3CA.3) affecting an a-helical region between the adaptor binding domain (ABD) and linker
domains of PIK3CA. Up to 14% of uterine corpus endometrial carcinomas harbor alterations in
these intron-separated SMRs although these regions are not highly recurrently altered in other
cancers. For example, we observed significant (Q = 1.2 x 10-16, proportions test) differences in
PIK3CA.2 alteration frequencies in endometrial and breast cancers (Fig. 3b), and further validated
these differences (P = 0.02, proportions test) in whole-genome sequences319. These findings
indicate that previously described differences#® in total PIK3CA mutation frequencies between
endometrial and breast cancers could be localized to this region. Although the oncogenic effects of
recurrent mutations in the ABD (PIK3CA.1), C2 (PIK3CA.4), helical (PIK3CA.5) and kinase
(PIK3CA.5) domains of PIK3CA have been previously described4-44, mutations in this linker/ABD
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region remain unstudied. Interestingly, missense mutations within this region are directionally
orientated (P = 0.0145, Rayleigh test) to one side of the a-helix, suggesting alterations to a
molecular interface (Fig. 3c). Large-scale molecular dynamics simulations of PIK3CA-PIK3R1
indicate that PIK3CA.2 (K111E) and PIK3CA.3 (G118D) mutations can alter intermolecular salt
bridge patterns at R79, which may result in a 1.8 kcal/mol loss of binding interactions compared to
wildtype PIK3CA (Fig. 3d, Supplementary Fig. 8; Supplementary Methods). Taken together, these
results suggest a previously unrecognized mechanism of oncogenic alteration in PIK3CA.

To systematically characterize the location of alterations with respect to three-dimensional
protein structures, we leveraged structural information from 428 SMR-associated and known
cancer-driver genes. We detected n=46 proteins with spatial (three-dimensional) clustering of
missense mutations (Supplementary Table 9), as exemplified by PIM1, an SMR-associated
serine/threonine kinase proto-oncogene (Fig. 3e; Supplementary Methods). This approach also
identified spatial clustering between BRAFV600 and BRAFPor SMRs (Fig. 3f), in which mutations
have been shown to function through distinct mechanisms45. Moreover, we found that BRAFV600
mutations are more frequent in melanoma and colorectal cancers, whereas BRAFP-oor mutations are
more common in multiple myeloma and lung adenomas (P < 0.01, proportions test). In total, seven
of 16 proteins with multiple SMRs displayed significant SMR spatial clustering (Supplementary
Table 10), consistent with frequent spatial coherence in pathogenic alterations.

We next sought to identify SMRs that might affect the molecular interfaces of protein-
protein and protein-DNA interactions, a recognized yet understudied mechanism of cancer-driver
mutations46-48, We examined intermolecular distances between SMR residues and interacting
proteins or DNA and identified 17 SMRs that likely alter molecular interfaces (Table 1;
Supplementary Methods). These include 15 molecular interfaces of protein-protein and DNA-
protein interactions with established cancer associations, such as the substrate-binding cleft of
SPOP49, and DNA-binding interfaces on RUNX1 (Fig. 3g). We detected reciprocal SMRs at all
electrostatic interfaces of the SMAD2-SMAD4 heterotrimer in colorectal cancer (Fig. 3h), as have
been recently describeds?, and reciprocal SMRs at the regulatory PIK3CA-PIK3R1 interface in
endometrial cancer (Fig. 3b). In addition, SMRs pinpoint recurrent alterations at the interface
between histone H3.1 (Fig. 3i) and TRIM33, an E3 ubiquitin-protein ligase and transcriptional
corepressor, and at the DNA-protein interface of histone H2B (Supplementary Fig. 9). These
findings underscore and extend recent associations between altered epigenetic regulation and
histone alterations in tumorigenesis>t.

Molecular signature associations reveal the functional impact of SMR alterations

We sought to determine the potential functional impact of SMR alterations by their association with
molecular signatures. Specifically, we leveraged RNA-seq, reverse-phase protein array (RPPA), and
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clinical data to ask whether: (1) SMRs alterations associate with distinct molecular signatures or
survival outcomes, (2) SMR alterations correlate with similar molecular profiles in distinct cancers,
(3) same-gene SMR alterations associate with similar or different molecular signatures. These
analyses provided mechanistic insights in how SMRs and the associated genes affect oncogenesis.

We found that mutations in SMRs were indeed associated with diverse changes in RNA
expression, signaling pathways, and patient survival (Fig. 4a, Supplementary Tables 11-14;
Supplementary Methods)52. These analyses revealed previously unappreciated connections
between recurrent somatic mutations and molecular signatures. For example, synonymous point
mutations in a bladder cancer SMR in sorting nexin 19 (SNX19; Supplementary Table 12) were
associated with significant increases in protein expression levels of RAB25 (P = 2.5 x 1027, t-test;
Fig. 4b), a RAS membrane trafficking GTPase that promotes ovarian and breast cancer progression,
and is overexpressed in bladder cancer5354. These increases are consistent with RNA expression
differences of RAB25 (P = 0.02; Wilcoxon rank sum test; Fig. 4c). Intriguingly, both SNX19 and
RAB25 are implicated in intracellular trafficking, but the mechanism by which synonymous
mutations in SNX19 correlate with RAB25 expression remains to be determined.

We identified concordant changes in gene expression between SMR pairs, revealing
potential functional relationships among 23 SMRs from 17 genes (Fig. 4d). These included multiple
well-established mechanistic relationships many of which were supported by RPPA
measurements3’, such as between PIK3CA and AKTI1. Furthermore, this analysis revealed that
mutations in the same SMR in different cancers can elicit similar molecular profiles in distinct
cancers. For instance, we found that SMRs in the oncogenic transcription factor NFEZL255 were
associated with large, concordant transcriptomic changes in four distinct cancer types (bladder,
endometrial, lung squamous cell carcinoma, and head and neck cancer; Fig. 4e). The four genes
with the highest increases in gene expression among endometrial cancer samples with alterations
in NFE2L2.1 were the aldo-keto reductases AKR1C1-4 (Fig. 4e), which contribute to altered
androgen metabolism and have been implicated in multiple cancer types56-58. Across all four cancer
types, transcriptomic changes associated with NFE2ZL2 SMR alterations were highly enriched for
oxidoreductases acting on the CH-OH group of donors, NAD or NADP as acceptors (P < 3.8 x 10-2,
Fig. 4f). Mutations in KEAP1, a NFE2L2 binding partner, recapitulated the expression changes
observed in patients with mutations in NFE2L2 SMRs (Fig. 4g; Supplementary Fig. 10; P < 0.01,
Benjamini-Hochberg).

The identified SMRs also permitted interrogation of mutations in different regions of a given
gene with respect to associated molecular signatures. For example in breast cancer, alterations in
distinct SMRs within PIK3CA and TP53 were associated with highly similar changes in protein-
levels. Yet, we detected SMR-specific differences in cyclin E1 (CCNE1) levels among PIK3CA SMR-
altered samples and ASNS levels and MAPK, MEK1 phosphorylation among TP53 SMR-altered
samples (Fig. 4h). These results establish intragenic differences in the molecular signatures of SMR
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alterations, and are consistent with pleiotropy in established oncogenes and tumor suppressors59:60,

A large proportion of the structure in the distribution of cancer mutations remains unseen

SMR analysis leverages structure in the distribution of somatic driver mutations to identify cancer-
associated coding and non-coding regions. We sought an alternative metric to assess the structure
in the distribution of somatic coding mutations analyzed here by measuring the Gini coefficient of
amino acid substitutions per residue in each cancer (Fig. 5a). Gini coefficients of dispersion were
well-correlated with sample numbers (Spearman’s p = 0.74). Subsampling demonstrates that even
with sample numbers in excess of 850, a large proportion of the structure of protein altering
mutations -as measured by the Gini coefficient- in breast cancer remains unseen (Fig. 5b). These
findings highlight the value of increasing tumor sample sizes in assessing the landscape of driver
mutations.

Discussion:

With few exceptions, studies of disease-associated variation have focused on identifying predefined
functional units with recurrent alterations in disease. This approach not only assumes accurate
annotations but ignores the largely uncharacterized spectrum of functional elements that may be
the targets of pathological variants. Our approach avoids these limitations and complements
existing gene-level and pathway-based strategies for discovering cancer-drivers by identifying
variably-sized, significantly mutated regions (SMRs) across 20 cancer types. SMR-associated genes
include known cancer genes, such as PIM1 and MIR142 that were missed by gene-level analyses, as
well as multiple novel genes with potential roles in cancer development.

Cancer SMRs target a diverse spectrum of functional elements in the genome, including
single amino acids, complete coding exons and protein domains, miRNAs, 5’ UTRs, splice sites, and
TF binding sites among others. Notably, several of the most frequently altered SMRs lay within non-
coding regions. Mutation recurrence was validated in WGS data for non-coding SMRs at DHS sites in
KIAA0907 and YAE1D1 promoters, and 5’ UTR alterations in TBC1D12, establishing the potential for
discovering exon-proximal non-coding variation in WES. This functional diversity underscores both
the varied mechanisms of oncogenic misregulation and the advantage of unbiased detection
approaches.

Systematic analyses of SMRs within protein sequences and structures frequently provided
mechanistic insight into altered molecular activities. We recovered many known cancer-implicated
intermolecular interfaces, including recurrent alterations on opposing interfaces of PIK3CA-
PIK3R1 and SMAD2-SMADA4. In addition, we observed NFE2L2 SMRs that reside in KEAP1 binding
regions and result in concordant transcriptional changes across four distinct tumor types.
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Importantly, these transcriptional changes can be recapitulated by mutation of KEAP1, itself. We
also uncovered recurrently altered histone interfaces, suggesting potential effects on global
epigenetic dysregulation. For instance, histone H3.1 mutations at the TRIM33 interface may
recapitulate TRIM33 loss-of-function and its associated pathogenic loss of SMAD4 transcriptional
regulation®él,

The detection of SMRs also permitted a sub-genic, cancer-specific analysis of somatic
mutations and associated molecular signatures. Significant cancer-specific SMR mutation
frequencies within BRAF, EGFR, and a functionally uncharacterized, directionally mutated a-helix in
PIK3CA demonstrate substructure in the distribution of somatic mutations between cancers, a
property which may arise from pleiotropic functions of macromolecules. The close geometric
proximity and high directional uniformity, along with biophysical simulations, suggest that
PIK3CA.2 and PIK3CA.3 mutations function through similar mechanisms. Taken together, the data
implicates mutations in this a-helix in an elevated basal signaling activity of catalytic PIK3CA by
way of weakened interactions with the regulatory PIK3R1 protein. Consistent with pleiotropic
dependencies, alterations to SMRs within a single gene can be associated with distinct molecular
signatures, as exemplified by both PIK3CA and TP53 SMRs in breast cancers. Together, these results
provide robust support for sub-genic functional targeting in distinct cancers and genes.

Yet, multiple possible methodological enhancements exist. For instance, SMR analysis
would greatly benefit from refined measurements of background mutation frequencies, an area of
active researchéz-64, Furthermore, three-dimensional protein folding and the interrupted nature of
coding sequences (i.e. introns) present fundamental constraints on the efficacy of linear density
clustering. This limitation, however, can be ameliorated through the generation of additional
structural data across individual proteins and their conformational ensembles, allowing spatial
(3D) clustering approaches to be applied to the large fraction of the proteome for which little
structural information is currently available.

Although the sequencing of additional cancer genomes will further identification of novel
cancer-driver genesS5, characterizing the biochemical and cellular consequences of individual
mutations is critical. We demonstrate that identifying the spatial concentration of mutations in the
genome, when combined with additional genomic, biochemical, structural, or phenotypic
information, often provides mechanistic insight into cancer etiology. The SMRs reported in this
study provide a resource for the scientific community, nominating as functionally significant many
novel elements. Applying recently-developed high-throughput approaches65-67 to directly
interrogate sets of mutations found within SMRs may allow further understanding of the molecular
mechanisms driving cancer and facilitate the development of more efficacious diagnostics and
therapeutics. Our methods demonstrate valuable opportunities in complementing extant, gene-
level approaches to identify pathogenic mutations with unbiased, multi-scale analysis of genomic
variation. Finally, as the repertoire of functional elements in genomes continues to expand, SMRs
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provide a next-generation tool for increasingly large studies of genomic variation.

URLs: Not applicable.

Methods: Methods, additional display items, and their associated references are available in the
online version of the article.
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Figure Legends:

Figure 1 | Identification of significantly mutated regions (SMRs) in 20 cancer-types across a broad
spectrum of functional elements. (a) Pan-cancer distribution of mutation types in n=3,078,482
somatic single-nucleotide variant (SNV) calls. (b) SMR identification workflow. Exons and exon
proximal domains (<1,000 bp; blue) were scanned for clusters of somatic mutations (orange) with
DBSCAN. Distance parameter ¢ is dynamically defined as the average distance of mutated positions
(dp) in the domain size (ds), constrained within 10 <& < 500 bp. Identified clusters (green) are
divided if sub-clusters with higher (P < 0.05, binomial test) mutation densities are found in a
second-pass DBSCAN analysis with € defined as the average distance of mutated positions (cp)
within the cluster of size c;. Cluster density scores are computed using the more conservative of the
gene-specific and global background mutation rates as the combined binomial probabilities of the
observed mutation density. For each cancer type, density score FDRs are computed by randomizing
mutation positions (Supplementary Methods). SMRs were identified as clusters with FDR <5%
density scores and mutated in 22% of cancer-specific samples. (c) Density scores and mutation
frequencies of n=872 SMRs in 20 cancer types. SMRs are color-coded by region type. The
distribution of density scores in evaluated regions and SMR region types are shown in insets (i) and
(ii), respectively. Dashed lines indicate the minimum, median, and maximum density score FDR
(5%) thresholds. (*) Exon label indicates coding regions and non-coding genes. (d) Number of SMRs
with FDR < 5% and mutation frequency =2% per cancer-type. Gray bars indicate the number of
regions with FDR < 5%, detailing the effect of the mutation frequency threshold. (e) SMR size
distribution (median = 17 bp). (f) Concordance between SMRs discovered employing whole-
genome sequence (WGS)-based and whole-exome sequence (WES)-based background models. (g)
Fold change in mutation type representation between SMR-associated and input mutations.
Asterisks denote categories with significant changes in representation (P < 0.01). Enriched
mutation type colors match region types in (c). (h) Distribution of the mutations contributed per
sample in SMRs (blue) and 58 (green) recurrently-altered non-coding regions?9.

Figure 2 | Non-coding SMRs recurrently alter promoters and 5 UTRs. (a) Transcription factors
(TFs) with enriched (Q < 0.01) motifs in small SMRs (<25bp) across all cancer types are shown. 18
of the 23 TFs are known cancer-associated TFs (*) or associated with cell-cycle control or
developmental roles (1). (b) Cancer-specific motif enrichment analysis. Gene structure, ENCODE
ChIP-seq and DNasel signals, vertebrate conservation (phastCons 100way), Factorbook TF binding
sites and motif occurrences, and somatic mutation frequencies at melanoma SMRs in KIAA0907 (c)
and YAE1D1 (d) promoter regions are shown at multiple scales (+1,000, +75, and +7 bp). Fraction
of melanoma samples altered (mutation frequency) within each SMR (red) and at each position
(purple bars) are shown. Motifs of in vivo ETS-family binding sites that overlap the SMRs are
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highlighted. (e) Gene-structure, ENCODE CTCF and DNasel signals, vertebrate conservation
(phastCons 100way), and protein coding sequence at the 5 UTR TBC1D12 bladder cancer SMR are
shown at multiple scales. Start codon position is highlighted in green and Kozak sequence is
underlined. CTCF signal is shown on the basis of a Factorbook CTCF site overlapping this SMR. (f)
Relative protein and post-translational modification signals of wildtype and mutant (TBC1D12.1
SMR-altered) bladder tumors.

Figure 3 | Structural mapping of SMRs onto proteins and complexes reveals regions differentially-
altered among cancers and molecular interfaces targeted by recurrent alterations. (a) Matrix of
non-synonymous mutations per PFAM protein domain, per cancer, per residue (right). Number of
proteins per domain (left). (b) Mutation frequency matrix of PIK3CA SMRs across cancer types, and
schematic comparison of per residue mutation frequency of PIK3CA domains*? in endometrial
(UCEC; orange) and breast cancer (BRCA; blue) samples. Gray bars indicate SMRs within PIK3CA.
(c) Co-crystal structure of the PIK3CA (p110«; blue) and PIK3R1 (p85«; gray) interaction (PDB:
2RDO, 2IUG, 3HIZ). Residues within endometrial cancer SMRs on PIK3CA (orange) and PIK3R1
(red) are rendered as solvent-accessible surfaces. Mutated residues within the PIK3CA.2, PIK3CA.3
SMR a-helix are colored yellow in (i), and their corresponding side-chain dihedral angles are shown
(ii). (d) Large-scale simulations suggest PIK3CA-PIK3R1 binding is bimodal (iii). Mutations within
the PIK3CA.2, PIK3CA.3 SMR a-helix interfere with R79 binding contacts at the PIK3R1 interface, as
shown in wildtype (i), K111E (ii), and G118D (Supplementary Fig. 8). Molecular structures in an
example of spatially-clustered mutations in diffuse large B-cell lymphoma (e; PIM1.1 (orange); PDB:
3CXW), spatially-clustered SMRs in multiple myeloma (f; BRAF.1 (orange) and BRAF.2 (yellow);
PDB: 1UWH), a DNA (green) interface SMR on RUNX1 (g; RUNX1.1 (orange); PDB: 1H9D),
reciprocal protein interface SMRs (h; SMAD2.1 (orange) and SMAD4.1, SMAD4.2 (red); PDB: 1U7V),
and a histone H3.1 SMR (i; HIST1H3I.1 (orange); PDB:3U5N) in the TRIM33 interface. Structural
alignments and molecular visualizations prepared with PyMOL (Schrodinger). The relative
proportions of BRAF.1 and BRAF.2 missense mutations per cancer-type are shown in (f).

Figure 4 | SMRs are associated with distinct molecular signatures. (a) Matched RNA-seq data for
nine cancers revealed 30 distinct SMRs associated with at least 10 differentially expressed genes
(FDR < 5%). Normalized reverse phase protein array (RPPA) (b) and RNA-seq (c) RAB25 signals in
SNX19 SMR-altered (red) versus non-altered (blue) samples. Red lines indicate normalized signals
for matched SNX19 SMR-altered samples. (d) Similarity (Fisher’s exact test odds ratio;
Supplementary Methods) between differentially expressed gene sets associated with mutations in
each SMR pair. (e) Overlap of differentially expressed genes between patients with altered
NFE2L2.2 in bladder cancer and head and neck carcinoma is shown. Differentially expressed genes
were sorted by p-value and similarity was quantified by Fisher’s exact test odds ratio. (i) The
distribution of odds ratios was summarized for three comparisons of gene expression profiles
associated with NFE2L2.2 alterations across cancer types. (ii) Samples with NFE2L2.2 mutations
exhibited highly increased expression of several aldo-keto reductase enzymes. (f) The relative
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enrichment for oxidoreductase activity (GO:0016616) among the differentially expressed genes in
patients with NFE2L2 SMRs was plotted for specific cancer types (Supplementary Table 13). (g)
Structure of SMR NFE2L2.2 (orange) in the KEAP1-binding domain (PDB: 3WN7). A sector of
recurrent alterations on KEAP1 (teal) did not pass our 2% frequency cutoff. (h) Breast cancer
patients were split into groups based on presence of mutations in six SMRs in PIK3CA, AKT1, and
TP53. The median RPPA signal for these 36 markers is plotted along with the g-value (Kruskal-
Wallis test) of differential expression between SMRs in TP53 or in PIK3CA. Markers with significant
differential expression among intragenic SMRs were highlighted in red. Normalized RPPA-based
expression was obtained from The Cancer Proteome Atlas (TCPA)37.

Figure 5 | Structure in the distribution of cancer mutations remains largely uncharacterized. Gini
coefficients of dispersion were calculated as the fraction of non-synonymous mutations contained
per residue, across ~19,000 proteins. (a) Lorenz curves (i), Gini-coefficients (iii), and their
correlation with tumor sample numbers (ii) are shown. (b) Gini coefficients of non-synonymous
mutation frequency in breast cancer as a function of (bootstrapped) sample size. Line of
exponential fit is shown in dark blue. For comparisons between cancer types (a), the Gini
coefficients were computed exclusively on the 100 most mutated residues per cancer.
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Figure 1 | Identification of significantly mutated regions (SMRs) in 20 cancer-types across a broad
spectrum of functional elements. (a) Pan-cancer distribution of mutation types in n=3,078,482 somatic
single-nucleotide variant (SNV) calls. (b) SMR identification workflow. Exons and exon proximal
domains (<1,000 bp; blue) were scanned for clusters of somatic mutations (orange) with DBSCAN.
Distance parameter ¢ is dynamically defined as the average distance of mutated positions (dp) in the
domain size (d), constrained within 10 < £ < 500 bp. Identified clusters (green) are divided if sub-clus-
ters with higher (P < 0.05, binomial test) mutation densities are found in a second-pass DBSCAN
analysis with & defined as the average distance of mutated positions (cp] within the cluster of size c.
Cluster density scores are computed using the more conservative of the gene-specific and global
background mutation rates as the combined binomial probabilities of the observed mutation density.
For each cancer type, density score FDRs are computed by randomizing mutation positions (Supple-
mentary Methods). SMRs were identified as clusters with FDR <5% density scores and mutated in 22%
of cancer-specific samples. (c) Density scores and mutation frequencies of n=872 SMRs in 20 cancer
types. SMRs are color-coded by region type. The distribution of density scores in evaluated regions and
SMR region types are shown in insets (i) and (ii), respectively. Dashed lines indicate the minimum,
median, and maximum density score FDR (5%) thresholds. (*) Exon label indicates coding regions and
non-coding genes. (d) Number of SMRs with FDR < 5% and mutation frequency >2% per cancer-type.
Gray bars indicate the number of regions with FDR < 5%, detailing the effect of the mutation frequency
threshold. (e) SMR size distribution (median = 17 bp). (f) Concordance between SMRs discovered
employing whole-genome sequence (WGS)-based and whole-exome sequence (WES)-based
background models. (g) Fold change in mutation type representation between SMR-associated and
input mutations. Asterisks denote categories with significant changes in representation (P < 0.01).
Enriched mutation type colors match region types in (c). (h) Distribution of the mutations contributed
per sample in SMRs (blue) and 58 (green) recurrently-altered non-coding regions*’.
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Figure 2 | Non-coding SMRs recurrently alter promoters and 5" UTRs. (a) Transcription factors (TFs)
with enriched (Q < 0.01) motifs in small SMRs (<25bp) across all cancer types are shown. 18 of the 23
TFs are known cancer-associated TFs (*) or associated with cell-cycle control or developmental roles
(1). (b) Cancer-specific motif enrichment analysis. Gene structure, ENCODE ChIP-seq and DNasel
signals, vertebrate conservation (phastCons 100way), Factorbook TF binding sites and motif
occurrences, and somatic mutation frequencies at melanoma SMRs in KIAA0907 (c) and YAE1D1 (d)
promoter regions are shown at multiple scales (¥1,000, £75, and =7 bp). Fraction of melanoma
samples altered (mutation frequency) within each SMR (red) and at each position (purple bars) are
shown. Motifs of in vivo ETS-family binding sites that overlap the SMRs are highlighted. (e) Gene-struc-
ture, ENCODE CTCF and DNasel signals, vertebrate conservation (phastCons 100way), and protein
coding sequence at the 5" UTR TBC1D12 bladder cancer SMR are shown at multiple scales. Start codon
position is highlighted in green and Kozak sequence is underlined. CTCF signal is shown on the basis of
a Factorbook CTCF site overlapping this SMR. (f) Relative protein and post-translational modification
signals of wildtype and mutant (TBC1D12.1 SMR-altered) bladder tumors.
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Figure 3 | Structural mapping of SMRs onto proteins and complexes reveals regions differentially-al-
tered among cancers and molecular interfaces targeted by recurrent alterations. (a) Matrix of non-syn-
onymous mutations per PFAM protein domain, per cancer, per residue (right). Number of proteins per
domain (left). (b) Mutation frequency matrix of PIK3CA SMRs across cancer types, and schematic
comparison of per residue mutation frequency of PIK3CA domains** in endometrial (UCEC; orange)
and breast cancer (BRCA; blue) samples. Gray bars indicate SMRs within PIK3CA. (c) Co-crystal
structure of the PIK3CA (p110a; blue) and PIK3R1 (p85a; gray) interaction (PDB: 2RDO, 2IUG, 3HIZ).
Residues within endometrial cancer SMRs on PIK3CA (orange) and PIK3R1 (red) are rendered as
solvent-accessible surfaces. Mutated residues within the PIK3CA.2, PIK3CA.3 SMR a-helix are colored
yellow in (i), and their corresponding side-chain dihedral angles are shown (ii). (d) Large-scale
simulations suggest PIK3CA-PIK3R1 binding is bimodal (iii). Mutations within the PIK3CA.2, PIK3CA.3
SMR a-helix interfere with R79 binding contacts at the PIK3R1 interface, as shown in wildtype (i),
K111E (ii), and G118D (Supplementary Fig. 8). Molecular structures in an example of spatially-clus-
tered mutations in diffuse large B-cell lymphoma (e; PIM1.1 (orange); PDB: 3CXW), spatially-clustered
SMRs in multiple myeloma (f; BRAF.1 (orange) and BRAF.2 (yellow); PDB: 1TUWH), a DNA (green)
interface SMR on RUNX1 (g; RUNX1.1 (orange); PDB: 1H9D), reciprocal protein interface SMRs (h;
SMAD2.1 (orange) and SMAD4.1, SMAD4.2 (red); PDB: 1U7V), and a histone H3.1 SMR (i; HIST1H3IL.1
(orange); PDB:3U5N) in the TRIM33 interface. Structural alignments and molecular visualizations
prepared with PyMOL (Schrodinger). The relative proportions of BRAF1 and BRAF.2 missense
mutations per cancer-type are shown in (f).
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Figure 4 | SMRs are associated with distinct molecular signatures. (a) Matched RNA-seq data for nine
cancers revealed 30 distinct SMRs associated with at least 10 differentially expressed genes (FDR <
5%). Normalized reverse phase protein array (RPPA) (b) and RNA-seq (c) RAB25 signals in SNX19
SMR-altered (red) versus non-altered (blue) samples. Red lines indicate normalized signals for
matched SNX19 SMR-altered samples. (d) Similarity (Fisher’s exact test odds ratio; Supplementary
Methods) between differentially expressed gene sets associated with mutations in each SMR pair. (e)
Overlap of differentially expressed genes between patients with altered NFE2L2.2 in bladder cancer
and head and neck carcinoma is shown. Differentially expressed genes were sorted by p-value and
similarity was quantified by Fisher’s exact test odds ratio. (i) The distribution of odds ratios was
summarized for three comparisons of gene expression profiles associated with NFE2L2.2 alterations
across cancer types. (ii) Samples with NFE2L2.2 mutations exhibited highly increased expression of
several aldo-keto reductase enzymes. (f) The relative enrichment for oxidoreductase activity
(GO:0016616) among the differentially expressed genes in patients with NFE2L2 SMRs was plotted for
specific cancer types (Supplementary Table 13). (g) Structure of SMR NFE2L2.2 (orange) in the
KEAP1-binding domain (PDB: 3WN7). A sector of recurrent alterations on KEAP1 (teal) did not pass
our 2% frequency cutoff. (h) Breast cancer patients were split into groups based on presence of
mutations in six SMRs in PIK3CA, AKT1, and TP53. The median RPPA signal for these 36 markers is
plotted along with the g-value (Kruskal-Wallis test) of differential expression between SMRs in TP53
or in PIK3CA. Markers with significant differential expression among intragenic SMRs were highlight-
ed in red. Normalized RPPA-based expression was obtained from The Cancer Proteome Atlas (TCPA)*".
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Figure 5 | Structure in the distribution of cancer mutations remains largely uncharacterized. Gini
coefficients of dispersion were calculated as the fraction of non-synonymous mutations contained per
residue, across ~19,000 proteins. (a) Lorenz curves (i), Gini-coefficients (iii), and their correlation
with tumor sample numbers (ii) are shown. (b) Gini coefficients of non-synonymous mutation
frequency in breast cancer as a function of (bootstrapped) sample size. Line of exponential fit is shown
in dark blue. For comparisons between cancer types (a), the Gini coefficients were computed exclusive-
ly on the 100 most mutated residues per cancer.
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Table 1. Recurrently altered protein interfaces uncovered by SMRs.

Protein (i) Partner (j) PDB Chain (i) Chain (j) Region Avg. Distance (A)  Distance Ratio Q-value Status
VHL TCEB1 3ZUN | H chr3:10191469:10191513 7.259 0.395 7.62 x 10-10 Known
VHL TCEB2 1LQB C A chr3:10191469:10191513 9.867 0.367 7.62x 1010 Known

SPOP H2AFY 3HQH A M chr17:47696421:47696467 7.962 0.462 3.72x 108 Known
SMAD2 SMAD4 1U7v A C chr18:45374881:45374945 9.231 0.460 5.61x 108 Known
HIST1H2BK DNA 2CV5 D J chr6:27114446:27114519 9.730 0.520 3.27x 107 Novel
TP53 TP53BP1 1KZY B D chr17:7578369:7578556 13.253 0.556 5.13x 107 Known
SMAD4 SMAD2 1u7v B o] chr18:48604665:48604797 11.878 0.694 5.13x 107 Known
DNMT3A DNMT3L 2QRV E [ chr2:25463271:25463308 10.112 0.380 5.13x 107 Known
SMAD4 SMAD3 1U7F B o] chr18:48604665:48604797 11.883 0.700 1.94 x 106 Known
PIK3CA PIK3R1 3HHM A B chr3:178936070:178936099 9.028 0.335 2.56 x 106 Known
RUNX1 DNA 1H9D C H chr21:36231782:36231792 8.957 0.351 0.001 Known
HIST1H3I TRIM33 3USN D A chr6:27839651:27840062 11.480 0.610 0.001 Novel
HIST1H2BK HIST1H4* 2CV5 D F chr6:27114446:27114519 13.680 0.664 0.002 Novel
PPP2R1A PPP2R5C 2NPP D = chr19:52716323:52716329 7.313 0.247 0.007 Known
HRAS RASA1 iwaQi R G chr11:534283:534291 5.302 0.350 0.007 Known
PIK3R1 PIK3CA 3HIZ B A chr5:67589138:67589149 6.713 0.567 0.008 Known
NFE2L2 KEAP1 2FLU P X chr2:178098799:178098815 6.157 0.566 0.009 Known
EGFR EGF 3NJP B A chr7:55233035:55233043 8.763 0.386 0.019 Known
FGFR2 FGF8 2FDB R M chr10:123279674:123279677 10.288 0.413 0.036 Known
FBXW7 SKP1 20VR B C chr4:153249384:153249385 9.352 0.346 0.036 Known
FGFR2 FGF2 1EV2 H A chr10:123279674:123279677 11.685 0.406 0.037 Known

*: Indicates multiple components partner proteins identified. “Status” indicates whether the SMR-harboring protein (i) is a known or novel cancer-driver gene.
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