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ABSTRACT: We report the iAMOEBA (“inexpensive AMOEBA”) classical polarizable
water model. The iAMOEBA model uses a direct approximation to describe electronic
polarizability, in which the induced dipoles are determined directly from the permanent
multipole electric fields and do not interact with one another. The direct approximation
reduces the computational cost relative to a fully self-consistent polarizable model such as
AMOEBA. The model is parameterized using ForceBalance, a systematic optimization
method that simultaneously utilizes training data from experimental measurements and
high-level ab initio calculations. We show that iAMOEBA is a highly accurate model for
water in the solid, liquid, and gas phases, with the ability to fully capture the effects of
electronic polarization and predict a comprehensive set of water properties beyond the
training data set including the phase diagram. The increased accuracy of iAMOEBA over
the fully polarizable AMOEBA model demonstrates ForceBalance as a method that allows
the researcher to systematically improve empirical models by efficiently utilizing the
available data.

■ INTRODUCTION

Water is a fascinating liquid that possesses many anomalous
physical and chemical properties, including the temperature of
maximum density, expansion on freezing, unusually large heat
capacity, compressibility minimum, and unique solvation
properties. The study of how the molecular interactions in
water are related to its unique properties is a fundamental and
important topic in physical chemistry. A related essential
question is how water interacts with solutes such as ions,
organic molecules, and proteins to form the foundation of
biomolecular structure and function, including studies of how
proteins fold,1−3 misfold,4−6 undergo conformational
change,7−9 and interact with their environments.10−14 For all
of these reasons, the study of water interactions has been a
highly active field for decades in experimental and theoretical
chemistry.15

The theoretical and computational modeling of water allows
us to investigate water and aqueous solutions with precise
spatial and temporal resolution, providing a helpful comple-
ment to experiment. The application of these models has
contributed to important progress in our understanding of pure
water properties, such as the nature of the hydrogen bonding
network and its structural organization,15−18 the transport of
hydronium and hydroxide ions,19,20 the mechanism of
freezing,21 the surface properties of ice,22 the geometries and

binding energies of water clusters in the gas phase,23−26 and the
dual phases of liquid water at extremely low temperatures.27−29

However, no current single model is able to capture the full
complexity of water and its properties, due to the trade-off
between model complexity and the ability to sample the
condensed phase.
For example, some of the most widely used biomolecular

force fieldsincluding the popular AMBER30−33 and
CHARMM models13,34are based on the three-site, pair-
wise-additive TIP3P water model35 developed for use with
Monte Carlo simulations with finite-range cutoffs for electro-
static interactions, nearly 30 years ago. The computationally
tractable TIP3P model allows for long simulation time scales to
be reached that are important for extreme regions of water’s
phase diagram, or solvation of large biomolecules, even though
it was not parameterized for these types of simulations. The
TIP3P model was fitted to the experimental density and heat of
vaporization at room temperature and 1 atm pressure, and its
validation showed it could predict the isobaric heat capacity
quite well at this temperature and pressureto within 1 J/g
°C.36 However, this model often fails on properties outside the
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ambient conditions for which it was parameterized; for
example, the TIP3P model yields a simulated freezing point
value of −91 °C, far below the experimental value of 0 °C, and
incorrectly predicts the solid phase to be ice II rather than
ordinary ice Ih.37−39

The development of water models using only pairwise-
additive interactions (such as TIP3P) has significantly benefited
from more sophisticated treatments of long-ranged electro-
statics, extending the experimental data sets used for
parameterization, and adding more interaction sites. For
example, the TIP4P/Ew40 and TIP4P/2005 models41 were
developed for use with Ewald summation techniques and
parameterized using the temperature dependence of the density
and heat of vaporization. These models provide agreement with
a much broader range of experimental reference data outside of
the parameterization data used in model refinement.
There is also a more sophisticated class of water models that

move beyond point charges and the pairwise additive
approximation by including anisotropic electrostatic multipole
interactions and N-body polarization. For example, polarizable
models such as SWM-4DP,42 TIP4P-FQ,43 DPP2,23 TTM3-
F,44 and AMOEBA45,46 further improve on the description of
many water properties, especially gas-phase properties and the
dielectric constantwhereas additive force fields typically
overestimate binding energies of gas-phase clusters and
underestimate the dielectric constant in order to capture a
larger subset of condensed phase properties. Given the increase
in model complexity, polarizable force fields are also more
expensive to evaluate, often by a factor of 2−3 or greater.
The parameterization and validation of a water model is

typically both difficult and time-consuming. Improved methods
for building force fields are therefore desirable, for they can be
used to improve models in a systematic and reproducible way,
and potentially be applied more generally for parameterizing
models of other solutes such as drugs, ligands, proteins, lipids,
or nucleic acids that are compatible with the water model.
In this Article, we report the parameterization and validation

of a new classical, flexible, direct polarization water model that
is a simplified version of the fully polarizable AMOEBA water
model. The direct polarization method determines induced
dipole moments directly, based only on the electric field due to
static multipoles.47−50 The direct polarization approximation
eliminates the need for an iterative solution to the self-
consistent field in a fully interacting (mutual) model of
polarization and reduces the computational cost; hence, we
refer to the new model as inexpensive AMOEBA or iAMOEBA.
However, neglecting mutual polarization results in a loss of
∼20% of the polarization energy, and that must be recovered
through optimization of the model parameters.
Here, we use the ForceBalance method51,52 for parameter-

izing the iAMOEBA model using a combination of
experimental data and high-level ab initio calculations. We
will describe our choice of reference data and provide a brief
overview of the parameterization method. We demonstrate the
accuracy of iAMOEBA using a published, comprehensive
benchmark of water properties developed by Vega and co-
workers36 that covers a wide range of phases and thermody-
namic conditions going far beyond the parameterization data
set. We provide further discussion on the generality of the
parameterization approach explored here for iAMOEBA and its
potential for force field development for other liquids,
biomolecular solutes, and other materials, or for potentials of
arbitrary functional form.

■ THEORY AND METHODS

A. The iAMOEBA Model. The iAMOEBA model described
in this work is a direct polarization approximation of the
AMOEBA water model developed by Ren and Ponder, and we
refer the reader to ref 45 for a complete description of the
mutually polarizable AMOEBA water model. The iAMOEBA
and AMOEBA functional form for water is briefly recapitulated
here:

= + + + + +θE E E E E E Ebond angle b vdW ele
perm

ele
ind

(1)

where the first three terms describe the short-range valence
interactions (bond stretching, angle bending, Urey−Bradley
bond-angle cross-term) and the last three terms are the
nonbonded van der Waals (vdW) and electrostatic contribu-
tions from permanent and induced dipoles. More specifically,
the nuclei are described using classical point particles and the
molecular connectivity is fixed; the water molecule is allowed to
undergo classical vibrations represented using anharmonic
potential functions in the O−H bond length, the H−O−H
angle, and the H−H distance (Urey−Bradley interaction). The
van der Waals interactions are described using a Halgren
buffered 14−7 function that describes dispersion interactions at
long-range and exchange repulsion at short-range. The
permanent electrostatic interactions are represented as atomic
multipole moments through the quadrupole, requiring the
definition of a local coordinate system for each atom.
The main difference between the iAMOEBA and AMOEBA

functional forms is that we evaluate only the direct polar-
ization,47−49,53 and not the full self-consistent mutual polar-
ization. In this approximation, the polarizable dipoles are
induced solely by the electric fields from the permanent
multipoles. The dipoles are given by

∑μ α α= =
α αT M( ) for 1, 2, 3

i i

j

ij
j,

ind

{ } (2)

where αi is the atomic polarizability on site i, Mj = [qj, μj,1,
μj,2μj,3, ...]

T contains the permanent multipole components on
site j, and Tα

ij = [Tα, Tα1, Tα2, Tα3, ...] is the interaction matrix
element between sites i and j following Stone’s notation.54 This
stands in contrast to the expression for full self-consistent
polarizability:

∑ ∑μ α μ α β= + =
α α αβ β

′

′
′T M T( ) for , 1, 2, 3
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ij
j

j

ij
j,
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where the additional term μ∑ αβ β′
′

′T
j

ij
j{ }
ind represents the electric

fields from all other induced dipoles and the index j′ runs over
all atomic sites not including i itself. The full expressions for the
T matrix elements are the same as eqs 2−5 in ref 45.
Within the framework of the many-body expansion, direct

polarization gives rise to at most three-body terms in which a
polarizable site couples with the permanent moments of two
other sites. For example, in a direct polarization interaction
between an inducible dipole and two permanent multipoles, the
induced dipole moment and the direct polarization energy are
given by
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where μ1
ind is the induced dipole on site 1 with polarizability α1

and Tα
12M2 and Tα

13M3 represent the electric fields from the
permanent multipoles on sites 2 and 3. The first and second
terms in Edirect are two-body terms, whereas the third and fourth
terms are three-body terms representing the influence of M3 on
the interaction between μ1

ind and M2 (and vice versa). The
extension to systems containing more than three particles is
straightforward and gives rise to more three-body terms
involving one induced dipole and two permanent multipoles.
By contrast, the mutual scheme in AMOEBA represents the full
N-body polarization interaction, in which the polarizable
dipoles further induce one another and must be converged
self-consistently. Direct polarization provides a model that still
captures much of the polarization effects important in the
condensed phase at greatly reduced computational cost, as the
iterative evaluation of electrostatic energies to achieve self-
consistency in polarizable dipoles is avoided entirely.
Furthermore, the resulting model no longer requires a
convergence tolerance, eliminating the possibility that incom-
pletely converged dipoles might result in nonconservative
forces.
By way of the direct polarization, the iAMOEBA model

speeds up the calculation of energies and gradients by a factor
of 1.5−6 over the mutual AMOEBA model. These estimates
were derived from benchmark calculations using the TINKER
and OpenMM software packages (see Table S2, Supporting
Information); the precise value depends on the system and
simulation settings, notably the self-consistent convergence
tolerance for the AMOEBA induced dipoles. Furthermore, the
use of extended Lagrangian formalisms55−58 is known to greatly
reduce the computational cost of mutual polarization methods,
but it requires a careful choice of the fictitious mass parameter
for the electronic degrees of freedom;59−61 we did not consider
the impact of these methods in these timing comparisons.
The more important scientific question is how effectively we

can recapture the physical interactions using the approximate
polarizable form. In order to address this question, we must
reoptimize the 19 independent parameters of the iAMOEBA
model: five due to intramolecular vibrations, two for van der
Waals interactions, nine for permanent multipoles, and three
for electronic polarization. This requires a discussion of the
reference data set and the optimization method used to
parameterize the model.
B. Reference Data. A significant challenge for model

parameterization and validation is the choice of suitable
reference data, which can be both experimental and theoretical
in origin. For water, we are fortunate that both experimental
and theoretical reference data are plentiful,62,63 although this is
often not the case for less studied materials and compounds. In
this work, we apply a systematic optimization method
(ForceBalance),51,52 which allows us to efficiently utilize
combinations of experimental and theoretical data. Here, we
describe the different types of data used to parameterize

iAMOEBA, which we summarize in Table 1. Due to the large
size of the data set, the complete reference data set is provided
electronically.64

Experimental Measurements. The dominant paradigm in
water model development is to fit the parameters to reproduce
a set of experimentally measured condensed phase properties.
Generally speaking, a diverse data set over a wide range of
thermodynamic conditions improves the domain of applic-
ability of the model, but it also increases the practical difficulty
of the optimization problem. In this work, we extend the
parameterization data sets used in past studies to include six key
experimental properties over a wide range of thermodynamic
conditions: density, heat of vaporization, thermal expansion
coefficient, isothermal compressibility, isobaric heat capacity,
and dielectric constant. These properties are evaluated at 32
temperatures spanning a range of 249.15−373.15 K at
atmospheric pressure and 10 pressures from 1 to 8000 bar at
298.15 K (Table S4, Supporting Information). Our liquid
simulations for the heat of vaporization were performed at
atmospheric pressure rather than the vapor pressure, which
introduces a negligible correction term at the temperature
range studied. We also include experimentally known proper-
ties of the water monomer in the gas phase, in particular its
dipole moment, quadrupole moment, and vibrational frequen-
cies. All of the experimental reference data, along with the
theoretical reference data, is summarized in Table 1; the
complete experimental data is provided in Tables S3 and S4
(Supporting Information), as well as on the Web.64

Theoretical Reference Data. In addition to experimental
data, highly detailed theoretical calculations also provide
valuable reference data for model development. Methods

Table 1. Data References for Parameterization of iAMOEBA
(Full Tables Online, ref 64)a

aOrange: Condensed phase experimental data, 249−373 K (1 atm),
1−8000 bar (298 K). Green: Gas phase experimental data. Blue:
Theoretical reference data. The scaling factors for potential energies
and atomistic forces are given by the standard deviation of the
potential energies and the RMS norm of the forces in the ab initio
reference calculations. The objective function is a scaled sum of
squared differences between the simulation results and the reference
data; the scaling factors (equivalent to inverse weights) are given in the
right column.
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following this approach include potential fitting,65−67 force
matching,51,68−70 and relative entropy71,72 methods, and they
have found widespread success in building both atomistic and
mesoscale (coarse grained) models. The general goal is to
reproduce the accuracy of the highly detailed reference levels of
theory with a comparatively simple and inexpensive classical
model. Quantum chemistry methods such as Møller−Plesset
perturbation theory,73 coupled-cluster theory,73 and density
functional theory74 are examples of reference theories used to
develop atomistic models; they are impractical for many
condensed-phase applications due to their high cost but provide
valuable information on the electronic potential energy surface
for smaller systems such as water clusters.
In this work, the theoretical reference data includes energies

and gradients calculated at the dual basis RI-MP275−77/heavy-
aug-cc-pVTZ78 level of theory for over 42 000 cluster
geometries extracted randomly from simulations of liquid
water. These geometries are taken from condensed-phase
simulations performed using the AMOEBA model at temper-
atures ranging from 249.15 to 373.15 K and including cluster
sizes ranging from 2 to 22 to minimize finite size effects. The
calculations were performed using Q-Chem 4.0;79 the RI
approximation and the dual-basis approximation used their
respective auxiliary basis sets corresponding to heavy-aug-cc-
pVTZ as implemented in Q-Chem. We also include the optimal
geometries and binding energies of 40 small water clusters
ranging from 2 to 20 molecules. We have used the highest
available level of theory for each cluster, with some of the
largest calculations taken from literature benchmarks,80−85 and
include multiple key geometries for the dimer, hexamer, and
larger clusters where available. Most of the reference
calculations of the binding energy allow the cluster and
monomer geometries to fully relax, so our calculations using the
model follow the same approach; we include the RMSD of the
minimized cluster into the objective function in order to ensure
that the iAMOEBA model provides energy-minimized clusters
with the correct geometry. We also include 10 dimer poses (the
“Smith” dimer set)23 where the geometries are not relaxed, and
only the interaction energies enter into the objective function.
All of the data used in the parameterization of iAMOEBA is
available on the Web.64

C. Optimization. Least squares optimization of force fields
first began with the consistent force field proposed by Lifson
and Warshel in the 1960s.86 Hagler and co-workers first
proposed removal of hydrogen vdW sites in order to improve
the description of hydrogen bonding.87 Other early efforts
extended formal least-squares optimization through use of ab
initio calculations88 and application to bulk phase crystal
modeling.89 The AMOEBA water model was parameterized by
hand to fit results from ab initio calculations on gas phase
clusters.
ForceBalance51,52 (Figure 1) extends this prior work in

several directions, including the ability to use a much larger and
more diverse data set which includes experimental liquid phase
measurements and ab initio calculations. Here we use
ForceBalance to optimize the iAMOEBA parameters. The
overall objective function is expressed as a weighted sum of
squared residuals over the experimental and theoretical target
data sets (weights and data types in Table 1). The exact
gradient and approximate Hessian matrix of the objective
function is derived from the first derivatives of the properties
using the Gauss−Newton approximation. The Levenberg−
Marquardt algorithm90,91 with an adaptive trust radius92,93 is

used to perform an iterative minimization of the nonlinear
least-squares objective function.
There are significant challenges involved in using such a large

experimental reference data set in an optimization scheme,
because many of these properties are difficult to simulate to
convergence for a single set of parameters, let alone fit via a
parameter optimization method. Furthermore, computer
simulations of condensed-phase properties suffer from
statistical errors, and the errors are compounded when
estimating the dependence of a particular property on the
force field parameters. These difficulties can relegate the
researcher to performing manual parameter searches guided by
insight and evaluating models by inspection, which gives force
field model parameterization some of its reputation as an
onerous task or “black art”.
ForceBalance attempts to address these challenges in

optimizing parameters to fit complex condensed phase
properties. A key aspect of this approach is that we calculate
analytic derivatives of the simulated properties with respect to
the force field parameters using a new fluctuation formula
similar to Hamiltonian Gibbs−Duhem integration.41 In the
past, these derivatives have been evaluated by running multiple
simulations with different parameter values,40,41 but statistical
error in finite difference gradients from independent simu-
lations is a major problem. Here we recognize our properties of
interest originate from averages and fluctuations in the
isothermal−isobaric (NPT) ensemble. For instance, the
ensemble average of a generic observable A that does not
depend explicitly on the force field parameters (for example,
the density or an order parameter) can be expressed as follows:

∫

∫

λ
β λ

λ β λ

⟨ ⟩ = − +

= − +

λA
Q

A V E V PV V

Q E V PV V

r r r

r r

1

( )
( , ) exp( ( ( , ; ) )) d d

( ) exp( ( ( , ; ) )) d d

(5)

where A is the observable, r a given molecular configuration in a
periodic simulation cell, λ the force field parameter, E the
potential energy, β ≡ (kBT

−1) the inverse temperature, kB the
Boltzmann constant, T the temperature, P the pressure, V the
volume, Q the isothermal−isobaric partition function, and the
angle brackets with a λ subscript represent an ensemble average
in the thermodynamic ensemble of the force field para-
meterized by λ. In practice, this integral is evaluated numerically
using molecular dynamics or Monte Carlo simulation in the
NPT ensemble.
Since the expression for A depends on λ only through the

potential energy E, we can differentiate eq 5 and obtain the
analytic derivative (eq 6):
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In practice, these calculations require the potential energy
derivative, which we evaluate by postprocessing the simulation
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trajectory. This equation may be directly applied to obtain
derivatives of ensemble-averaged observables that do not
contain explicit force field parameter dependence, such as the
density ρ.
By contrast, the derivative of the enthalpy contains an extra

partial derivative term, because the potential energy appears in
the integrand:

λ λ
β

λ λ
⟨ ⟩ = − − ⟨ ⟩

⎛

⎝
⎜

⎞

⎠
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E
H

E
H

Ed

d

d

d

d

d

d

d (7)

where for brevity we shall assume an implicit λ subscript for all
quantities in all subsequent angle brackets. The derivative of the
heat of vaporization ΔHvap is given by subtracting the formulas
for the liquid phase and gas phase enthalpies:
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where H ≡ E + PV is the enthalpy and the subscripts g and l
denote the gas and liquid phases. Here, we have invoked the
ideal gas law so that the molecular volume of water vapor does
not appear in the expression.
We note the derivative of an ensemble average property

resembles a fluctuation property or second-order correlation
function; the above equation is derived in a similar manner to
the fluctuation formulas for second-order thermodynamic
properties like the thermal expansion coefficient, isothermal

compressibility, etc. The derivative of nearly any ensemble
average property can be evaluated in this fashion, and we also
have derived formulas for differentiating fluctuation properties.
For example, the derivatives of the thermodynamic fluctuation
formulas for the thermal expansion coefficient α, isothermal
compressibility κT, isobaric heat capacity cP, and dielectric
constant ε(0) resemble third-order fluctuations (eqs 9−12):
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Here, M is the total dipole moment of the simulation cell and
the summation goes over the three Cartesian axes. We remark

Figure 1. Illustration of ForceBalance procedure. The calculation
begins with an initial set of parameters (lower left), which is used to
generate a force field and perform simulations. The objective function
is a weighted sum of squared differences between the simulation
results and the reference data, plus a regularization term that prevents
overfitting. The optimization method updates the parameters in order
to minimize the objective function.
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that, although we have avoided the issues associated with finite-
difference derivatives from independent simulations, the
derivative of an ensemble average property is intrinsically
more difficult to estimate precisely, since it manifests as a
fluctuation property, and the derivative of a fluctuation property
manifests as a third-order fluctuation.
Finally, the different kinds of experimental and theoretical

reference data used for parameterization have different physical
units, so they require rescaling factors and weights in order to
incorporate all data into an optimization scheme that minimizes
a single objective function. The rescaling factor for each
property is based on its intrinsic size and uncertainty from the
simulation, and it is equal to the inverse weight of that property
in the objective function. The values of the rescaling factors are
given in Table 1.
Regularization. Although we included an unprecedented

amount of reference data in our optimization, there is still the
danger of overfitting. This arises because all of the simulated
quantities emerge from the interactions in the model, which can
easily have linear dependencies. Overfitting is treated by
regularization, in which parameter values are penalized if they
stray too far from their original values. Penalty functions have a
natural interpretation in Bayesian statistics because they
correspond to the negative logarithm of a prior distribution,
analogous to how a potential energy function is the negative
logarithm of a Boltzmann distribution.94 For example, a
harmonic penalty function corresponds to a Gaussian prior
distribution:

λ λ
λ

α
∝ ↔ =λ α−P e R( ) ( )/

2

2

2 2

(13)

where P(λ) represents the prior probability distribution of the
parameter λ and R(λ) is the harmonic penalty function. The
width of the prior distribution α (and corresponding inverse
squared strength of the penalty function) represents our
expectation of possible parameter values before introducing the
parameterization data. The regularized objective function then
corresponds to the posterior distribution.
The regularized optimization is more accurately described as

performing maximum a posteriori estimation, instead of a
formally Bayesian method which samples from the posterior
distribution. Another important difference is that the “empirical
Bayesian” methods treat the weights for reference data and the
prior widths as nuisance parameters and samples over them,
whereas we chose the weights and prior widths in this work by
examining the physical scale and variability of each quantity.
The reason for our approach is twofold. Given the high
complexity of evaluating the objective function, a derivative-
based optimization with predetermined weights and prior
widths was the only feasible option with the current method
and available resources. Furthermore, we found that perturbing
the weights and prior widths by large amounts (∼50%) had
minor effects on the behavior of the final model, but the same
could not be said for perturbing force field parameters by a
similar amount. In summary, the regularized optimization
alleviates the task of manually selecting the highly sensitive
force field parameters but still requires the researcher to

Table 2. Potential Parameters for AMOEBA (ref 45) and iAMOEBA (This Work)a

parameter name units AMOEBA iAMOEBA prior width

O−H equilibrium bond length Å 0.9572 0.9584 0.1

O−H bond force constant kcal/mol/Å2 529.6 557.63 50

H−O−H equilibrium angle deg 108.5 106.48 5

H−O−H angle force constant kcal/mol/Å2 34.05 49.90 40

H−H Urey−Bradley length Å 1.5537 1.5357 N/Ab

H−H Urey−Bradley force constant kcal/mol/Å2 38.25 −10.31 25

oxygen vdW sigma Å 3.405 3.6453 0.3

oxygen vdW epsilon kcal/mol 0.11 0.19682 0.1

hydrogen vdW sigma Å 2.655 0 N/Ac

hydrogen vdW epsilon kcal/mol 0.0135 0 N/Ac

hydrogen vdW reduction factor none 0.91 0 N/Ac

oxygen charge e −0.51966 −0.59402 0.4

oxygen dipole Z-component e bohr 0.14279 0.08848 0.1

oxygen quadrupole XX-component e bohr2 0.37928 0.22618 0.2

oxygen quadrupole YY-component e bohr2 −0.41809 −0.32244 0.2

oxygen quadrupole ZZ-component e bohr2 0.03881 0.09626 0.2

hydrogen charge e 0.25983 0.29701 0.4

hydrogen dipole X-component e bohr −0.03859 −0.09391 0.1

hydrogen dipole Z-component e bohr −0.05818 −0.12560 0.1

hydrogen quadrupole XX-component e bohr2 −0.03673 0.18754 0.2

hydrogen quadrupole YY-component e bohr2 −0.10739 0.02174 0.2

hydrogen quadrupole XZ-component e bohr2 −0.00203 −0.03635 0.2

hydrogen quadrupole ZZ-component e bohr2 0.14412 −0.20928 0.2

oxygen polarizability Å3 0.837 0.80636 0.1/0.2d

hydrogen polarizability Å3 0.496 0.50484 0.1/0.2d

polarization damping factor Å−1 0.39 0.23616 0.2
aThe prior widths are used in regularization. bThe Urey−Bradley equilibrium length is determined from the O−H bond length and H−O−H angle
parameters using the law of cosines. ciAMOEBA does not contain hydrogen vdW interactions. dThe polarizability parameters were optimized in
terms of their sum (αO + 2αH, prior width 0.1 Å3) and their ratio (αO/αH, prior width 0.2).
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qualitatively specify the problem using his/her physical
knowledge.
Our optimization was regularized using a Gaussian prior

specified in Table 2. This corresponds to a parabolic penalty
function in parameter space centered at the original AMOEBA
parameter values with the chosen force constants. Since the
various iAMOEBA parameters have different physical meanings
(e.g., vdW well depth, O−H bond length), each parameter type
was assigned its own prior width. We performed the
optimization by first fitting only the theoretical data, because
this was computationally less expensive. We then included the
condensed phase properties and optimized the full objective
function until fluctuations from numerical noise prevented
further improvement. The full optimization converged to
within the statistical error after about 10 nonlinear iterations,
though we performed several optimizations with different
choices of weights for the reference data and prior widths
before arriving at the final answer.
In order to perform the simulations of condensed phase

properties, ForceBalance interfaces with existing simulation
software. To meet the high requirements for accuracy in the
simulated properties, we used a combination of powerful and
complementary methods in simulation software and distributed
computing. The condensed phase simulations in the
optimization used OpenMM 5.1,95−97 a GPU-accelerated
molecular dynamics software package with an extensively
validated implementation of AMOEBA, which provides a
speedup of an order of magnitude over the reference
implementation in TINKER 6.1.98 At each optimization step,
the set of 42 simulations at different phase points (32
temperatures at 1.0 atm pressure plus 10 pressures at 298.15
K temperature, given in the Supporting Information) is
performed simultaneously on multiple GPU clusters; the
Work Queue library99−101 allows ForceBalance to act as a
distributed computing server and coordinate many OpenMM
simulations running on multiple compute nodes in different
physical locations. Finally, the data from the finished
simulations was analyzed using the multistate Bennett accept-
ance ratio estimator (MBAR),102,103 which allows each
simulation to contribute to the estimated property of each
other simulation. This combination of methods allowed us to
optimize the condensed phase properties very accurately. Due
to the nonoverlapping features of the simulation codes, we
combined OpenMM 5.1 and TINKER 6.1 during the
optimization to evaluate quantities for comparison with the
ab initio and gas phase reference data, using OpenMM to
evaluate the potential energies and forces and TINKER to
evaluate the binding energies and monomer properties.
ForceBalance,51 TINKER,98 OpenMM,97 and Work Queue101

are freely available on the Web.

■ RESULTS

A. iAMOEBA Parameters. Table 2 provides the optimized
parameters for the iAMOEBA water model. Parameter files in
the TINKER and OpenMM formats are provided on the
Web.64 The Gaussian prior widths in Table 2 are given to
ForceBalance as inputs for the optimization, and they enter into
the objective function as harmonic restraints in the parameter
space. Our choices for the prior widths represent our
expectations (from experience and physical intuition) that the
parameters should not deviate from the initial AMOEBA values
by more than these amounts, though ultimately the deviation in

the parameter is also strongly affected by its importance in
minimizing the objective function.
The first six rows contain the intramolecular parameters for

iAMOEBA. The equilibrium bond length is essentially
unchanged from the initial AMOEBA value. The force
constants are changed more significantly; the original
AMOEBA model reverses the symmetric and antisymmetric
vibrational frequency order, and the iAMOEBA parameters
restore the correct order (Table S3, Supporting Information).
The equilibrium HOH angle parameter is reduced by 2°, which
gives energies and atomistic forces in better agreement with ab
initio calculations (Table S5, Supporting Information);
however, as with all flexible models that lack intramolecular
charge transfer, the angle contracts in the liquid phase relative
to the gas phase value, in contrast to experimental measure-
ments which indicate an expansion of the angle.104,105 The
liquid phase angle of iAMOEBA at room temperature and
atmospheric pressure is 103° (standard error <1°), which is
smaller than the value of 105−106° inferred from experi-
ment106 and ab initio molecular dynamics simulation.107 The
rationale for choosing an artificially large angle parameter of
108.5° in the original AMOEBA model was to reproduce the
correct angle in the liquid phase, which aided in reproducing
experimental liquid properties such as the dielectric constant;
however, as we will see, iAMOEBA is able to accurately predict
a broad range of condensed phase properties despite having a
reduced bond angle value in the liquid phase.
The next 2 rows contain the vdW parameters, followed by 12

rows containing the permanent multipole parameters (only 9 of
which are independent, due to the constraint of charge
neutrality and use of traceless quadrupoles). iAMOEBA has a
larger vdW radius and well depth compared to AMOEBA,
which is largely due to the vdW interaction sites being removed
from hydrogen (see the section on liquid structure for more
details). The charges are increased in magnitude compared to
AMOEBA, but the deviations in the higher-order electrostatic
parameters show no clear pattern. The hydrogen quadrupole
parameters have the most significant deviations with three out
of four parameters changing sign from the initial AMOEBA
values; this is probably related to alterations in the hydrogen
interactions due to removing the vdW interactions, and/or the
reduced angle in the condensed phase. Despite the large
changes from the AMOEBA parameters, the iAMOEBA model
gives very good agreement with the molecular multipole
moments at the gas phase optimal geometry (Table S3,
Supporting Information).
The polarizability parameters are perhaps the most

interesting due to the direct polarization approximation. Direct
polarization implies that atomic polarizabilities are additive (i.e.,
the molecular polarizability is equal to the sum of the atomic
polarizabilities) and isotropic unless atomic polarizability
tensors are used. While the atomic polarizabilities are additive
with respect to an externally applied electric field, polarization
effects become nonadditive for multipole interactions at short-
range due to iAMOEBA’s use of Thole damping. If the
AMOEBA parameters were used to initialize the iAMOEBA
parameterization, the initial molecular polarizability of
iAMOEBA water would be 1.83 Å3. Thus, we rescaled our
initial parameters to 80.4% of the AMOEBA values, such that
their sum was equal to the molecular polarizability of the
AMOEBA model (1.47 Å3). The optimization increased the
polarizability parameters, resulting in a final value of 1.82 Å3, an
increase of 23%. This is in agreement with our intuition that the
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iAMOEBA model should have a higher molecular polarizability
than the AMOEBA model, because the entire electronic
polarization must come from the permanent multipoles without
any further mutual induction. To compensate for this stronger
response, the Thole damping factor is significantly reduced
from the value used by AMOEBA, resulting in increased
damping at short-range.
B. Quality of Fit to Parameterization Data. In this

section, we analyze the quality of fit that the iAMOEBA model
obtains for the parameterization data listed in Table 1. Figure 2

shows the iAMOEBA, AMOEBA, and experimental density as a
function of temperature over the temperature range 245−373 K
at atmospheric pressure. The AMOEBA water model was only
fit to the density and heat of vaporization at 25 °C but yields a
temperature of maximum density (TMD) of 20 ± 2 °C, with
the overall temperature dependence being approximately
correct (blue line). If we use a direct polarization model with
the AMOEBA parameters (i.e., turning off the mutual
polarization), the result is qualitatively incorrect (dashed
green line); the density decreases monotonically with temper-
ature and the heat of vaporization is 5 kJ/mol too low
(Supporting Figure S1, Supporting Information). Optimizing
the parameters of the direct polarization iAMOEBA model
using ForceBalance (solid green line) gives a TMD of 4 ± 2 °C
that is closer to experiment compared to the original AMOEBA
model, and the accuracy of the simulated density agrees with
experiment to within 0.3% over the entire temperature range.
Numerical values are given in Table 3.
We also used the second-order thermodynamic properties of

water to parameterize iAMOEBA, which include the thermal
expansion coefficient, isothermal compressibility, isobaric heat
capacity, and dielectric constant. Their temperature depend-
ence is shown in Supporting Figures S2−S5 (Supporting
Information). At 25 °C, the simulated values for second-order

properties agree with experiment to within 10%, but the
deviations become slightly more significant at the temperature
extremes. The isothermal compressibility is too low across the
entire temperature range, which we were not able to improve
further. We discovered an error in the calculation of the isobaric
heat capacity during the optimization, so that the experimental
heat capacity was not effectively targeted; after correcting the
error, the simulated heat capacity is provided in Figure S4
(Supporting Information), and is on average slightly higher
than experiment (by 0.3−0.6 kcal/mol) with the qualitatively
correct temperature trend.
Figure 3 illustrates the quality of fit for the ab initio data for a

representative water cluster from the liquid; the quality of fit for
all ab initio potential energies and forces is given in Table S5
(Supporting Information). The MP2 and iAMOEBA forces are
shown using blue and gold vectors, respectively. The strongest
components of the force are often in the intramolecular degrees
of freedom, which reflects the fact that forces tend to be
stronger along degrees of freedom with higher force constants.
This demonstrates the importance of explicitly looking at
intermolecular forces, which we have done here by equally
partitioning the force contribution into an atomistic, net force,
and net torque component following ref 68.
Looking at all 2400 clusters for a specific cluster size (7-

mers), the RMS error in relative potential energies (Figure 3,
inset) is 4.6 kJ/mol, or 16% (standard error <1%) in
comparison to the standard deviation of the reference potential
energies (29.2 kJ/mol). The RMS error of the iAMOEBA
atomistic forces relative to the MP2 values is 22 kJ/mol/Å, or
26% (standard error <1%) in comparison to the standard
deviation of the reference atomistic forces (83 kJ/mol/Å). The
errors in the intermolecular forces and torques are 9.4 kJ/mol/
Å and 6.4 kJ/mol/rad, respectively, or 32% (standard error
<1%) in comparison to the standard deviation of the reference
net forces and torques (29 kJ/mol/Å and 20 kJ/mol/rad). By
comparison, the AMOEBA model has atomistic/net force/net
torque errors of 37%/31%/23%, and the flexible TIP3P model
has much larger errors of 43%/61%/66%. This comparison
indicates that polarizable force fields may be more appropriate
for describing intermolecular interactions, since the pairwise-
additive force fields are mainly designed to recapitulate bulk
properties. The AMOEBA and iAMOEBA models perform
comparably at predicting the intermolecular forces from this
data set; although AMOEBA performs slightly better for
torques, the force errors of 24−37% for both models are still
somewhat large. We remark that it is possible to match the ab
initio forces to 10−15% error if we had solely focused on force
matching without any other reference data, but this could
worsen the overall accuracy of the model for describing the
condensed phase properties of water (see the Discussion
section).
Supporting Figures S6 and S7 (Supporting Information)

show the quality of fit for the binding energies of geometry-
optimized clusters on a linear and log scale. iAMOEBA finds a
5.09 kcal/mol binding energy for the dimer, while AMOEBA
yields 4.98 kcal/mol relative to the experimental value of 4.99
kcal/mol. For larger clusters, iAMOEBA systematically under-
estimates the binding energies, slightly more than AMOEBA.
This indicates that mutual polarization likely plays an important
role in obtaining a size-consistent description of cluster binding
energies. We remark that AMOEBA does a very good job at
predicting the ab initio binding energies for all of the clusters,
despite having been parameterized using only a subset of the

Figure 2. Density of liquid water over the temperature range 249−373
K at atmospheric pressure. The AMOEBA model from 2003 (blue
line) uses mutual polarization. The direct polarization model gives a
qualitatively incorrect result if the AMOEBA parameters are used
(AMOEBA direct, dashed green line). Optimizing the parameters of
the direct polarization model leads to iAMOEBA (solid green line),
which reproduces the experimental density and TMD for the whole
temperature range. Error bars represent one standard error.
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Table 3. Experimental and Simulation Data from Different Water Modelsa

aTIP3P and TIP4P/2005 data and percent tolerances for determining the numerical score (% tol. column) are reproduced from ref 39. All
AMOEBA properties (except for melting properties) and iAMOEBA properties are calculated in this work. Cells with a green background indicate
properties that are part of the parameterization data set; the green cells are excluded when calculating the average score for iAMOEBA. The liquid
structure was not included in the score; see instead Figure 4. The phase diagram is scored qualitatively following ref 39.
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dimer and hexamer conformations. iAMOEBA and AMOEBA
are both able to accurately reproduce the optimal structures of
the water clusters. The RMSDs to the reference QM-optimized
structures are below 0.15 Å for all of the clusters in the
parameterization data set; in particular, the RMSD of the
iAMOEBA-minimized water dimer is 0.043 Å. The O−O
distance of the water dimer is 2.836 Å in iAMOEBA, which is
shorter than the values of 2.912 and 2.892 Å from the QM-
optimized structure and AMOEBA. The flap angle between the
O−O vector and the H−O−H bisector vector of the acceptor
molecule is 54.9° from iAMOEBA, compared to 55.2° from the
QM-optimized structure and 57.2° from AMOEBA.
While it is possible to obtain a more precise fit to the ab initio

data, the utility of this data set is to ensure that the potential
energy surface is qualitatively correct; the main goal is to

accurately reproduce the experimental condensed phase
properties. We return to this parameterization decision in the
Discussion section.

C. Model Testing and Validation. The predictive power
of the iAMOEBA model is tested using properties outside of
the fitting set (Table 3, uncolored cells). All validation
properties were computed using the TINKER 6.1 molecular
dynamics software,98 which provides a reference implementa-
tion of iAMOEBA. Here we include a comprehensive test set of
properties taken from ref 36, which provides a scoring system
on a 10-point scale derived from the accuracy of the model
prediction relative to specified tolerance thresholds. The
properties include thermodynamic and kinetic properties at a
wide range of conditions, most of which are outside our
parameterization data set; they cover the solid, liquid, and gas
phases of water, focusing mainly on the liquid but also
emphasizing reproducibility of the ice phases. The average of all
property scores gives an overall score of the model from 0 to
10, which gives a general sense of the water model quality at a
glance. To ensure a fair comparison, our average score excludes
all properties that were used in the parameterization (high-
lighted in green in Table 3). We calculated an overall score of
8.4 out of 10 for iAMOEBA because of its excellent agreement
for all of the tested properties. Furthermore, the liquid
properties calculated using iAMOEBA compare favorably with
a collection of well-established42,44,113 and newly devel-
oped108,112 polarizable water models in the literature (Table
4). The favorable comparison of iAMOEBA to existing water
models with full self-consistent polarization gives credence to
the idea that the direct polarization approximation may
effectively capture polarization effects in water.

Liquid Phase Thermodynamic Properties. These properties
include the density, thermal expansion coefficient, isothermal
compressibility, and isobaric heat capacity; they are so
categorized by their derivation from the thermodynamic
ensemble as equilibrium averages and fluctuations from
equilibrium. We expect iAMOEBA to reproduce these
properties reasonably well because they were already included
as part of the parameterization data set (though not at the same
thermodynamic conditions). The density of liquid iAMOEBA
water agrees with experiment to within 0.3% for thermody-
namic conditions ranging from 249.15 to 373.15 K and up to 1
kbar. Small deviations of up to 1% are observed at very high

Figure 3. Illustration of iAMOEBA fit to theoretical data. The
atomistic forces from the QM reference method (blue) and
iAMOEBA model (yellow) are shown for a representative
configuration of a water 7-mer extracted from the liquid. The relative
RMS force error is 24% over all configurations. Inset: Scatter plot of
cluster relative potential energies. Blue color indicates a higher density
of points; the diagonal line indicates zero error.

Table 4. Properties of Water Calculated Using Several Polarizable Models and Compared to Experimental Measurementsa

property experiment AMOEBA SWM4-NDP TTM3-F GCPM SWM6 BK3 iAMOEBA

ρ (g cm−3) 0.997 1.000 0.994 (2) 0.994 1.007 0.996 (2) 0.9974 (2) 0.997

ΔHvap (kcal mol
−1) 10.52 10.48 10.44 11.4 11.30 10.52 10.94 10.94

α (10−4 K−1) 2.56 1.9 (6) 4.2 3.01 (8) 2.5 (1)

κT (10−6 bar−1) 45.3 66 (1) 44.4 (7) 41.1 (4)

Cp (cal mol
−1 K−1) 18.0 21.3 (5) 22.5 22.0 (2) 18.5 (2)

ε(0) 78.5 81.4 (14) 78.0 (14) 67.7 84 78.1 (28) 79 (3) 80.7 (11)

D0 (10
−5 cm2 s−1) 2.29 2.0 2.85 (28) 2.37 2.26 2.14 (19) 2.28 (4) 2.54 (2)

η (mPa s) 0.896 1.08 (5) 0.66 (9) 0.87 (12) 0.95 (1) 0.85 (2)

TMD (K) 277 292 (2) <220 255 235 275 (3) 277 (1)

Tm (K) 273.15 <120 248 (2) 250 (3) 261 (2)

Tc (K) 647.1 581 (2) 576 642 629 (5) 622

aLiquid bulk properties are measured at 298 K, 1 bar; TMD and Tm are measured at 1 bar; and Tc is determined for the critical pressure of the
model. Numbers in parentheses indicate one standard error in terms of the least significant digit, where available. AMOEBA and iAMOEBA
properties were calculated in this work; standard errors are given in parentheses, except when the standard error is smaller than the number of
significant figures given. SWM4-DP and SWM6 properties are from ref 108, except for the melting point37 and critical point109 of SWM4-DP.
TTM3-F properties are from refs 44, 110, and 111. GCPM properties are from refs 112 and 113. BK3 properties are from ref 112.
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temperatures (450 K) and pressures (10 kbar). The heat of
vaporization is 10.94(1) kcal mol−1 at 298.15 K, which is higher
than the experimental value of 10.52 kcal mol−1; the
temperature trend also has a larger slope compared to
experiment. This insufficiency is due to well-known quantum
nuclear effects on the heat capacity of the high-frequency
vibrational modes, since at lower temperatures the faster
vibrational degrees of freedom are frozen out.
The fluctuation properties also show good trends with

experiment though they are less accurate, similar to what we
found for the parameterization data set for these same
properties. The isothermal compressibility is 10% too low at
298 K, and the error increases with lower temperatures; there
exists a shallow minimum in the compressibility at 301−317 K,
which is near the experimental value of 319 K. The simulated
isobaric heat capacity agrees well with experiment at 298 K after
including a quantum correction for the high frequency
vibrational modes (see Table S4, Supporting Information).
Liquid Phase Kinetic Properties. Kinetic properties con-

stitute an important test for iAMOEBA, particularly because no
kinetic properties were included in the parameterization data
set. We calculated the self-diffusion constant corrected for finite
size effects,114 the shear viscosity, and the orientational
relaxation time at different temperatures. The self-diffusion
constant for iAMOEBA at 298 K, 1 atm is 2.54(2) × 10−9 m2

s−1 (experiment: 2.30 × 10−9 m2 s−1), and the temperature
trend shows excellent agreement with experiment, as shown by
the activation energy from the Arrhenius rate law (Supporting
Figure S8, Supporting Information). The shear viscosity and
orientational relaxation times also show very good agreement
with experiment.
The infrared (IR) spectrum of water contains a wealth of

information on the kinetic properties. In Figure 4, we show the
calculated IR spectrum from iAMOEBA and the experimental
IR spectrum on an arbitrary intensity scale. We also included
the predictions from the TTM3-F model,44 which was
parameterized to reproduce the IR spectrum of water, and
the flexible SPC/Fw model.115 The spectra were generated by

applying the quantum harmonic approximation to the Fourier-
transformed dipole autocorrelation function of a classical MD
trajectory. The peaks around 3500 and 1650 cm−1 correspond
to vibrations of the O−H bond and the H−O−H angle,
respectively; both TTM3-F and iAMOEBA predict the correct
frequency shift from the gas phase values, but iAMOEBA and
SPC/Fw do not predict the correct relative intensities. This is
almost certainly due to the absence of intramolecular charge
transfer116 (also known as charge flux53,117) in the functional
forms of iAMOEBA and SPC/Fw, which is required for a
proper description of the dipole moment surface and which is
included in the TTM3-F model. iAMOEBA and SPC/Fw both
predict a slight splitting of the 3500 cm−1 peak corresponding
to the symmetric and antisymmetric stretch frequencies; we
postulate that including intramolecular charge transfer terms
would broaden these peaks and lead to better agreement with
experiment. Another promising route toward quantitative
reproduction of the IR spectrum would be to account for
nuclear quantum effects explicitly by reparameterizing the
model for path integral molecular dynamics simulations.118,119

The peaks below 1000 cm−1 correspond to librational and
slower degrees of freedom. Here, both iAMOEBA and TTM3-
F present a low-frequency shoulder below 300 cm−1, whereas
the SPC/Fw spectrum does not present this feature; this is
thought to be a characteristic of polarizable water models, but
more analysis is needed in order to establish this link.

Liquid Structure. The partial radial distribution functions
(RDFs) are an important indicator of liquid structure and
connections to X-ray and neutron liquid diffraction.28,121−124

For water, the oxygen−oxygen RDF, gOO(r), is especially well
captured in an X-ray scattering experiment due to oxygen’s high
atomic number relative to hydrogen. Figure 5, left panel, shows
the gOO(r) of water from iAMOEBA (green) along with
experimentally derived RDFs from X-ray scattering data taken
by Hura and co-workers at the Advanced Light Source121 (ALS,
black) and more recently by Skinner and co-workers at the
Advanced Photon Source125 (APS, orange). The agreement
with experiment is good to within the distribution of past
experimental derivations from X-ray and neutron diffraction
data (Supporting Figure S9, Supporting Information). The O−
H and H−H RDFs are provided in Supporting Figures S10 and
S11 (Supporting Information) and compared to experimentally
derived gOH(r) and gHH(r) from neutron scattering data.123

Figure 5, right panel, compares the simulated X-ray scattering
intensity from iAMOEBA and the experimental data from ALS
and APS; the comparison is again favorable across all
momentum transfer vectors, under assumptions of the electron
density derived from the modified atomic form factors
developed in ref 121. Both real-space and momentum-space
comparisons indicate that iAMOEBA reproduces the structure
of water at room temperature very accurately. Since we did not
follow the exact procedure in ref 126 for quantifying the
accuracy of the structure, this property was not included in the
overall numerical score.
During the optimization, we monitored the gOO(r) and X-

ray intensity plot for agreement with experiment, though we
did not explicitly include it in the optimization. In an
intermediate stage of the optimization, we found that our
model was performing poorly for the liquid structure prediction
(blue dotted line) with significant deficiencies in the low-Q
region of the X-ray intensity plot. After trying a number of
modifications, we found that the agreement with experiment
was completely recovered by eliminating the vdW interactions

Figure 4. IR spectra of liquid water, measured using experiment and
calculated using the SPC/Fw, TTM3-F, and iAMOEBA models.
Experimental and TTM3-F data taken from ref 120. Gray bars
represent gas phase vibrational frequencies from experiment. Inset:
Magnification of the far IR region (<1000 wavenumber).
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involving hydrogen; thus, the final iAMOEBA model has
spherically symmetric vdW interactions centered on oxygen.
Interestingly, while the choice of vdW functional form has a
significant impact on the agreement with liquid structure, other
properties were found to be in equally good agreement with
experimental data whether hydrogen van der Waals interactions
were included or not included.
Vapor and Critical Properties. The vapor and critical

properties include the heat of vaporization, the vapor pressure,
the surface tension, and the critical point; none of these
properties were included in the optimization. These properties
are very important tests for a polarizable model because the
dipole moment of water molecules differs significantly between
the vapor and liquid phases.107,127,128 By contrast, non-
polarizable water models have a fixed molecular dipole moment
that is parameterized to the liquid phase value in order to
reasonably reproduce liquid properties. One consequence is
that the fixed charge models overestimate the attraction
between water molecules in the gas phase. These errors are
demonstrated by the second virial coefficient and the vapor
pressure, where nonpolarizable models significantly under-
estimate the experimental value.
We calculated the second virial coefficient (Table 3) and the

liquid−vapor coexistence line of iAMOEBA up to the critical
point (Supporting Figures S12−S13, Supporting Information).
The calculated critical properties are in good agreement with
experiment; the critical temperature and pressure are under-
estimated by a few percent. The vapor pressures and second
virial coefficient also have good agreement with experiment.
The accuracy of iAMOEBA exceeds AMOEBA in the
neighborhood of the critical point; this is because iAMOEBA
was explicitly optimized to reproduce densities at higher
temperatures.109 In general, the vapor and critical properties
confirm that iAMOEBA with its direct polarization approx-
imation is a highly viable model for water.
Ice, Melting Properties, and Phase Diagram. The melting

point of ordinary ice (ice Ih) in the iAMOEBA model is
calculated using direct coexistence simulation38 to be 261 ± 2 K
at 1 atm, 12° below the experimental value of 273.15 K (Figure
6). The enthalpy of melting is about 15% lower than the

experimental value. The agreement with experiment is very
good in the context of comparing with other models; however,
there is a temperature gap of 16 K between the freezing point
and the TMD (experimental gap 4 K). The overestimation of
the TMD − Tm difference is a consistent trend across classical
water models,37−39 although promising results have been
obtained using force-matching on configurations sampled
from both water and ice.129 Since isotope effects are known
to significantly affect the freezing point of water, it remains to
be seen whether nuclear quantum effects can provide a further
improved description of this important property.
Water also forms many high-density ice polymorphs at high

pressure; they constitute an interesting test for iAMOEBA

Figure 5. O−O radial distribution function (left) and X-ray scattering intensity (right) from ALS X-ray data (ref 121, black), APS X-ray data (ref
125, orange), the final iAMOEBA model (green), and an intermediate version of the model with hydrogen vdW interaction sites (blue dotted line).
The model with hydrogen vdW interactions deviates significantly from experiment in the low-Q region of the intensity plot.

Figure 6. Determination of the iAMOEBA melting point by direct
coexistence simulation. The initial configuration contains equal parts
ice Ih and liquid water. Simulations run at temperatures below the
freezing point of the model turned to ice (top), while simulations
above the freezing point turned to liquid (bottom).
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because we did not include any ice properties in the reference
data. However, the diverse geometries of hydrogen bonding
networks in different phases of ice show the versatility of water
hydrogen bonding networks in different configurations, and we
expect the ab initio calculations helped to serve as a guide in
parameter space for describing these interactions correctly. The
tests focus on the stable, crystalline, proton-disordered ice
polymorphs; this rules out metastable ice phases (IV, XII) and
extremely high-pressure phases (>100 kbar) where the
individual water molecules dissociate. This leaves us with ices
II, III, V, VI, and VII. iAMOEBA generally predicts the
densities of the ice phases to be in generally good agreement
with experiment, although there is a small systematic
underestimation of roughly 1%.
Figure 7 shows the phase diagram of the iAMOEBA water

model compared to experiment, which represents the first time

the calculated phase diagram has been shown for any
polarizable water model. The phase diagram shows the phase
with the lowest free energy at different thermodynamic
conditions, with each line on the diagram indicating a
coexistence line between two phases. To calculate the phase
diagram, we first determined the melting point of each phase of
ice using direct coexistence simulations with the liquid39

(Supporting Figure S14, Supporting Information). Following
this, we numerically integrated the Clapeyron equation to
provide the melting curves.36,38,130 Two melting curves meet at
a triple point, from which we integrated the Clapeyron
equation to obtain the solid−solid coexistence lines; we
continued to propagate solid−solid coexistence lines from
triple points and arrived at the phase diagram shown in Figure
7. The qualitative structure of the phase diagram is correct, with
ice phases Ih, II, III, V, and VI all appearing in the correct
relative positions. This is a surprisingly difficult test for water
models; to date, the only models that are known to reproduce
the qualitative structure of the phase diagram are those that
adopt the TIP4P functional form. By contrast, the TIP3P and
TIP5P models predict qualitatively incorrect phase diagrams, in

which ordinary ice only exists under large tensions (negative
pressures).38 In the low pressure region (<2500 bar), our
calculated phase diagram is quantitatively accurate; the melting
point is consistently underestimated by 12−15°, and the slope
of the melting curve and the Ih−III transition pressure are
correct to within 200 bar (10% of the total pressure). However,
at higher pressures, the slopes of the melting curves are too
high, and the solid−solid coexistence lines are also predicted to
be too high. Following the scoring system in ref 36, we assigned
8 points out of 10 for the phase diagram, based on the
observation that four phases of ice appeared in the correct
relative positions.

Dielectric Properties. The dielectric constant should be a
property for which polarizable models perform well due to their
focus on properly describing the molecular electrostatics. Our
simulated value for the dielectric constant agrees with
experiment with a value of 81 ± 1 at 298 K (experiment:
78.3), and the trend is correct across the entire temperature
range, although we overestimate the experimental value by 2−3.
Polarizable models also allow us to calculate the dielectric
constant of ice, where the water molecules are expected to have
a larger dipole moment than the liquid. We calculated the
dielectric constant of ice Ih using the electrostatic switching
method131 and found that iAMOEBA correctly predicts a
higher dielectric constant in ice Ih compared to the liquid,
although the ratio is a bit lower than the experimental value
(Table 3); this is where full mutual polarization may be
important. Nonpolarizable models, on the other hand,
incorrectly predict the ratio to be less than 1, largely due to
their fixed dipole moment.38

The gas phase dipole moment of the iAMOEBA water
molecule is 1.86 D; the dipole increases to 2.78 D (standard
error <0.01 D) in the liquid at 298 K with a full width at half-
maximum (fwhm) of 0.25 D and increases even further to 2.90
D in ice at 240 K with a somewhat narrower fwhm (0.16 D).
Although the molecular dipole moment in the condensed phase
cannot be directly measured, literature estimates based on ab
initio calculations107,128,132 and experimental measure-
ments127,133 suggest values of 2.3−3.1 D, indicating that the
direct polarization approximation correctly describes the
average dipole moment in the various phases. Moreover, the
iAMOEBA liquid phase dipole moment agrees very closely with
AMOEBA, which also predicts a value of 2.78 D (standard
error <0.01 D); this hints that the agreement may go beyond
simple coincidence, especially given the important relationships
between the liquid phase dipole moment and other,
experimentally observable liquid properties.

■ DISCUSSION

Water models can be derived from experimental data, ab initio
quantum chemistry, or a combination of the two. Since the
condensed phase is an emergent property of the microscopic
interactions, it is certainly desirable to derive a model entirely
based on ab initio quantum chemistry, and indeed water models
have been successfully developed following this ap-
proach.52,115,129,134 The main drawback is that agreement
with experimental condensed phase values is not guaranteed
due to assumptions in the functional form of the classical
model, integrating the equations of motion using Newtonian
dynamics, approximations in the reference ab initio theory, or
incomplete sampling of the thermodynamic ensemble of either
the model or the reference theory.135 In a compromise
approach, the model parameters can be further modified to

Figure 7. Phase diagram of the iAMOEBA water model compared to
experiment (blue crosses). Experimental data adapted from ref 38.
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match the experimental properties, but this must be done
carefully in order to preserve agreement with the theoretical
data, which may be representative of important molecular
interactions when solutes are introduced. By contrast, water
models that are solely fitted to a subset of experimental
properties can have significant predictive power. Although most
ab initio results are poorly predicted, some condensed phase
properties are predicted more accurately than others, and the
models can sometimes fail outside their parameterization range.
Here, we addressed this challenge by including a wide range of
experimental and ab initio reference data simultaneously using
the ForceBalance method to optimize the iAMOEBA model.
We validated the iAMOEBA model using a scoring scheme

developed by Vega and co-workers that evaluates the predictive
power of a model against an experimental data set that covers
thermodynamic and kinetic data over much of water’s phase
diagram. iAMOEBA based on the direct polarization
approximation receives an overall score of 8.4 out of 10
because of its excellent agreement for all of the tested
properties. We caution that a single numerical score is not
sufficient to fully assess a model for a particular application;
rather, the primary utility of the undertaking advocated in ref 36
is the wide range of properties investigated to provide a
complete characterization of the iAMOEBA model.
Fixed charge pairwise additive models such as TIP3P earned

a score of 2.7, while TIP4P/2005 earned a score of 7.2. TIP4P/
2005, a model by Vega and co-workers using Ewald long-range
electrostatics in a similar fashion to the TIP4P-Ew model,
achieves remarkable accuracy for many properties (e.g., the
critical temperature) and sacrifices accuracy for other properties
(e.g., the critical pressure). One possible interpretation is that
the properties for which TIP4P/2005 gives poor agreement are
fundamental limitations of nonpolarizable models. Therefore,
properties that are thought to require an explicit polarization
treatment would include the dielectric constant of ice, the IR
spectrum, the vapor pressure, and the critical pressure. The
iAMOEBA model in fact is qualitatively superior to the fixed
charge models on these properties, showing the importance of
polarization.
While vapor properties are an important test of polarization

effects where iAMOEBA performs well, these effects can have
far-reaching implications beyond the gas phase. For instance,
water molecules in biological settings such as protein active
sites, membrane channels, and the coordination spheres of ions
experience significantly different electric fields compared to the
bulk liquid. While direct polarization clearly provides a better
description compared to nonpolarizable models, its appropri-
ateness for describing interactions with solute molecules, in
particular ionic species, is an important open question;
answering this question would require the development of
force fields with direct and mutual polarization for these solute
species with the parameterization conditions held constant.

■ CONCLUSION

In this work, we presented the iAMOEBA polarizable water
model, which uses the direct polarization approximation.
Compared to the AMOEBA model, iAMOEBA is simpler
and computationally more efficient because it does not require
a self-consistent solution for the induced dipoles. We confirmed
the viability of the direct polarization approximation and
established iAMOEBA as a highly accurate model with broad
predictive power and applicability. We used the ForceBalance
method to optimize the parameters, which allowed us to utilize

a diverse data set with elements from experimental measure-
ments and high-level theoretical calculations. The iAMOEBA
model was tested against an extensive benchmark set of water
properties and found to accurately describe many aspects of the
vapor, liquid, and ice phases.
The improved accuracy of iAMOEBA over AMOEBA for

many properties (Table 3) illustrates the advances in
methodology and computation over the past 10 years;
ForceBalance allows us to systematically optimize many
parameters using a much larger and more diverse set of gas
and condensed phase properties compared to previous
methods. By combining GPU acceleration with distributed
computing tools, we are able to perform simulations over a
wide range of conditions rather than a single thermodynamic
phase point. In the future, we postulate that kinetic properties
could be differentiated in our optimization framework using a
path integral approach in a similar manner to how
thermodynamic properties are differentiated through the use
of configuration integrals.
Our work has important implications for the fundamental

understanding of molecular interactions in water and for the
construction of molecular models in general. By building
realistic but approximate models, we learn about which
microscopic interactions are truly important for describing
the properties of interest, and which other neglected
interactions (in this case mutual polarization) can be effectively
captured by other terms. For example, the main lesson from
this work is that an appropriately parameterized direct
polarization model is capable of capturing the effect of mutual
polarization for a very wide range of water properties. Another
major lesson is the role of model parameterization in
establishing this understanding. For most practical problems,
it is impossible to explore the entire parameter space, so we can
only provide a lower bound on the accuracy of the empirical
model using the most accurate parameters we can find. Thus,
the model must be parameterized carefully before drawing
conclusions about the upper bound of its descriptive capability.
Thinking along these lines, the optimization approach outlined
here can be easily applied to AMOEBA to further increase its
accuracy for water properties and explore the aspects of mutual
polarization which cannot be recovered through the direct
approximation.
In terms of practical application, iAMOEBA is faster than

AMOEBA (Table S2, Supporting Information) and does not
compromise on the accuracy of water properties. The behavior
of water at interfaces and in confined spaces is a highly active
area of research where iAMOEBA can generate quantitatively
accurate predictions at a reduced computational cost.
Furthermore, the iAMOEBA water model lays the groundwork
for analogous inexpensive polarizable models for solutes and
biomolecules; while iAMOEBA is still more expensive than
simple fixed point charge models (roughly 3−6 times the
computational cost of TIP3P), it represents a significant
increase in efficiency over AMOEBA. The accuracy of a future
iAMOEBA model for solutes remains to be seen, but the
success of the present work is encouraging. The possibility of
developing a hybrid model using a combination of iAMOEBA
water and mutually polarizable solutes is also promising, since
most of the computational cost in typical biomolecular
simulations comes from the solvent degrees of freedom.
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