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Highlights

• Self-Similarity has two contributions: Long-range dependence and
heavy-tailed jumps

• Systematic simultaneous estimation of long-range dependence and
heavy-tail distribution parameters

• Development of a novel Bayesian method for estimation of these two
parameters

• Method flexible to allow choice of heavy-tailed distribution (e.g. t- or
α-stable distributed)

• Successful demonstration of effectiveness and accuracy on synthetic
data
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Abstract

Long-Range Dependence (LRD) and heavy-tailed distributions are ubiqui-
tous in natural and socio-economic data. Such data can be self-similar
whereby both LRD and heavy-tailed distributions contribute to the self-
similarity as measured by the Hurst exponent. Some methods widely used
in the physical sciences separately estimate these two parameters, which can
lead to estimation bias. Those which do simultaneous estimation are based
on frequentist methods such as Whittle’s approximate maximum likelihood
estimator. Here we present a new and systematic Bayesian framework for the
simultaneous inference of the LRD and heavy-tailed distribution parameters
of a parametric ARFIMA model with non-Gaussian innovations. As inno-
vations we use the α-stable and t-distributions which have power law tails.
Our algorithm also provides parameter uncertainty estimates. We test our
algorithm using synthetic data, and also data from the Geostationary Opera-
tional Environmental Satellite system (GOES) solar X-ray time series. These
tests show that our algorithm is able to accurately and robustly estimate the
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LRD and heavy-tailed distribution parameters.

Key words: Long-Range Dependence, Heavy-Tails, Bayesian Estimation,
ARFIMA

1. Introduction1

Long-range dependence (LRD) is an ubiquitous property of many physi-2

cal, biological and financial systems [1, 31]. Hurst’s observation (the “Hurst3

effect”) of the anomalous rate of growth of range in hydrological time series,4

such as the height of the river Nile, was one of the first natural phenomena5

for which the need for a non-Brownian statistical description was recognised.6

Mandelbrot & Van Ness [28] explained the Hurst effect as being due to long7

range dependence in time, which Mandelbrot & Wallis [29] then dubbed the8

“Joseph effect”. Mandelbrot and his co-authors encapsulated the Joseph9

effect in their seminal model, fractional Brownian motion (fBm), using its10

stationary increments, fractional Gaussian noise, to model the Nile time se-11

ries. Like the more familar Wiener Brownian motion, fBm has the property12

of self-similarity under a dilation in time where ∆t is replaced by λ∆t:13

x(λ∆t)
d
= λHx(∆t) (1)

Throughout our paper we will follow Embrechts & Maejima [11], by defin-14

ing H as the self-similarity exponent. In fBm H takes values between 0 and15

1, with H = 1/2 being the Brownian case. To describe the growth of rescaled16

range (R/S) (“the Joseph effect”) due to the persistence seen in the incre-17

ments of fBm, Mandelbrot & Van Ness [28] used a second exponent J , where18

R/S ∼ τJ . (2)

The presence of LRD affects the predictability of systems and their long-term19

behaviour and has thus continued to be controversial.20

For reasons that are as much historical as technical [16, 27], the pa-21

rameters of Gaussian LRD models such as fractional Gaussian noise have22

typically been inferred either indirectly from the self-similarity exponent H,23

or directly using J (frequently called the Hurst exponent and also denoted24

by H), because in such models the self-similarity and Hurst exponents hap-25

pen to coincide [34]. However, what is frequently still not appreciated is26

that the self-similarity exponent actually has two contributions: (i) one from27
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LRD (also called the Joseph effect) and (ii) one from non-Gaussian jumps28

which are power-law distributed (also called the ’Noah’ effect); e.g. α-stable29

increments, which have probability density function (pdf) tails decaying as30

f(x) ∼ x−(1+α) where the index α runs from 0 to 2. As Mandelbrot empha-31

sised [e.g 27, p. 157] H can be different from J , and R/S only measures the32

latter. We will thus avoid the potentially confusing term ’Hurst exponent’33

in this paper and label the contribution of memory to the self-similarity ex-34

ponent by J , as Mandelbrot recommended after the ambiguity became clear35

to him.36

A second type of non-Brownian phenomenon had also been recognised37

by Mandelbrot [25]. This was the non-Gaussian increments, with “heavy”38

power-law tails in the pdf,39

f(x) ∼ x−(1+α) (3)

seen in financial time series [31] and also in many natural ones. In contrast40

to the LRD he called this the “Noah effect”. He proposed a second paradig-41

matic model, ordinary Levy motion (oLm), for cases when the anomalous42

behaviour of the time series originates entirely from this effect, rather than43

long temporal memory.44

Real time series do not necessarily exhibit just one or the other of these45

two limiting cases. Mandelbrot & Wallis [30] thus proposed that the effects46

modelled by fBm and oLm could be combined in a more general self-similar47

additive model, “fractional hyperbolic” [30] motion, a descendent of which48

is now referred to as linear fractional stable motion, LFSM, [e.g. 11]. LFSM49

has by now been applied to problems as diverse as communications traffic50

[24], geophysics [38], magnetospheric physics [47] and solar flares [44]. The51

“ambivalent” [4] dual behaviour of such models makes it important to develop52

methods which can simultaneously estimate both the Joseph and Noah effects53

and their corresponding exponents J and α.54

In our paper we use a newer, more flexible time series model: the well-55

known Autoregressive Fractional Integrated Moving Average (ARFIMA) [e.g.56

[1]] with non-Gaussian increments [e.g. [8]], which also allows an adjustable57

high frequency component. In this model J is encapsulated by the standard58

LRD parameter d used in statistics, which ranges from −1/2 to 1/2, with59

d = 0 being the uncorrelated, white noise case. Our algorithm allows for60

α-stable but also t-distributed increments and can also easily be extended to61

use any distribution characterized by only a shape and scale parameter.62
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Our method is based on the Bayesian ARFIMA inference algorithm of63

Graves et al. [17] for which we developed a new approximate likelihood for64

the efficient parameter inference. We will show how nuisance parameters (e.g.65

short memory effects) can be integrated out in order to focus systematically66

on the long memory parameter. Here we extend our method to simultane-67

ously estimate the LRD and the heavy-tailed parameter. As heavy-tailed68

distributions we use the t-distribution and the α-stable distribution. For69

computational reasons we have to restrict our inference to the finite mean70

(1 < α ≤ 2) case.71

It was realised as early as 1969 by Mandelbrot & Wallis [30] that72

non-parametric LRD estimators are not “fooled” by the presence of non-73

Gaussianity [14], not least because they measure J rather than H. However,74

it is still advantageous to perform simultaneous parameter estimation in75

order to minimize estimation bias, and to provide direct estimates of α76

rather than having to estimate the tail exponent by some other means77

such as a measurement of the pdf or cdf. This is especially important for78

ARFIMA type models which contain both Short-Range Dependence (SRD)79

and LRD characteristics, in contrast to the pure mono-fractal approach80

originally taken by Mandelbrot with fBm [28].81

The standard approach [e.g. [1, 46, 7]] in statistics to estimating the82

parameters of finite variance ARMA models is ultimately derived from a83

variant of Whittle’s method proposed by Hannan [20]. Successive develop-84

ments have encompassed Gaussian ARFIMA [13], ARMA with α-stable noise85

[35], and ARFIMA with such noise [23]. These developments are accessibly86

summarised by [7] which constructs a new estimator for ARFIMA and impor-87

tantly can access the negative d range which is not accessible to the original88

Whittle estimator proposed in [20].89

Our new inference algorithm is based on the one put forward in [16, 17].90

The algorithm consists of a systematic Bayesian framework, a new approxi-91

mate likelihood for ARFIMA processes and an efficient blocked Monte Carlo92

Markov Chain (MCMC) sampler. Our Bayesian inference algorithm has been93

designed in a flexible fashion so that, for instance, the innovations can come94

from a wide class of different distributions such as the α-stable “Levy” class95

[31], or the t distribution that is also widely employed in finance [3]. Our96

algorithm can also estimate the SRD parameters, although these can be in-97

tegrated out if one is only interested in the LRD and heavy-tail parameters.98

To our knowledge, a t-distribution has not been considered in LRD models99

so far.100
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The Bayesian approach allows us the direct computation of the proba-101

bility of a theory or model parameter [19]. For our purposes, the important102

difference between frequentist and Bayesian approaches is that in the for-103

mer the parameters ψ of a statistical model are taken as fixed, whereas in104

the latter they are uncertain variables. Assume we have data x which is a105

realisation from an unknown distribution. A given hypothesised model dis-106

tribution will have a likelihood L(x|ψ), i.e. the likelihood of getting that107

data x given a set of values of the parameters ψ. The best estimate of these108

parameters, e.g. the LRD parameter d, is what we want.109

Bayes’ theorem states that:110

πψ,x(ψ|x) ∝ pψ(ψ)L(x|ψ) (4)

where pψ is a prior probability density on the parameters ψ, and πψ is the111

desired posterior density. The generic 3 stage approach this allows us to use112

is i) postulate a pψ, then ii) multiply the prior by the calculated likelihood113

function for that model L and normalise, i.e. apply Bayes’ theorem; and so iii)114

generate the posterior πψ. In principle this could be completely analytically115

calculable, but in practice one usually has to use computational methods116

like Markov Chain Monte Carlo (MCMC) algorithms because it becomes117

analytically intractable.118

Our paper is structured as follows: In section 2 we describe our inference119

approach for the memory parameter d which is related to J as J = d + 0.5.120

Section 3 is the main part of the paper and describes the extensions of the121

ARFIMA inference algorithm of Graves [16], Graves et al. [17] to stable122

innovations. We summarize in section 4.123

2. Bayesian inference on Gaussian ARFIMA model for d.124

We first briefly describe the Bayesian inference of an ARFIMA model125

with Gaussian innovations [16, 17].126

An ARFIMA model has three classes of parameters: those governing the127

location (here the mean µ); the innovation distribution (here just the scale σ);128

and memory structure (here LRD parameter d, and the AR and MA series, φ129

and θ respectively, which are of order p and q in an ARFIMA(p, d, q) model).130

We choose flat priors for µ, log σ and d. Flat priors are non-informative;131

i.e. a flat prior in the coin-tossing heads or tails case is 1/2, while in an132

N category case it is 1/N . As we have no analytic form for the posterior133
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distribution π, we use MCMC sampling. MCMC [9] is a way to simulate134

complex, nonstandard multivariate distributions. There are several types of135

MCMC, including Metropolis-Hastings [9] which we use extensively.136

Our approach has several advantages. First, we don’t need to assume the137

order of the ARFIMA(p, d, q) model, i.e. pre-specify p, q. Rather we use the138

reversible jump (RJ) MCMC approach [18]. In this the parameter space of ψ139

is extended to include the set of possible models. The Markov chains move140

between models as well as within them. Reversible-jump MCMC allows the141

sampling of the posterior distribution on spaces of varying dimensions using142

a transdimensional Markov Chain. Thus, the simulation is possible even if143

the number of parameters in the model is not known.144

Second, our approach allows the reparameterisation of the model to en-145

force stationary constraints on φ and θ. This reparameterization improves146

the computational efficiency of our algorithm [16].147

Third, our approach allows a fast approximate Gaussian likelihood cal-148

culation. The LRD correlation structure, which considerably enlarges the149

dimension of the covariance matrix, prevents use of standard likelihood meth-150

ods. Previously we [17] proposed a method for the fast evaluation of con-151

ditional likelihoods, e.g. (n log n) in the Gaussian case. Our use of the152

Metropolis-Hastings algorithm requires the careful selection of proposal dis-153

tributions. In order to propose new parameters we use a truncated Normal154

random walk because this sampler has a finite range of −1/2 < d < 1/2 for155

the LRD parameter.156

3. Non-Gaussian innovations157

In the literature on ARFIMA models, Gaussianity of the innovations158

is typically assumed. This assumption is made for at least three reasons.159

Firstly, Gaussian analysis often turns out to be mathematically convenient160

because the form of the multivariate normal likelihood allows many prob-161

lems to be solved exactly. Secondly, the normal distribution is a reasonable162

model for many “real-life” applications. Thirdly, one often appeals to the163

role played by the Gaussian distribution in the central limit theorem (CLT).164

By considering the stochastic elements of a problem to be actually composed165

of a large number of non-Gaussian small disturbances, then, provided the166

variance is finite, the CLT enables us to assume their aggregation is approx-167

imately Gaussian.168

7



Whilst the first and third of these reasons are both reasonably sound and169

objective, the second has sometimes been the product of modelers’ wishes170

rather than observational evidence. In practice many real-life processes sim-171

ply cannot be modelled as Gaussian [3, 31, 48, 38]. In particular, overdis-172

persion is a common problem, i.e. a Gaussian model cannot account for all173

the observed variability. Consequently, if the data suggest leptokurtosis, the174

Gaussianity assumption may be inappropriate [12].175

We define the tail behaviour as follows:176

P(X > x) ∼ Cx−a, (5)

for some positive constants a and C. Such a distribution will be referred177

to as ‘heavy-tailed’ if α is between 0 and 2. Clearly for such distributions,178

moments only exist up to the a-th one. If X is heavy-tailed with parameter179

exponent a then:180

E|X|p <∞ for any 0 < p < a,
E|X|p =∞ for any p ≥ a.

(6)

One example of a heavy-tailed distribution is the family of stable distribu-181

tions.182

3.1. Stable distributions183

A random variable X is said to have a stable distribution, denoted X ∼184

Sα,β(γ, δ), if there are parameters 0 < α ≤ 2, −1 < β < 1, γ positive and δ185

real, such that its characteristic function has the following form:186

log [ϕS(θ)] =

{
−γα|t|α

(
1− iβ(sign t) tan πα

2

)
+ iδt if α 6= 1

−γ|t|
(
1 + iβ 2

π
(sign t) log |t|

)
+ iδt if α = 1

. (7)

The support for the stable distribution is the whole real line, except in187

the case where α < 1 and β = ±1, in which case it is limited to a semi-188

infinite interval of the real line. Note also that if α = 2 the parameter β189

is irrelevant, in which case it is convention to set β = 0. There are many190

different parametrisations of the stable distribution; the article by [37] pro-191

vides an excellent summary. Unfortunately neither the probability density192

nor distribution functions have generally applicable analytic forms, with a193

few known exceptions [48, 49]: S2,0(γ, δ) is the N (δ, 2γ2), S1,0(γ, δ) is the194

Cauchy distribution, and S1/2,1(γ, δ) is the Lévy distribution.195
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Because for α < 1 the process has no mean, which causes many difficul-196

ties in LRD parameter inference, we will assume henceforth that 1 < α ≤ 2.197

We denote by parameters δ and γ the ‘location’ and ‘scale’ parameters re-198

spectively. Although the density is nearly always non-analytical, the stable199

distribution does satisfy a location-scale density [16] of the form:200

f(x; δ, σ,λ) ≡ 1

σ
f

(
x− δ
σ

; 0, 1,λ

)
. (8)

Consequently one need only be concerned with the ‘standardised’ stable dis-201

tributions with δ = 0 and γ = 1, which will be denoted using the shorthand202

Sα,β with corresponding density fS(·;α, β ).203

Typically the parameter controlling the tail decay, α, is referred to as204

the ‘index of stability’. The parameter β is conventionally called the ‘skew’205

parameter since non-zero values induce skewness in the distribution.206

Throughout the remainder of this section, it will be assumed that a pro-207

cess {Xt} is both causal and invertible and has Wold expansion:208

Xt =
∞∑

k=0

ψkεt−k, (9)

where the coefficients {ψk} are real and `2-convergent, and the innovations209

{εt} are independent and identically distributed Sα,β(γ, 0) for some 1 <210

α < 2, −1 ≤ β ≤ 1 and positive γ. Recall that for such processes, a211

stably distributed process has long memory if its Wold expansion decays as212

a power-law [16]. Throughout most of this paper, only stably distributed213

ARFIMA(0, d, 0) processes will be considered. We note that in the Gaussian214

case the condition:215

− 1

2
< d <

1

2
, (10)

was required to ensure causality and invertibility. In the stable case, the216

following stronger condition exists:217

−
(

1− 1

α

)
< d < 1− 1

α
. (11)

Note that this is consistent with the α = 2, Gaussian, case (10). The region218

of allowable values of the pair (α, d) is shown in figure 1.219

9



3.1.1. Statistical inference from stable processes220

We first discuss how to draw inference in the simplest possible scenario221

of independent and identically distributed random variables. Because of the222

lack of an analytical density, and consequently likelihood, stable distributions223

are notoriously difficult to work with. In many cases, it may only be the224

parameter α that is of interest and therefore it may seem reasonable to225

estimate this directly from the tail behaviour (5). The naive approach of226

calculating the empirical distribution function and using log-regression was227

developed by [21] and [10] amongst others. But [32] later showed that this228

method is seriously flawed because the tail behaviour is truly asymptotic229

and for some parametrisations and combinations of parameter values, the230

power-law behaviour does not occur until far out into the tail.231

Bayesian analysis of stable distributions has been limited; [5] considered232

the problem of finding the joint posterior distribution of the parameters from233

a collection of n independent and identically distributed stable random vari-234

ables. Unsurprisingly the posterior is intractable so [5] developed an MCMC235

method requiring n auxiliary variables and complicated sampling regimes.236

3.1.2. Bayesian inference for stably-distributed ARFIMA processes237

The most significant challenge in the stably-distributed ARFIMA pro-238

cesses scenario is the efficient computation of the log-likelihood. We need to239

be able to compute the logarithm of the density fS(x;α, β) for any α > 1,240

−1 < β < 1 and real x. To compute the log-likelihood efficiently, note that241

we actually seek to evaluate the same density at n points simultaneously. For242

this purpose we use the approach developed by Mittnik et al [36], in which243

the stable density is calculated on a regular grid, from which the density at244

all the xk can be interpolated. Their method takes advantage of the fact that245

the characteristic function ϕ of stable processes (7) is the ‘Fourier-dual’ of246

the probability density function:247

fS(x;α, β) =
1

2π

∫ ∞

−∞
e−ixtϕS(t;α, β) dt. (12)

In particular, [36] showed that this integral can be approximated by a sum248

which, using an N -sized FFT, can calculate (to an arbitrary precision) the249

values of fS(yk;α, β) on an N -grid of equally spaced values {yk} where:250

yk = h

(
k − 1− N

2

)
, k = 1, . . . , N
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for some N and h. Once this grid has been calculated, the densities251

fS(x1;α, β), . . . , fS(xn;α, β) can be evaluated by linear interpolation.252

There are several issues to note regarding implementation of this scheme.
Firstly, the choice of parameters N and h is important. The number of points
in the grid is N , so a larger N generates a larger grid (at mild computational
expense since the FFT has complexity O(N logN)). The spacing between
points is h, so a smaller h produces a more detailed grid. If the data are
fat-tailed, the maximum of |yk| would be expected to be large which means
that Nh must also be large. This means making N large, at the expense
of slowing the FFT, or making h large, at the expense of losing detail in
the interpolation. We will therefore use fixed values for N and h (N = 213,
h = 2−10) and use a series expansion to calculate the remaining outliers by
noting that for 1 < α ≤ 2 the density fS(x;α, β) has the following asymptotic
expansion for x→∞ [2, 33]:

fS(x) =
1

π

∞∑

k=1

cak(cx)−kα−1

where c = cos(β∗)1/α,

ak =(−1)k−1
Γ(1 + kα)

k!
sin

(
k

2
(πα + 2β∗)

)
,

and tan(β∗) =− β tan(πα/2).

Further refinements to this FFT-based approximation of stable densities253

were described by [33], which included numerically calculating the integral in254

(12) using Simpson’s rule, and replacing the linear interpolation with cubic255

splines. In practice, we found that there was no noticeable advantage to256

using these more costly techniques in the long memory context.257

To simplify matters, we assume a two-dimensional uniform joint prior258

over the allowable region (Fig. 1):259

pd,α(d, α) ∝ 1
{
|d| < 1− 1

α
, 1 < α < 2

}
. (13)

Note that this prior places zero probability on α = 2, i.e. the Gaussian.260

Because of their qualitatively different behaviours, we will not try and include261

the cases of α = 2 and α < 2 in the same analysis.262
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The prior (13) results in the marginal prior for d being no longer uniform:

pd(d) =

∫ 2

1

pd,α(d, α) dα

=
1

2− 2 log 2

(
2− 1

1− |d|

)
, |d| < 1

2
.

Similarly, the marginal prior for α:

pα(α) =
1

1− log 2

(
1− 1

α

)
, 1 < α < 2.

d and α are updated as follows:

ξd|(d, α) ∼ N (−1+ 1
α
,1− 1

α)(d, σ2
d)

ξα|(d, α) ∼ N ( 1
1−|d| ,2)(α, σ2

α),

for some σ2
α. These proposals are accepted/rejected according to:

Ad(d, ξd) = ∆`+ log

{
Φ[(1− 1

α
− d)/σd]− Φ[( 1

α
− 1− d)/σd]

Φ[(1− 1
α
− ξd)/σd]− Φ[( 1

α
− 1− ξd)/σd]

}

Aα(α, ξα) = ∆`+ log

{
Φ[(2− α)/σα]− Φ[( 1

1−|d| − α)/σα]

Φ[(2− ξα)/σα]− Φ[( 1
1−|d| − ξα)/σα]

}
.

with ∆` = `(x|ξd,ψ−d)− `(x|ψ)263

An alternative approach would be to propose the pair (d, α) jointly, but264

this is unnecessarily complicated in practice. It should be noted that, due to265

numerical issues for α near to 1, the lower bound of α = 1 used throughout266

this procedure is actually replaced by α = 1.02 in the computer code. The267

code we have written also allows α to be fixed (the Bayesian interpretation268

would be a unit mass prior). In this case, any prior can be used for d.269

Tuning of the proposal variance σ2
α is achieved using the same automatic270

tuning procedure outlined in Graves et al. [17]. Initial values of (d, α) are271

chosen uniformly randomly over the allowable region. Comparison of our272

Figure 1 with Figure 2 of [7] shows that our set of allowable parameter273

values is smaller, and in particular they can access part of the infinite mean274

range of α for some negative d values, however for both cases they coincide275

for positive d.276
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3.1.3. Application to synthetic data277

In this section we evaluate our algorithm. Initially, 60 time series of length278

n = 210 were simulated with each value of αI ∈ {1.75, 1.50, 1.25} being used279

20 times. Values of dI were chosen randomly, conditional on the pair (dI , αI)280

being in the allowable range.281

The residuals of d and α are presented in figure 2. From plot (a) we282

see that the Bayesian estimate of d appears to be approximately unbiased283

and the residual appears to be independent of dI . It is immediately clear284

that accuracy of the Bayesian estimator appears to increase as α decreases.285

To confirm this, the average posterior standard deviations for d were 0.015,286

0.009, 0.004 for αI = 1.75, 1.50, 1.25 respectively. In summary therefore, our287

knowledge about d increases when α is small, i.e. detection of long memory is288

easier in the presence of fat tails. Although this may seem initially surprising,289

there is a strong intuitive explanation. Long memory is characterised by the290

slow decay of the influence of each innovation, or ‘shock’. In the Gaussian291

framework, no shock is very much larger than any other so the traceability of292

each shock is hard because it gets lost in the ‘noise’. Yet in the fat-tailed case,293

extreme shocks are to be expected, and their effects will be easier to observe294

through time. As α decreases, such shocks appear more frequently and are295

more dramatic, and consequently their decay profile is easier to determine.296

Naturally we are also interested in the posterior of α. We see from figure297

2(b) that the Bayesian estimate of α is essentially unbiased, and the poste-298

rior standard deviation of α is roughly independent of dI and αI (although299

there is some suggestion that the posterior standard deviation is smallest300

when αI = 1.25, this is not practically significant). Interestingly, the joint301

posterior of (d, α) shows no correlation between the two parameters, indi-302

cating that the posteriors are independent. This fact helps to justify not303

proceeding with a joint proposal of (d, α) in the Metropolis–Hastings step304

in the previous subsection. Furthermore, it inspires the question: “can we305

improve our knowledge about d if we know the value of α?” A simple Monte306

Carlo comparison shows that this is not the case (see figure 3) leading to307

the interesting result that, if we assume no knowledge of α, we sacrifice no308

information about d.309

There is some mild correlation between the posteriors of α and γ (not310

shown). This is not surprising since both parameters affect the ‘variabil-311

ity’ of the underlying stable distribution. However the algorithm is able to312

successfully disentangle the scaling effects of γ and the shaping effects of313
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α. Finally, an analysis varying the length of times series n, was performed.314

From Fig. 4 we see that a n−1/2 rule applies for stably distributed processes.315

Note also the relative decreases in posterior standard deviation obtained by316

decreasing αI and increasing n. For example, to obtain the same level of317

confidence about the parameter d when αI = 1.5 and n = 210 = 1024, one318

would have to use a time series of length about 214 = 16384 in the Gaussian319

case.320

3.2. Asymmetric stable distributions321

We will now briefly consider the asymmetric case, where β 6= 0. Again,322

because of the careful modularisation of the method, adding in this parameter323

to the Metropolis–Hastings algorithm presents no difficulty. Any prior on the324

support [−1, 1] can be used but for convenience we will use the simplest form:325

pβ(·) ∼ U(−1, 1).

The proposal distribution is:326

ξβ|β ∼ N (−1,1)(β, σ2
β),

for some σ2
β. To test the efficacy of the method in this framework, we sim-327

ulated twenty processes with αI = 1.5, βI = 0.5 and dI randomly in the328

allowable range. The summary statistics are presented in table 1.329

It is clear that the method can accurately determine the ‘skewness’ pa-330

rameter β. Further investigation reveals that the posterior of β is uncorre-331

lated with any other parameter (not shown). Also, as α → 2 the marginal332

posterior standard deviation of β becomes increasingly large, and the distri-333

bution actually approaches the uniform on (−1, 1) (also not shown). This334

is because, as remarked upon earlier, the parameter β becomes increasingly335

unidentifiable as α increases, and at the Gaussian limit it is irrelevant.336

3.3. t-distribution337

To demonstrate the flexibility of our Bayesian MCMC algorithm, we will338

now briefly consider using t-distributed innovations. To our knowledge, there339

is no literature concerning long memory models with t-distributed innova-340

tions, most likely because of the reasons given at the end of the introduction.341

The t-distribution acts as a useful intermediate between the Gaussian and the342
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power law-tailed α stable distributions. To see this, consider its probability343

density function:344

f(x; ν) =
Γ(ν+1

2
)

Γ(ν
2
)

1√
πν

{
1 +

x2

ν

}− ν+1
2

. (14)

As x→∞ the probability density function behaves as ∼ Ax−ν−1 for some A345

and consequently the tail function behaves as P(X > x) ∼ Bx−ν for some B.346

By comparison with (5) we see that such distributions are power law-tailed.347

However, unlike the stable distribution which allowed the tail exponent to348

be only 0 < a < 2, here ν may take any positive value, leading to power law349

tail distributions that can have an arbitrary number of finite moments. In350

particular, for ν > 2 the t-distribution has finite variance yet is still power351

law tailed, in direct contrast to stable distributions (and unlike them being352

attracted to the Gaussian under convolution). It is worth remarking that the353

limiting distribution of ν → ∞ is the standard Gaussian. Furthermore, the354

case ν = 1 is the standardised Cauchy distribution. Recall that these two355

distributions also correspond to particular values of α-stable distributions356

(α = 1 and 2 respectively).357

Turning attention to t-distributed long memory processes, it will be useful358

to generalise (14) to obtain a scale-location distribution satisfying (8):359

f(x; δ, γ, ν) =
Γ(ν+1

2
)

Γ(ν
2
)

1

γ
√
πν

{
1 +

1

ν

(
x− δ
γ

)2
}− ν+1

2

. (15)

Such a t-distribution has variance γ2 ν
ν−2 for ν > 2 (and infinite for ν ≤ 2).360

Throughout the remainder of this section we will restrict attention to the361

‘intermediate’ t-distributions that have finite variance, ν > 2. As with the362

stable distribution, the scale parameter will be notated as γ rather than σ363

to avoid implying that it is also a standard deviation.364

Due to the modularisation of the method outlined [17], it is relatively365

trivial to incorporate the t distribution into the Bayesian framework. Calcu-366

lation of the log-likelihood is straightforward given the density. The prior for367

ν can be chosen to be anything supported on the positive half-line. There is368

no standard non-informative prior for ν, so we will use an exponential prior369

truncated to the right of ν = 2:370

pν(ν) = λe−λ(ν−2), ν > 2, (16)
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for some λ to be chosen. Using a prior that is independent of the other model371

parameters again allows simplification in the Metropolis–Hastings step. To372

propose new values of ν, we will use the same exponentiated random-walk373

as for the scale parameter described, although restricted to ν > 2:374

log(ξν − 2) = log(ν − 2) + υ,

where υ ∼ N (0, σ2
ν) for some σ2

ν . Calculation of the relevant acceptance375

probability is trivial. The parameter σ2
ν can be automatically ‘tuned’ to376

obtain a desired acceptance rate. A suitable initial value for the pair (γ, ν)377

are the approximate MLEs which can be found crudely by treating the data as378

independent and identically t-distributed and maximising the log-likelihood379

numerically.380

A small Monte Carlo study was conducted, for which we gener-381

ated 50 t-distributed ARFIMA(0, d, 0) time series with νI = 5 and382

dI ∈ {−0.45,−0.35, . . . , 0.45}. Two different priors were used, setting383

λ in (16) to be either 0.1 or 0.2. The interesting summary statistics are384

presented in table 2.385

Choosing between the two priors suggested, or indeed any other prior, is386

of course up to the modeller. However one fact that may influence this choice387

is that, when erroneously applied to Gaussian data, the prior with λ = 0.2388

tends to produce point estimates for ν that are less than 30, whilst λ = 0.1389

leads to most being larger than 30. Since a basic rule-of-thumb is that, for390

ν > 30, the t-distribution is practically indistinguishable from the Gaussian,391

this might suggest that the prior with λ = 0.1 might be more useful. It392

should be noted however that this analysis would be sensitive to the length393

of time series n.394

3.4. Comparison with other estimators395

In [40, 45, 41, 14] various estimator methods such as the Variable Band-396

width method [40], wavelets [14], Rescaled range (R/S) [22], Detrended Fluc-397

tuation Analysis (DFA) [39], the Whittle estimator [43, 42] and a semi-398

parametric power spectral method [15] have been used for estimating the399

LRD parameter d in an ARFIMA(1,d,1) model with α-stable innovations.400

Comparison with our results shows that the d parameter is well estimated401

with relative small uncertainty bounds compared with the classical estima-402

tors [14].403
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4. Application to Solar X ray data404

The GOES geostationary meteorological satellites have been used to ob-405

serve X rays from solar flares over several decades starting in the mid 1970s.406

Burnecki et al. [6], Stanislavsky et al. [44] fitted an ARFIMA model with α-407

stable innovations to a time series comprising daily aggregates of solar flare408

events derived from GOES data, and inferred the H, d and α values using409

the finite impulse response (FIRT), variance of residuals (VaR, or DFA), and410

McCulloch quantile methods. For this interval [6] found d to be 0.21 and α411

to be 1.2674412

Unfortunately the flare series studied by the previous authors was not413

available at the time of writing from the original public National Oceanic414

and Atmospheric Administration (NOAA) archive sites. Instead we have415

obtained the full, 1 minute resolution GOES solar X-ray irradiance (inW/m2)416

in the 0.1-0.8 nanometre long wavelength channel for the period that [6]417

identified, and we show its daily mean values in figure 5.418

For Solar Cycle 23 the primary and secondary science satellites were419

GOES 8, 10 and 12, and a correction factor of 0.7 was applied as per the420

recommendations at the NOAA archive. The data is archived at http:421

//satdat.ngdc.noaa.gov/sem/goes/data/new_avg/422

We note that direct comparison with [6] is thus not possible, as our full X423

ray series includes the sharp rises due to the onset of the flares, the decay of424

flares, and the background X ray flux, and so our inferred ARFIMA model425

should be seen as describing the daily mean of this rather than the daily426

aggregated flares. For the daily mean data we find posterior mean estimates427

of α, d to be 1.65 and 0.205.428

For comparison we have used the maximum likelihood method imple-429

mented in MATLAB to find a α value of 1.16, and from a power-spectral430

estimator [15] we find d = 0.37. The differences to the Bayesian estimator431

could be due to our estimator doing a joint estimate and/or they could be432

due to finite time series length. However, our earlier tests using simulated433

surrogate data gave very good results. Further work will also be needed to434

compare in more detail the high resolution X ray time series with the de-435

rived flare time series studied by [6], but our results suggest that an α-stable436

ARFIMA model is indeed appropriate and useful for this higher resolution437

dataset.438
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5. Conclusions439

Self-similarity is by now well known and well studied, and has found440

many applications in physics and elsewhere in the sciences of complexity.441

However, as we discussed, although expressed by a single exponent, H, self-442

similarity can arise both from long-range dependence and heavy-tailed jumps443

respectively, thus giving two potential contributions to the exponent. In444

consequence there is a need to simultaneously estimate both the long-range445

dependence and heavy-tail distribution parameters, d and α. Although best446

statistical practice allows joint estimation by some frequentist approaches,447

the estimation is still sometimes done in the science literature by measuring448

H and one of d or α. In this paper we presented a novel Bayesian method to449

directly infer d and α on the hypothesis of an ARFIMA model with heavy450

tailed innovations. Our method is flexible enough to allow the choice of451

heavy-tailed distribution (e.g. α- or t-distributed), and we gave a demon-452

stration of its effectiveness and accuracy on synthetic data and solar X-ray453

data.454
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Table 1: Posterior summary statistics for asymmetric-stable ARFIMA(0, d, 0) process.
Average of 20 runs.

mean std 95% CI endpoints
dR 0.002 0.008 −0.014 0.018
α 1.481 0.044 1.398 1.570
β 0.483 0.084 0.316 0.643
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Table 2: Comparison of posterior summary statistics for t5-distributed ARFIMA(0, d, 0)
process using two different priors. Average of 50 runs.

mean std 95% CI endpoints
λ = 0.1 dR 0.003 0.022 −0.039 0.046
λ = 0.2 dR 0.003 0.022 −0.039 0.046
λ = 0.1 γ 1.005 0.039 0.931 1.080
λ = 0.2 γ 1.002 0.038 0.929 1.077
λ = 0.1 ν 5.665 1.061 3.857 7.760
λ = 0.2 ν 5.543 0.987 3.850 7.511

25



1.0 1.2 1.4 1.6 1.8 2.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

α

d

Figure 1: Set of allowable values for (α, d); does not include the dotted boundary.

26



−0.4 −0.2 0.0 0.2 0.4

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

dI

d R
(B

)

−0.4 −0.2 0.0 0.2 0.4

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

dI

α R
(B

)

(a)
(b)

Figure 2: Posterior outputs from α-stable ARFIMA(0, d, 0) series; (a) d̂R
(B)

against dI , (b)

α̂R
(B)
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