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Background

Each tumor faces a common set of obstacles arising from internal dynamics and 

external defense mechanisms  [1]. Tumor cohorts, however, are replete with diverse 

yet recurrent tactics for overcoming these shared obstacles. Tumorigenesis can thus 

be perceived as a landscape within which each tumor navigates a unique, multidimen-

sional path, weaving between segments trodden by other tumors. A number of the 
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early breakthroughs in cancer treatment directly resulted from coarse demarcations 

of these paths into distinct subtypes based on “landmarks”—usually defined by muta-

tions and/or markers derived from proteomic or transcriptomic data—that were then 

used to engineer subtype-specific treatments [2–4].

Although these biomarker-based treatment matching criteria have proven effective 

in some precision medicine applications, there is a sizable subset of patients whose 

tumors harbor no discernible drug vulnerabilities, thus diminishing their likelihood 

of successful treatment and of patient survival  [5–8]. Despite recent efforts to pro-

file tumorigenic landmarks, for most such events we still know little about the down-

stream programs they trigger. As a result, most clinical guidelines depend on only a 

limited subset of specific variants within a gene or on other coarse biomarker-based 

demarcations [9, 10]. A clearer discernment of the downstream programs associated 

with mutations in cancer genes is thus a crucial prerequisite for addressing the chal-

lenges presently faced by precision oncology [11, 12].

Mutations of frequently altered genes often manifest as patterns of differential 

expression in downstream genes. Such patterns are usually referred to as the muta-

tion’s transcriptomic signature or program. It was previously shown that it is possible 

to detect transcriptomic signatures for common cancer drivers by training machine 

learning algorithms to predict which samples in a tumor cohort harbor muta-

tions  [13–16]. A corollary to these results is that these mutation classifiers should 

also provide insight into the effects of the mutation in question. �is hypothesis is 

supported by the correlations observed between these models’ predictions and other 

indicators of downstream activity including protein levels, response to drug treat-

ment, and mutations in genes belonging to related cancer pathways [17, 18].

Further development of transcriptomic signatures is complicated by the dissi-

militude of driver mutations within a gene [19, 20]. Although genes such as BRAF 

carry one hotspot responsible for almost all mutations observed in the gene in tumor 

cohorts  [21], many genes implicated in tumor progression and proliferation have a 

widely distributed pattern of genomic alterations [22–25]. �ese mutations have var-

ying degrees of impact; moreover, it is not uncommon for different alterations within 

a gene to carry out diametrically opposite roles in cancer development depending on 

context [26]. In cases such as KRAS this property has already been exploited to engi-

neer clinical interventions targeted to a specific KRAS hotspot rather than the gene as 

a whole [27].

Can we measure these variable and divergent impacts? Consider the case of a gene 

with multiple mutation subsets, each significantly divergent from the rest with respect 

to downstream impact. With sufficient statistical power, we would expect transcriptomic 

classifiers trained to predict the presence of mutations within these subsets to be more 

accurate than a gene-wide classifier tasked with recognizing the presence of any muta-

tion of the gene. Conversely, if we do not observe increased predictive performance for 

mutation subgroupings, it is likely that they are convergent, or at least share convergent 

characteristics identifiable by a classification model. Although subgrouping-specific clas-

sifiers benefit to a certain degree from having a more uniform set of downstream effects 

to identify in a tumor cohort, they must also overcome the loss in statistical power 

inherent in characterizing a subset of the available mutated samples. �e discovery of 
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mutation groupings robustly associated with better-performing classifiers within a gene 

would hence clearly present strong evidence of divergence.

For a given gene, the landscape of transcriptomic classifier accuracy across mutation 

subgroupings should thus inform us about the convergent and divergent effects of these 

genes’ mutations. �is is useful for two immediate clinical purposes: estimating the like-

lihood that a variant of unknown significance has an effect similar to a previously char-

acterized hotspot variant, and obtaining informed stratification criteria for recurrent 

mutations to aid in the design of clinical trials and precision medicine guidelines. Based 

on these observations, we interrogated frequently altered genes in large tumor cohorts 

for mutation subgroupings associated with improved classification performance. Instead 

of focusing on a single gene or pathway of interest, we sought to create a framework 

inspired by class-grouping approaches [28–30] which would generalize well to the popu-

lation of somatic alterations recurrent in cancer. Specifically, we tested 12,871 groupings 

of mutations selected by applying a hierarchical class-grouping search heuristic to the 

mutation profiles of 200 cancer genes across 17 tumor cohorts. �is allowed us to con-

firm previous findings showing that it is possible to predict the presence of mutations 

associated with cancer using regression models trained on expression data and to dem-

onstrate that the mutation profiles of a multitude of cancer genes can be better charac-

terized using our subgrouping-specific models.

Results

Enumerating cancer gene subgroupings in a tumor cohort

We first applied our subgrouping framework to the METABRIC cohort, which contains 

1499 breast cancer tumor samples with both expression and mutation calls [31]. Apply-

ing UMAP, a manifold-based unsupervised learning technique  [32], to the expression 

profiles of these samples revealed clusters corresponding to molecular subtypes known 

to have unique transcriptomic profiles [33, 34] (Additional file 1: Figure S1). To ensure 

that this heterogeneity at the molecular level did not confound our interrogation of 

heterogeneity at the genomic level we filtered out samples not belonging to luminal A, 

the most prevalent subtype. �is resulted in a more uniform cohort consisting of 1017 

tumor samples hereafter referred to as METABRIC-(LumA).

We identified oncogenic and tumor suppressor genes based on their inclusion in the 

OncoKB database [35]. Our search for mutation groupings was restricted to the subset 

of these genes with point mutations present in at least 20 samples in the cohort where 

the term point mutation is applied loosely to describe any genomic alteration involving 

a small number of nucleotides (e.g. SNPs, frameshifts, inframe insertions, etc.) while the 

more general term mutation is reserved for the broader collection of genomic variants 

spanning both point mutations and large-scale mutations such as copy number altera-

tions (CNAs).

For each gene, we enumerated subsets of its point mutations present in META-

BRIC-(LumA) that could potentially have a biologically meaningful downstream 

transcriptomic signature. �is was done by first hierarchically organizing mutations 

according to attributes particularly likely to have a bearing on their downstream 

effects. For example, the 488 samples carrying any point mutation of PIK3CA in 

METABRIC-(LumA) can be decomposed according to the exon the mutation falls on: 



Page 4 of 34Grzadkowski et al. BMC Bioinformatics          (2021) 22:233 

248 samples for the 21st exon, 177 for the 10th exon, 45 for the 5th exon, and so on. 

�ese partitions can be further subdivided according to the codon location of each 

mutation: 226 samples for exon 21 and codon 1047, 109 for exon 10 and codon 545, 

56 for exon 10 and codon 542, 40 for exon 5 and codon 345, etc. We can thus cre-

ate a gene-wide classification task in which a prediction algorithm must separate the 

488 PIK3CA mutants from the 529 PIK3CA wild-types in the METABRIC-(LumA) 

cohort, as well as subgrouping classification tasks in which we seek to separate e.g. 

the 109 samples with PIK3CA mutations on exon 10, codon 545 from the 908 samples 

wild-type for {PIK3CA:exn10:cdn545} in the METABRIC-(LumA) cohort.

�e above example organizes PIK3CA mutants into a tree according to genomic 

location: we first create branches corresponding to exons, and then add a further layer 

of branches corresponding to codons. Constructing subgrouping classification tasks 

using these branches thus leverages the expectation that PIK3CA mutations close to 

one another are more likely to have similar downstream effects, while allowing us to 

search over different scales (exon vs. codon) at which this prior might be true. �is 

framework can be extended to any other combination of available mutation attrib-

utes; for the purposes of this study we focused on four combinations particularly 

likely to produce biologically meaningful subgroupings. �e first of these is the exon 

to codon hierarchy introduced above with a further layer specifying the particular 

codon that replaces the wild-type: 
〈

E →C P →C S-


〉

 . On the other hand, 
〈

C →E
〉

 first groups together mutations 

with the same effect on the protein sequence (missense, stop lost, frameshift, etc.) 

and then further subdivides according to exonic location. �is accounts for the possi-

bility that, within particular genes, mutations of the same type are more likely to have 

similar downstream effects than mutations that are close to one another. Finally, both 
〈

SMART D  →C
〉

 and 
〈

P D  →C
〉

 first 

organize mutations according to their overlap with a known protein domain and then 

segregate mutations according to downstream effect. �ese two trees enhance how 

the “closeness” of mutations is defined using a secondary source of information about 

structural units within the protein they affect while also incorporating information on 

the general nature of the type of genomic aberration caused by the mutation.

We generated subgroupings using this collection of mutation trees by searching 

over possible tree branches whose mutations were present in at least twenty samples 

in METABRIC-(LumA), thus providing enough positive examples for a classifier to 

be trained and tested on. A subgrouping branch could thus be one of the leaves of 

a tree, i.e. {PIK3CA:exn21:cdn1047:H1047R}, or one of the internal branches span-

ning multiple leaves, i.e. {PIK3CA:exn21}. We further expanded our search to include 

subgroupings corresponding to a combination of two such tree branches, each con-

taining at least ten mutated samples in the cohort, with the resulting subgrouping 

including all samples carrying a mutation on either of the branches. In METABRIC-

(LumA) this produced a total of 772 subgroupings across the 38 cancer genes with 

at least 20 mutated samples, of which 217 were subgroupings of PIK3CA, 105 were 

subgroupings of TP53, and 101 were subgroupings of GATA3 (see Additional file 2: 

Tables S1 for a complete list of enumerated subgroupings).
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Training and evaluating subgrouping transcriptomic signatures

For each gene we trained a classifier to predict which samples in the cohort carried at 

least one point mutation on the gene—we refer to this as the gene-wide task. We then 

trained separate classifiers to predict which samples carried individual subgroupings’ 

mutations, referred to as the set of subgrouping tasks. Each task involved applying a 

logistic regression classifier utilizing the ridge regularization penalty to the given cohort’s 

expression data in order to produce sample scores that corresponded to the model’s con-

fidence that they harbored a mutation in the subgrouping (see “Methods” section) [36]. 

�e logistic ridge regression model accomplished this by identifying a set of coefficients, 

one for each gene feature in the expression data, such that features with large positive 

coefficients were robustly associated with up-regulation by the task’s mutations while 

features with large negative coefficients were associated with down-regulation.

Model tuning and training was done using ten iterations of four-fold cross-validation; 

a classification task thus generated ten scores for each cohort sample. We measured a 

classifier’s ability to identify a transcriptomic signature for its assigned task using the 

area under the receiver operating characteristic curve metric (AUC) calculated using 

samples’ mean scores across the ten cross-validation iterations. A task AUC of 1.0 thus 

signified “perfect” classifier performance in which all samples carrying mutations in the 

subgrouping had higher mean scores than the mean score of any sample that was wild-

type with respect to the subgrouping, while an AUC of 0.5 signified “random” perfor-

mance in which the mean score of a subgrouping-mutant sample was equally likely to be 

lower or higher than the mean score of a wild-type sample.

To compare the performances of two different classification tasks, we utilized the 

AUCs specific to individual cross-validation iterations. As the same forty training-test-

ing tumor sample splits were used for a cohort’s ten cross-validation iterations across all 

of its experiments, classifier performances on each iteration could be compared directly. 

We calculated ten “cv” AUCs for a task, each using samples’ predicted scores from one 

cv iteration as opposed to the average across all ten for the original task AUC. In our 

analyses we report the difference between two task AUCs as “cv-significant” only if all 

ten comparisons between their respective cv AUCs yielded a disparity in the same direc-

tion. In particular, we highlight genes in which at least one mutation subgrouping clas-

sifier’s performance met this criterion positively relative to the classifier trained on the 

gene-wide task—that is, if the subgrouping classifier had a higher “cv” AUC than the 

gene-wide classifier in all ten direct comparisons.

Characterizing mechanisms underlying divergent subgrouping performance

Our approach relies on manipulating the labels to be predicted in a classification task by 

changing some of the “mutated” sample labels to “wild-type”, with the expectation that 

there are at least some genes in which the original labeling does not accurately reflect 

the diversity of downstream effects wrought by their mutations. However, an increase 

in AUC as a result of such a manipulation can happen for several different reasons. If 

some of the gene’s mutations are inactive, then treating samples carrying these muta-

tions as wild-type should result in a subgrouping classifier similar to the gene-wide clas-

sifier, albeit applied to a task with more accurate labels. On the other hand, if some of the 

gene’s mutations are divergent by the type of downstream effect they cause, and not just 
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by whether they cause a downstream effect in the first place, then we would expect the 

behaviour of the corresponding subgrouping classifier to be much more distinct from its 

gene-wide counterpart.

To quantify these types of differences between subgrouping classifiers and gene-wide 

classifiers, and thus provide a more complete explanation for observed improvements 

in AUCs, we created a metric capturing how much more accurately a given subgroup-

ing classifier predicted the presence of mutations in its subgrouping relative to the 

gene-wide model’s performance on the same set. If a subgrouping simply excludes inac-

tive mutations of the gene, then we would expect the gene-wide classifier to also tend 

to correctly classify subgrouping-mutated samples as “mutant”, and be penalized for 

being forced to treat the other mutations of the gene as also “mutant”. It follows that if 

we instead observe that the gene-wide classifier is more likely to err in predicting sub-

grouping mutations, then the subgrouping classifier is divergent not just in performance 

but also in finding a novel way of separating subgrouping-mutated samples from the 

remaining samples in the cohort. We therefore compared the AUC calculated using the 

gene-wide classifier’s predicted sample labels on the subgrouping task to the subgroup-

ing classifier’s task AUC originally calculated on the same labels. Unlike comparisons of 

AUCs discussed above, this comparison involves two models’ predictions on the same 

set of labels, and thus we can apply DeLong’s test to obtain a p value for whether the sub-

grouping classifier does a better job of discerning the presence of subgrouping-mutated 

samples than the gene-wide classifier [37]. We report this p value where applicable in 

the text below using the label pDivg to quantify the degree to which using a subgroup-

ing instead of a gene-wide classifier results in a novel classification of a cohort’s samples 

rather than removing false positives from the gene-wide task.

Subgrouping classi�ers uncover alteration divergence in a breast cancer cohort

�e transcriptomic signatures trained on the 810 gene-wide and subgrouping tasks enu-

merated in METABRIC-(LumA) revealed that many of the frequently mutated cancer 

genes in breast cancer have readily identifiable downstream expression effects. Crucially, 

a sizeable subset of these genes contain subgroupings with expression signatures that 

diverge from those associated with the gene as a whole (Fig. 1). For example, while it is 

already easy to find a downstream effect in the expression data for GATA3 point muta-

tions when they are considered as a whole (177 mutated samples; AUC = 0.840), there 

are several GATA3 subgroupings that produced even more accurate transcriptomic 

signatures. Among the 26 found to be cv-significant with respect to the gene-wide task 

were all splice variants (47 samples; AUC = 0.916; pDivg : 0.018), frameshifts overlapping 

the GATA3 Pfam zinc finger domain and all splice variants (72 samples; AUC = 0.920; 

pDivg : 0.00028), as well as splice variants not assigned to an exon of GATA3 (44 samples; 

AUC = 0.925; pDivg : 6.0 × 10
−5 ). �e subgrouping of GATA3 with the best classifier per-

formance in METABRIC-(LumA) consisted of the frameshifts on the fifth exon com-

bined with the splice variants not assigned to an exon (68 samples; AUC = 0.936; pDivg : 

1.4 × 10
−4).

Clearly, GATA3 splice variants are not only divergent from most remaining GATA3 

mutations, but share a similarity with some GATA3 frameshifts that is best character-

ized using our 
〈

 C  →  E
〉

 mutation hierarchy. Furthermore, while 
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samples carrying any type of GATA3 mutation evidently have expression profiles dis-

tinct from those of samples that are wild-type for GATA3, our experiment demonstrates 

that it is also possible to find signatures that are able to consistently differentiate types 

of mutations within the GATA3 mutation landscape. �is is consistent with recent work 

showing that GATA3 mutations in breast cancer can be segregated by their effect on the 

function of the GATA3 protein into subsets consistent with those identified as divergent 

above [38]. Notably, splice site variants of GATA3 are observed almost exclusively in the 

luminal A but not in the luminal B subtype. �is strongly suggests that either the splice 

variants drive cancer exclusively to luminal A or they are positively selected in luminal 

A. Both cases indicate the presence of a contextually-dependent functional divergence 

linked to the best-performing subgroupings found in our analysis.

Our approach was also able to identify cases in which truncating substitutions and 

frameshifts are clearly divergent from mutations much more likely to leave the struc-

ture of the protein intact. In MAP3K1, the best found subgrouping consisted solely 

of these two types of mutations and was also found to have an AUC cv-significantly 

higher than that of the MAP3K1 gene-wide task (102 samples out of 149 point mutants; 

Fig. 1 Divergent transcriptomic programs are a recurring feature of frequently mutated genes in breast 
cancer. 772 subgroupings within the point mutations of 38 genes having known links to cancer processes 
in METABRIC-(LumA) were enumerated by grouping together variants with shared properties. A logistic 
ridge regression classifier was trained to predict the presence of any point mutation in each of these genes 
as well as the presence of each enumerated subgrouping. Comparing the classification performance 
(AUC) for each gene-wide task (x-axis) to the best performance across all tested subgroupings of the gene 
(y-axis) reveals subgroupings within genes such as GATA3 and MAP3K1 with downstream effects that are 
consistently separable from the remaining mutations of the gene. The pie charts’ areas are proportional to 
the number of samples in the cohort that carry any point mutation of the corresponding gene; the darker 
slice inside each pie is scaled according to the proportion of these samples carrying a mutation in the best 
subgrouping. A gene label is included wherever the AUC of the best task exceeded 0.7; a description of the 
best subgrouping is also included wherever its task performance was cv-significantly higher than that of 
its gene-wide counterpart. Six genes in which no subgroupings were found have been omitted from this 
plot. The corresponding plots for the other cohorts used for training in this study can be found at Additional 
file 12: Figure S11
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AUC = 0.889; pDivg : 0.012). �e poor task performance of the subgrouping of nonsense 

mutations (28 samples; AUC  =  0.688) suggests that the downstream effects of these 

mutations are much weaker than those of MAP3K1 frameshifts, though still more evi-

dent than the effects of MAP3K1 missenses (39 samples; AUC = 0.575). ARID1A was 

similar in that nonsense mutations and frameshifts were cv-significant compared to 

ARID1A mutations as a whole (26 samples; AUC = 0.878; pDivg : 0.040), with the best 

subgrouping (also cv-significant) differing only in the omission of a single sample with 

a mutation overlapping a SMART domain (25 samples; AUC  =  0.885; pDivg : 0.010). 

�is is consistent with the rarity of ARID1A missense mutations compared to nonsense 

mutations and frameshifts in other cancer types, suggesting that missense mutations are 

not selected for in general due to their lack of an effect on downstream processes [39, 

40]. For CDH1, the only cv-significant subgrouping was composed of frameshifts over-

lapping the cadherin repeated Pfam domain and mutations not overlapping any Pfam 

domain (46 samples out of 68 point mutants; AUC = 0.812 vs. 0.770; pDivg : 0.506), likely 

reflecting the subset of CDH1 mutations especially likely to cause the loss of E-cadherin 

implicated in particularly aggressive breast cancer tumors [41].

In line with expectations, genes such as AKT1 and SF3B1 whose mutation landscapes 

are dominated by a single hotspot featured divergent subgroupings incorporating the 

hotspot. Nevertheless, the remaining components of these subgroupings were instruc-

tive as to the uniqueness of these hotspots with regard to downstream effects relative 

to other mutations present on the same gene. In the former case, the E17K subgroup-

ing exhibited better performance than the gene-wide task (48/64 AKT1 point mutants; 

AUC = 0.883 vs. AUC = 0.842; pDivg : 0.814), but classifiers fared just as well treating all 

AKT1 missenses as a whole (57 samples; AUC =  0.885; pDivg : 0.152). �e best AKT1 

subgrouping consisted of missenses falling within the Pleckstrin homology domain (54 

samples; AUC =  0.908; pDivg : 0.224); unlike the two aforementioned subgroupings its 

performance was also cv-significant compared to the gene-wide task. It is therefore likely 

that AKT1 mutations have similar regulatory consequences to E17K as long as they are 

in a position to disrupt binding processes. Given the lack of strong DeLong divergence 

relative to the gene-wide task for these subgroupings, we can also infer that the remain-

ing AKT1 mutations lack a strong downstream effect. Likewise, in SF3B1 mutations on 

the 15th exon were found to be highly divergent (27/47 SF3B1 mutants; AUC = 0.999 

vs. AUC = 0.855; cvSig; pDivg : 0.022). In this case, improved classification performance 

was primarily due to the presence of the K700E hotspot which accounted for all but one 

of these mutants, and could also be predicted nearly perfectly on its own (26/47 SF3B1 

mutants; AUC =  0.999; cvSig; pDivg : 0.034). Moreover, the SF3B1 subgrouping which 

excluded silent mutations yielded a more modest boost in the quality of the transcrip-

tomic signature (39/47 SF3B1 mutants, AUC = 0.928, cvSig; pDivg : 0.232). �is suggests 

that SF3B1 variants can be ordered by the strength of their downstream effects, with 

K700E mutations having the most significant impact, although the weak evidence of 

DeLong divergence leaves this conclusion ambiguous.

Among the 32 genes for which any subgroupings were enumerated in METABRIC-

(LumA), these six (GATA3, MAP3K1, ARID1A, CDH1, AKT1, and SF3B1) were the 

only ones that had any subgroupings significantly divergent in performance from their 

gene-wide counterparts according to our cv-significance criterion. However, there 
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were only four other genes with any classification tasks achieving an AUC of at least 

0.8 (TP53, PIK3CA, CTCF, and CBFB). Our findings for TP53 were particularly surpris-

ing, as it has long been assumed that TP53 mutations can be divided into missense hot-

spots that result in gain-of-function and loss-of-function terminating substitutions and 

frameshifts  [42]. However, recent literature suggests a more complicated relationship 

between these two classes of TP53 mutations, with many TP53 missense substitutions 

exhibiting an ability to disrupt the downstream activity of the TP53 protein in a dom-

inant-negative fashion  [43]. �is suggests that our classification tasks are identifying a 

monolithic dysregylatory program in TP53 that combines the gain- and loss-of-function 

effects of its mutations in the absence of a cleanly delineated subset of TP53 mutations 

associated solely with one type of effect or the other.

Likewise, we did not find any subgroupings of PIK3CA in METABRIC-(LumA) with 

significantly better performance than the gene-wide classifier despite the wide vari-

ety of PIK3CA hotspots in the cohort, including N345K, E542K, and H1047R. �is is 

concordant with work showing that while the mutated loci of PIK3CA exhibit varying 

downstream effects in proportion to their recurrence in tumor cohorts, these effects dif-

fer primarily in degree, not in kind [24]. In the case of CTCF, we were still able to find 

a subgrouping with considerably better performance than the gene-wide task (25/39 

CTCF point mutants; AUC = 0.879 vs. 0.825). Although this task did not achieve cv-

significance, it nevertheless suggests that CTCF contains divergent subgroupings discov-

erable using larger cohorts or wider subgrouping enumeration criteria. Finally, the lack 

of divergence among the 63 CBFB point mutants suggests that any of them are equally 

sufficient to disrupt the master-regulatory processes wrought by the gene [44].

Nevertheless, successfully training gene-wide classifiers for these well-known cancer 

drivers lends further credence to our framework’s ability to identify downstream effects 

where they would reasonably be expected to occur. It may be the case that nuanced yet 

consequential differences exist between the downstream expression effects associated 

with such genes, but that these differences are overshadowed by an expression pro-

gram common to a sufficiently high proportion of the mutations. Similarly, whatever 

heterogeneity exists within the mutational profiles of these genes may be too granular 

to observe without access to larger tumor cohorts. Our results are thus better inter-

preted as proving the divergence inherent in particular downstream effect profiles rather 

than disproving the divergence of others. In the same vein, in three genes subgroup-

ing tasks achieved an AUC of at least 0.7 (but less than 0.8) and exhibited evidence of 

divergence that was insufficient to pass our relatively strict cv-significance threshold 

(ASXL1: AUC = 0.738 vs. AUC = 0.643; NF1: AUC = 0.738 vs. AUC = 0.652; TBX3: 

AUC = 0.732 vs. AUC = 0.617).

�e remaining nineteen genes in METABRIC-(LumA) with poorer classification per-

formance most likely reflect the limitations of using transcriptomic cohorts to predict 

mutated states. It is possible that the presence of dominant driver mutations with strong 

downstream effects confounds our classifiers’ ability to quantify these effects for muta-

tions with weaker downstream impact. Furthermore, although our data pre-processing 

workflow involved identifying and removing samples with clearly distinct transcriptomic 

profiles associated with molecular subtypes, our METABRIC-(LumA) cohort could be 

contaminated by subpopulations of samples that are more subtly aberrant, thus making 
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it more difficult for a classifier to recognize the downstream signal of some mutations. 

�ese genes also tend to have a relatively small number of mutated samples (median 

point mutants: 31.5 vs. 68 for the other ten genes), which makes it more difficult for a 

classifier to robustly characterize the differences between the population of mutants and 

the population of wild-types in the METABRIC-(LumA) cohort, especially in the pres-

ence of the aforementioned confounding factors. Finally, in at least some of these cases 

the mutations in question are passengers and hence do not have significant downstream 

effects.

Classi�er coe�cients identify regulatory mechanisms associated with divergent 

subgroupings

We sought to ground these comparisons of the performances of our subgrouping classi-

fiers by also comparing the coefficients they assigned to gene expression features. Forty 

sets of coefficients were found for each classification task, one for each cross-validation 

fold used in training and testing; we henceforth report the average coefficient for each 

gene across these sets in a given task. We found this average easier to interpret than the 

coefficients of a individual logistic ridge regression model which searches for the most 

parsimonious set of weights such that predictive performance is maximized. Although a 

single model may not need to identify all of the expression features associated with the 

set of mutations in question in order to produce accurate output labels, it is far less likely 

that a gene whose expression is robustly associated with the set of mutations in question 

would be ignored by all forty trained classifiers.

�e largest such coefficient in the gene-wide GATA3 task trained on METABRIC-

(LumA) belonged to MEGF10 (Additional file 3: Figure S2), which has been previously 

implicated in cancer processes downstream of GATA3 [45]. MEGF10 was also weighted 

heavily in the best found subgrouping task, having the 37th largest absolute magni-

tude out of 13018 genes considered by the model. On the other hand, although neither 

KDM1B(LSD2) nor PRDM15 had sizeable coefficients in the best found subgrouping 

task, both were striking in their considerable contribution to the gene-wide task. �is is 

intriguing as KDM1B plays an important role in breast cancer pluripotency and migra-

tion  [46]. Although not much is known about the relationship between GATA3 and 

KDM1B, the paralogous KDM1A(LSD1)’s role in luminal breast cancer via GATA3 is 

well documented  [47]. Furthermore, PRDM15 was recently identified as a gatekeeper 

for naive pluripotency [48]. Similarly to KDM1A, although not much is known about 

the relationship between PRDM15 and GATA3, family members PRDM2, ZFPM1 and 

ZFPM2 have been identified as GATA3 modulators [49, 50].

Hierarchical clustering of averaged coefficients across GATA3 mutation subgrouping 

tasks with an AUC of at least 0.7 revealed a number of expression programs that were 

differentially weighted across the subgroupings of GATA3 (Additional file 4: Figure S3). 

�e best found subgrouping (splice acceptor not on any exon or frameshift on 5th exon) 

is seen in a clear cluster of subgroupings which exhibit negative coefficients for a block 

of genes that are weighted positively in the gene-wide task. Of the five genes in this block 

that had the greatest differences in coefficient magnitude between these two tasks, only 

NPAS4 has not been previously assessed in the context of human breast cancers (though 

it has recently been a focus of murine breast cancer PDX models [51]). �e remaining 
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four have all been studied for their effects in the development and maintenance of 

human breast cancers (TNP1 [52–54], FST [55], ANKRD40 [56], TRH [57, 58]).

�ese coefficients also helped to shed further light on the cases where we could not 

find any subgroupings with divergent classifier performance. TP53 subgroupings were 

almost universally associated with strong down-regulation of PHLDA3 and AEN, both 

of which are well-characterized targets of TP53 which play key roles in mediating the 

tumor suppressing functions of the p53 protein [59, 60]. Clustering of coefficient profiles 

across TP53 subgroupings revealed that subgroupings associated with divergent coeffi-

cients tended to have much lower classification performance, making it more likely that 

this divergence stems from model overfitting than actual impact on downstream cancer 

processes (Additional file 4: Figure S3). �is lends further support to the hypothesis that 

the similarities between the transcriptomic effects of mutations of the p53 protein in 

luminal A breast cancer outweigh the differences.

PIK3CA subgroupings were even more homogeneous with respect to their logistic 

ridge regression model coefficients, with almost all subgroupings following a similar 

profile of up- and down-regulation as the gene-wide PIK3CA task, thus further support-

ing the lack of heterogeneity across the effects of PIK3CA mutations in breast cancer. 

Similar behavior observed in cases such as MAP3K1, SF3B1, AKT1, and CDH1 lends 

additional credence to the conclusion that the divergence with respect to subgrouping 

classifier performance in these genes is driven by the identification of active mutations 

by the best found subgroupings (Additional file 4: Figure S3).

Comparison benchmarks contextualize subgrouping task performance

Our approach to characterizing transcriptomic heterogeneity within the alteration pro-

files of cancer genes is based on testing as many mutation subgroupings as possible to 

identify those with divergent expression signatures. Although we have already dem-

onstrated that this strategy can be gainfully applied to find and characterize such sub-

groupings, it is also clearly susceptible to multiple hypothesis testing—how can we be 

sure that the improvements in AUC we have observed are not simply the upper tail of 

the noise inherent in measuring the accuracy of a large population of classifiers? Our 

prediction pipelines’ persistent ability to produce higher scores for samples in which a 

particular set of mutations is present leads us to claim that the set of mutations must 

have some biological relevance, but this relevance is difficult to establish without also 

comparing the classification performance against other sets of samples that could have 

been selected from the cohort to construct classification tasks.

We thus created a set of classification tasks to predict the presence of randomly cho-

sen sets of samples of the same size as the mutation subgroupings we previously tested 

in METABRIC-(LumA), with five such tasks constructed for each subgrouping. �e dis-

tribution of AUCs for this null background set of 4050 tasks was markedly lower than 

the corresponding distribution for tasks related to cancer genes, with a median AUC of 

0.494 (Additional file 5: Figure S4). �is confirmed that the mutation labels associated 

with cancer genes encode a significant amount of information relative to labels randomly 

assigned to the cohort. We also created an analogous gene-specific null background set 

of classification tasks by randomly selecting five size-matched subsets for each sub-

grouping from the collection of samples carrying any point mutation of the mutated 
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gene. �e performance observed for these tasks revealed that our hierarchical organiza-

tion of genes’ mutations yielded better subgroupings than those that could be found by 

simply picking subsets of mutations occurring on the gene at random (Additional file 6: 

Figure S5). For example, only one of the 505 randomly chosen sets of GATA3 mutations 

managed an AUC even barely higher than that of the gene-wide task (AUC = 0.8402 vs. 

AUC =  0.8395), while 44.6% of our GATA3 subgroupings had higher AUCs than this 

“optimal” random GATA3 subgrouping. Five of the six genes with cv-significant sub-

groupings relative to the gene-wide task lacked any gene-specific random subgroupings 

which were cv-significant. In the case of the lone exception, MAP3K1, the best found 

subgrouping’s AUC was nevertheless cv-significantly higher than the AUC of any of the 

random subgroupings.

Since our method requires scanning a sizeable population of subgroupings, we opted 

to use a logistic ridge regression classifier that efficiently scales up to a large number 

of tasks. However, this choice of algorithm can potentially prevent us from detecting 

nonlinear transcriptomic signatures. Our tuning regime was also designed to be fairly 

straightforward in order to reduce computational load, testing only eight ridge regu-

larization hyper-parameter values. To find whether our mutation prediction results in 

METABRIC-(LumA) were affected by these efforts to reduce the computational cost of 

our classification pipelines, we repeated the above experiment with radial basis function 

support vector [61] and random forest classifiers [62] as well as with a larger tuning grid 

for the logistic ridge regression classifier. We found that these more complex classifiers 

failed to produce improved AUC performance across our prediction tasks and did not 

affect the efficacy of subgrouping tasks relative to gene-wide tasks despite taking up to 

an order of magnitude longer to run to completion (Additional file 7: Figure S6A–C). 

�e mutational profile heterogeneity we observe is thus not a by-product of the behavior 

specific to any one particular classification method, and can be observed using a rela-

tively simple learning framework.

Enlarging the subgrouping search space does not signi�cantly alter relative classi�er 

performance

We relaxed the parameters of our task enumeration heuristic to include subgroupings 

composed of up to three branches of at least five samples each which resulted in a larger 

total search space of 6483 subgroupings over the same 38 genes in METABRIC-(LumA). 

However, this did not uncover a large number of cases of divergent subgroupings that 

had not already been found using the original criteria (Additional file 8: Figure S7A–B). 

In cases such as SF3B1 the best available subgrouping had clearly already been identi-

fied given the limited number of mutation grouping combinations we could test given 

the modest size of the gene’s mutation landscape. �e best subgroupings of TP53 and 

PIK3CA from this larger set converged even closer to their respective gene-wide coun-

terparts, lending greater credence to the lack of a divergent set of mutations within these 

genes. MAP3K1 and CDH1 exhibited very modest improvements in classification per-

formance using the enlarged pool of subgroupings: AUCs of 0.894 versus 0.889 and 0.823 

versus 0.812 respectively for the best found subgroupings in the expanded and original 

search spaces respectively. However, neither of these subgroupings from the enlarged 

pool achieved cv-significance.
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A notable exception was PTEN, in which a novel subgrouping consisting of termi-

nating substitutions, missense mutations on the 5th exon, and frameshifts on the 7th 

exon was found to be cv-significant relative to the gene-wide task (AUC  =  0.785 vs. 

AUC = 0.690). �is is likely due to the dispersed landscape of PTEN mutations, with 

no single locus accounting for more than 5 out of the 51 PTEN point mutants in META-

BRIC-(LumA). Nevertheless, this was the only such case where a subgrouping discovered 

using the loosened enumeration criteria exhibited cv-significantly higher performance 

than the best-performing subgrouping found using the original criteria, and we hence 

deemed these gains as insufficient to justify a nine-fold increase in computational cost.

We also integrated copy number alterations (CNAs) into our task enumeration pro-

cess. For every subgrouping used in the original experiment we created up to two addi-

tional classification tasks using the point mutations in the subgrouping alongside deep 

deletions or deep amplifications of the same gene in cases where these types of CNAs 

were present in at least five other cohort samples. However, this consistently failed to 

improve classification performance for cases such as GATA3, SF3B1, and AKT1 within 

which divergent subgroupings had already been found when not including CNAs in 

the set of mutations to predict (Additional file 9: Figure S8). In genes such as TP53 and 

MAP3K1 there were simply not enough deep CNAs present in the METABRIC-(LumA) 

cohort for us to test any subgroupings which included them. On the other hand, we 

found that using deep deletions alongside point mutations on the catalytic domain or 

on the C2 domain of PTEN led to a well-performing transcriptomic signature (50 sam-

ples; AUC = 0.750; cv-significant relative to using all PTEN point mutations). Including 

CNAs in our subgrouping enumeration also allowed us to better characterize genes such 

as ERBB2 (HER2) where deep amplifications on their own produced a cv-significantly 

superior expression signature (43 samples; AUC  =  0.834) relative to using all point 

mutations of the gene (38 samples; AUC = 0.692) or all point mutations in conjunction 

with deep gains (80 samples; AUC =  0.731). Although most luminal A breast cancers 

exhibit HER2 negativity, a small number of HER2 positive breast cancers are classified 

as luminal A by PAM50 [63], and our results indicate that these samples are clearly dis-

tinguishable from the remainder of METABRIC-(LumA). While incorporating CNAs 

complemented what we discovered using solely point mutations, these findings were 

relatively few in number and we thus opted to focus on point mutation subgroupings for 

the remainder of our analyses.

Breast cancer cohorts exhibit concordant divergence characteristics

We performed the same analyses on TCGA-BRCA [64] data to test whether the muta-

tion grouping behavior observed in METABRIC generalizes to other breast cancer 

cohorts and is not simply an artefact of expression patterns specific to METABRIC or 

of overfitting within our classification tasks. �e subgrouping enumeration procedure 

described above was repeated with the TGCA-BRCA luminal A sub-cohort consisting 

of 499 samples to identify 16 cancer genes containing 224 point mutation subgroup-

ings of which 14 genes and 205 subgroupings had also been enumerated in META-

BRIC-(LumA). Training and evaluating classification tasks predicting the presence of 

these subgroupings using TCGA-BRCA(LumA) expression data revealed transcrip-

tomic signature performance broadly concordant with results in METABRIC-(LumA), 
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with a Spearman correlation of 0.796 across the AUCs for the 219 tasks tested in both 

cohorts (Fig. 2). �is is despite the fact that expression calls in TCGA cohorts were 

made in an independent setting from METABRIC using next-generation sequencing 

profiling as opposed to microarrays.

�is concordance persisted when comparing the relative performance of sub-

groupings within particular genes across the two cohorts. All four genes with at 

least ten tasks in both METABRIC-(LumA) and TCGA-BRCA(LumA) exhibited 

strong correlations between the two sets of AUCs (PIK3CA: 107 tasks, Spearman 

rho =  0.797; MAP3K1: n =  35, rho =  0.370; GATA3: n =  34, rho =  0.542; CDH1: 

n = 16, rho = 0.582). Of the six genes in METABRIC-(LumA) found to have diver-

gent subgroupings according to cv-significance relative to the gene-wide task, three 

(GATA3, AKT1, MAP3K1) were also found to have divergent subgroupings by the 

same measure in TCGA-BRCA(LumA). Among the other three, SF3B1 had only 17 

point mutants in TCGA-BRCA(LumA) and thus could not have any divergent sub-

groupings in TCGA-BRCA(LumA) in the first place, while ARID1A had 21 TCGA-

BRCA(LumA) point mutants and only one enumerated subgrouping. �e lack of 

divergent subgroupings in these cases can thus be explained by the relatively low inci-

dence of their mutations and the smaller size of the TCGA-BRCA(LumA) cohort; it 

is also notable that the sole ARID1A subgrouping in this cohort did exhibit improved 

performance, albeit to a non-cv-significant extent (mutations not overlapping a 

SMART domain; n = 20; AUC = 0.798 vs. AUC = 0.738; pDivg : 0.015). In the remain-

ing case of CDH1, the nearly fourfold difference in point mutation incidence between 

the two cohorts (METABRIC-(LumA): 6.7%; TCGA-BRCA(LumA): 1.8%) suggests 

that variation in the composition of the cohorts or in the way mutations were called 

may be responsible for the lack of concordance in divergence.

Fig. 2 Subgrouping performance is consistent across breast cancer cohorts. Cancer gene subgrouping 
enumeration and classification was repeated using the luminal A sub-cohort of TCGA-BRCA. The 
colors for genes’ plotted points and pie charts correspond to those in Fig. 1. a Prediction AUCs for 
gene-wide classification tasks and subgrouping tasks enumerated in both METABRIC-(LumA) (x-axis) 
and TCGA-BRCA(LumA) (y-axis). Larger point size indicates a higher joint proportion of mutated samples 
(calculated as the geometric mean of the two cohort proportions). b Comparison of relative subgrouping 
performance (AUC) between cancer genes profiled in TCGA-BRCA(LumA) (filled-in pie charts) versus those 
profiled in METABRIC(LumA) (hollow pie charts)
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To further validate the generalizability of subgrouping performance, we applied the 

models trained to predict subgroupings found in METABRIC-(LumA) to the TCGA-

BRCA(LumA) cohort and vice versa. We found that these “transfer” classifiers were 

generally able to recapitulate both their absolute and their relative performances in the 

cohort that had been previously unseen to them. Across the 219 subgrouping tasks com-

mon to both cohorts, AUCs for tasks trained on METABRIC-(LumA) only dropped by 

an average of 0.038 when the models were applied to BRCA(LumA), and by an average of 

0.00897 for models trained on BRCA(LumA) and applied to METABRIC-(LumA), with 

a Spearman correlation of 0.880 between the original and transfer AUCs in the former 

case and a Spearman correlation of 0.851 in the latter case. Furthermore, subgrouping 

classifiers for breast cancer genes such as GATA3 and MAP3K1 which had been found 

to be divergent from the corresponding gene-wide classifiers preserved their divergence 

in the transfer setting (Additional file 10: Figure S9).

�e robustness of our findings was further underlined by obtaining comparable results 

when running the same experiment using TCGA-BRCA(LumA) expression calls pro-

duced by kallisto [65] as input rather than calls produced by RSEM [66] (Additional 

file 11: Figure S10A). Similar results were also obtained when using other combinations 

of the subtypes present in breast cancer instead of solely luminal A in both TCGA-

BRCA and METABRIC (Additional file 11: Figure S10B-E). We thus conclude that the 

advantages of considering subgroupings within genes to model downstream transcrip-

tomic effects are persistent when exposing these models to as yet unseen datasets, and 

that these mutation models generalize well across different breast cancer cohorts and 

expression quantification methods.

Divergent cancer gene subgroupings are present across a variety of cancer types

To further interrogate the presence of divergent alteration profiles across different 

tumor contexts, we repeated our enumeration and classification steps using the four-

teen other cohorts in TCGA [64] with at least two hundred samples as well as the Beat 

AML cohort [67]. �ree of these cohorts (TCGA-CESC(SquamousCarcinoma), TCGA-

HNSC(HPV-), and TCGA-LGG(IDHmut-non-codel)) were formed by identifying 

molecular subtypes with unique transcriptomic profiles using unsupervised learning as 

was done for METABRIC-(LumA) and TCGA-BRCA(LumA). In total, 7097 subgroup-

ing tasks spanning 200 different genes were completed across the 17 cohorts selected 

for training, in addition to 612 gene-wide tasks, 5163 CNA tasks, and 74,110 tasks con-

structed using randomly-chosen sets of samples (see Additional file 2: Tables S1 for a 

full list of tested subgroupings and for all subgrouping task AUCs). �is revealed that 

gene-wide expression signatures can be trained for a number of cancer genes in most 

oncological contexts (Fig. 3). Of the 612 gene-wide tasks, 462 had at least one enumer-

ated point mutant subgrouping for the same cohort and gene, and in 106 cases at least 

one of these subgroupings’ AUC was cv-significantly higher than that of the gene-wide 

task, with 57 of these divergent subgrouping tasks achieving an AUC of at least 0.7.

Divergent subgroupings are a feature of not just breast cancer but of many other 

tumor types as well (Additional file 12: Figure S11). For example, within the context of 

prostate adenocarcinoma (TCGA-PRAD), mutations of FOXA1 that overlap with the 

fork head binding domain are much easier to predict than all FOXA1 point mutations 
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taken together (22/31 FOXA1 mutants; AUC  =  0.953 vs. AUC  =  0.842; cvSig; pDivg : 

0.033). �is is consistent with the importance of such domains in guiding the regulatory 

functions of transcription factors as well as with previous characterizations of the func-

tional divergences present within FOXA1 mutations in prostate cancer cohorts [68–70]. 

In the HPV-subtype of head and neck squamous carcinomas (TCGA-HNSC), NSD1 

was found to have a divergent subgrouping consisting of frameshifts and nonsense 

mutations (37/52 samples; AUC = 0.977 vs. AUC = 0.940; cvSig; pDivg : 0.95). �us we 

can deduce that the fifteen missense mutations of NSD1 present in the cohort have a 

much weaker downstream effect, especially as the same subgrouping with nonsense 

mutations replaced by missense mutations had relatively poor classification perfor-

mance (34/52 samples, AUC = 0.822, pDivg : 0.99). EGFR contains two major hotspots 

(E746-A750del and L858R) in the lung adenocarcinoma cohort (TCGA-LUAD) which 

together accounted for 37 of the samples in the best found subgrouping (48/73 samples, 

AUC = 0.934 vs. AUC = 0.838, cvSig; pDivg : 0.029). In conjunction with the considerably 

lower performance of the best classifier containing only one of the two hotspots (21/73 

samples, AUC = 0.913, pDivg : 0.65) this implies that these two loci have similar or at the 

very least highly complementary impacts on the transcriptome.

In the case of KRAS, although we were unable to find any subgroupings that were 

divergent according to classification performance in neither TCGA-LUAD nor TCGA-

STAD, we did discover that in TCGA-LUAD the subgrouping composed of the G12V 

and G12D substitutions (55/153 KRAS point mutants; AUC = 0.76; pDivg : 0.961) exhib-

ited a divergent coefficient profile from KRAS subgroupings containing the dominant 

G12C hotspot (Additional file 4: Figure S3). �is is concordant with previous work dem-

onstrating G12D mutants require targeted interventions distinct from those directed at 

G12C mutants [27].

Fig. 3 Many cancer genes’ point mutations have identifiable expression signatures. Our experiment 
attempted to predict the point mutations of a total of 200 cancer genes across 15 TCGA tumor cohorts 
as well as METABRIC and Beat AML using transcriptomic profiles. Shown are the AUCs for all 612 of these 
gene-wide tasks, with particularly well-performing classifiers highlighted. Point size corresponds to number 
of point-mutated samples in the given cohort
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Examining the subgrouping task characteristics of genes frequently mutated in mul-

tiple cohorts allowed us to make inferences about the sensitivity of these mutations’ 

transcriptomic effects to the tumor contexts in which they occur. For instance, we 

can produce a well-performing signature for TP53 variants in multiple cancer cohorts 

including melanoma (67 mutated samples in TCGA-SKCM; AUC  =  0.909), bladder 

cancer (200 muts in TCGA-BLCA; AUC = 0.886), and lung adenocarcinoma (264 muts 

in TCGA-LUAD; AUC = 0.885) in addition to the signature found in luminal A breast 

cancer already described above. However, TP53 mutations do not exhibit cv-significant 

divergence in any of these cancers, nor in any of the other ten cohorts used in this study 

in which its subgroupings were enumerated (Additional file 13: Figure S12). In addition 

to supplying more evidence for the homogeneity of the TP53 mutation landscape, this 

also suggests that the effects of TP53 mutations are consistent across different disease 

contexts.

To confirm this, the transfer validation method that was used to compare the perfor-

mance of trained models between our two breast cancer cohorts was extended across all 

of the cohorts we used for training. Transferring trained TP53 classifiers across disease 

contexts revealed that its transcriptomic signature generally performs well even when 

it is applied to a novel tumor context, reflecting not only the robustness of our classi-

fication pipelines but also the ubiquitous nature of the downstream effects associated 

with TP53 point mutations (Additional file 14: Figure S13). On the other hand, PIK3CA 

exhibits divergence in some tumor contexts such as stomach cancer and bladder can-

cer but not in most others, suggesting that recurrent PIK3CA mutations may result in 

unique downstream transcriptional signals depending on the unique cancer context in 

which they developed (Additional file 13: Figure S12). �is conclusion was further sup-

ported by the poor transfer performance of PIK3CA models (Additional file 14: Figure 

S13).

In contrast to this, NFE2L2 is associated with both a robust downstream signature 

and at least some divergence in all three cohorts in which its subgroupings were enu-

merated, with the subgrouping consisting of mutations on the 2nd exon featuring as 

the most divergent in each case (TGCA-BLCA: 20/27 muts, AUC = 0.927, pDivg : 0.265; 

TCGA-LUSC: 67/75 muts, AUC  =  0.897, pDivg : 0.289; TCGA-HNSC(HPV-): 21/31 

muts, AUC = 0.915, pDivg : 0.0176) (Additional file 13: Figure S12). Although this sub-

grouping only achieved cv-significance relative to the gene-wide task in TCGA-BLCA 

and TCGA-LUSC, in TCGA-HNSC(HPV-) it clearly approached cv-significance, with 

nine of the ten cv AUC comparisons showing the subgrouping outperforming the gene-

wide task. Furthermore, its subgrouping models performed well in transfer validation 

and continued to outperform models trained using all of the gene’s point mutations in 

transfer contexts (Additional file 15: Figure S14). �ese subgrouping models are there-

fore especially likely to preserve their performance when applied to novel cohorts or 

patient samples, which is especially important in a variety of clinical settings where they 

would be implemented.

Subgroupings outperform mutation subsets chosen using variant signi�cance metrics

We have already compared the classification performance with our mutation subgroup-

ings against the performance when using all point mutations for the corresponding gene, 
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as well as against the performance when using sets of samples chosen at random from 

both the training cohort as a whole and the set of samples carrying any point mutation 

on the gene. To further validate our approach, we compared the performance of clas-

sifiers tasked with predicting the presence of our mutation subgroupings against those 

predicting subsets of mutations constructed using existing metrics designed to capture 

the impact of mutations on cancer processes. For each gene with enumerated subgroup-

ings in a cohort we thus created a classification task for each possible threshold value of 

the PolyPhen and SIFT scores [71, 72] assigned to its variants that resulted in a unique 

set of at least 20 samples carrying a mutation of the gene satisfying the threshold. �is 

allowed us to evaluate the relative efficacy of the transcriptomic signature trained using 

a subgrouping containing n mutated samples of a gene against that of a signature trained 

using a subgrouping containing the top n mutants according to PolyPhen or SIFT wher-

ever these scores were available.

Out of a total of 416 mutated genes in cohorts for which PolyPhen and SIFT data was 

available and in which any subgroupings were enumerated, 97 had at least one subgroup-

ing cv-significantly divergent relative to the gene-wide task, but only 35 had at least one 

of these threshold-based subgroupings passing the same test of significance, of which 22 

also belonged to the cases with at least one cv-significant subgrouping. In genes such as 

EGFR in TCGA-LUAD and NFE2L2 in TCGA-HNSC(HPV-) our method of discover-

ing subsets of mutations outperformed any possible choice of cutoff of the above met-

rics (Additional file 16: Figure S15). Using PolyPhen and SIFT cutoffs also failed to find 

divergence within genes such as TP53 and PIK3CA where we had not discovered any 

divergent subgroupings (Additional file  16: Figure S15) further suggesting that diver-

gences within the mutation profiles of these genes, if they do exist, are overshadowed by 

a common expression program. Our subgrouping enumeration method can thus outper-

form other approaches for evaluating the potential impact of oncogenic mutations, and 

highlights the importance of incorporating a variety of biological priors when character-

izing the relationships between mutations and their tumorigenic effects.

Subgrouping classi�er output reveals the structure of downstream e�ects within cancer 

genes

Comparing the performances of transcriptomic signatures for different subsets of muta-

tions within cancer genes has allowed us to identify divergences within them. However, 

this analysis does not on its own pinpoint the nature of the differences within these 

genes’ mutations that are responsible for this observed heterogeneity—a subgrouping 

could have a transcriptomic profile that diverges from that of its parent gene for a variety 

of reasons. For instance, it is possible that the mutations of the gene not belonging to 

the subgrouping are functionally silent. Another possibility is the existence of multiple 

transcriptomic programs within the gene that are complementary or orthogonal to one 

another, each of which can be uniquely mapped to a subset of the gene’s mutations. We 

thus investigated the output of the signatures we trained for these subgroupings to bet-

ter understand the mechanisms driving the downstream transcriptomic effects of tumo-

rigenic alterations.

For subgroupings that had been identified as divergent in the cohorts we included in 

our experiment, we examined the mutation scores their expression classifiers returned 
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for the mutations on the same gene not belonging to the subgrouping (Additional file 17: 

Figure S16). �is helped us to characterize the relationships that were responsible for 

the observed divergence between each subgrouping and the remaining mutations on 

the gene in which they were found. For example, we were able to confirm that muta-

tions falling outside of the best found subgroupings of both AKT1 and SF3B1 in META-

BRIC-(LumA) behave like wild-type samples according to our classifiers’ scores, which 

is consistent with the subgroupings partitioning these genes’ mutations into active and 

inactive subsets. Similar behavior was observed especially in cases such as BRAF in 

TCGA-SKCM and TGCA-THCA in which the mutational landscape is composed of a 

dominant hotspot and a collection of other seemingly inactive variants. On the other 

hand, in cases such as TP53 and PIK3CA the mutations not belonging to the best found 

subgrouping were nevertheless consistently mistaken by the classifier as belonging to the 

subgrouping, lending further weight to the hypothesis that these genes’ mutational land-

scapes are relatively homogeneous. �ese results have immediate clinical utility when 

evaluating a variant of unknown significance in a cancer context.

�is approach also helped to explain why synonymous mutations were included in the 

best found subgrouping of NF1 in METABRIC-(LumA). Although one should expect 

that these variants would have downstream effects equivalent to that of NF1 wild-types 

when compared to other types of NF1 point mutations, we found that a classifier trained 

to predict NF1 nonsense and synonymous mutations performed significantly better than 

the NF1 gene-wide classifier (21/48 NF1 point mutants, AUC = 0.782 vs. AUC = 0.660, 

down-sampled confidence = 0.97) as well as the classifier trained to predict NF1 non-

sense and missense mutations (31/48 NF1 point mutants, AUC = 0.614). Because there 

were fewer than 20 samples total bearing NF1 nonsense mutations, no classifier was 

trained on them in isolation, which was also true of synonymous mutations.

Examining the distributions of the scores returned by these classifiers revealed that 

the combined NF1 nonsense and synonymous mutation subgrouping’s classifier was 

not only better able to distinguish between its own mutations and the remaining sam-

ples in the cohort, but it also did a better job of separating other NF1 mutations from 

NF1 wild-types than the gene-wide classifier, and especially NF1 missense mutations 

(Additional files 18: Figure S17A). Furthermore, it successfully predicted the presence 

of synonymous mutations in held out samples. We thus conclude that synonymous NF1 

variants are very likely to have downstream transcriptomic effects aligned with those of 

active NF1 mutations. Although this finding contradicts the intuition that such muta-

tions should not imbue significant downstream impacts, it is less surprising in light of 

prior work demonstrating that these mutations can indeed enact non-trivial effects on 

splicing, transcript folding/stability, translational rates, co-translational folding/stability, 

and degradation [73, 74]. Although NF1 splice mutations are often mistaken for silent 

mutations by sequencing methods [75, 76], evidence that synonymous mutations of the 

NF1 gene are selected in cancers such as T-cell acute lymphoblastic leukemia [77] sig-

nals a need for more research in this area.

An altogether different type of pattern was discovered within GATA3 in breast can-

cer where we found that GATA3 mutations not included in the best found subgroup-

ings tended to have predicted scores between those assigned to samples carrying the 

subgrouping and GATA3 wild-types (Additional file  18: Figure S17B–D). Further 
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examination revealed that GATA3 mutations can be decomposed into disjoint pairs of 

subgroupings corresponding to whether they overlap with the zinc finger domain or 

the X308 splice site hotspot whose predicted scores were orthogonal to one another. 

�is behavior was present in both METABRIC(LumA) and TCGA-BRCA(LumA), thus 

revealing the presence of two independent expression programs within GATA3 that 

are consistent across different breast cancer cohorts (Fig. 4). �is builds upon existing 

research demonstrating that GATA3 mutations can be partitioned into subsets with dif-

ferent functions and clinical outcomes by providing a transcriptomic characterization of 

these groupings [38, 78].

Subgroupings enrich the characterization of drug response in cell lines

Do these divergences in downstream effects lead to divergent responses to pharma-

cological treatments? To answer that question, we tested the performance of our sub-

grouping classifiers in predicting response to drug interventions in cancer cell lines. We 

transferred the classifiers we trained in each of our cohorts to the CCLE cohort [79], 

which contains -omic and drug response data for 990 cell lines. For each classification 

task, we calculated the correlation between the mutation scores predicted for the CCLE 

cohort and drug response as measured by AUC50 for the 265 drugs which had response 

profiles available in at least 100 of the cell lines in the cohort where expression calls had 

also been made. We thus found that many subgroupings which exhibited divergent clas-

sification performance in the training cohort also yielded divergent associations with 

these clinical phenotypes (Additional file 19: Figures S18).

Fig. 4 GATA3 downstream effects can be decomposed into two orthogonal axes. Amongst the divergent 
subgroupings enumerated for GATA3 in our breast cancer cohorts, we found a pair of non-overlapping 
subgroupings that produced mutation scores with no correlation with one another in both METABRIC(LumA) 
and TCGA-BRCA(LumA). Each cohort sample is represented by a point, with samples shaded according to 
whether they carried a mutation in one of the subgroupings, neither, or in both as indicated by the figure 
labels and legend
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For example, we compared the correlations between drug sensitivity and the scores 

produced by the NFE2L2 gene-wide classifier to those of the scores given by NFE2L2’s 

best found subgrouping classifier (missense mutations on the 2nd exon) (Fig. 5). NFE2L2 

encodes NRF2, a major cytoprotective regulator of the antioxidant response to intrin-

sic and extrinsic stressors. While NRF2 activation is protective in diseases of inflamma-

tion, in the context of cancer NRF2 promotes oncogenic signaling, growth, and survival 

[80–82]. While the NFE2L2 gene-wide classifier scored cell lines in a way that correlated 

similarly across the majority of the drugs assessed, the scores assigned by the subgroup-

ing classifier were better able to associate or disassociate samples with vulnerabilities to 

various drug interventions. �e highest positive correlation between a classifier’s scores 

and sensitivity to a drug was the subgrouping classifier’s association with 17-AAG. 

17-AAG is an HSP90 inhibitor and geldanamycin derivative that displays synthetic 

lethality with aberrant NRF2 activity  [83]. Several target genes of NRF2 metabolize 

geldanamycin derivatives into more potent HSP90 inhibitors, which selectively enhances 

toxicity in NRF2-overexpressing cells [83]. Exon 2 includes Neh2 domain that is respon-

sible for binding to KEAP1, a key regulator of NRF2. �is finding provides strong bio-

logical grounding for why a classifier trained to predict missense mutations in exon 2 of 

NFE2L2 might also be able to predict sensitivity to a drug like 17-AAG.

We also looked at drug sensitivity between divergent subgroupings of GATA3 mutations. 

�e scores returned by the best GATA3 subgrouping in METABRIC-(LumA) consisting 

of mutations on the 5th exon and splice site mutations not on any exon consistently had 

stronger correlations with increased sensitivity to a wide range of drugs interrogated in 

CCLE, including tyrosine kinase inhibitors such as Dasatinib and Lapatinib (Fig. 5). Dasat-

inib is a selective inhibitor of SRC-family kinases [84–87]. Zinc finger 2 (ZnFn2) mutations 

occur in the 5th exon of the GATA3 gene, and typically truncate the C-terminus. �ese 

Fig. 5 Using subgroupings improves concordance with clinically relevant phenotypes. We applied our 
trained classifiers to the CCLE cohort and computed the Spearman correlations between the scores returned 
by the classifiers and drug response for 265 compounds with AUC50s measured in at least 100 cell lines 
which also had expression calls available. For NFE2L2 in TCGA-LUSC and GATA3 in METABRIC(LumA) we 
compared these correlations for the gene-wide classifier and the classifier of the best found subgrouping. 
Points correspond to individual drugs, with the area of each point proportional to the number of cell lines 
for which AUC50s were available for the given drug. Correlations were multiplied by −1 , and thus higher 
correlations correspond to stronger association with increased sensitivity of the cell lines to the compound in 
question. Labels have been added for drugs with Spearman rank-order test p values of less than 0.001 for the 
subgrouping correlation but greater than 0.001 for the gene-wide correlation
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mutations decrease canonical GATA3 binding, and are generally characterized as loss of 

function  [78], however it was recently discovered that Znfn2 mutant GATA3 can local-

ize to a novel suite of target genes and exhibit transcriptional reprogramming in favor of 

epithelial to mesenchymal transition (EMT) [38]. SRC and SRC-family kinases are also 

known to regulate EMT in solid tumors [88, 89], thus providing an indirect link that may 

explain observed Dasatinib sensitivity of cells with strong GATA3 Znfn2 signal. �ese find-

ings indicate that transcriptionally divergent subgroupings can help us better characterize 

the impact of mutations on processes that may influence the efficacy of pharmacological 

interventions.

Discussion

Although genomic heterogeneity is an intrinsic property of tumor cohorts [1, 19, 20], our 

limited understanding of the downstream consequences of this heterogeneity remains 

a major obstacle to furthering the efficacy of treatments in precision oncology [7, 9–11]. 

To address this issue, we have introduced a framework for exploring and characterizing 

the diversity of alteration landscapes in genes frequently mutated in several cancers. �is 

approach leverages biological priors about the structure of variants recurrent in cancer 

along with a modern computing cluster’s ability to train and test expression signatures for 

thousands of variant groupings in parallel.

In addition to ascertaining robust gene-wide transcriptomic signatures in many cases, this 

approach allowed us to systematically identify cancer genes containing subsets of mutations 

with functional effects that diverge from the remaining mutations. Considering subgroup-

ings of mutations allowed us to find expression profiles associated with a gene implicated in 

tumorigenesis in many cases where it was otherwise difficult or impossible, and to discern 

which mutations in a gene are particularly likely to have a quantifiable downstream effect. 

�e gains from considering a variety of mutation subgrouping tasks were far greater than 

from using more sophisticated classification algorithms, and often yielded more accurate 

models than using other methods to identify significant variants. �ese results are striking 

in that predicting the presence of a rarer type of mutation should, everything else being 

equal, be more difficult owing to decreased statistical power. Subgrouping signatures also 

exhibited strong performance in tumor cohorts to which they were not exposed during 

training, as well as improved association with drug response in cell lines.

In cohorts such as TCGA-OV our framework struggled to find any well-performing 

signatures as there was a paucity of mutations present in at least twenty samples, with all 

109 enumerated subgroupings representing mutations of TP53. �is reflects the reliance 

of our approach on frequently recurring mutations; given the limited size of the cohorts 

publicly available at this time, our framework is bound to be most effective when applied to 

dominant driver mutations. Nevertheless, these mutations have an outsized role in cancer 

processes, and our approach is still able to shed light on the characteristics of downstream 

effects of these important players in tumorigenesis.

Conclusions

Our findings confirm that genes with divergent mutation profiles are ubiquitous 

in cancer. Furthermore, they demonstrate that no characterization of the down-

stream effects of genes implicated in tumorigenesis is complete without taking these 
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divergences into account. This builds upon previous studies showing that machine 

learning models trained on transcriptomic data can be used to characterize particu-

lar variants implicated in tumorigenesis [13–18] by expanding this methodology 

across a comprehensive catalogue of variant subgroupings within cancer genes.

Our exploration of the subgrouping search space allowed us to construct more 

robust models linking the genome and transcriptome in tumor cohorts, as well as 

to predict the effects of mutations of unknown significance and to characterize the 

relationships between different downstream effect axes extant within genes active in 

cancer processes. The detection of divergent alteration subgroupings has the poten-

tial to improve the specificity of precision treatments, aid in patient stratification, 

and to anticipate otherwise unexpected and undesirable therapeutic outcomes. Fur-

thermore, discovering subgroupings composed of mutations with convergent down-

stream effects may guide efforts to reposition existing pharmaceutical interventions 

to orthogonal scenarios that resemble approved clinical indications. This approach 

thus allows us to construct a more complete compendium of expression signatures 

associated with driver events in cancer, and illustrates that identifying subsets of 

mutations with unique transcriptomic signatures can yield robust and actionable 

biological insights.

Methods

Cohort data preparation

We used a total of 18 publicly available tumor cohorts in this study, which included 15 

individual cohorts from TCGA as well as METABRIC, Beat AML, and CCLE [31, 64, 67, 

79]. �ese cohorts were selected on the basis of the availability of all three of expression, 

variant, and copy number data for the samples they contained (except for Beat AML, for 

which CNA calls were not made), as well as sufficient size (at least 200 samples with all 

three data types collected). Cohorts such as TCGA-COADREAD and TCGA-GBMLGG 

which are agglomerations of other cohorts were omitted.

For TCGA cohorts, Illumina RNAseq RSEM-normalized expression calls and GIS-

TIC2.0 copy number calls were downloaded from the Broad Firehose portal  [90], 

while TCGA variant calls were downloaded from the Synapse portal for the MC3 

pan-cancer analysis pipeline [91, 92]. Expression, copy number, and variant data for 

the METABRIC and CCLE datasets were downloaded from cBioPortal [93–95].

We applied UMAP (version 0.3.10) to project the expression profiles of the sam-

ples in each cohort into a two-dimensional space for easier interrogation of the 

global structures present within the transcriptome  [32]. These projections were 

compared against annotations of known molecular subtypes in cohorts where such 

annotations were available. We created sub-cohorts where UMAP transcriptome 

clusters overlapped with these subtypes (see Additional file  1: Figures  S1). Cases 

such as TCGA-SARC which initially passed the 200-sample threshold but had to be 

divided into sub-cohorts that did not meet the threshold were omitted from further 

analysis. Molecular subtype annotations for TCGA cohorts were provided by the 

Korkut Lab as part of the PCAWG Consortium; for METABRIC these annotations 

were downloaded from cBioPortal.
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De�ning mutation subgroupings

Our mutation subgrouping method is based on organizing the genomic alterations 

present in a cohort according to various properties that mutations can have in com-

mon. �e particular properties used in this study are were based on the fields avail-

able as output through the Ensembl Variant Effect Predictor (VEP v99.2) which was 

used to process the variant calls of each cohort in order to produce uniform mutation 

data across all datasets [96]. �ese properties were:

• Exon �e exon on which the mutation is located. �e value ‘.’ was given to muta-

tions such as splice site deletions which are not assigned to a specific exon.

 e.g. Exon = 5, Exon = 2

• Amino Acid Location �e amino acid or acids affected by the mutation. �e value 

‘.’ was given to mutations for which this property is not applicable, such as intronic 

mutations.

 e.g. Location = 1047, Location = 274

• Amino Acid Substitution �e specific protein substitution that takes place as a 

result of the mutation.

 e.g. H1047R, V600E

• Consequence �e functional consequence of the mutation.

 e.g. missense, stop gain, frameshift

• SMART Domain �e SMART protein domain on which the mutation rests. Can 

also take on the value “no overlapping domain”.

 e.g. SM00233

• Pfam Domain �e same as above but with Pfam protein domains.

 e.g. PF00853

A subgrouping is thus defined by a nested combination of values chosen for one 

or more of these attributes. For example, a single hotspot mutation in PIK3CA can 

be represented by the subgrouping {AAsub = H1047R} . We can define the same sub-

grouping using additional properties: {Exon = 21:AAloc = 1047:AAsub = H1047R} . 

�ese additional properties are redundant in this case, as naturally all H1047R 

substitutions are located at amino acid 1047 and in turn all of the alterations at 

this amino acid are located on the 21st exon of PIK3CA. Nevertheless, we can 

expand this subgrouping to include other PIK3CA mutations which may or may 

not be functionally similar to H1047R. �us we could consider the subgroup-

ing {Exon = 21:AAloc = 1047:AAsub = (H1047R or H1047L)} to test the hypoth-

esis that the particular amino acid that replaces the wild-type at this hotspot 

does not have an impact on downstream effects. Likewise, the subgroupings 
{Exon = 21: (AAloc = 1047:AAsub = H1047R) or (AAloc = 1049:AAsub =

G1049R)}  and 

{Exon = 10:AAloc = 542:AAsub = E542K or Exon = 21:AAloc = 1047:AAsub =

H1047R}  

can be used to compare hotspots at different loci within PIK3CA. We can also 

choose other properties to construct the same subgrouping based on which 

attributes of PIK3CA alterations we believe to be the most important in deter-

mining downstream effects: {Consequence = missense:AAsub = H1047R} , 

{Domain = SM00146:AAsub = H1047R} , and so on.
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Although these hierarchies allow for a fairly extensive search over the possible subsets 

of the mutations of a gene occurring in a cohort of samples, they do not offer a firm 

lower bound for finding the maximally divergent subgrouping. For our purposes, how-

ever, it is sufficient to detect at least one statistically significant divergent partitioning. 

Since we are systematically scanning all frequently altered genes across many cohorts, 

computational cost and statistical loss due to multiple hypothesis testing are limiting 

constraints. We found that our sampling heuristic based on biological priors can still 

elucidate multiple interpretable divergent subsets while pruning the search space down 

to a manageable size.

Enumeration of classi�cation tasks in tumor cohorts

Cancer genes were identified using the OncoKB repository, with only genes included in 

at least one of the “Vogelstein”, “SANGER CGC(05/30/2017)”, “FOUNDATION ONE”, 

and “MSK-IMPACT” lists being included for further analysis  [97]. In each cohort we 

considered the grouping of all point mutations in each such gene (referred to as the 

gene-wide task) and also sought to generate subgroupings of mutations within these 

genes.

We pruned the subgrouping search space by only using the four ordered mutation 

property hierarchies listed below, with the reasoning that a sizeable proportion of bio-

logically relevant subgroupings of mutations could be generated using one of these 

combinations:

• Exon → AA Location → AA Substitution

• Consequence → Exon

• SMART Domain → Consequence

• Pfam Domain → Consequence

To further prune our search space, we only used subgroupings correspond-

ing to a single branch containing at least twenty samples in one of these hierarchies 

as well as subgroupings corresponding to two branches each with at least ten sam-

ples. Branches did not have to terminate at a leaf node of the hierarchy. For example, 

using the combination Consequence → Exon , we could test {PIK3CA:missense} 

as well as {PIK3CA:missense:Exon = 10} , {PIK3CA:missense:Exon = 21} , 

and {PIK3CA:missense:Exon = 21 or PIK3CA: Silent} , but not 

{PIK3CA:missense:Exon = (10or 21)or PIK3CA: synonymous or PIK3CA: stopgain}.

To test the marginal benefit of relaxing this requirement, we also tested three-branch 

subgroupings with at least five samples in each branch and twenty samples in total in the 

case of METABRIC-(LumA). In all cases, subgroupings that contained all of the muta-

tions of a gene in a cohort were discarded as being equivalent to the gene-wide task, 

which occurred in cases where the mutation hierarchy contained no more than two 

branches in total for a particular gene.

Construction of classi�cation tasks

A classification task was created for each of these enumerated subgroupings in a given 

cohort. To obtain a background distribution of predictive performance, we also added 
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classification tasks using sets of samples randomly chosen from the cohort. Ten such 

sets were created for each subgrouping already found, each of which contained the same 

number of samples as the number of samples carrying a mutation in the subgrouping in 

question. Five of these “random” subgroupings for each actual subgrouping chose sam-

ples from the entire cohort, while the other five only chose from the set of samples con-

taining any point mutation in the gene mutated for the subgrouping.

Further classification tasks were added by considering copy number alterations as 

identified using discretized GISTIC 2.0 calls. For each of the non-random subgroupings 

described above, we created two new subgroupings by adding the set of samples carry-

ing deep amplifications ( + 2) in the same gene as well as the set carrying deep deletions 

(− 2). In cases where the given gene did not have at least five samples carrying the CNA 

to be added to the subgrouping, the corresponding subgrouping was excluded from 

further consideration. In genes where there were at least twenty deep amplifications or 

twenty deep deletions, we created a classification task containing just these CNAs of the 

gene.

Classification tasks were also constructed by dynamically discretizing PolyPhen and 

SIFT scores wherever these scores were available for the cohort (i.e. in TCGA cohorts) 

[71, 72]. For each combination of mutated gene and variant significance metric, we 

enumerated all possible thresholds of the metric observed over variants of the gene 

in a cohort that yielded a unique subgrouping with at least twenty samples harboring 

a mutation in the gene satisfying the threshold value (in the positive direction in the 

case of PolyPhen and the negative direction in the case of SIFT). For example, for AKT1 

in TCGA-BRCA(LumA), we found the PolyPhen subgroupings >= 0.006 and >= 0.999 

(and no SIFT subgroupings), while for TP53 in TCGA-STAD we found 29 PolyPhen 

subgroupings ( >= 0.002,>= 0.09,>= 0.275, · · · ,>= 1.0 ) and 12 SIFT subgroupings 

( <= 0.8,<= 0.13,<= 0.11, · · · ,<= 0).

Training and evaluation of classi�ers to identify transcriptomic signatures associated 

with subgroupings

Expression and variant data in each cohort was filtered to only include protein-coding 

genes on non-sex chromosomes prior to classifier training. Genes whose expression was 

missing in any of our cohorts were removed. Remaining expression data was then fil-

tered to exclude gene features in the bottom decile according to average value across the 

cohort before being log-normalized and then scaled using z-scores for each genetic fea-

ture. In each task we further excluded expression features associated with genes on the 

same chromosome as the gene containing the task’s subgrouping.

Each classification task consisted of predicting a vector of binary mutation labels using 

this processed expression matrix for a given cohort. �e label for each sample in a task 

was ‘True‘ if and only if it harbored any mutation within the subgrouping, or if it was 

randomly chosen from the set of cohort samples or the set of gene mutants as applicable 

for random background subgroupings. Predictions were made using the following algo-

rithms implemented in scikit-learn (version 0.21.3), with any parameters not explicitly 

listed above being set to the default value:

• Logistic Ridge Regression
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 sklearn.linear_model.LogisticRegression

• tuning over eight values of C: [10−7, 10−6, 10−5, . . . , 100]

• solver = ‘liblinear’, penalty = ‘l2’, max_iter = 200, class_weight = ‘balanced’

• Support Vector Machine

 sklearn.svm.SVC

• tuning over eight values of C: [10−3, 10−2, 10−1, . . . , 104]

• kernel = ‘rbf ’, gamma = ‘scale’, probability = True, cache_size = 500, class_weight 

= ‘balanced’

• Random Forests

 sklearn.ensemble.RandomForestClassifier

• tuning over eight values of min_samples_leaf  : [1, 2, 3, 4, 6, 8, 10, 15]

• n_estimators = 5000, class_weight = ‘balanced’

• Logistic Ridge Regression (deeper tuning)

 sklearn.linear_model.LogisticRegression

• tuning over C = [10−8.2, 10−7.8, 10−7.4, . . . , 10−4.2]

• solver = ‘liblinear’, penalty = ‘l2’, max_iter = 200, class_weight = ‘balanced’

Forty classifiers were fit for each task corresponding to ten iterations of fourfold cross-

validation. �e samples in each cohort were partitioned into quarters at random ten 

times; each classifier was thus tuned and trained on three such quarters before being 

asked to make predictions on the remaining quarter of samples. �e same forty training 

and testing sub-cohorts were used across all tasks on a given cohort. Task classifiers was 

tuned by training the classifier using each of the values in the classifier’s hyper-parame-

ter tuning grid on four randomly-chosen subsets consisting of 80% of the training sub-

cohort. �e accuracy for each hyper-parameter tuning value was measured by taking the 

worst AUC across its four trained classifiers on the remaining 20% of the samples in the 

training sub-cohort. �e best hyper-parameter value according to this metric was then 

used when training the classifier on the entire training sub-cohort before applying it to 

the entire testing sub-cohort.

Classifier task performance on these testing sub-cohorts was measured using AUC 

as calculated by averaging predicted mutation scores for each cohort sample from all 

ten cross-validation iterations, segregating scores for mutated samples and wild-type 

samples, and then calculating the probability that a randomly-chosen mean score for a 

mutated sample was greater than a randomly-chosen mean score for a wild-type sam-

ple across all possible such sample pairs. Likewise, cv-AUCs were calculated for each 

cross-validation iteration separately by using that iteration’s scores for mutated and 

wild-type cohort samples. Classifier task performance was further measured on each of 

the cohorts other than the one the classifier was trained on by applying each of the forty 

trained classifier iterations to their processed expression data. AUCs for these “transfer” 
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experiments were calculated using the same sample-average method as described in the 

within-cohort case, this time with forty classifier output values for each sample.

For two subgrouping tasks X and Y we used the corresponding cv-AUCs 

{x1, x2, . . . , x10} and {y1, y2, . . . , y10} to create a cv-significance test of whether the per-

formance of one of these tasks was “cv-significantly” better than that of the other. In 

particular, task X was said to have performance cv-significantly higher than that of task 

Y if and only if xi > yi for all ten values of i. DeLong divergence pDivg between gene-

wide task G and subgrouping task S was computed by using the predicted mean scores 

returned by G and S and the mutation labels of S as input for the one-tailed version of 

DeLong’s test for whether the S scores had a significantly better AUC in predicting the 

labels of S than the G scores.

Measuring concordance between subgrouping classi�er output and drug response

Summaries of cell line drug response observed within the CCLE cohort as meas-

ured by AUC50 were extracted from Table  S4B downloaded from the Genomics of 

Drug Sensitivity in Cancer data portal [98]. Subgrouping classifiers trained on TCGA 

and METABRIC cohorts were asked to make predictions for the CCLE cohort in the 

same manner as described for the transfer experiment above. For each combination of 

drug and task, we thus measured a correlation between subgrouping classifier output 

and drug response by calculating the Spearman rho between the AUC50 values and the 

average classifier predictions across the subset of samples for which drug response was 

available.

Abbreviations

AUC : Area under the receiver operating characteristic curve; CNA: Copy number alterations; cv: Cross-validation; cvSig: 
Cross-validated task significance; pDivg: Delong’s test p value for task divergence.
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Additional �le 1: Figure S1. Clustering of cohort transcriptomes reveals profiles consistent with molecular subtypes. 
We applied unsupervised learning to the expression data used for each cohort considered in this study in order to 
remove unwanted variation associated with molecular subtypes from our alteration divergence analysis. In conjunc-
tion with information on known molecular subtypes present in these cohorts, we identified cases such as METABRIC 
and TCGA-LGG in which these subtypes clearly overlapped with distinguishable transcriptomic profiles. This con-
trasted with cohorts such as TCGA-STAD in which subtypes were present but could not be unambiguously linked 
with unique transcriptomic profiles, and those like TCGA-LUSC in which neither molecular subtypes nor expression 
clusters were present. The counts of cohort samples with each subtype are listed in the plot legends. In cohorts 
where molecular subtypes were found to have identifiable transcriptomic profiles we created sub-cohorts that 
only included samples from a particular subtype or set of subtypes. Unsupervised learning on these sub-cohorts’ 
transcriptomes revealed that they did not exhibit the large-scale clusters of samples observed in the original cohorts 
and were thus much more suitable as input for our mutation classification pipelines. We include here these UMAP 
clusterings for the entire METABRIC cohort and the METABRIC-(LumA) cohort and for the remaining cohorts at our 
data portal under Figures/S1 - Cohort UMAP Clustering. The names of these figures have the format 
(expr-source)__(cohort)__UMAP_comps-0_1.svg.

Additional �le 2: Table S1. Inventories of subgrouping task information. For each cohort and sub-cohort in which 
subgroupings were enumerated, we list here information for the subgroupings of point mutations (Base), the sub-
groupings constructed by adding CNAs (Copy), as well as the cohort-specific and gene-specific randomly-chosen 
subgroupings (RandCoh and RandGene). We include here these files for the METABRIC(LumA) cohort: mtype-tbl for 
an inventory of the subgroupings tested, auc-mat for subgrouping perfomances and Delong divergence relative to 
the corresponding gene-wide task, coef-means for averaged logistic ridge regression model coefficients, and trnsf-
aucs for transfer performances when applied to the remaining cohorts, as well as a README describing the format 
of each file. These files for the remaining cohorts can be found at our data portal under Datasets/Output 
Summaries/Ridge.

https://doi.org/10.1186/s12859-021-04147-y
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Additional �le 3: Figures S2. Comparing GATA3 subgrouping model coefficients identifies genes implicated in tran-

scriptional divergences. We compare the model gene coefficients for the gene-wide GATA3 task in METABRIC(LumA) 
to coefficients for selected GATA3 subgroupings, including the best performing subgrouping as measured by AUC 
(frameshift_variant-5-6-splice_acceptor_variant–). Genes whose coefficients are in the top ten or bottom according 
to coefficient value for either model are highlighted in each plot, as are genes in the top twenty-five according to 
absolute difference between the coefficient values of the two task models. Genes discussed in the text are given 
bolded labels where applicable. We include here these files for subgroupings of GATA3 cv-significantly better than 
the GATA3 gene-wide task in METABRIC(LumA) cohort and for similarly significant subgroupings of the remaining 
genes and cohorts at our data portal under Figures/S2 - Subgrouping Coefficient Comparisons. 
The names of these figures have the format (expr-source)__(cohort)__(gene)__(subgrouping)__divergence-scatter_
Ridge.svg.

Additional �le 4: Figure S3. Clustering subgrouping model coefficients reveals structure of mutation heterogene-

ity. We applied hierarchical clustering to examine the average regression model gene coefficients across all forty 
cross-validation folds for each of our subgrouping tasks. Subgroupings with task AUCs of below 0.7 were omitted, 
as were genes that did not have an absolute model coefficient ranked in the top five for any of the remaining tasks. 
Distances between subgroupings were computed by taking the inverse of the Spearman correlation across all 
gene coefficients; these were then used to cluster subgroupings into five groups. To facilitate presentation, here we 
only show these clusterings for subgroupings which did not have another subgrouping in the same cluster with a 
higher AUC and a Jaccard index of at least 0.9 with respect to the subgroupings’ mutated samples. The subgroupings 
with the highest AUC in each cluster are bolded, as is the gene-wide task. An asterisk is placed next to the AUCs of 
subgroupings with cv-significantly better performance than that of the gene-wide task. We include here these heat-
maps for GATA3, TP53, and PIK3CA in METABRIC-(LumA) as well as KRAS in TCGA-LUAD. The corresponding figures for 
the remaining cases can be found at our data portal under Figures/S3 - Gene Coefficient Heatmaps. 
The names of these figures have the format (expr-source)__(cohort)__(gene)_auto-heatmap_Ridge.svg.

Additional �le 5: Figure S4. Subgrouping prediction tasks outperform cohort-specific random background prediction 

tasks. For each of the learning tasks completed in METABRIC(LumA) to predict the presence of an actual muta-
tion or subgrouping of mutations, five additional tasks were performed based on predicting a simulated set of 
point mutations. These sets were constructed by randomly selecting a group of samples from the entire cohort 
of the same size as the group of samples affected by the original “real” mutation in the cohort. In addition to these 
cohort-specific random subgroupings, we also constructed five gene-specific random subgroupings for each task by 
selecting samples as above using only those samples carrying any point mutation of the gene associated with the 
task’s subgrouping. (left) We compare the AUCs of cohort-specific random subgroupings to the AUCs of the original 
subgroupings. (right) We compare the AUC of each original subgrouping to the best AUC across the gene-specific 
random subgroupings of the same number of “mutated” samples. We include here these figures for the METABRIC-
(LumA) and TCGA-BRCA(LumA) cohorts and for the remaining cohorts at our data portal under Figures/
S4 - Cohort Null Background AUC Comparisons. The names of these figures have the format (expr-
source)__(cohort)__cohort-comparison_Ridge.svg.

Additional �le 6: Figure S5. Subgrouping prediction tasks outperform gene-specific random background prediction 

tasks. In addition to our cohort-specific null background tasks, we also constructed gene-specific random tasks for 
each tested subgrouping by randomly selecting five size-matched groups from the set of samples carrying any point 
mutation of the gene in the cohort. The AUCs of these gene-specific random tasks (grey distributions) tended to be 
lower than the AUCs of subgroupings (colorful distributions) in genes that had at least one subgrouping task with 
an AUC of 0.7. Distributions of subgroupings containing at least one subgrouping with performance cv-significantly 
better than that of the gene-wide task (dashed line) are annotated with an asterisk; genes in which at least one 
random subgrouping was cv-significantly better than the best original subgrouping are also annotated with an 
asterisk. We include here these figures for the METABRIC-(LumA) and TCGA-BRCA(LumA) cohorts and for the remain-
ing cohorts at our data portal under Figures/S5 - Gene Null Background AUC Comparisons. The 
names of these figures have the format (expr-source)__(cohort)__gene-comparisons_Ridge.svg.

Additional �le 7: Figure S6. Increasing computational complexity does not change or improve upon classification 

performance. We observed similar subgrouping classification performance in METABRIC(LumA) when we repeated 
our prediction tasks with (a) a support vector machine classifier and (b) a random forest classifier in place of the 
logistic ridge regression classifier that was originally used. (c) Using these more computationally complex classifiers 
did not result in improved classification performance across all non-random classification tasks, nor did tuning using 
a greater number of potential hyper-parameter values.

Additional �le 8: Figure S7.  Applying an expanded search space to subgrouping enumeration and classification in 

METABRIC(LumA). The task enumeration step in METABRIC(LumA) was modified to allow for subgroupings of up 
to three branches each containing at least five samples for a total of at least twenty samples. This resulted in an 
expanded search space of 6483 subgroupings. (a) The AUCs of the optimal subgroupings found for each gene are 
shown in the same style as in Fig. 1. (b) The AUCs of all subgroupings enumerated using the original search criteria 
(left) and the additional subgroupings enumerated using the expanded search criteria (right). Distributions of 
subgroupings containing at least one subgrouping with performance cv-significantly better than that of the gene-
wide task are annotated with an asterisk; genes in which at least one subgrouping enumerated using the expanded 
criteria was cv-significantly better than the best original subgrouping are also annotated with an asterisk.

Additional �le 9: Figure S8. Adding copy number alterations to subgrouping classifiers. We augmented our classifica-
tion tasks by adding deep amplifications and deep deletions to each subgrouping where there were at least five 
of one of these two types of mutations present in the corresponding gene within the cohort. Here we compare 
the classification performance of the best found subgrouping containing CNAs (y-axis) to the gene-wide task 
(x-axis) for each cancer gene with enumerated subgroupings in each cohort. We include here these figures for the 



Page 30 of 34Grzadkowski et al. BMC Bioinformatics          (2021) 22:233 

METABRIC-(LumA) and TCGA-BRCA(LumA) cohorts and for the remaining cohorts at our data portal under Fig-
ures/S8 - CNA Subgrouping AUC Comparisons. The names of these figures have the format (expr-
source)__(cohort)__copy-comparisons_Ridge.svg.

Additional �le 10: Figure S9. Subgrouping classification tasks preserve their efficacy when transferred across breast 

cancer cohorts. We asked the logistic ridge regression models trained to predict mutation subgroupings in 
METABRIC(LumA) to make predictions using the TCGA-BRCA(LumA) expression data (top row), and likewise using 
trained TCGA-BRCA(LumA) models and METABRIC(LumA) expression data (bottom row). The transferred models for 
the best found subgroupings were successful in recapitulating their original performance relative to the correspond-
ing gene-wide tasks (left column) in the transfer setting (right column).

Additional �le 11: Figure S10. Subgrouping behavior replicates across various choices of breast cancer expression data-

sets. We observed subgrouping classification performance similar to that in METABRIC(LumA) and TCGA-BRCA(LumA) 
when we repeated our prediction tasks using (a) kallisto TPM expression calls instead of Firehose RSEMs in TCGA-
BRCA(LumA), (b) both luminal subtypes present in METABRIC, (c) all nonbasal subtypes present in METABRIC, (d) 
both luminal subtypes present in TCGA-BRCA (e) all nonbasal subtypes present in TCGA-BRCA.

Additional �le 12: Figure S11. Divergent subgrouping behavior is present in many cancer cohorts. We repeated the 
subgrouping enumeration and classification experiment to characterize alteration divergence across fourteen TCGA 
cohorts in addition to TCGA-BRCA as well as METABRIC and Beat AML. The AUCs of the best found subgrouping task 
for each gene are compared here to the corresponding gene-wide task in the same style as Fig. 1. We include here 
these figures for the TCGA-BLCA and TCGA-HNSC(HPV-) cohorts and for the remaining cohorts at our data portal 
under Figures/S11 - Subgrouping AUC Comparisons by Cohort. The names of these figures have 
the format (expr-source)__(cohort)__sub-comparisons_Ridge.svg.

Additional �le 13: Figure S12. Comparing cancer gene mutation landscape characteristics across tumor contexts. The 
best subgroupings in each cohort for all genes with at least one classification task with an AUC of at least 0.7 in two 
of the cohorts considered in this study. Each pie chart in a panel represents a cohort in which subgrouping mutation 
classifiers were trained and tested for the gene in question, with pie charts scaled, sliced, and labelled according 
to the same schema as in Fig. 1. We include here these figures for TP53, PIK3CA, and NFE2L2 and for the remain-
ing genes at our data portal under Figures/S12 - Subgrouping AUC Comparisons by Gene. The 
names of these figures have the format (gene)__sub-comparisons_Ridge.svg.

Additional �le 14: Figure S13. Transferring mutation signatures across disease contexts. Models trained to predict the 
presence of mutations and their subgroupings in each cohort were applied to every other cohort in which the corre-
sponding mutation was also present. (top) For each gene matching the criteria used in Additional file 13: Figures S12, 
we measured the performance of the gene-wide classifier according to the training cohort (x-axis) and the cohort 
they were transferred to (y-axis). (bottom) Where applicable, transfer AUC performance of the optimal subgrouping 
according to most frequent cv-significance relative to the gene-wide task across all cohorts in which subgroupings 
were enumerated. We include here these figures for TP53, PIK3CA, and NFE2L2 and for the remaining genes at our 
data portal under Figures/S13 - Gene Transfer AUC Heatmaps. The names of these figures have the 
format (gene)__transfer-aucs_Ridge.svg.

Additional �le 15: Figure S14. Comparing subgrouping divergences across transfer contexts. Transfer performance of 
the optimal subgrouping across all cohort pairs for each gene chosen using the same criteria as in Additional file 12: 
Figures S11. Each pie chart corresponds to an instance of training the gene-wide and best found subgrouping clas-
sifiers in one cohort then asking them to make predictions in another cohort. Pie charts are sized according to the 
proportion of samples carrying any point mutation of the gene in the training cohort, with slices denoting the pro-
portion of mutants belonging to the optimal subgrouping in the training cohort. We include here these figures for 
PIK3CA, NFE2L2, and RB1 and for the remaining genes at our data portal under Figures/S14 - Gene Trans-
fer AUC Comparisons. The names of these figures have the format (gene)__transfer-comparisons_Ridge.svg.

Additional �le 16: Figure S15. Comparing subgroupings against mutation subsets defined by other tools for measuring 

variant significance. Classification tasks were created in which the top n samples according to the value of various 
continuous mutation properties were treated as a discrete subgrouping. Using the same training and testing regime 
as before, we compare the AUCs for these tasks to those for subgrouping tasks created using our original discrete 
approach. This revealed cases such as EGFR in TCGA-LUAD and NFE2L2 in TCGA-HNSC(HPV-) where using subgroup-
ings was clearly superior to using these metric cutoffs as well as cases such as TP53 and PIK3CA in TCGA-BRCA(LumA) 
where neither subgroupings nor cutoffs significantly outperform the gene-wide classifier. Legend labels are anno-
tated with an asterisk for classes of subgroupings in which the best subgrouping was cv-significantly better than the 
original gene-wide task. We include here these figures for the four cases listed above and for the remaining genes 
and cohorts at our data portal under Figures/S15 - Threshold Subgrouping AUC Comparisons. 
The names of these figures have the format (cohort)__(gene)__sub-comparison_Ridge.svg.

Additional �le 17: Figure S16. Subgrouping classifier scores reveal relationships between subgroupings and other 

mutations on the same gene. For genes with at least one subgrouping task with an AUC of at least 0.7 in the cohorts 
used in this study, we considered the distributions of scores assigned by the best found subgrouping’s classifier to 
samples with the subgrouping’s mutations (blue violins), samples with point mutations on the same gene but not 
in the subgrouping (empty grey violins), and samples that are wild-type for point mutations on the gene (filled grey 
violins). We include here these figures for the METABRIC-(LumA) and TCGA-BRCA(LumA) cohorts and for the remain-
ing cohorts at our data portal under Figures/S16 - Classifier Scores by Mutated Status. The 
names of these figures have the format (expr-source)__(cohort)__remainder-scores_Ridge.svg.
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Additional �le 18: Figure S17. Subgrouping classifier scores reveal relationships between mutations within cancer 

genes. We dissected the scores returned by our mutation classifiers for mutations within (a) NF1 in METABRIC(LumA), 
(b) GATA3 in METABRIC(LumA), and (c) GATA3 in TCGA-BRCA(LumA). Within each panel, rows correspond to classifica-
tion tasks, with the top row showing scores for the gene-wide task and the remaining rows showing the best found 
subgroupings for the gene in question. Cohort samples are divided across the panel columns according to the type 
of mutation on the gene they carry, if any. Points and violins with a dark outline denote samples and populations of 
samples respectively that carried mutations the task had to predict; if a population contained mutated samples that 
were in the subgrouping as well as samples that were not in it then the samples in the subgrouping are plotted as 
points within the violin, which contains all samples in the population in every case.

Additional �le 19: Figure S18. Subgroupings divergent in performance are often also divergent with respect to associa-

tion with clinical phenotypes. Correlations between drug response in cell lines and transferred subgrouping classifier 
predictions as shown in Fig. 5 were calculated for each subgrouping cv-significantly better than its gene-wide coun-
terpart across all cohorts. We include here these figures for two subgroupings of GATA3 in METABRIC-(LumA) and 
NFE2L2 TCGA-LUSC respectively not shown in Fig. 5; the figures for the remaining cv-significant subgroupings across 
all cohorts are at our data portal under Figures/S18 - Drug Response Correlation Comparisons. 
The names of these figures have the format (expr-source)__(cohort)__(gene)__sub-comparisons__(subgroup-
ing)_Ridge.svg.
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