
Received November 6, 2019, accepted November 19, 2019, date of publication November 29, 2019,
date of current version December 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2956770

Systematic Literature Review on
Penetration Testing for Mobile
Cloud Computing Applications

AHMAD SALAH AL-AHMAD 1, HASAN KAHTAN 2,
FADHL HUJAINAH 2, AND HAMID A. JALAB 3
1Management Information Systems Department, College of Business Administration, American University of the Middle East, Egaila 15453, Kuwait
2Faculty of Computing, University Malaysia Pahang, Kuantan 26300, Malaysia
3Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia

Corresponding author: Ahmad Salah Al-Ahmad (ahmad.alahmad@aum.edu.kw)

This work was supported in part by the Research Fund of American University of the Middle East in Kuwait, and in part by the Department

of Research and Innovation, University Malaysia Pahang, under Grant RDU190189.

ABSTRACT Mobile cloud computing (MCC) enables mobile devices to exploit seamless cloud services

via offloading, and has numerous advantages and increased security and complexity. Penetration testing of

mobile applications has becomemore complex and expensive due to several parameters, such as the platform,

device heterogeneity, context event types, and offloading. Numerous studies have been published in theMCC

domain, whereas few studies have addressed the common issues and challenges of MCC testing. However,

current studies do not address MCC and penetration testing. Therefore, revisiting MCC and penetration

testing domains is essential to overcoming the inherent complexity and reducing costs. Motivated by the

importance of revisiting these domains, this paper pursues two objectives: to provide a comprehensive

systematic literature review (SLR) of the MCC, security and penetration testing domains and to establish the

requirements for penetration testing of MCC applications. This paper has systematically reviewed previous

penetration testing models and techniques based on the requirements in Kitchenham’s SLR guidelines. The

SLR outcome has indicated the following deficiencies: the offloading parameter is disregarded; studies that

address mobile, cloud, and web vulnerabilities are lacking; and aMCC application penetration testing model

has not been addressed by current studies. In particular, offloading and mobile state management are two

new and vital requirements that have not been addressed to reveal hidden security vulnerabilities, facilitate

mutual trust, and enable developers to build more secure MCC applications. Beneficial review results that

can contribute to future research are presented.

INDEX TERMS Mobile cloud computing, penetration testing, offloading, mobile testing, cloud testing.

I. INTRODUCTION

Mobile cloud computing (MCC) is defined as a computing

model that consists of mobile and cloud computing services

via the Internet [1]. MCC represents the integration and con-

vergence of these two technologies into a single seamless

model. Although this integration has immense advantages, it

has also exacerbated security and complexity, including those

of MCC applications [2]. These applications run portable

devices and harness the power and availability of cloud ser-

vices to complete tasks such as accelerated cloud processing

power and unlimited storage [3]. MCC applications use cloud

The associate editor coordinating the review of this manuscript and

approving it for publication was Eyuphan Bulut .

services by offloading mobile application tasks to the cloud

based on a set of conditions and criteria related to the respec-

tive mobile device states, running tasks and cloud status [4].

Thus, MCC applications are unique and complex, and

testing them is difficult because of the various execution

paths and locations of each process, which represent different

offloading implementations [5]. Each test case for a MCC

application needs to be generated and executed with respect

to the device state to cover all possible process flows [6]–[8].

Therefore, the number of generated test cases is substantially

increased [9].

MCC applications inherit the issues and characteristics

of both cloud computing and mobile computing, [10], [11],

which forces the testers to test cloud computing, mobile

173524 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 7, 2019

https://orcid.org/0000-0002-8435-2964
https://orcid.org/0000-0001-6521-7081
https://orcid.org/0000-0002-8853-5231
https://orcid.org/0000-0002-4823-6851
https://orcid.org/0000-0003-4744-9211


A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

computing, large data, mobile device camera and sensors,

heterogeneity, critical usage and offloading [12]–[14]. For

these reasons, testers need to test for both mobile and cloud

vulnerabilities, i.e., mobile network performance and context

events types.

Penetration testing of MCC applications can help to safely

remove threats, protect resources, data and applications,

improve user trust in MCC applications, reduce cost, and

provide security level proof [15]–[20]. The testing involves

certain phases, which vary depending on the application that

is being tested and the testing model employed by the tester.

Penetration testing is considered to be a mechanism that

provides proactive security protection [21] by highlighting

security issues [22].

Penetration testing is prevalent in all software security

practices [23], [24] and was defined as the art of finding an

open door in 2002 [25]. Penetration testing is a postdeploy-

ment vulnerability assessment task that is conducted as an

isolated test process in a manual and even ad hoc manner

[26]–[29]. Penetration testing is used as a testing methodol-

ogy to overcome security issues and fit with requirements for

mobile, cloud, and web applications [18], [30].

In general, penetration testing examines systems using

multiple attacks and attempts to find and exploit vulnera-

bilities using appropriate malicious input values that help

to discover security bugs in implementation [31], [32]. The

majority of penetration testing models included the phases of

planning, analysis, test case generation, test case selection,

test case execution, and reporting [33].

Penetration testing is an important task that includes many

phases. Penetration testing is essential for all types of appli-

cations, including MCC applications. According to the com-

plexity and uniqueness of MCC applications, the phases of

MCC applications penetration test from planning to reporting

are affected and become more complex [7], [8], [34], [35].

Although a fewworks have attempted to addressMCC test-

ing few studies have researchedMCC application penetration

testing. Similarly, our review of penetration testing models

revealed that these models disregarded offloading and none

of them addressed mobile, cloud, and web vulnerabilities.

Therefore, requirements for a penetration testing model for

MCC applications are needed.

To investigate the strengths and limitations ofMCC testing,

few review studies have been conducted, e.g., [5], [36], [37].

The main concern of related studies was to provide an

overview of software or MCC testing, with the exception

of the studies by Akherfi et al. [4], which focused on pen-

etration testing. Although they are useful, existing studies

lack sufficient consideration for penetration testing within

MCC applications. This research is one of the first studies to

perform a systematic literature review (SLR) on the research

field of penetration testing in MCC apps.

Consistent with previous studies, our SLR is concerned

with exploring the significant impact of penetration testing of

MCC applications and analyzing the requirements required

for testing MCC applications. This SLR study focuses on

identifying current penetration testing models for mobile,

cloud and MCC by presenting a critical investigation of each

model in terms of the process description, advantages and

constraints. A thorough analysis of the listed penetration test-

ing models is executed to analyze their abilities in handling

the complexity and uniqueness of MCC. A discussion of the

challenges of penetration testing within MCC applications

and future trends are discussed to assist practitioners and

researchers in solving the defined challenges.

This paper is structured as follows. Section 2 discusses the

research methodology in the paper. Section 3 demonstrates

the testing requirements of MCC applications. Section 4

presents a discussion of the related work on penetration

testing for mobile, cloud, and MCC. Section 5 presents the

findings of the review. Section 6 concludes the paper.

II. MOTIVATION AND RELATED WORK

Various factors encouraged the authors to perform this SLR.

No other research review has focused on the topic of penetra-

tion testing of MCC applications. Although various review

studies have addressed penetration testing and MCC, none

have focused on the areas of penetration testing of MCC

applications. Penetration testing of MCC applications is a

forthcoming research trend in penetration testing and MCC

domains. This trend motivated this SLR research.

A literature review in any form enables the identification

of gaps and challenges that exist in specific research themes,

such as penetration testing of MMC applications, thus pro-

viding a comprehensive overview of the entire state-of-the-

art in this domain for researchers and practitioners. TABLE 1

presents a summary of related existing review studies with

respect to their focus and findings in comparison to this SLR

research.

Ahmad et al. [36] conducted a systematic mapping study to

review the software cloud testing methods from 2010-2015.

The review reported on existing nonfunctional and functional

cloud testing methods. In addition, the application and usage

of these identified methods were precisely analyzed and

discussed.

Anitha and Srinath [38] presented a review of the software

testing models in the area of cloud computing. Empirical evi-

dence from existing software testing techniques in cloud com-

puting and a specific analysis of these models with respect

to their performance and quality measurements are provided

in this review. Similarly, another review study of software

testing in the cloud computing platform was documented

in [37]. This review provided an explanation of software

testing in cloud computing and a discussion of existing cloud

computing testing techniques.

Complementing the work of Al-Ahmad et al. [5], who

studied mobile testing and MCC testing and provided a

description of mobile testing with respect to its features and

existing models. MCC testing was discussed in terms of

mobile cloud testing issues, and a description was presented

of the importance of the testing process in MCC applications.

Recently, Al Shebli and Beheshti [39] conducted a review

VOLUME 7, 2019 173525



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

TABLE 1. Summary of related studies.

of penetration testing and presented a detailed analysis of

penetration testing in term of its process, available software

and tools for conducting a penetration test, and application

roles in the organization.

As observed in TABLE 1, most related studies were

focused on providing an overview of software orMCC testing

with the exception of Al Shebli and Beheshti [39], who

focused on penetration testing. Although useful, these exist-

ing studies do not sufficiently consider penetration testing

of MCC applications. Thus, this work is the first study to

perform a SLR of the specific research domain of penetration

testing of MCC applications.

173526 VOLUME 7, 2019



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

Complementing existingwork, our SLR aims to investigate

the significant influence of executing penetration testing on a

MCC application and analyzing the requirements for testing

MCC applications. Additionally, this SLR research focuses

on identifying existing penetration testingmodels and analyz-

ing each identified model in terms of its process description,

benefits and limitations. A detailed analysis regarding the

ability of the identified penetration testing models to address

the uniqueness and complexity of MCC applications is con-

ducted and reported in this SLR. Furthermore, a discussion

of the total challenges of penetration testing within MCC

applications and an elaboration of future sets for support-

ing researchers and practitioners in addressing the identified

challenges.

III. RESEARCH METHODOLOGY

In this research, the SLR methodology is selected to guide

the review process [40]. Figure 1 presents the review protocol

of this work, which was developed based on the standard

SLR guidelines of Kitchenham and Charters [40]. The review

protocol consists of three main phases: planning, conduct-

ing, and reporting. Each phase contains a certain number

of stages. The planning phase consists of identifying the

need to conduct this review and formulate research questions.

In the second phase, a review is conducted, and it has a

certain number of stages: search process, study selection

procedure and data extraction and synthesis. The reporting

phase involves a discussion of the results. A discussion of the

implementation of each phase and its associated substages is

distinctly elaborated in the following subsections.

A. PLANNING

The motivation for conducting this review was discussed

in the previous section (motivation and related work), and

previous review studies were analyzed in terms of their focus

and findings. The analysis showed that recent SLRs have not

investigated the area of penetration testing of MCC appli-

cations. This SLR emphasizes this gap by identifying and

analyzing the significance of penetration testing of MCC

applications, requirements for testing MCC applications and

existing penetration tests in terms of their limitations, bene-

fits, process description, and ability to address the uniqueness

and complexity of MCC applications. The research questions

of this SLR were formulated based on the defined objective.

TABLE 2 presents the formulated research questions and the

motivation associated with each research question.

B. CONDUCTING

This phase is executed with the following defined stages:

search process, study selection, and data collection and syn-

thesis. The implementation of these stages is explained in the

following subsections.

1) SEARCH PROCESS STRATEGY

Awell-defined search process has a key role in acquiring sat-

isfactory quality and reliable results [6]. In this research, the

FIGURE 1. Review protocol.

search process is carefully performed to extract and collect all

related existing studies to the specified domain based on two

elements: search strings and resources. The search terms are

formulated in this SLR based on the listed research questions

and standard procedure in [40], [41], which consists of the

following steps.

1) Identifying the key terms of these research questions.

2) Listing the key terms synonyms and spelling

alternatives.

3) Validating the relevant study search terms.

4) Combining the search terms with Boolean OR/AND

operators.

VOLUME 7, 2019 173527



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

TABLE 2. Research questions.

The final list of the formulated search terms are presented

as follows.
• Pen testing OR penetration testing.

• Mobile cloud computing AND (Pen testing OR penetra-

tion testing OR testing).

• (Mobile cloud computing application OR software)

AND (pen testing OR penetration testing OR testing).

• Mobile cloud computing AND (pen testing OR penetra-

tion testing) techniques OR methods OR frameworks,

OR approaches.

• Limitations (AND/OR) challenges (AND/OR) issues

(AND/OR) benefits (AND/OR) advantages of pen test-

ing OR penetration testing techniques OR methods OR

frameworks, OR approaches.

• Uniqueness (AND/OR) complexity of mobile cloud

computing (AND/OR) in penetration testing techniques

OR methods OR frameworks, OR approaches.
In this SLR, the search process is conducted using certain

electronic libraries. These libraries are well-known resources

that include either empirical studies or literature surveys in

the domains of software engineering [42]–[44]. The follow-

ing electronic libraries are selected:

• Google Scholar

• ACM Digital Library

• IEEE Xplore

• ScienceDirect

• SpringerLink

• ISI Web of Science

• Wiley InterScience

• Inspec

• Scopus

2) STUDY SELECTION STRATEGY

The study selection strategy has to be defined at the protocol

to select the most relevant studies in the defined scope [6].

By conducting a defined search process, 500 papers were

collected. To filter these collected studies to identify the most

relevant studies in the defined domain of this research, the

selection process is conducted within two stages: inclusion

and exclusion criteria application and quality assessment.

The inclusion and exclusion criteria are formulated in this

research based on the listed research questions. TABLE 3

presents the defined inclusion and exclusion criteria. The

collected research studies were filtered based on the defined

rules of the inclusion and exclusion criteria. Studies that

focus on the software penetration testing and cloud com-

puting applications or cloud computing testing and studies

that include at least one potential answer to the specified

research questions based on analyzing their titles, keywords

and abstracts were included.

Non-English research studies and studies concerning only

hardware testing or networks and other fields (not related

to the specified domain) were excluded. A duplicate anal-

ysis was conducted to remove duplicate studies that were

retrieved, and a recent copy was included. Thus, 117 studies

were selected as the filtering results of the execution of the

inclusion and exclusion criteria.

Concerning the quality assessment stage, quality checklist

questions were formulated based on the defined research

questions and guidelines of Chandane and Bartere [6]. The

title, abstract and full content of each study of the 117 studies

were precisely studied and evaluated according to the formu-

lated quality checklist questions in TABLE 4. Each question

173528 VOLUME 7, 2019



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

TABLE 3. Quality assessment inclusion and exclusion criteria.

TABLE 4. Quality assessment quality checklist questions.

was scored as follows: yes = 1, moderately = 0.5, and No

= 0; the total quality score of the study is the summation of

the answers for all questions. These questions were answered

individually for each study by each author, and meetings with

all authors were conducted to calculate the total quality score

for each study to reduce the probability of bias during the

selection of related studies.

These studies, which have been selected by some authors

but do not have a consensus, were collected to be reassessed

and to answer the questions again by all authors in team-

work meetings to separately determine whether to include or

exclude these studies. To ensure the dependability of the find-

ings of this review, the study was not selected if it obtained a

total quality score less than 5 (which is less than half of the

total score of 12), and the study was selected if it obtained a

total score greater than 5. As a result, 30 studies were selected

as primary studies for this SLR. TABLE 5 presents the

selected primary studies and their final total quality scores.

TABLE 6 depicts the number of studies obtained during each

distinct phase of our SLR from each repository.

3) DATA COLLECTION AND SYNTHESIS

In this SLR, the software EndNote is employed in the process

of data collection and referencing. The data were extracted

and collected based on the listed defined research questions,

where each selected primary study was critically studied to

obtain any data that can assist in addressing the questions. In

the data synthesis step, the summarized proofs were collected

from the data gathered from the selected primary study to

answer the listed research questions.

IV. RESULTS AND DISCUSSION

A. RQ1: WHAT IS THE SIGNIFICANCE OF PERFORMING

PENETRATION TESTING OF THE mcc APPLICATION?

Penetration testing is a postdeployment vulnerability assess-

ment task that is conducted as an isolated test process in a

manual and even ad hoc fashion [26]–[29]. This testing con-

sists of finding an open door or bugs in the implementation

of computer systems [25] that are installed to compromise

the system security by attempting to attack the system and

exploit its vulnerabilities [67]. The main characteristics of

penetration testing are flexibility and scalability in testing

for security vulnerabilities. Penetration testing is visible,

can automate several of its processes and can operate inde-

pendently of platforms and operating systems. Therefore,

penetration testing is an ideal solution to the complexity,

uniqueness, security, automation, and heterogeneous issues

VOLUME 7, 2019 173529



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

TABLE 5. Quality scores for the results of primary studies.

TABLE 6. Number of studies obtained during all distinct phases of this SLR from all repositories.

observed when conducting security testing of any technology

paradigm [17], [63].

MCC applications that consist of mobile and cloud compo-

nents has increased the importance of conducting penetration

173530 VOLUME 7, 2019



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

testing because the number of users of mobile devices and

mobile applications has substantially increased [68]. There-

fore, enhancing the level of security for mobile devices and

mobile applications by finding the hidden vulnerabilities

using penetration testing is important [16], [58].

Furthermore, on-demand testing, scalable testing, and

security testing are critical in cloud testing because the

attacker can attack applications to gain access to a virtual

machine (VM) or a cloud management system [18]. As pre-

viously discussed, penetration testing can be provided as a

scalable [17], [26] on-demand service by external or internal

penetration testers [36], [69], [70] and is one of the most

common security tests types [23], [24]. Penetration testing of

cloud computing is significant [30].

Disregarding penetration testing of MCC applications can

omit security issues that may affect users, organizations,

cloud providers and their customers. Due to a lack of pen-

etration testing models and necessary tools [71] and the

complexity of penetration testing [72], most organizations

manually conduct penetration testing using external high-

expertise testers [26]. This approach renders penetration test-

ing expensive, time consuming, error prone and invisible in

all SDL stages of application development [73].

B. RQ2: WHAT ARE THE REQUIREMENTS FOR TESTING

MCC APPLICATIONS?

Testing MCC applications is a unique and distinct task [7],

[8], [34], [35] since it uses offloading, which is complex

and unique, and consists of multiple platforms and operating

systems. The tester needs to test mobile and cloud vulnerabil-

ities; mobile network performance will affect the test process

as a factor; and several types of context events exist [7], [8],

[34], [35]. These challenges are the five testing requirements

that dominate and affect all phases of MCC applications

penetration testing from planning to reporting as summarized

in TABLE 7 [7], [8], [34], [35], [74]–[76].

Multiple platforms and operating systems, mobile network

performance, and testing of multiple types of context events

requirements as listed in TABLE 7 are specific for penetration

testing orMCC. These requirements are general requirements

for mobile, cloud, or web testing. However, the complexity

of these requirements and issues increase when conducting

penetration testing of MCC applications as previously dis-

cussed. Offloading and the need to test mobile, web and cloud

vulnerabilities are specific to penetration testing of MCC

applications.

These requirements have emerged because MCC applica-

tions are dynamically augmented tasks between mobile sys-

tems and the cloud using offloading. Thus, mobile and cloud

computing use different platforms; for example, mobile sys-

tems can use an Android system and the cloud can use aWin-

dows server. Therefore, testing these applications requires

that the testers consider these offloading decisions and mul-

tiple platforms when generating, selecting and executing test

cases.

The same rules apply for the types of vulnerabilities that

need to be tested if we are evaluating mobile and cloud imple-

mentations. In addition to mobile and cloud vulnerabilities,

we need to consider web vulnerabilities because they remain

valid in MCC applications [7], [8], [34], [35]. Therefore, test-

ing MCC applications must consider cloud, mobile, and web

vulnerabilities while generating, selecting, and executing test

cases because testers need to check for hidden vulnerabilities

of all types.

The network in mobile events and other types of context

events are additional variables that should be considered

when testingMCC applications [7], [8], [34], [35]. Variations

in the performance of this network may affect the offloading

decision, which can change the flow and the executions path.

Certain factors, such as receiving a call, receiving a SMS,

shortages inmemory, and overheated CPUs, and other actions

that may occur while using the MCC application may change

the execution path by affecting the offloading decision or

firing default event handlers by the OS or application [7], [8],

[34], [35]. Therefore, the surrounding environmental factors

that may affect the network performance or interrupt the use

ofMCC applications need to be integrated when testingMCC

applications to manage and control the applications.

C. RQ3: WHAT ARE MODELS ARE AVAILABLE FOR

PENETRATION TESTING AND HOW CAN WE CLASSIFY

THEM?

This formulated question consists of two facets: the first

facet is related to the identification of existing techniques

that have been proposed with the main focus of performing

penetration testing of MCC applications. The second facets

is the proposal of a new category for the identified models.

Multiple researchers build models to conduct penetration

testing of web and service-oriented applications, such as [17],

[19], [26]. These researchers have used penetration testing

to test web applications, networks, desktop applications, web

services, mobile applications and databases to identify hidden

vulnerabilities that may be employed by attackers to harm

applications, interrupt systems and steal data [19], [30], [49],

[63], [81], [82].

Multiple penetration testing models have been investigated

to determine the basic components of a model that can be

used to conduct penetrating testing of MCC applications.

This paper reviewed these models and classified them in

terms of their components, target vulnerabilities, and fea-

tures. The components used in the classification represents

major module, phases, or steps of the investigated model. The

target vulnerabilities are the type of vulnerabilities that this

model can test. Similarly, features that represent the strengths

of the model can be either identified in the literature or

extracted from the results and logic. These models have been

implemented and evaluated and provide a robust reference

for penetration testing of other technologies. The models are

listed in TABLE 8, and a detailed discussion is also provided.

As shown in TABLE 8 [17], [53], [63], [83], models are

used to conduct penetration testing of networks as they target

VOLUME 7, 2019 173531



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

TABLE 7. Testing requirements of MCC applications and the corresponding test phases that are affected.

network vulnerabilities. While certain models target mobile

applications, such as [49], [64], [84], because these models

target the vulnerabilities of mobile applications. Similarly,

some models have been designed to target web vulnerabili-

ties, such as [15], [26], [28], [51], [61], [85], [86].

Similarly, [62] presents a model built to conduct pene-

tration testing of cloud computing system vulnerabilities,

including the platform and infrastructure, and [87] presents

a model for conducting penetration testing of desktop appli-

cations and targets the most common desktop application

vulnerabilities. These findings show that each technology is

unique, which requires the construction of a specific model

to conduct penetration testing.

Thesemodels are well defined, scalable, flexible, and clear,

which render them usable and will improve their performance

when employed by testers. The phases and steps for these

173532 VOLUME 7, 2019



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

models start with planning and end with reporting the identi-

fied vulnerabilities, although the phases do not always have

the same name but are consistently applied.Within themodel,

all models provide a procedural description to generate the

selected test cases and are executed to check for hidden

vulnerabilities.

Among the previously listed models in TABLE 8, certain

promising models can be extended to test MCC applications.

Themain nominatedmodels are built to test web applications,

i.e., [15], [26], [28], [51], [61], [85], [86]. Web penetration

testing models were nominated because they target applica-

tions instead of services or networks, and web technology,

including the back-end and front-end, can be mapped to

mobile and cloud sites in MCC applications. Other applica-

tion penetration testing models for desktops [87], cloud [62]

and mobile devices [49], [64], [84] are designed to test

applications parts that reside on either a desktop, cloud or

mobile system. Furthermore, web models target web vulner-

abilities, which remain valid in MCC applications [7], [8],

[34], [35]. We discovered that the model proposed in [51] is

the most promising model as it was well defined, scalable

and successfully implemented in [15]. The model in [51]

is well structured with clear steps that be extended to other

technologies, especially in MCC applications.

D. RQ4: WHAT ARE THE PENETRATION TESTING PROCESS

AND THE BENEFITS AND LIMITATIONS OF EACH

IDENTIFIED MODEL, AND WHICH ASPECT CAN BE

ADOPTED FOR TESTING A MCC APPLICATION?

The complexity and uniqueness ofMCC applications in terms

of multiple vulnerabilities domains and offloading must be

addressed during test case generation, selection, and execu-

tion to address the maximum discovered application paths

and identify mobile, cloud and web vulnerabilities with min-

imum time and cost by the penetration testers. By measuring

the ratio of addressing MCC application penetration test-

ing, improvements in the complexity and uniqueness will be

represented by increasing the number of vulnerabilities and

reducing the resources.

For instance, test preparation embodies an understanding

of the application that is being tested [64]; therefore, it must

incorporate the uniqueness and complexity of MCC appli-

cations. Similarly, penetration test case generation generates

invalid, random, or unexpected inputs to a program to test

for unseen vulnerabilities [92]–[94]. Thus, this approach can

be considered a black box testing technique to identify flaws

in software by feeding random input into applications and

monitoring for crashes [92].

According to these definitions, multiple models and tech-

niques are available in the literature and industry to conduct

penetration test case generation, which is an effective means

of increasing the quality and security of software and systems.

The main objective of this process is to identify security-

relevant weaknesses in the implementation that may cause

the system under testing to crash or produce anomalous

behavior [95]. The process seeks to identify vulnerabilities

that can be exploited to break into or crash a system [96].

Although test case generation processes generate test cases

that encompass all application paths and use all attributes

and variable domains, ranges and types, running all generated

test cases is not possible in most cases due to time and cost

limitations [97]. Therefore, finding mechanisms that select

test cases or prioritize the generated test cases is mandatory to

reduce the number of resources that are required while main-

taining high path coverage and fault detection ratios [98].

The test case selection process is a problematic issue, espe-

cially in penetration testing, due to the numerous paths, input

types, input methods, environment factors, and vulnerability

types. Researchers, industry experts, and practitioners have

attempted to construct newmechanisms that enhance the ratio

between the number of selected test cases versus the path

coverage and fault detection ratios [99].

When generating testing cases, the direct implication of

MCC application penetration testing introduces another test-

ing variable, i.e., offloading, which affects the application

execution paths because it exponentially increases the num-

ber of generated test cases [47], [100]–[104]. Therefore, the

test case selection process, especially in MCC application

penetration testing, is essential. This process will select spe-

cific test cases that reduce the required time and resources

while retaining the accepted test cases coverage [77], [105].

The previously discussed requirements of the penetration

testing of MCC are determined from testing requirements

inherited from mobile and cloud platforms and other require-

ments unique to MCC applications [7], [8], [15], [17], [35],

[48], [50], [52], [63], [77], [78]. The 17 requirements include

Offloading, Platform Independency, Automation, Reporting,

Mobile State Management, Cloud Service Use, Mobile Vul-

nerabilities, Web Vulnerabilities, Cloud Vulnerabilities, Dif-

ferent Input Types, SaaS Testing, Scalability, Regression

Testing, Standardization, GUI Use, API Testing and Random

Testing. TABLE 9 shows the 17MCC application penetration

testing requirements compared with the 30 testing models

from 1998 to 2016.

E. RQ5: DO THE PREVIOUS PROPOSED PENETRATION

TESTING MODELS AND TECHNIQUES ADDRESS THE

UNIQUENESS AND COMPLEXITY OF MCC APPLICATIONS?

Based on the previous analysis of the penetration testingmod-

els, two main patterns are observed. First, these models dis-

regard offloading and none of them simultaneously address

mobile, cloud, and web vulnerabilities. Second, the model

components can be categorized into four main phases for

penetration testing, namely, preparation, test case generation,

test case selection, and test case execution. These four phases

are used to conduct penetration testing of MCC or other types

of applications.

Penetration testing of MCC applications helps to effi-

ciently identify critical security assurance issues and appli-

cation vulnerabilities; promotes the safe removal of threats;

protects resources, data and applications; improves user trust

VOLUME 7, 2019 173533



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

TABLE 8. Penetration testing models/architectures analysis.

173534 VOLUME 7, 2019



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

TABLE 8. (Continued.) Penetration testing models/architectures analysis.

with MCC applications; reduces costs; and obtains proof of

the level of security [15]–[20]. Penetration testing can be

conducted by testingmodels to run a systematic approach that

has distinct phases, standards, and a quality control process.

Note that testing models are based on multiple testing

methods. Of particular importance is the penetration testing

method because it enables critical security assurance and vul-

nerability assessment testing for applications, networks, and

web, mobile and cloud computing with minimum resources

[16]–[20]. Furthermore, penetration testing is scalable and

can be automatically executed and run on schedule without

the need to stop the operational system [17], [26].

Due to the lack of models and necessary tools [71] and

the complexity of penetration testing [72], most organizations

manually conduct penetration testing using external high-

expertise testers [26]. This approach renders penetration test-

ing expensive, time consuming, error prone and invisible in

all SDL stages of application development [73].

TABLE 10 illustrates the landscape of software penetration

testing models in the domains of web, mobile, cloud and

MCC as well as the general penetration testing models. This

table consists of 30 application penetration testing models

and frameworks between 1995 and 2016. The results show

that multiple testing models and frameworks are used in gen-

eral penetration testing, mobile penetration testing, or cloud

penetration testing. However, none of these identified models

are based on the domain of MCC application penetration

testing.

All above penetration testing models disregard the unique-

ness and complexity of MCC applications, which is required

to identify MCC vulnerabilities. Thus, organizations that

develop MCC applications either do not conduct penetration

testing for these applications, use internal procedures that are

not publicly published, or utilize expensive outsourced expert

testers to test their applications [26], [106].

F. RQ6: WHAT IMPROVEMENTS ARE RECOMMENDED TO

ADDRESS THE REVEALED LIMITATIONS?

The requirements in this paper were collected and ana-

lyzed to assess current testing models and evaluated as the

basis for constructing a MCC application penetration testing

model. Figure 2 shows the penetration testing requirements

of MCC applications clustered with the respective sources

of the aspect requirements, namely, MCC uniqueness, MCC

complexity, MCC applications, general penetration testing,

mobile computing penetration testing or cloud computing

penetration testing. To mitigate the complexity and unique-

ness of MCC application penetration testing, a testing model

should be employed.

Testing models provide repeatability, automation, flexi-

bility, platform dependency, regression test allowance, gray

test support, easily readable results, cost efficiency, and full

VOLUME 7, 2019 173535



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

TABLE 9. Current application testing models with requirements ∗1 = Offloading; 2 = Platform independency; 3 = Automation; 4 = Reporting; 5 = Mobile
state management; 6 = Cloud service use; 7 = Mobile vulnerabilities; 8 = Web vulnerabilities; 9 = Cloud vulnerabilities; 10 = Different input types;
11 = SaaS testing in a cloud; 12 = Scalability; 13 = Regression testing; 14 = Standardization; 15 = GUI Use; 16 = SOA/API testing; 17 = Random
testing R = References; TR = Testing requirements.

FIGURE 2. MCC application penetration testing source of the requirement.

integration with other system development life cycle (SDLC)

processes (Xiong and Peyton, 2010). Consequently, the pene-

tration testing model will reduce the complexity and unique-

ness of penetration testing for MCC applications, increase

the effectiveness when conducting penetration testing for

MCC applications, and help testers conduct MCC application

penetration testing.

For this reason, a model is needed that addresses offload-

ing, multiple vulnerability domains, platform independence,

automation, reporting, mobile state management, cloud ser-

vice use, different input types, testing SaaS in a cloud, scala-

bility, regression testing, standardization, GUI use, SOA/API

testing, and random testing.

This model should generate, select, execute and report

test cases that use offloading parameters, multiple types of

inputs from mobile devices and networks; target APIs; apply

random testing techniques; and apply general penetration

testing standards. This model should provide scalable and

173536 VOLUME 7, 2019



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

TABLE 10. Domains of current penetration testing models ∗1 = General penetration testing; 2 = Web testing; 3 = Mobile testing; 4 = Cloud testing;
5 = Mobile cloud testing R=Reference; and T=Technology.

automated solutions that use cloud services with GUIs and

can be delivered as a service to target mobile, cloud and web

vulnerabilities in MCC applications.

This approach can be implemented by carefully examin-

ing previous penetration testing models to select and reuse

the appropriate components. New processes that target the

uniqueness of MCC applications are needed. These processes

must follow the penetration standardization and be imple-

mented in a set of tools that provides a scalable penetration

testing service by using cloud capabilities. The penetration

testing model should be generated by incorporating all the

components used in test case generation, selections, and

execution from previous models and then change them to

meet the MCC penetration testing requirements. The existing

testing models should be leveraged also to be used in test

MCC applications by adding new components and mod-

ify old components to meet the MCC penetration testing

requirements.

V. THREATS TO VALIDITY

Completeness, data synthesis, and publication bias represent

the leading challenges of any systematic review [6]. To over-

come the challenge of completeness, we employed a defined

protocol that utilized a meticulous search strategy to sys-

tematically review penetration testing of MCC applications.

In this protocol, 30 studies that were conducted from 2010

to 2018 were reviewed to answer the research questions.

However, ensuring that every relevant study was reviewed

is impossible. Additionally, studies that were published in

a language other than English were not reviewed. Thus,

some possibly relevant studies may have been overlooked.

The challenge represented by data synthesis was satisfied

by the quality assessment discussed in Section 3.1.2, which

explained the process of synthesizing the data in this study.

The quality assessment detected studies that contained infor-

mation that could be used to answer the research questions.

However, effective quality assessment was not guaranteed.

Publication bias occurs when positive results are empha-

sized to the detriment of any negative results [6]. To overcome

any publication bias in this study, the literature that was

reviewed was chosen using an extensive selection process.

The selected studies were subjected to an in-depth quality

assessment to confirm their relevance to the current study.

Consequently, some studies that include technical reports, on-

going and unpublished studies, and non-peer reviewed studies

(known as gray studies) were excluded even if they contained

information that would answer at least one research question.

The steps taken to prevent publication bias in this study also

created one of its limitations because relevant information

may have been excluded by omitting gray studies.

VI. CONCLUSION

MCC has exacerbated the security and complexity of MCC

applications, and consequently, security penetration testing of

these applications has become more complex and expensive.

Penetration testers must identify possible hidden vulnerabil-

ities that encompass mobile devices and network and cloud

domains and include new parameters, such as platform and

device heterogeneity, context event types and offloading. The

addition of these new parameters to the test case generation

exponentially increases the number of generated test cases.

This work critically reviewed the number of papers in

the related areas of MCC, security and penetration testing.

Previous studies have not addressed the problem of pene-

tration testing for MCC applications, and none have pro-

posed a MCC application penetration testing model. We

have proposed a set of penetration testing requirements for

MCC applications that can be used as the basis of such a

model. In particular, offloading and mobile state manage-

ment are two new and vital requirements that have not been

addressed in penetration testing of previous technologies. The

model envisages the discovery of hidden security vulnerabil-

ities, facilitates mutual trust, provides security assurance, and

enables developers to build more secure mobile cloud appli-

cations. This model should be built to target mobile, cloud

and web vulnerabilities in MCC applications using standard-

ized, scalable and automated solutions via a GUI and cloud

services. Furthermore, the model must consider offloading

parameters, multiple input types frommobile devices and net-

works, and target APIs and apply random testing techniques.

REFERENCES

[1] H. Qi and A. Gani, ‘‘Research on mobile cloud computing: Review, trend

and perspectives,’’ in Proc. 2nd Int. Conf. Digit. Inf. Commun. Technol.

Appl. (DICTAP), Bangkok, Thailand, May 2012, pp. 195–202.

[2] M. I. Sahu and U. Pandey, ‘‘Mobile cloud computing: Issues and chal-

lenges,’’ inProc. Int. Conf. Adv. Comput., Commun. Control Netw. (ICAC-

CCN), Oct. 2018, pp. 247–250.

VOLUME 7, 2019 173537



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

[3] C. V. Raja, K. Chitra, and M. Jonafark, ‘‘A survey on mobile cloud

computing,’’ Int. J. Sci. Res. Comput. Sci., Eng. Inf. Technol., to be

published.

[4] K. Akherfi, M. Gerndt, and H. Harroud, ‘‘Mobile cloud computing for

computation offloading: Issues and challenges,’’ Appl. Comput. Infor-

mat., vol. 14, no. 1, pp. 1–16, 2018.

[5] A. S. Al-Ahmad, S. A. Aljunid, and A. S. A. Sani, ‘‘Mobile cloud

computing testing review,’’ in Proc. Int. Conf. Adv. Comput. Sci. Appl.

Technol. (ACSAT), Kuala Lumpur, Malaysia, Dec. 2013, pp. 176–180.

[6] S. H. Chandane and M. M. Bartere, ‘‘New computing paradigm: Soft-

ware testing in cloud, issues, challenges and need of cloud testing in

today’s world,’’ Int. J. Emerg. Res. Manage. Technol., vol. 50, pp. 68–75,

Feb. 2013.

[7] H.Muccini, A. Di Francesco, and P. Esposito, ‘‘Software testing ofmobile

applications: Challenges and future research directions,’’ in Proc. 7th Int.

Workshop Autom. Softw. Test, Zurich, Switzerland, Jun. 2012, pp. 29–35.

[8] B. Kirubakaran and V. Karthikeyani, ‘‘Mobile application testing—

Challenges and solution approach through automation,’’ in Proc. Int.

Conf. Pattern Recognit., Informat. Mobile Eng. (PRIME), Salem, India,

Feb. 2013, pp. 79–84.

[9] A. S. Al-Ahmad andH.Kahtan, ‘‘Fuzz test case generation for penetration

testing in mobile cloud computing applications,’’ inProc. Int. Conf. Intell.

Comput. Optim., 2018, pp. 267–276.

[10] C. Costea, ‘‘Applications and trends in mobile cloud computing,’’

Carpathian J. Electron. Comput. Eng., vol. 5, p. 57, Jan. 2012.

[11] N. Fernando, S. W. Loke, and W. Rahayu, ‘‘Mobile cloud computing:

A survey,’’ Future Generat. Comput. Syst., vol. 29, no. 1, pp. 84–106,

2013.

[12] B.-G. Chun, S. Ihm, P. Maniatis, and M. Naik, ‘‘Clonecloud: Boost-

ing mobile device applications through cloud clone execution,’’ 2010,

arXiv:1009.3088. [Online]. Available: https://arxiv.org/abs/1009.3088

[13] S.-G. Kang, K.-W. Lee, and Y.-S. Kim, ‘‘Preliminary performance testing

of Geo-spatial image parallel processing in the mobile cloud computing

service,’’ Korean J. Remote Sens., vol. 28, no. 4, pp. 467–475, 2012.

[14] H. A. Turner, ‘‘Optimizing, testing, and securing mobile cloud computing

systems for data aggregation and processing,’’ Ph.D. dissertation, Virginia

Tech, Blacksburg, VA, USA, 2015.

[15] B. Stepien, L. Peyton, and P. Xiong, ‘‘Using TTCN-3 as a modeling

language for Web penetration testing,’’ in Proc. IEEE Int. Conf. Ind.

Technol. (ICIT), Athens, Greece, Mar. 2012, pp. 674–681.

[16] T. Paananen, ‘‘Smartphone Cross-Platform Frameworks: A case study,’’

M.S. thesis, Degree Programme Media Eng. School Technol., JAMK

Univ. Appl. Sci., Jyväskylä, Finland, 2011.

[17] B. Xing, L. Gao, J. Zhang, and D. Sun, ‘‘Design and implementation of

an XML-based penetration testing system,’’ in Proc. Int. Symp. Intell.

Inf. Process. Trusted Comput. (IPTC), Huanggang, China, Oct. 2010,

pp. 224–229.

[18] J. Gao, X. Bai, and W.-T. Tsai, ‘‘Cloud testing-issues, challenges, needs

and practice,’’ Softw. Eng., Int. J., vol. 1, pp. 9–23, Sep. 2011.

[19] C. Mainka, J. Somorovsky, and J. Schwenk, ‘‘Penetration testing tool

for Web services security,’’ in Proc. 8th IEEE World Congr. Servicess,

Honolulu, HI, USA, Sep. 2012, pp. 163–170.

[20] K. Karnad and S. Nagenthram, ‘‘Cloud security: Can the cloud be

secured,’’ in Proc. 7th Int. Conf. Internet Technol. Secured Trans.

(ICITST), London, U.K., Dec. 2012, pp. 208–210.

[21] J. N. Goel and B. M. Mehtre, ‘‘Vulnerability assessment penetration

testing as a Cyber defence technology,’’ Procedia Comput. Sci., vol. 57,

pp. 710–715, Jan. 2015.

[22] M. Denis, C. Zena, and T. Hayajneh, ‘‘Penetration testing: Concepts,

attack methods, and defense strategies,’’ in Proc. IEEE Long Island Syst.,

Appl. Technol. Conf. (LISAT), Apr. 2016, pp. 1–6.

[23] B. Arkin, S. Stender, and G. McGraw, ‘‘Software penetration testing,’’

IEEE Secur. Privacy, vol. 3, no. 1, pp. 84–87, Jan. 2005.

[24] G. Chu and A. Lisitsa, ‘‘Penetration testing for Internet of Things and

its automation,’’ in Proc. IEEE 20th Int. Conf. High Perform. Comput.

Commun. IEEE 16th Int. Conf. Smart City IEEE 4th Int. Conf. Data Sci.

Syst. (HPCC/SmartCity/DSS), Jun. 2018, pp. 1479–1484.

[25] D. Geer and J. Harthorne, ‘‘Penetration testing: A duet,’’ in Proc. 18th

Annu. Comput. Secur. Appl. Conf., Las Vegas, NV, USA, Dec. 2002,

pp. 185–195.

[26] P. Xiong and L. Peyton, ‘‘A model-driven penetration test framework for

Web applications,’’ in Proc. 8th Annu. Int. Conf. Privacy, Secur. Trust

(PST), Ottawa, ON, Canada, Aug. 2010, pp. 173–180.

[27] W. Xu, B. Groves, and W. Kwok, ‘‘Penetration testing on cloud—Case

study with owncloud,’’ Global J. Inf. Technol., vol. 5, no. 2, pp. 87–94,

2016.

[28] J. N. Goel, M. H. Asghar, V. Kumar, and S. K. Pandey, ‘‘Ensemble based

approach to increase vulnerability assessment and penetration testing

accuracy,’’ in Proc. Int. Conf. Innov. Challenges Cyber Secur. (ICICCS-

INBUSH), Feb. 2016, pp. 330–335.

[29] J. Zhao, W. Shang, M.Wan, and P. Zeng, ‘‘Penetration testing automation

assessment method based on rule tree,’’ in Proc. IEEE Int. Conf. Cyber

Technol. Automat., Control, Intell. Syst. (CYBER), Shenyang, China,

Jun. 2015, pp. 1829–1833.

[30] R. LaBarge and T. McGuire, ‘‘Cloud penetration testing,’’ Int. J. Cloud

Comput., Services Archit., vol. 2, pp. 43–62, Jan. 2013.

[31] V. B. Livshits and M. S. Lam, ‘‘Finding security vulnerabilities in

Java applications with static analysis,’’ in Proc. USENIX Secur. Symp.,

Jul. 2005, p. 18.

[32] M. Ceccato and R. Scandariato, ‘‘Static analysis and penetration testing

from the perspective of maintenance teams,’’ in Proc. 10th ACM/IEEE

Int. Symp. Empirical Softw. Eng. Meas., Sep. 2016, p. 25.

[33] A. S. Al-Ahmad and H. Kahtan, ‘‘Test case selection for penetration

testing in mobile cloud computing applications: A proposed technique,’’

J. Theor. Appl. Inf. Technol., vol. 96, no. 13, pp. 1–11, Jul. 2018.

[34] T. P. Ping, H. Sharbini, W. B. Lin, V. T. W., and A. A. Julaihi, ‘‘Designing

a mobile application testing model,’’ in Proc. Int. Conf. Comput., Netw.

Digit. Technol. (ICCNDT), Bahrain, Bahrain, Nov. 2012, pp. 255–260.

[35] D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Amatucci, ‘‘Con-

sidering context events in event-based testing of mobile applications,’’ in

Proc. Int. Conf. Softw. Test., Verification Validation Workshops (ICSTW),

Luxembourg, Mar. 2013, pp. 126–133.

[36] A. A.-S. Ahmad, P. Brereton, and P. Andras, ‘‘A systematic mapping

study of empirical studies on software cloud testing methods,’’ in Proc.

IEEE Int. Conf. Softw. Qual., Rel. Secur. Companion (QRS-C), Jul. 2017,

pp. 555–562.

[37] T. Siddiqui and R. Ahmad, ‘‘A review on software testing approaches for

cloud applications,’’ Perspect. Sci., vol. 8, pp. 689–691, Sep. 2016.

[38] D. Anitha and M. V. Srinath, ‘‘A review on software testing framework

in cloud computing,’’ Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 6,

pp. 7553–7562, 2014.

[39] H. M. Z. Al Shebli and B. D. Beheshti, ‘‘A study on penetration testing

process and tools,’’ in Proc. IEEE Long Island Syst., Appl. Technol. Conf.

(LISAT), May 2018, pp. 1–7.

[40] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic

literature reviews in software engineering version 2.3,’’ Engineering,

vol. 45, no. 4, p. 1051, 2007.

[41] D. Budgen and P. Brereton, ‘‘Performing systematic literature reviews

in software engineering,’’ in Proc. 28th Int. Conf. Softw. Eng., Shanghai,

China, May 2006, pp. 1051–1052.

[42] H. Zhang and M. AliBabar, ‘‘On searching relevant studies in software

engineering,’’ in Proc. 14th Int. Conf. Eval. Assessment Softw. Eng.

(EASE). Keele, U.K.: BCS, Apr. 2010.

[43] F. Hujainah, R. B. A. Bakar, B. Al-Haimi, and A. B. Nasser, ‘‘Analyzing

requirement prioritization techniques based on the used aspects,’’ Res. J.

Appl. Sci., vol. 11, no. 6, pp. 327–332, 2016.

[44] F. Hujainah, R. B. A. Bakar, M. A. Abdulgabber, and K. Z. Zamli,

‘‘Software requirements prioritisation: A systematic literature review on

significance, stakeholders, techniques and challenges,’’ IEEE Access,

vol. 6, pp. 71497–71523, 2018.

[45] W. Du and A. P. Mathur, ‘‘Vulnerability testing of software sys-

tem using fault injection,’’ Purdue Univ., West Lafayette, Indiana,

Tech. Rep. COAST TR, 1998, pp. 2–98.

[46] W. Du and A. P. Mathur, ‘‘Testing for software vulnerability using envi-

ronment perturbation,’’ Qual. Rel. Eng. Int., vol. 18, no. 3, pp. 261–272,

May 2002.

[47] R. B. Vaughn, R. Henning, andA. Siraj, ‘‘Information assurancemeasures

and metrics-state of practice and proposed taxonomy,’’ in Proc. 36th

Annu. Hawaii Int. Conf. Syst. Sci., Jan. 2003, p. 10.

[48] S. Singh, J. Lyons, and D. M. Nicol, ‘‘Fast model-based penetration

testing,’’ in Proc. Winter Simulation Conf., Washington, DC, USA,

Dec. 2004, pp. 309–317.

[49] B.-H. Kang, ‘‘About effective penetration testing methodology,’’ J. Secur.

Eng., vol. 5, no. 5, pp. 425–432, 2008.

[50] Z.-F. Liu, B. Liu, and X.-P. Gao, ‘‘SOA basedmobile application software

test framework,’’ in Proc. 8th Int. Conf. Rel., Maintainability Safety

(ICRMS), Chengdu, China, Jul. 2009, pp. 765–769.

173538 VOLUME 7, 2019



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

[51] P. Xiong, B. Stepien, and L. Peyton, ‘‘Model-based penetration test

framework for Web applications using TTCN-3,’’ in E-Technologies,

Innovation Open World. Ottawa, ON, Canada: Springer, 2009,

pp. 141–154.

[52] Z. Liu, X. Gao, and X. Long, ‘‘Adaptive random testing of mobile

application,’’ in Proc. 2nd Int. Conf. Comput. Eng. Technol. (ICCET),

Chengdu, China, vol. 2, Apr. 2010, pp. V2-297–V2-301.

[53] H.-C. Li, P.-H. Liang, J.-M. Yang, and S.-J. Chen, ‘‘Analysis on cloud-

based security vulnerability assessment,’’ in Proc. IEEE Int. Conf. E-Bus.

Eng. (ICEBE), Shanghai, China, Nov. 2010, pp. 490–494.

[54] Z. M. Jiang, ‘‘Automated analysis of load testing results,’’ in Proc. 19th

Int. Symp. Softw. Test. Anal., Trento, Italy, Jul. 2010, pp. 143–146.

[55] T. Vengattaraman, P. Dhavachelvan, and R. Baskaran, ‘‘A model of

cloud based application environment for software testing,’’ 2010, vol. 7,

pp. 257–260, arXiv:1004.1773. [Online]. Available: https://arxiv.org/abs/

1004.1773

[56] L. Yu, W.-T. Tsai, X. Chen, L. Liu, Y. Zhao, and L. Tang, ‘‘Testing as a

service over cloud,’’ in Proc. 5th IEEE Int. Symp. Service Oriented Syst.

Eng. (SOSE), Nanjing, China, Jun. 2010, pp. 181–188.

[57] S. Baride and K. Dutta, ‘‘A cloud based software testing paradigm for

mobile applications,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 36, no. 3,

pp. 1–4, May 2011.

[58] N. Kumar and M. E. Ul Haq, ‘‘Penetration testing of Android-based

smartphones,’’ M.S. thesis, Dept. Comput. Sci. Eng. Göteborgs Univer-

sitetsbibliotek, Gothenburg, Sweden, 2011.

[59] Y. Ridene and F. Barbier, ‘‘A model-driven approach for automating

mobile applications testing,’’ in Proc. 5th Eur. Conf. Softw. Archit., Com-

panion, Essen, Germany, Sep. 2011, p. 9.

[60] W. Jenkins, S. Vilkomir, P. Sharma, and G. Pirocanac, ‘‘Framework for

testing cloud platforms and infrastructures,’’ in Proc. Int. Conf. Cloud

Service Comput. (CSC), Hong Kong, Dec. 2011, pp. 134–140.

[61] T. Wei, J.-F. Yang, J. Xu, and G.-N. Si, ‘‘Attack model based penetration

test for SQL injection vulnerability,’’ in Proc. IEEE 36th Annu. Comput.

Softw. Appl. Conf. Workshops (COMPSACW), Izmir, Turkey, Jul. 2012,

pp. 589–594.

[62] P. Kamongi, S. Kotikela, K. Kavi, M. Gomathisankaran, and A. Singhal,

‘‘VULCAN: Vulnerability assessment framework for cloud computing,’’

in Proc. 7th Int. Conf. Softw. Secur. Rel., Gaithersburg, MD, USA,

Jun. 2013, pp. 218–226.

[63] K. Deptula, ‘‘Automation of cyber penetration testing using the detect,

identify, predict, react intelligence automationmodel,’’M.S. thesis, Naval

Postgraduate School, Monterey, CA, USA, 2013.

[64] F. Stahl and J. Ströher. (Sep. 7, 2013). OWASP and AppSec Security Test-

ing Guidelines for Mobile Apps. [Online]. Available: https://www.owasp.

org/images/0/04/Security_Testing_Guidelines_for_mobile_Apps_-

_Florian_Stahl%2BJohannes_Stroeher.pdf

[65] C. Blackwell, ‘‘Towards a penetration testing framework using attack

patterns,’’ in Cyberpatterns. Springer, 2014, pp. 135–148.

[66] M. I. P. Salas, M. Invert, and E. Martins, ‘‘A black-box approach to detect

vulnerabilities in Web services using penetration testing,’’ IEEE Latin

Amer. Trans., vol. 13, no. 3, pp. 707–712, Mar. 2015.

[67] D. S. Cruzes, M. Felderer, T. D. Oyetoyan, M. Gander, and I. Pekaric,

‘‘How is security testing done in agile teams? A cross-case analysis of

four software teams,’’ inProc. Int. Conf. Agile Softw. Develop., May 2017,

pp. 201–216.

[68] D. He, S. Chan, and M. Guizani, ‘‘Mobile application security: Mal-

ware threats and defenses,’’ IEEE Wireless Commun., vol. 22, no. 1,

pp. 138–144, Feb. 2015.

[69] I. Yaqoob, S. A. Hussain, S. Mamoon, N. Naseer, J. Akram, and

A. Ur Rehman, ‘‘Penetration testing and vulnerability assessment,’’

J. Netw. Commun. Emerg. Technol. (JNCET), vol. 7, no. 8, pp. 10–18,

Aug. 2017. [Online]. Available: https//www.jncet.org

[70] R. Li, D. Abendroth, X. Lin, Y. Guo, H.-W. Baek, E. Eide, R. Ricci, and

J. Van der Merwe, ‘‘Potassium: Penetration testing as a service,’’ in Proc.

6th ACM Symp. Cloud Comput., Aug. 2015, pp. 30–42.

[71] M. Aksu and C. Li. (2012).World Quality Report-Mobile Testing: Behind

the Curve. Accessed: Jul. 1, 2014. [Online]. Available: http://www.uk.

sogeti.com/Documents/2012-13

[72] S. L. Bangare, S. Borse, P. S. Bangare, and S. Nandedkar, ‘‘Auto-

mated Api testing approach,’’ Int. J. Eng. Sci. Technol., vol. 4, no. 2,

pp. 673–676, 2012.

[73] V. B. Mohata, D. M. Dakhane, and R. L. Pardhi, ‘‘Cloud based testing:

Need of testing in cloud platforms,’’ Int. J. Appl. Innov. Eng. Manage,

vol. 2, pp. 369–373, Mar. 2013.

[74] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, ‘‘Calling the

cloud: Enabling mobile phones as interfaces to cloud applications,’’ in

Proc. ACM/IFIP/USENIX 10th Int. Conf. Middleware. Cham, Switzer-

land: Springer, 2009, pp. 83–102.

[75] E. Halash, ‘‘Mobile cloud computing: Case studies,’’ M.S. thesis, Elect.

Comput. Eng., Wayne State Univ., Detroit, Michigan, 2010.

[76] D. Huang and H.Wu,Mobile Cloud Computing: Foundations and Service

Models. Burlington, MA, USA: Morgan Kaufmann, 2017.

[77] Y. S. Pundhir, ‘‘Cloud computing applications and their testing method-

ology,’’ Bookman Int. J. Softw. Eng., vol. 2, no. 1, pp. 1–4, Mar. 2013.

[78] D. Dagar and A. Gupta. (2010). New Paradigm in Conventional

Software Testing: Cloud Testing. Accessed: Feb. 2, 2015. [Online].

Available: http://www.annemary.org/journal/IJITT/New%20paradigm%

20in%20conventional%20software%20testing.docx

[79] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su,

‘‘Dynamic test input generation forWeb applications,’’ inProc. Int. Symp.

Softw. Test. Anal., Seattle, WA, USA, Jul. 2008, pp. 249–260.

[80] Y. Singh, A. Kaur, B. Suri, and S. Singhal, ‘‘Systematic literature review

on regression test prioritization techniques,’’ Informatica, vol. 36, no. 4,

pp. 379–408, 2012.

[81] W. G. J. Halfond, S. R. Choudhary, and A. Orso, ‘‘Penetration testing

with improved input vector identification,’’ in Proc. Int. Conf. Softw. Test.

Verification Validation, Denver, CO, USA, Apr. 2009, pp. 346–355.

[82] G. Jones, ‘‘Penetrating the cloud,’’ Netw. Secur., vol. 2013, no. 2, pp. 5–7,

Feb. 2013.

[83] C. T. Wai. (2002). Conducting a Penetration Test on an Organization.

Accessed: Dec. 14, 2014. [Online]. Available: http://www.sans.org/

reading-room/whitepapers/auditing/conducting-penetration-test-

organization-67

[84] G. Weidman. (2012). Introducing the Smartphone Penetration Testing

Framework. Accessed: Sep. 1, 2014. [Online]. Available: https://media.

blackhat.com/ad-12/Weidman/bh-ad-12-smartphone-penetration-

Weidman-WP.pdf

[85] N. F. Awang and A. A. Manaf, ‘‘Detecting vulnerabilities in Web appli-

cations using automated black box and manual penetration testing,’’

in Advances in Security of Information and Communication Networks.

Cairo, Egypt: Springer, 2013, pp. 230–239.

[86] M. I. P. Salas and E. Martins, ‘‘Security testing methodology for vulner-

abilities detection of XSS in Web services and WS-security,’’ Electron.

Notes Theor. Comput. Sci., vol. 302, pp. 133–154, Feb. 2014.

[87] OISSGroup. (2006). Information Systems Security Assessment Frame-

work. Accessed : Apr. 12, 2014. [Online]. Available: http://www.oissg.

org/issaf.html

[88] K. Kumar and S. Rao, ‘‘A latest approach to cyber security analysis using

vulnerability assessment and penetration testing,’’ Int. J. Emerg. Res.

Manage. Technol., vol. 3, no. 4, p. 21, 2014.

[89] S. Shah, ‘‘Vulnerability assessment and penetration testing (VAPT) tech-

niques for Cyber defence,’’ presented at the Nat. Conf. Adv. Comput.,

Netw. Secur. (IET-NCACNS), Nanded, India, 2013.

[90] P. Ami and A. Hasan, ‘‘Seven phrase penetration testing model,’’ Int. J.

Comput. Appl., vol. 59, no. 5, pp. 16–20, 2012.

[91] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh, ‘‘Technical guide

to information security testing and assessment,’’ NIST Special Publica-

tion, vol. 800, no. 115, pp. 2–25, Sep. 2008.

[92] M. de Graaf, ‘‘Intelligent fuzzing ofWeb applications,’’ M.S. thesis, Soft-

ware Eng., Univ. Amsterdam Universiteit van Amsterdam, Amsterdam,

The Netherlands, 2009.

[93] I. Färnlycke, ‘‘An approach to automating mobile application testing on

Symbian Smartphones: Functional testing through log file analysis of test

cases developed from use cases,’’M.S. thesis, Dept. Commun. Syst., KTH

Royal Inst. Technol., Stockholm, Sweden, 2013.

[94] M. Karami,M. Elsabagh, P. Najafiborazjani, and A. Stavrou, ‘‘Behavioral

analysis of Android applications using automated instrumentation,’’ in

Proc. IEEE 7th Int. Conf. Softw. Secur. Rel. Companion, Gaithersburg,

MD, USA, Jun. 2013, pp. 182–187.

[95] M. Schneider, J. Großmann, I. Schieferdecker, andA. Pietschker, ‘‘Online

model-based behavioral fuzzing,’’ in Proc. IEEE 6th Int. Conf. Softw.

Test., Verification Validation Workshops (ICSTW), Luxembourg, Europe,

Mar. 2013, pp. 469–475.

[96] M. Schneider, J. Großmann, N. Tcholtchev, I. Schieferdecker, and

A. Pietschker, Behavioral Fuzzing Operators for UML Sequence Dia-

grams. Berlin, Germany: Springer, 2013.

VOLUME 7, 2019 173539



A. S. Al-Ahmad et al.: SLR on Penetration Testing for MCC Applications

[97] A. Lawanna, ‘‘A model for test case selection in the software-

development life cycle,’’ Int. J. Comput., Inf. Sci. Eng., vol. 7, no. 4, p. 5,

2013.

[98] M. Raengkla and T. Suwannasart, ‘‘A test case selection from using

use case description changes,’’ in Proc. Int. Multi Conf. Eng. Comput.

Scientists, Hong Kong, 2013, pp. 13–15.

[99] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, ‘‘An enhanced test case

selection approach for model-based testing: An industrial case study,’’ in

Proc. 18th ACM SIGSOFT Int. Symp. Found. Softw. Eng., Santa Fe, NM,

USA, Nov. 2010, pp. 267–276.

[100] B. R. Chang, H. F. Tsai, Z.-Y. Lin, and C.-M. Chen, ‘‘Access security

on cloud computing implemented in Hadoop system,’’ in Proc. 5th Int.

Conf. Genetic Evol. Comput. (ICGEC), Kitakyushu, Japan, Sep. 2011,

pp. 77–80.

[101] G. de los Reyes, S. Macwan, D. Chawla, and C. Serban, ‘‘Securing the

mobile enterprise with network-based security and cloud computing,’’ in

Proc. IEEE Sarnoff Symp., Newark, NJ, USA, May 2012, pp. 1–5.

[102] T. Kim, Y. Choi, S. Han, J. Y. Chung, J. Hyun, J. Li, and A. W.-K. Hong,

‘‘Monitoring and detecting abnormal behavior in mobile cloud infras-

tructure,’’ in Proc. IEEE Netw. Oper. Manage. Symp. (NOMS), Maui, HI,

USA, Apr. 2012, pp. 1303–1310.

[103] L. Q. Sumter, ‘‘Cloud computing: Security risk,’’ in Proc. 48th Annu.

Southeast Regional Conf., Oxford, MS, USA, 2010, p. 112.

[104] Z. Zhou and D. Huang, ‘‘Efficient and secure data storage operations for

mobile cloud computing,’’ in Proc. 8th Int. Conf. Netw. Service Manage.,

Las Vigas, NV, USA, Oct. 2012, pp. 37–45.

[105] S. Bahl and M. M. Chaturvedi, ‘‘Literature review of mobile applications

testing on cloud from information security perspective,’’ Int. J. Comput.

Appl., vol. 79, no. 14, pp. 15–23, Jan. 2013.

[106] O. Starov, ‘‘Cloud platform for research crowdsourcing in mobile test-

ing,’’ M.S. thesis, Softw. Eng., East Carolina Univ., Greenville, NC, USA,

2013.

AHMAD SALAH AL-AHMAD received the B.Sc.

and M.Sc. degrees in computer information tech-

nology from Yarmouk University, Jordan, and

the Ph.D. degree in information technology and

quantitative sciences from Universiti Teknologi

MARA, Malaysia. He is currently an Assis-

tant Professor with the American University of

the Middle East, Kuwait. His research interests

include data security, mobile technology, and

cloud computing applications.

HASAN KAHTAN received the B.Sc. degree from

the University of Baghdad and the M.Sc. and

Ph.D. degrees in computer science from Univer-

siti Teknologi MARA, Malaysia, in software engi-

neering and software security. He is currently

working as a Senior Lecturer with the Faculty

of Computing, Universiti Malaysia Pahang. His

research interests include software engineering,

software security and dependability attributes, and

machine learning.

FADHL HUJAINAH received the B.Sc. degree

(Hons.) in computer science and software engi-

neering and the M.Sc. degree (Hons.) in infor-

mation technology from Universiti Teknologi

Malaysia, Johor Bahru, Malaysia, in 2012 and

2013, respectively, and the Ph.D. degree in

software engineering from University Malaysia

Pahang, Kuantan, Malaysia, in 2019. He is cur-

rently a Senior Lecturer with the Faculty of Com-

puting, University Malaysia Pahang. His research

interests include software engineering with particular interest in software

development, requirements prioritization, stakeholder analysis, and decision

making.

HAMID A. JALAB received the B.S. degree in

electrical engineering from the University of Tech-

nology, Iraq, and the M.Sc. and Ph.D. degrees in

computer systems fromOdessa National Polytech-

nic University. He is currently an Associate Pro-

fessor with the Faculty of Computer Science and

Information Technology, University of Malaya,

Malaysia. He has authored more than 100 indexed

articles and ten national research projects. His

research interests include digital image processing

and computer vision.

173540 VOLUME 7, 2019


