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Abstract

Genome-wide association studies (GWAS) have identified many noncoding variants associated

with common diseases and traits. We show that these variants are concentrated in regulatory DNA

marked by DNase I hypersensitive sites (DHSs). 88% of such DHSs are active during fetal

development, and are enriched for gestational exposure-related phenotypes. We identify distant
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gene targets for hundreds of DHSs that may explain phenotype associations. Disease-associated

variants systematically perturb transcription factor recognition sequences, frequently alter allelic

chromatin states, and form regulatory networks. We also demonstrate tissue-selective enrichment

of more weakly disease-associated variants within DHSs, and the de novo identification of

pathogenic cell types for Crohn’s disease, multiple sclerosis, and an electrocardiogram trait,

without prior knowledge of physiological mechanisms. Our results suggest pervasive involvement

of regulatory DNA variation in common human disease, and provide pathogenic insights into

diverse disorders.

Disease- and trait-associated genetic variants are rapidly being identified with genome-wide

association studies (GWAS) and related strategies (1). To date, hundreds of GWAS have

been conducted, spanning diverse diseases and quantitative phenotypes (2) (fig. S1A).

However, the majority (~93%) of disease- and trait-associated variants emerging from these

studies lie within noncoding sequence (fig. SIB), complicating their functional evaluation.

Several lines of evidence suggest involvement of a proportion of such variants in

transcriptional regulatory mechanisms, including modulation of promoter and enhancer

elements (3-6), and enrichment within expression quantitative trait loci (eQTL) (3, 7, 8).

Human regulatory DNA encompasses a variety of cis-regulatory elements within which the

cooperative binding of transcription factors creates focal alterations in chromatin structure.

DNase I hypersensitive sites (DHSs) are sensitive and precise markers of this actuated

regulatory DNA, and DNase I mapping has been instrumental in the discovery and census of

human cis-regulatory elements (9). We performed DNase I mapping genome-wide (10) in

349 cell and tissue samples including 85 cell types studied under the ENCODE Project (10)

and 264 samples studied under the Roadmap Epigenomics Program (11). These encompass

several classes of cell types including cultured primary cells with limited proliferative

potential (n=55); cultured immortalized (n=6), malignancy-derived (n=18) or pluripotent

(n=2) cell lines; and primary hematopoietic cells (n=4) as well as purified differentiated

hematopoietic cells (n=11), and a variety of multipotent progenitor and pluripotent cells

(n=19). We also surveyed regulatory DNA by generating DHS maps from 233 diverse fetal

tissue samples across post-conception days ~60-160 (late-first to late-second trimester of

gestation). We used a uniform processing algorithm to identify DHSs and the surrounding

boundaries of DNase I accessibility (i.e., the nucleosome-free region harboring regulatory

factors) (12). We defined an average of 198,180 DHSs per cell type (range 89,526-369,920;

table SI) spanning on average ~2.1% of the genome. In total, we identified 3,899,693

distinct DHS positions along the genome (collectively spanning 42.2%), each of which was

detected in one or more cell/tissue types (median= 5).

Disease- and trait-associated variants are concentrated in regulatory DNA

We examined the distribution of 5,654 noncoding genome-wide significant associations

(5,134 unique SNPs; fig. SI, table S2) for 207 diseases and 447 quantitative traits (2) with

the deep genome-scale maps of regulatory DNA marked by DHSs. This revealed a

collective 40% enrichment of GWAS SNPs in DHSs (fig. SIC, P< 10-55, binomial,

compared to the distribution of HapMap SNPs). Fully 76.6% of all noncoding GWAS SNPs

either lie within a DHS (57.1%, 2,931 SNPs) or are in complete linkage disequilibrium (LD)

with SNPs in a nearby DHS (19.5%, 999 SNPs) (Fig. 1A) (12). To confirm this enrichment,

we sampled variants from the 1000 Genomes Project (13) with the same genomic feature

localization (intronic vs. intergenic), distance from the nearest transcriptional start site, and

allele frequency in individuals of European ancestry. We confirmed significant enrichment

both for SNPs within DHSs (P < 10-59, simulation) and also including variants in complete

LD (r2=1) with SNPs in DHSs (P<10-37, simulation) (fig. S2).
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In total, 47.5% of GWAS SNPs fall within gene bodies (fig. SIB); however, only 10.9% of

intronic GWAS SNPs within DHSs are in strong LD (r2≥0.8) with a coding SNP, indicating

that the vast majority of noncoding genie variants are not simply tagging coding sequence.

Analogously, only 16.3% of GWAS variants within coding sequences are in strong LD with

variants in DHSs. We noted that SNPs on widely used genotyping arrays (e.g., Affymetrix)

were modestly enriched within DHSs (fig. S2), possibly due to selection of SNPs with

robust experimental performance in genotyping assays. However, we found no evidence for

sequence composition bias (table S3).

To further examine the enrichment of GWAS SNPs in regulatory DNA, we systematically

classified all noncoding GWAS SNPs by the quality of their experimental replication. This

disclosed 2,436 unreplicated SNPs; 2,374 ‘internally-replicated’ SNPs (confirmed in a

second population in the initial publication); and 324 ‘externally-replicated’ SNPs

(confirmed in an independent study) (table S2) (12). We observed a monotonic increase in

the proportion of disease/trait variants localizing in DHSs with increasing quality of GWAS

SNP experimental replication (Fig. 1B), as well as with increasing strength of association

and study sample size (fig. S3). For externally replicated noncoding SNPs, 69.8% lie within

a DHS (n=226, P < 10-14, simulation, fig. S2). To exclude the influence of population

stratification, we compared the fixation index in African and European populations between

GWAS SNPs in DHSs and matched SNPs not in DHSs and found them to be nearly

identical (FST=0.0843 vs. 0.0847, respectively) (12). The monotonic relationship between

evidence for association and SNP concentration in DHSs strongly suggests that many

variants are functional and that unreplicated or weaker associations may obscure the true

degree of enrichment in DHSs.

GWAS variants localize in cell- and developmental stage-selective

regulatory DNA

We observed selective localization within physiologically or pathogenically-relevant

specific cell or tissue types, including affected tissues or known or posited effector cell types

(Fig. 1C). For a given disorder, cell-selective localization within physiologically or

pathogenically-relevant cell types was repeatedly observed for multiple independently-

associated SNPs distributed widely around the genome (fig. S4). These results suggest a

tissue-specific regulatory role for many common variants, as well as the potential for

comprehensive regulatory DNA maps to illuminate associations within disease-relevant cell

types.

Many common disorders have been linked with early gestational exposures or

environmental insults (14). Because of the known role of the chromatin accessibility

landscape in mediating responses to cellular exposures such as hormones (15), we examined

if DHSs harboring GWAS variants were active during fetal developmental stages. Of 2,931

noncoding disease- and trait-associated SNPs within DHSs globally, 88.1% (2,583) lie

within DHSs active in fetal cells and tissues. 57.8% of DHSs containing disease-associated

variation are first detected in fetal cells and tissues and persist in adult cells (‘fetal origin’

DHSs), while 30.3% are fetal stage-specific DHSs (Fig. 1D). GWAS variants in adult stage-

specific DHSs localize chiefly in mature hematopoietic cells, connective tissue, endothelial

cells, and malignant cells (fig. S6).

We next analyzed the enrichment or depletion of replicated disease-specific GWAS variants

in fetal stage DHSs relative to the proportion of total GWAS SNPs in these DHSs. We found

the greatest enrichment in phenotypes for which gestational exposures or growth trajectory

have been shown to play major roles, including menarche, cardiovascular disease, and body

mass index (Fig. 1E) (14, 16). By contrast, we observed relative depletion in fetal DHSs of
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aging-related diseases, cancer, and inflammatory disorders with presumed (postnatal)

environmental triggers. These findings suggest a recurring connection between an exposure-

responsive gestational chromatin landscape, regulatory genotype, and risk for specific

classes of adult diseases and traits.

DHSs harboring GWAS variants control distant phenotype-relevant genes

Enhancers may lie at great distances from the gene(s) they control (17) and function through

long-range regulatory interactions (4, 18), complicating the identification of target genes of

regulatory GWAS variants. Most DHSs display quantitative, cell-selective DNase I

hypersensitivity patterns which may be systematically correlated with DNase I sensitivity

patterns at cis-linked promoters. DHSs that are strongly correlated (r > 0.7) with specific

promoters function as enhancers that physically interact with their target promoter as

detected by chromosome conformation capture methods including 5C and ChlA-PET (10).

To systematically identify the genie targets of DHSs harboring GWAS variants and thereby

gain insights into disease mechanisms, we applied the approach described in (10) to the

much broader range of cell and tissue types in the present study (12), and intersected the

result sets with GWAS data. This analysis revealed 419 DHSs harboring GWAS variants

that were strongly correlated (r > 0.7) with the promoter of a specific target gene within

±500 kb of the DHS (table S6, table S7). Among these are numerous examples of target

genes that plausibly explain the disease or trait association (Table 1, fig. S7). For example, a

SNP (rs385893) associated with platelet count (19) lies in a DHS tightly correlated (r =

0.97) and physically interacting with the 222 kb distant promoter of JAK2, a cytokine-

activated signal transducer linked with platelet coagulation and myeloprofilerative disorders

(Fig. 2A). Fully 40.8% of correlated DHS-gene pairs span >250 kb (Fig. 2B), and 79%

represent pairings with distant promoters vs. those of the nearest gene (table S6, table S7).

Notably, these interactions typically extend beyond the range of LD (mean r2=0.06; table

S6).

GWAS variants in DHSs frequently alter allelic chromatin state

Next, we examined how GWAS variants in DHSs were distributed with respect to

transcription factor recognition sequences, defined using a scan for known motif models at a

stringency of P < 10-4 (12). Of GWAS SNPs in DHSs, 93.2% (2,874) overlap a transcription

factor recognition sequence. We partitioned GWAS variants into 10 disease/trait classes, and

then determined the frequency of GWAS variants associated with a particular disease/trait

class that localized within sites for transcription factors independently partitioned into the

same classes based on gene ontology annotations (fig. S8) (12). This analysis revealed that

common variants associated with specific diseases or trait classes were systematically

enriched in the recognition sequences of transcription factors governing physiological

processes relevant to the same classes.

Functional variants that alter transcription factor recognition sequences frequently affect

local chromatin structure. At heterozygous SNPs altering transcription factor recognition

sequences, altered nuclease accessibility of the chromatin template manifests as an

imbalance in the fraction of reads obtained from each allele (20, 21). As the concentration of

sequence reads and highly overlapping read coverage results in an effective re-sequencing of

DHSs, we were able both to detect cell types heterozygous for common SNPs and to

quantify the relative proportions of reads from each allele across all cell types (12). This

imbalance is indicative of the functional effect of a particular allele on local chromatin state.

We detected 584 heterozygous GWAS SNPs with sufficient sequencing coverage, of which

120 showed significant allelic imbalance in chromatin state (at FDR 5%). We identified sites

where regulatory variants were associated with allelic chromatin states, with the predicted
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higher-affinity allele exhibiting higher accessibility (Fig. 2C). In nearly 50% of cases, the

magnitude of imbalance was >2:1 (fig. S9). The GWAS SNPs were the sole local sequence

difference between haplotypes, indicating that disease-associated variants are responsible for

modulating local chromatin accessibility. Further, at sites with very high sequencing depth

(>200x), 38.7% (53/137) show significant allelic imbalance (FDR < 5%). As sensitivity to

detect allelic imbalance is governed by sequencing depth, this suggests that nearly 40% of

GWAS variants in similarly-sequenced DHSs would be expected to show allelic imbalance.

Disease-associated variants cluster in transcriptional regulatory pathways

Transcriptional control of glucose homeostasis and beta cell genesis and function is

mediated by a closely-knit transcriptional regulatory pathway defined by specific

transcription factors. The Mendelian phenotypes of maturity-onset diabetes of the young

(MODY) are caused by separate lesions disrupting the coding sequences of each of these

transcription factors (22). Interestingly, we observed clustering of common noncoding

variants associated with abnormal glucose homeostasis, insulin and glycohemoglobin levels,

and diabetic complications within recognition sites for the same six transcription factors (P <

0.029, binomial; 48% enrichment over random SNPs; Fig. 3A). This suggests that

noncoding variants that predispose to dysregulation of glucose homeostasis perturb

peripheral nodes of the same regulatory network responsible for Mendelian forms of Type 2

diabetes.

Using known interacting sets of transcription factors, we identified related disease-

associated variants in the recognition sequences of a central target factor and its interacting

partners (Figs. 3B, S11, S12) for factors involved in autoimmune disease, cancer and

neurological development. IRF9 is a transcription factor associated with type I interferon

induction (23). Of 26 transcription factors in the IRF9-centered interaction network, 15

represent transcription factors with recognition sequences in multiple distinct DHSs that

contain GWAS variants associated with a wide variety of autoimmune disorders (P <

1.6×10-13, binomial; 2.8-fold enrichment vs. random SNPs, Fig. 3B) (12). Notably, 24.4%

(64/262) of GWAS SNPs within DHSs of immune cells and associated with autoimmune

disease alter one or more of the 15 transcription factor motifs from the IRF9-centered

network. This example and those in Figs. S11, S12, illustrate that disease-associated variants

from the same or related disorders and traits repeatedly localize within the recognition

sequences of transcription factors that form interacting regulatory networks.

Common networks for common diseases

The observation that GWAS variants associated with multiple distinct diseases within the

same broader disease class (e.g., inflammation, cancer) repeatedly localize within the

recognition sites of interacting transcription factors suggested that cohorts of such

transcription factors might form shared regulatory architectures. To explore whether

noncoding GWAS SNPs from related diseases perturb different recognition sequences of a

common set of transcription factors, we tabulated all transcription factors for which at least

8 recognition sequences in DHSs were perturbed by GWAS SNPs associated with

autoimmune diseases (Fig. 4A). Among the 22 factors identified were canonical immune

signaling regulators, such as STAT1 and STAT3, NF-κB, and PPARα and PPARγ. These 22

transcription factors comprise a highly significant (P < 9.8 × 10-51, simulation vs. number of

factors for random SNPs (12)), shared regulatory architecture that is repeatedly perturbed in

a wide range of autoimmune disorders (Fig. 4A).

The same analysis in the context of 17 different malignancies exposed a very different

network of transcription factors connecting seemingly disparate cancer types (P < 7.1 ×

10-11, simulation (12)) including neoplastic regulatory relationships, linking FOXA1 and
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breast cancer, FOX03 and colorectal cancer, and TP53 and melanoma, breast and prostate

cancer (Fig. 4B). We also analyzed six neuropsychiatric disorders, and identified 23

transcription factors whose recognition sequences were perturbed by at least 3 disease-

associated variants (fig. S13). Collectively, these results support the hypothesis that shared

genetic liability may underlie many related categories of disease (24, 25).

De novo identification of pathogenic cell types

To provide insights into the cellular structure of disease and potentially highlight pathogenic

cell types, we explored the selective localization of GWAS SNPs within the regulatory DNA

of individual cell types. We further considered the enrichment of all tested variants, not just

those with genome-wide significance, and performed serial determination of the cell/tissue-

selective enrichment patterns of progressively more strongly associated variants to expose

collective localization within specific lineages or cell types. We used all SNPs tested in

GWAS meta-analyses of two common autoimmune disorders, Crohn’s disease (26) and

multiple sclerosis (MS) (27), and a common continuous physiological trait, cardiac

conduction measured by the electrocardiogram QRS duration (28) (n=938,703, 2,465,832,

and ~2.5M SNPs, respectively). For SNPs meeting increasingly significant P-value cutoffs,

we compared the proportion of SNPs in DHSs of each cell type to the proportion of all SNPs

in DHSs of the same cell type (Fig. 5). For all three studies, we observed enrichment of

more weakly associated variants in regulatory DNA. This enrichment suggests that a large

number of functional variants of small quantitative effect act through modulation of

regulatory DNA. Additionally, it suggests that conditioning association analyses on

regulatory DNA may ameliorate the stringent statistical correction for multiple testing

required for genome-wide testing of unselected SNPs.

Furthermore, with progressively stringent P-value thresholds, we observed increasingly

selective enrichment of disease-associated variants within specific cell types (Fig. 5).

Strikingly, in the case of Crohn’s disease, the Th17 (12.0-fold enriched) and Th1 (8.87-fold

enriched) T-cell subtypes have a concentration of the most-significant GWAS variants in

their DHSs (Fig. 5A). While Crohn’s pathology has classically been associated with Th1

cytokine responses, an emerging consensus points to a defining role for IL17-producing

Th17 cells (29). Notably, this analysis was accomplished without any prior knowledge about

Crohn’s disease pathology.

In the case of MS, sequential cell-selective enrichment analysis highlighted two cell types:

CD3+ T-cells from cord blood, and CD19+/CD20+ B-cells (Fig. SB). While MS has long

been thought to be T-cell mediated, a critical role for B-cells has only recently been

recognized and has major therapeutic implications (30). It is notable that cord blood CD3+

cells – essentially a naïve population – garner the most highly selective enrichment,

particularly in comparison with total adult CD3+ cells or other T-cell subsets, suggesting a

role for variants influencing immune education. Also of note, DHSs active in brain tissue

were moderately depleted (~10%) for MS-associated variants, suggesting that neural

regulatory elements do not play a substantial role in MS pathogenesis, as proposed (31).

Analogously, analysis of variants associated with the continuously varying trait of QRS

duration revealed similarly specific enrichment within fetal heart DHSs (Fig. 5C).

Importantly, in all three cases, the results were obtained without any prior knowledge of

physiological mechanisms. These data suggest a generally applicable approach, and

highlight the value of extensive maps of regulatory DNA for gaining insights into disease

physiology and pathogenesis.
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Discussion

Despite a long appreciation of the involvement of regulatory variants in human disease

(32-34), difficulty in delineating regulatory DNA regions, particularly in a cell-specific

context, has heretofore prevented comprehensive assessment of the relationship between

gene regulation and common phenotypes. Our results indicating widespread and systematic

localization of variants associated with a wide spectrum of common diseases and traits in

regulatory DNA marked by DHSs have many implications for interpreting diverse genotype-

phenotype association studies. The connection of numerous DHSs harboring GWAS SNPs

with promoters of distant genes expands the genomic horizon of disease and trait

associations, and provides a trove of plausible causal genes to explain those associations.

The data also unify seemingly unconnected variants associated with related diseases by

virtue of their convergent perturbation of common transcription factor networks. Tissue-

selective enrichment of phenotype-associated variants raises the possibility of more focused

genetic association studies that condition on the regulatory DNA of a known or

hypothesized target tissue type. Further, selective enrichment of many more weakly-

associated variants within regulatory DNA of pathogenic cell types points to the quantitative

contribution of hundreds of variants of small effect size that modulate transcription factor

binding characteristics, in contrast to Mendelian variants in transcription factor genes that

may perturb entire networks. The results thus highlight a continuous quantitative spectrum

of disordered gene regulation between common disease and Mendelian traits, and lend a

new perspective on the genetic architecture of common human disease (35).
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Fig. 1. Disease-associated variation is concentrated in DNase I hypersensitive sites
(A) Proportions of noncoding GWAS SNPs localizing within DHSs (green); in complete

linkage disequilibrium (r2 = 1) with a SNP in a DHS (blue); or neither (yellow). Note that

76.5% of GWAS SNPs are either within or in perfect LD with DHSs. (B) Proportions of

GWAS SNPs overlapping DHSs after partitioning by degree of replication. (C)

Representative DNase I hypersensitivity (tag density) patterns at diverse disease-associated

variants. (D) Proportion of GWAS SNPs localizing in DHSs active in fetal tissues that

persist in adult cells (salmon); fetal stage-specific DHSs (red); and adult stage DHSs

(green). (E) GWAS SNPs in DHSs show phenotype-specific enrichment for fetal regulatory

elements.
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Fig. 2. Candidate regulatory roles for GWAS SNPs
(A) GWAS variant associated with platelet count is connected with the JAK2 gene

(myeloproliferative disorders) 222 kb away. Below, ChlA-PET tags (36) validate direct

chromatin interactions between this DHS and the JAK2 promoter; red tags demonstrate an

interaction between these DHSs. (B) Proportion of DHSs harboring GWAS variants that can

be linked to target promoters at the indicated distance. (C) Examples of allele-specific

DNase I sensitivity in cell types derived from heterozygous individuals for GWAS variants

that alter TF recognition motifs within DHSs (also see table S9). Each cell type track shows

DNase I cleavage density scaled by allelic imbalance at the GWAS variant and colored by

variant nucleotide (blue = C, green = A, yellow = G, red = T). Total reads from each allele

are also shown.
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Fig. 3. Common disease-associated variants cluster in regulatory pathways
(A) SNPs in DHSs associated with diabetes (Type I and Type II), diabetic complications,

and glucose homeostasis localize in recognition sites of transcriptional regulators (labeled

ellipses) controlling glucose transport, glycolysis, and beta cell function that are structurally

disrupted in the Mendelian phenotypes of maturity-onset diabetes of the young (MODY).

Chromosome of each SNP associated with the indicated phenotype is listed (see table S2).

(B) 24.4% of SNPs associated with autoimmune disorders that fall within DHSs localize in

recognition sequences of TFs that interact with IRF9. Arrows indicate directionality of

relationship, dotted lines represent indirect interactions (12). The complete network is shown

in fig. S10.
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Fig. 4. Common disease networks
GWAS SNPs from related diseases repeatedly perturb recognition sequences of common

transcription factors. Shown are factors whose recognition sequences harbor ≥8 or ≥6

GWAS SNPs in inflammatory/autoimmune diseases (A) and cancer (B), respectively. Edge

thickness represents number of associations between TF and disease in DHSs in relevant

tissues. Both networks are significantly enriched for overlap with disease-relevant GWAS

SNPs, and include many well-studied regulators.
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Fig. 5. Identification of pathogenic cell types
GWAS SNPs are systematically enriched in the regulatory DNA of disease-specific cell

types throughout the full range of significance. Shown are SNPs tested for association with

the autoimmune disorders Crohn’s disease (A), multiple sclerosis (B) and QRS duration (C).
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Table 1

Target genes of distal DHSs harboring GWAS variants.

Disease or trait r Target gene Distance

Amyotrophic lateral sclerosis 1 SYNGAP1* - Axon formation; component of NMDA complex 411 kb

Crohn’s disease 1 TRIB1* - NFkB regulation 95 kb

Time to first primary tooth 0.99 PRDM1* - Craniofacial development 452 kb

C-reactive protein 0.99 NLRP3 - Response to bacterial pathogens 20 kb

Multiple sclerosis 0.98 AHI1* - White matter abnormalities 149 kb

QRS duration 0.96 SCN10A* - Sodium channel involved in cardiac conduction 181 kb

Breast cancer 0.96 TACC2* - Tumor suppressor 411 kb

Schizophrenia/brain imaging 0.95 KIF1A* - Neuron-specific kinesin involved in axonal transport 428 kb

Brain structure 0.94 CXCR6* - Chemokine receptor involved in glial migration 357 kb

Rheumatoid arthritis 0.94 CTSB* - Cysteine proteinase linked to articular erosion 359 kb

Ovarian cancer 0.93 HSPG2* - Ovarian tumor supressor 268 kb

Multiple sclerosis 0.93 ZP1* - Known autoantigen 153 kb

ADHD 0.93 PDLIM5* - Neuronal calcium signaling 328 kb

Breast cancer 0.88 MAP3K1* - Response to growth factors 158 kb

Amyotrophic lateral sclerosis 0.88 CNTN4 - Neuronal cell adhesion 306 kb

Schizophrenia 0.81 FXR1* - Cognitive function 120 kb

Type 1 diabetes 0.75 ACAD10* - Mitochondrial oxidation of fatty acids 343 kb

Lupus 0.74 STAT4 - Mediates IL12 immune response and Th1 differentiation 113 kb

Examples of distal DHSs-to-promoter connections that highlight candidate genes potentially underlying the association.

*
indicates that highest correlated gene is not the nearest gene.

r, Pearson’s correlation coefficient.
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