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ABSTRACT 28 

The de novo synthesis of fatty acids has emerged as a therapeutic target for various 29 

diseases including cancer. While several translational efforts have focused on direct 30 

perturbation of de novo fatty acid synthesis, only modest responses have been associated 31 

with mono-therapies. Since cancer cells are intrinsically buffered to combat metabolic 32 

stress, cells may adapt to loss of de novo fatty acid biosynthesis. To explore cellular 33 

response to defects in fatty acid synthesis, we used pooled genome-wide CRISPR 34 

screens to systematically map genetic interactions (GIs) in human HAP1 cells carrying a 35 

loss-of-function mutation in FASN, which catalyzes the formation of long-chain fatty acids. 36 

FASN mutant cells showed a strong dependence on lipid uptake that was reflected by 37 

negative GIs with genes involved in the LDL receptor pathway, vesicle trafficking, and 38 

protein glycosylation. Further support for these functional relationships was derived from 39 

additional GI screens in query cell lines deficient for other genes involved in lipid 40 

metabolism, including LDLR, SREBF1, SREBF2, ACACA. Our GI profiles identified a 41 

potential role for a previously uncharacterized gene LUR1 (C12orf49) in exogenous lipid 42 

uptake regulation. Overall, our data highlights the genetic determinants underlying the 43 

cellular adaptation associated with loss of de novo fatty acid synthesis and demonstrate 44 

the power of systematic GI mapping for uncovering metabolic buffering mechanisms in 45 

human cells.  46 
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INTRODUCTION 47 

Lipid metabolism as a source of energy for cancer cells, supporting rapid cell division and 48 

contributing to cell survival, and fatty acid derivatives play key roles in oncogenic 49 

signalling. Alterations in lipid metabolism, specifically the uptake of lipids and/or synthesis 50 

of fatty acids, comprise different aspects of metabolic reprogramming that are well 51 

documented in cancer and other indications, including metabolic syndrome and fatty liver 52 

disease (Chen & Huang, 2019). De novo fatty acid synthesis has gained significant 53 

traction as a targetable pathway following observations that overexpression of FASN, 54 

which encodes fatty acid synthase and catalyzes the formation of long chain fatty acids,  55 

and ACACA, which codes for Acetyl-CoA Carboxylase Alpha and acts directly upstream 56 

of FASN, are associated with decreased survival rates for numerous solid malignancies 57 

(Chen et al, 2019; Imoto, 2018; Menendez & Lupu, 2017; Garber, 2016; Röhrig & Schulze, 58 

2016). Efforts to develop and translate small molecule inhibitors of FASN (e.g. TVB-2640) 59 

have helped validate this enzyme as a targetable liability in cancer (Jones & Infante, 2015; 60 

Benjamin et al, 2015), and have led to several clinical trials (e.g. NCT02223247, 61 

NCT02948569, NCT03179904, NCT02980029). Given that metabolic pathways are highly 62 

buffered to deal with environmental change, genetic screening approaches are a powerful 63 

strategy to reveal metabolic regulatory mechanisms that underscore metabolic 64 

redundancy, cross-talk and plasticity (Birsoy et al, 2014, 2015). An understanding of how 65 

cells adapt to perturbation of de novo fatty acid synthesis could help identify new 66 

targetable vulnerabilities that may inform novel therapeutic strategies or biomarker 67 

approaches. 68 

 69 

Mapping genetic interaction (GI) networks provides a powerful approach for identifying the 70 

functional relationships between genes and their corresponding pathways. The systematic 71 

exploration of pairwise GIs in model organisms revealed that GIs often occur among 72 
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functionally related genes and that GI profiles organize a hierarchy of functional modules 73 

(Costanzo et al, 2016; Fischer et al, 2015). Thus, GI mapping has become an effective 74 

strategy for identifying functional modules and annotating the roles of previously 75 

uncharacterized genes. Model organism GI mapping has also provided insight into the 76 

mechanistic basis of cellular plasticity or phenotypic switching that occurs as cells evolve 77 

within their environments (Harrison et al, 2007; Szappanos et al, 2011). Accordingly, the 78 

insights gained through systematic interrogation of GIs have fuelled significant interest to 79 

leverage these approaches towards functionally annotating the human genome. 80 

 81 

Recent technological advances using CRISPR-Cas enable the systematic mapping of GIs 82 

in human cells (Wright et al, 2016; Doench, 2018). Here, we explore genome-wide GI 83 

screens within the context of human query mutant cells defective for de novo fatty acid 84 

synthesis. We systematically mapped genome-wide GI profiles for six genes involved in 85 

lipid metabolism, revealing cellular processes that pinpoint genetic vulnerabilities 86 

associated with defects in de novo fatty acid synthesis. In particular, negative GIs with 87 

known fatty acid synthesis genes tend to identify other genes that are associated with this 88 

process, including a previously uncharacterized gene C12orf49 (LUR1), which appears to 89 

function as a regulator of exogenous lipid uptake. Collectively, our data support the 90 

strategy of systematically mapping digenic interactions using knockout query cell lines for 91 

identifying buffering mechanisms within metabolism.  92 
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RESULTS 93 

Systematic identification of genetic interactions for de novo fatty acid synthesis  94 

De novo fatty acid synthesis is a multi-step enzymatic process that converts cytosolic 95 

acetyl-CoA, malonyl-CoA, and NADPH to palmitate. Palmitate can be used directly or 96 

further elongated and/or undergo desaturation to form alternate lipid species. To 97 

systematically identify GIs associated with this metabolic process, we performed genome-98 

wide CRISPR screens in coisogenic cell lines either wild-type or deficient in FASN, a de 99 

novo fatty acid synthesis enzyme that is frequently overexpressed in malignancies (Röhrig 100 

& Schulze, 2016; Currie et al, 2013) (Figure 1a). We chose the human near-haploid cell 101 

line HAP1 as a model system, given the relative ease for generating knockout (KO) 102 

mutations in this background (Carette et al, 2011). We first validated our clonal FASN-KO 103 

cells by confirming loss of FASN protein levels by western blot (Figure S1a). We also 104 

performed targeted metabolite profiling of our parental HAP1 and FASN-KO cells, which 105 

revealed a significant increase in the FASN substrate malonyl-CoA in the FASN-KO cells, 106 

demonstrating their suitability as a model system for defective de novo fatty acid synthesis 107 

(Figure S1b). 108 

 109 

To map FASN GIs, we performed genome-wide CRISPR screens using the sequence 110 

optimized TKOv3 gRNA library (Hart et al, 2017) in both the FASN-KO query cell line and 111 

control wild-type (WT) HAP1 cells, and we compared the relative abundance of individual 112 

gRNAs between the screen start (T0) and end (T18) time points (Figure 1a-b). The 113 

relative abundance of gRNAs targeting each of ~18,000 genes in WT cells provides an 114 

estimate of single mutant fitness, whereas the relative abundance of gRNAs in a query 115 

mutant cell line provides an estimate of double mutant fitness. Since mutant phenotypes 116 

can strongly depend on culture conditions (Billmann et al, 2018) and most standard cell 117 

culture media contains supra-physiological nutrient levels that could mask phenotypic 118 
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effects of perturbing certain metabolic pathways, we performed our screens utilizing media 119 

conditions containing the minimum amounts of glucose and glutamine required to sustain 120 

proliferation of HAP1 cells; termed limiting media (Figure S1c, see Methods). 121 

 122 

We developed a quantitative genetic interaction (qGI) score that measures the strength 123 

and significance of genetic interactions by comparing the relative abundance of gRNAs in 124 

a given query mutant cell line to the relative abundance of gRNAs targeting the 125 

corresponding genes in an extensive panel of 21 genome-wide WT HAP1 screens (Figure 126 

1b, see Methods). In this context, negative interactions are identified as genes whose 127 

corresponding gRNAs exhibit significantly decreased abundance in a mutant KO 128 

background relative to the control WT HAP1 cell line, whereas positive interactions reflect 129 

genes with increased gRNA abundance in a mutant cell line relative to the parental line. 130 

 131 

We performed three independent genome-wide, GI screens using our FASN-KO query 132 

mutant cell line. Because GIs rely on accurate measurement of single and double mutant 133 

phenotypes, we first examined the reproducibility of our single and double mutant fitness 134 

measurements (see Methods). We observed a strong agreement of single gene fitness 135 

effects (LFC) among 21 replicate WT HAP1 (r > 0.87) (Figure S1d) and double mutant 136 

fitness effects derived from independent FASN-KO replicate screens (r > 0.89) (Figure 137 

1c). Moreover, all three FASN screens robustly discriminated a set of reference essential 138 

genes from non-essential genes (Figures S1e-f). 139 

 140 

The identification of qGI scores depends on comparison of single mutant fitness 141 

measurements in a WT HAP1 cell screen and double mutant fitness measurements in a 142 

query mutant screen, both of which have inherent variability associated with them; 143 

therefore, the reproducibility of qGIs is expected to be more challenging than the 144 
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measurement of either single or double mutant fitness phenotypes. Indeed, modest 145 

agreement was observed between qGI scores of the three FASN-KO replicate screens 146 

prior to filtering for significant interactions (pairwise r = 0.29 to 0.44) (Figure 1d). The 147 

pairwise correlation between replicate screens increased substantially when we 148 

considered GIs found to be significant (|qGI| > 0.5, FDR < 0.5) in at least one (r = 0.52-149 

0.69) or two (r = 0.86-0.94) FASN-KO replicate screens (Figure 1d, Table S1). 150 

 151 

Leveraging all 3 FASN-KO replicates, we developed a reproducibility score that measures 152 

each gene’s contribution to the covariance within two replicate screens and summarizes 153 

the resulting values across all available screen pairs (replicate 1-2, 1-3, 2-3) (Methods, 154 

Table S1). This analysis confirms that both the strongest positive and negative qGI scores 155 

were highly reproducible across independent screens (Figure S1g). In particular, the most 156 

reproducible negative GIs with FASN were interactions with SLCO4A1, PGRMC2, LDLR, 157 

RABL3 and C12orf49 (Figure S1g, Table S1). We tested three of these top five strongest 158 

negative GIs by independent validation assays and confirmed all three, examining WT 159 

and FASN-KO HAP1 cells expressing gRNAs against SLCO4A1, LDLR and C12orf49 160 

(Figure 1e, S1h).  161 

 162 

To generate an aggregate set of FASN GIs, we mean-summarised qGI scores across the 163 

three replicate screens (Figure 1f, Table S2). At a pathway level, significant negative GIs 164 

(qGI < -0.5, FDR < 0.5) with FASN were strongly enriched for genes annotated with roles 165 

in protein glycosylation, vesicle transport and cholesterol metabolism (FDR <0.05) (Figure 166 

1g, Table S3). In the global yeast genetic network negative GIs often connect functionally 167 

related genes (Costanzo et al, 2010, 2016), and we observed a similar general trend for 168 

the FASN negative GIs. For example, the FASN negative GIs included genes with 169 

established roles in the uptake, transport, and breakdown of low density lipoprotein (LDL), 170 
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a major extracellular source of lipids, including the LDL receptor (LDLR) itself and its 171 

coreceptor adaptor protein (LDLRAP1). We also observed negative GIs between FASN 172 

and the transcription factor SREBF2, which controls expression of LDLR, as well as 173 

SCAP, MBTPS1 and MBTPS2, all of which are important for the activation and nuclear 174 

translocation of SREBF2 upon cholesterol depletion (Figure 1h). Moreover, we observed 175 

negative GIs with additional lipid metabolic processes such as cholesterol biosynthesis 176 

(ACAT2), genes functioning in long chain fatty acid activation and β-oxidation (ACSL1, 177 

ACSL3), and vesicle trafficking genes (RAB18/10/1A, RABGEF1, RAB3GAP2/1) (Figures 178 

1h, S1i), as well as a positive GI with the gene encoding stearoyl-CoA desaturase (SCD), 179 

the product of which catalyses the rate-limiting step in the biosynthesis of 180 

monounsaturated fatty acids.  181 

 182 

The FASN screen also highlighted an enrichment for genes functioning in protein N-linked 183 

glycosylation (e.g. ALG3/8/9/12, MOGS, DOLPP1, PRKCSH, MGAT2) (Figures 1g-h, 184 

S1i). Interestingly, the hexosamine biosynthetic and N-linked glycosylation pathways have 185 

been implicated in facilitating lipid accumulation from environmental sources through 186 

direct modulation of N-glycan branching on fatty acid transporters, possibly explaining the 187 

strong GIs we observe (Ryczko et al, 2016). N-linked glycosylation is also known to play 188 

an important role in the activity of LDLR and activation of the SREBP transcriptional 189 

programs, providing a potential explanation for the interaction between loss of FASN and 190 

the glycosylation pathway (Cheng et al, 2015; Wang et al, 2018). Finally, we observed a 191 

significant negative GI between FASN and SLCO4A1 (Figures 1f, S1g). SLCO4A1 192 

encodes a member of the organic anion-transporting polypeptides (OATPs), which can 193 

transport a wide range of structurally unrelated compounds including hormones, bile acids 194 

and lipid species (prostaglandins) (Obaidat et al, 2012). To summarize, these results 195 

suggest that in the absence of cell autonomous de novo fatty acid synthesis, cells depend 196 
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on uptake and breakdown of lipids from the environment or the synthesis of sterols, with 197 

our data illuminating the genetic determinants of how cells rewire to meet the demand for 198 

lipids in proliferating cells. 199 

 200 

Expanding the genetic interaction landscape of de novo fatty acid synthesis 201 

To better understand the GI landscape of de novo fatty acid synthesis, we next performed 202 

pooled genome-wide CRISPR screens using the TKOv3 library in five additional 203 

coisogenic cell lines harbouring genetic KO of genes that exhibited significant negative 204 

GIs with our FASN-KO query, including LDLR, C12orf49 and SREBF2 (Table S2), as well 205 

as two genes that did not show a negative GI with FASN, including SREBF1, which 206 

regulates the expression of FASN and other de novo fatty acid genes, and ACACA, which 207 

functions in the same pathway and immediately upstream of FASN (Figure 2a) (Röhrig & 208 

Schulze, 2016; Currie et al, 2013; Horton et al, 2008). Each of these five query gene 209 

screens was performed in technical triplicate (i.e. parallel cultures from a common 210 

infection). Since these additional GI screens were performed under the same conditions 211 

as we used for the FASN-KO screens, we applied the same confidence threshold on the 212 

derived qGI scores (|qGI| > 0.5, FDR < 0.5; Methods) (Figures 2b-f, S2a-b, Table S2). At 213 

this confidence threshold, we estimated a per-screen false discovery rate of ~0.3 and a 214 

false negative rate of ~0.6 (Methods; Figure S1j). 215 

 216 

We next analyzed the functional enrichment across all GIs identified by our fatty acid 217 

synthesis-related query screens. While the positive GIs were not functionally informative 218 

in general, we observed a clear 5-fold enrichment of negative GIs for genes annotated to 219 

functionally relevant pathways, which were defined by the metabolism-focused 220 

HumanCyc standard (Figure S2c) (Romero et al, 2005). We further quantified enrichment 221 

for pathways annotated at different levels of the HumanCyc database hierarchy, including 222 
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gene sets corresponding to general metabolic reaction categories, sub-categories, and 223 

finally specific metabolic pathways (Table S4). At the most general level of the HumanCyc 224 

pathway hierarchy, negative GIs from all six genome-wide screens were most enriched 225 

for genes annotated to the biosynthesis and macromolecule modifications pathway 226 

categories (Figure 3a). Further analysis of these terms at a more specific level of the 227 

HumanCyc hierarchy (i.e. sub-category level), we found that genes exhibiting negative 228 

GIs were associated with functions related to the roles of our six query genes, including 229 

fatty acid, lipid and carbohydrate biosynthesis (Figures 3b, S3a). At a more refined level 230 

of functional specificity within the fatty acid and lipid biosynthesis pathway, we found that 231 

each query gene was associated with a significant enrichment for negative GIs with 232 

functionally-related genes of distinct pathways. For example, the LDLR GI profile includes 233 

negative GIs with genes in the cholesterol/epoxysqualene biosynthesis pathway (i.e. 234 

HMGCS1, MSMO1, HMGCR, FDFT1, NSDHL, HSD17B7, SQLE, HSD17B7, ACT2, 235 

SQLE, LSS) and the ACACA, LDLR and SREBF2 GI profiles include negative GIs with 236 

fatty acid elongation and biosynthesis pathway genes (FASN, ACACA, OXSM) (Figures 237 

3c-d). Notably, the FASN GI profile, and to a lesser extent the ACACA and LDLR GI 238 

profiles, revealed negative GIs with pathways and genes involved in N-glycosylation 239 

initiation (ALG6, ALG13, ALG11, ALG1, ALG2, ALG8, ALG5, ALG3, ALG12, ALG9), 240 

processing (MOGS, PRKCSH), dolichol monophosphate mannose synthase activity 241 

(DPM2, DPM3, DPM1), and glycan transfer (STT3A, STT3B) (Figures 3c,e, Table S4).  242 

 243 

Our survey of GIs related to perturbation of de novo fatty acid synthesis or exogenous 244 

fatty acid uptake pathways provided unique insight into the genetic regulation of these 245 

processes. Specifically, for the SREBF2 screen, while we observed negative GIs with lipid 246 

uptake genes such as LDLR and LDLRAP1 (Figure 3f, Table S2), none were observed 247 

with the cholesterol biosynthesis pathway (Figures 3d, 2e). This observation is consistent 248 
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with SREBF2 being the predominant transcriptional regulator of cholesterol homeostasis 249 

(Horton et al, 2008); its perturbation does not further reduce cellular fitness in cells 250 

deficient for cholesterol biosynthesis. In addition, we also detected a strong positive GI 251 

between SREBF2 and TFAP2C (Figure 2c). Indeed, theTFAP2 transcription factor family 252 

has recently been proposed as a ‘master’ regulator of lipid droplet biogenesis (Scott et al, 253 

2018), with our data suggesting that reduced sequestration of lipids into lipid droplets may 254 

benefit SREBF2-KO cells to mitigate lipid starvation.  255 

 256 

In contrast, SREBF1 did not show enrichment for GIs for either the cholesterol or fatty acid 257 

synthesis pathways (Figure 3c, Table S2). Instead, this query was found to show only a 258 

strong reciprocal negative GI with its paralog SREBF2, highlighting the functional 259 

redundancy between the paralog pair (Figure 2e, Table S2) and suggesting that SREBF2 260 

may regulate some of the transcriptional targets of SREBF1 as previously described 261 

previously (Shimano & Sato, 2017; Horton et al., 2008). Furthermore, the imbalanced 262 

number of GIs between SREBF1 and SREBF2 may point towards asymmetric paralog 263 

evolution, whereby duplicated genes gain or lose functional roles at different rates while 264 

maintaining partially redundant functions, a process previously observed in yeast and 265 

human cells (Zhou et al, 2014; VanderSluis et al, 2010; Ascencio et al, 2017).  266 

 267 

A novel role for C12orf49 in lipid biosynthesis 268 

One of the strongest negative GIs identified in both the FASN and the ACACA profiles 269 

involved the uncharacterized gene C12orf49, suggesting that this gene may have a role 270 

in lipid metabolism (Figures 1f, 2d, Table S2). C12orf49 is a 23.5 kDa protein that is part 271 

of the UPF0454 family of uncharacterized proteins, contains an N-terminal  272 

transmembrane sequence, single uncharacterized DUF2054 domain of approximately 273 

200 amino acid residues, 14 conserved cysteines three of which are annotated to form 274 
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CC-dimers, and a predicted glycosylation site (The UniProt Consortium, 2019)(Figure 275 

S4a). In some plant proteins, the uncharacterized UPF0454 is found situated next to a 276 

glycosyltransferase domain and thus may be targeted into the lumen of the ER or Golgi  277 

(Mitchell et al, 2019).  By extension, the bulk of the C12orf49 protein may reside in the 278 

lumen of the ER or Golgi. In addition, C12orf49 is ubiquitously expressed across tissues 279 

and cell lines (http://www.proteinatlas.org) (Uhlen et al, 2015)). Notably, expression of 280 

C12orf49 is associated with differential prognoses on univariate analysis of TCGA data 281 

across multiple tumor types, including kidney, breast, liver and sarcoma (Figures S4b-e; 282 

p < 0.05) (Nagy et al, 2018), which further motivated us to study the functional role of this 283 

previously uncharacterized gene. 284 

 285 

Genetic interactions derived from a genome-wide screen using a C12orf49-KO query cell 286 

line further supported a role for this gene in lipid biogenesis. Consistent with the results 287 

described above, C12orf49 showed a strong negative GI with both FASN and ACACA 288 

(Figure 2f). C12orf49 also showed negative GIs with LDLR, ACSL1 (i.e. encoding acyl-289 

CoA synthase), SLC25A1 (i.e. encoding mitochondrial citrate transporter), SCD and 290 

SREBF2 further supporting a role for this gene in fatty acid biosynthesis (Figure 2f). 291 

Consistently, C12orf49 negative GIs were enriched for genes involved in fatty acid 292 

metabolism, cholesterol biosynthesis and additional metabolic pathways (FDR <0.05) 293 

(Figure 4a, Table S3). Moreover, as observed for the FASN GI profile, C12orf49 negative 294 

GIs involved genes functioning in vesicle-mediated trafficking and endocytosis, including 295 

RAB3GAP2, RABIF, RAB18, VPS18, VPS419 and VPS39 (Table S2). Beyond vesicle 296 

trafficking, many of the genes that showed a negative GI with C12orf49 also displayed 297 

negative GIs with other query genes in our lipid metabolism panel (e.g. LDLR, ALG3, 298 

ASCL1, MBTPS2, SLC25A1, PDHA1), supporting the functional relatedness of these 299 
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genes (Figures 4b-c, S4f-h). Thus, our lipid metabolism GI map strongly implicates 300 

C12orf49 as playing a functional role in lipid metabolism. 301 

 302 

To further confirm the predictions about C12orf49’s function based on our HAP1 GI data, 303 

we also examined publicly available data from the 19Q2 DepMap release and observed 304 

that C12orf49 is essential for fitness in 120 out of 563 cell lines with highest dependencies 305 

observed for lung, ovarian, pancreatic, colon and bile duct origins (Meyers et al, 2017; 306 

Behan et al, 2019). Other genes that shared similar cell line essentiality profiles to 307 

C12orf49 included SREBF1, SREBF2, MBTPS1, SCAP, SCD and ACSL3 (Figures 4d, 308 

S4i). The association of C12orf49 with lipid metabolism genes was corroborated by a 309 

pathway enrichment analysis of the co-essentiality profiles, which revealed strong 310 

enrichment for genes annotated to ultra-long-chain fatty acid biosynthesis (Figures 4e, 311 

S4j). Interestingly, germline variants in C12orf49 have also been reported to associate 312 

with serum lipid abnormalities in high-density lipoprotein (HDL) in a multi-ethnic cohort of 313 

the Million Veteran Program, further supporting a role for this gene in lipid metabolism 314 

(Klarin et al, 2018). Overall, these observations support a novel function for C12orf49 in 315 

lipid metabolism that is conserved across diverse cell types. 316 

 317 

C12orf49 is a novel regulator of lipid uptake 318 

We performed proximity-based labelling of proteins coupled to mass spectrometry (BioID-319 

MS) to reveal potential C12orf49 protein interactions. Because the C12orf49 single 320 

predicted N-terminal transmembrane domain may direct the C-terminal DUF2054 domain 321 

into the lumen of the secretory pathway, leaving the N-terminus facing the cytoplasm, 322 

BioID-MS was performed separately with both N- and C-terminal BirA-tagged C12orf49 323 

open reading frames (ORFs) expressed in HEK293 cells. Proximity-based labelling with 324 

the N-terminal construct captured proteins localizing to various cellular compartments 325 
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including the ER, Golgi apparatus, plasma membrane and the cytosol, whereas the C-326 

terminal BirA construct revealed a strong enrichment of proteins localizing to the 327 

endoplasmic reticulum (ER) lumen (Figure 5a, Table S5). Furthermore, the BirA ligase 328 

fused to the N-terminal BirA ligase captured proximal interactions with proteins functioning 329 

in vesicle and ER – Golgi transport, whereas C-terminus labelled proteins enriched for 330 

functions related to protein folding and glycosylation (Figure 5b, Table S6). Together, 331 

these results further support that C12orf49 localizes to the ER membrane or transport 332 

vesicles that may traffic to or from the ER, whereby its N-terminus likely faces the 333 

cytoplasm and, in this context, the C-terminus would face the ER lumen. 334 

 335 

We performed immunofluorescence analysis to study the subcellular localization of 336 

C12orf49 under normal and starved conditions. Under normal growth conditions (with 337 

serum), C12orf49 containing a C-terminal V5 tag (i.e. C12orf49-V5) was localized 338 

throughout the ER-Golgi network (Figure 5c), consistent with our BioID results. Strikingly, 339 

C12orf49-V5 accumulated in the Golgi apparatus under serum starvation, as assessed by 340 

co-staining with GOLGA2, a Golgi membrane marker protein (Figure 5c). These data thus 341 

suggest that localization of C12orf49 is regulated in a growth condition-dependent 342 

manner, involving the shuttling between the ER and the Golgi apparatus. 343 

 344 

Together, genetic and proteomic interaction data indicate that C12orf49 may play a role 345 

in lipid metabolism and vesicle-mediated transport. To explore this hypothesis, we 346 

measured uptake of labelled LDL particles, which represent one of the major sources of 347 

extracellular fatty acids, across several HAP1 KO lines. As expected, loss of LDLR 348 

resulted in abolishment of LDL-staining, while FASN-KO cells displayed increased uptake 349 

of exogenous lipid (Figures 5d, S5a). In contrast, loss of C12orf49 caused a significant 350 

reduction of LDL uptake, which was rescued by the exogenous expression of C12orf49 351 
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(Figures 5d, S5a). Because since C12orf49-KO cells do not exhibit reduced uptake of 352 

labelled transferrin (Figure S5b), the reduction of LDL uptake is specific to lipid transport 353 

and is not a consequence of a general defect in receptor-mediated endocytosis,. 354 

Interestingly, a similar reduction in LDL uptake was also observed in SREBF1- and 355 

SREBF2- deficient cells. Overall, these results indicate that C12orf49 impacts LDL uptake 356 

and support the GIs identified between C12orf49 and genes functioning in fatty acid 357 

biosynthesis and lipid homeostasis. 358 

 359 

Sterol regulatory element-binding proteins (SREBPs) traffic to the Golgi where they are 360 

cleaved such that the processed form enters the nuclease to activate transcription of 361 

genes regulating lipid homeostasis (Brown & Goldstein, 1997; Horton et al, 2008). Thus, 362 

C12orf49 could somehow play a role in the activation of the SREBP transcription factors. 363 

To explore this possibility, we performed RNA-sequencing experiments under normal and 364 

serum-starved conditions across HAP1 WT, C12orf49-KO and SREBF2-KO cells (Table 365 

S7). As expected, serum-starvation resulted in induction of a cholesterol biosynthetic 366 

transcriptomic signature in HAP1 WT cells but not in SREBF2-KO cells (Figures 5e, S5c-367 

d). In C12orf49-KO cells, we observed a SREBP-mediated transcriptional response 368 

similar to WT cells, suggesting that C12orf49 is not absolutely required for the activation 369 

of SREBP upon serum starvation (Figure 5e, S5c-d). However, we did notice a trend for 370 

lower expression of cholesterol biosynthesis and LDL uptake genes in C12orf49-KO cells, 371 

which was confirmed by qRT-PCR (Figure 5e, S5e). The absence of strong gene 372 

expression changes suggests that C12orf49 may also regulate LDL uptake on a post-373 

transcriptional level. We therefore measured LDLR protein levels on the cell surface by 374 

flow cytometry but we did not observe any significant changes in LDLR localization or 375 

abundance in C12orf49-KO compared to WT cells (Figure S5f). Thus, C12orf49 may 376 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/834721doi: bioRxiv preprint 

https://doi.org/10.1101/834721
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

  

influence LDL uptake through the regulation of post-translational modifications of LDLR, 377 

such as glycosylation, which takes place in the ER and Golgi apparatus (Figure 5f).  378 

 379 

In summary, our unbiased GI screens and follow-up experiments have revealed that the 380 

uncharacterized gene C12orf49 plays a role in the regulation of lipid transport and our 381 

data further indicate that its subcellular localization is dynamically regulated in a growth 382 

condition-dependent manner throughout the ER-Golgi network. Our findings indicate that 383 

C12orf49 mainly regulates lipid uptake on a post-transcriptional level and we suggest that 384 

C12orf49 be named LUR1 for its role in Lipid Uptake Biology. We speculate that the LUR1 385 

product may be involved in some aspect of the glycosylation of LDLR, the recycling of 386 

vesicles to the cell surface, or in regulating the transcriptional response mediated by 387 

SREBPs (Figure 5f).  388 
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DISCUSSION 389 

The systematic mapping of GIs in model organisms like yeast has provided a detailed 390 

view into the functional organisation of eukaryotic cells (Costanzo et al, 2019). Recent 391 

advances in CRISPR-based genome engineering technologies provide a path for similar 392 

systematic GI studies in human cells (Horlbeck et al, 2018; Najm et al, 2018; Han et al, 393 

2017; Norman et al, 2019; Shen et al, 2017). Here, we apply genome-wide CRISPR-based 394 

fitness screens using query mutant HAP1 cell lines to systematically map GIs with a focus 395 

on lipid metabolism. Our data revealed a strong interaction between de novo fatty acid 396 

synthesis and lipid uptake processes, highlighting a system that balances synthesizing 397 

lipids intracellularly with their uptake from the extracellular environment. More generally, 398 

this analysis confirms that relatively strong negative GIs identify functionally related genes, 399 

mapping a functional wiring diagram for a particular cellular process. 400 

 401 

We screened a FASN mutant query cell line multiple times and identified highly confident 402 

negative GIs, many of which were involved in lipid metabolism. Perturbation of de novo 403 

fatty acid synthesis has been suggested as a prominent cancer therapeutic approach and 404 

multiple compounds targeting FASN are currently being tested in clinical trials; for 405 

example, TVB-2640 is a FASN inhibitor that is being tested in solid tumors in phase 2 406 

trials, while both Fatostatin and Betulin are inhibitors of the SREBP-SCAP interaction in 407 

pre-clinical development (Röhrig & Schulze, 2016; Brenner et al, 2017). Since single agent 408 

therapies often lead to emergence of resistance and tumor relapse, it makes sense to 409 

pursue therapeutic targets that are synergistic with FASN inhibition. Thus, the strong GIs 410 

detected in our FASN screen may be informative towards future investigations of 411 

combinatorial targets or biomarkers to treat diseases that would benefit from disruption of 412 

de novo fatty acid biosynthesis.  413 

 414 
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Our focused GI landscape related to de novo fatty acid biosynthesis provides unique 415 

insight into the genetic dependencies required for response to perturbation of lipid 416 

metabolism. Several pathways emerge as being most commonly utilized to adapt to 417 

perturbations, including those involved in alternate fatty acid and cholesterol biosynthesis 418 

processes as well as lipid uptake. Interestingly, while our screens revealed strong negative 419 

GIs between de novo fatty acid synthesis and uptake of LDL, we failed to detect 420 

interactions with transporters of fatty acids. This may be a consequence of the genetic 421 

redundancy inherent amongst the SLC27A (FATP) fatty acid transporter family (Gimeno, 422 

2007). As previously shown in yeast (VanderSluis et al, 2010), functional redundancy 423 

between paralogs can mask genetic interactions associated with perturbation of a single 424 

gene of a duplicated pair and highlights an important need for multi-gene targeting 425 

systems to survey complex genetic interactions involving more than two genes. 426 

Nonetheless, our data suggest a strong functional relationship between de novo fatty acid 427 

synthesis and glycosylation, and may involve a mechanism wherein cells modify the FATP 428 

transporters through N-glycosylation, thereby enhancing lipid uptake as suggested by 429 

Ryczko et al (Ryczko et al, 2016). As such, this pathway serves as an obvious focal point 430 

not only for ongoing mechanistic investigation but also therapeutic development for anti-431 

cancer strategies targeting de novo fatty acid synthesis. 432 

 433 

Genome-wide GI profiling also revealed an important role for LUR1 (C12orf49) in lipid 434 

uptake. Interestingly, analysis of the DepMap data revealed that LUR1 is essential in the 435 

same set of cancer cell lines that also depend on other lipid biosynthesis-related genes 436 

for viability, including SREBF1, MBTPBS1, SCAP and SCD. Similarly, two recent studies 437 

identifying co-functional gene clusters, support a functional role of LUR1 in lipid 438 

metabolism across diverse genetic backgrounds (Boyle et al, 2018; Kim et al, 2019). 439 

Furthermore, genome-wide association studies with large patient cohorts have found 440 
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LUR1 variants linked to abnormal HDL profiles (Klarin et al, 2018), neuroticism (Luciano 441 

et al, 2018; Kichaev et al, 2019; Nagel et al, 2018), body height (Kichaev et al, 2019), and 442 

neuroticism (Nagel et al, 2018), all phenotypes that could have root causes in lipid 443 

metabolism defects. 444 

 445 

In summary, we provide an unbiased and genome-wide approach for uncovering genetic 446 

vulnerabilities related to lipid metabolism in human cells, which led us to identify a function 447 

for LUR1. Our GI profiles for de novo fatty acid synthesis and related lipid uptake genes 448 

provide a resource for studying metabolic rewiring and disease phenotypes linked to lipid 449 

metabolism. We also demonstrate the power of systematic GI profiling using query 450 

mutants in a coisogenic cell line, an approach that can be applied to other bioprocesses 451 

and expanded to begin generating more comprehensive GI maps for human genes. 452 

  453 
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METHODS 673 

Cell culture 674 

Human HAP1 wild type cells were obtained from Horizon Genomics (clone C631, sex: 675 

male with lost Y chromosome, RRID: CVCL_Y019). The following HAP1 gene knockout 676 

cell lines were obtained from Horizon: FASN (HZGHC003700c006), ACACA 677 

(HZGHC004903c002), LDLR (HZGHC003978c007), SREBF1 (HZGHC001361c012), 678 

SREBF2 (HZGHC000683c004). All gene knockout cell lines were confirmed to carry the 679 

expected out-of-frame insertions or deletions by Sanger Sequencing of PCR products. 680 

HAP1 cells were maintained in low glucose (10 mM), low glutamine (1 mM) DMEM 681 

(Wisent, 319-162-CL) supplemented with 10% FBS (Life Technologies) and 1% 682 

Penicillin/Streptomycin (Life Technologies). This culture medium is referred to as “minimal 683 

medium”. Cells were dissociated using Trypsin (Life Technologies) and all cells were 684 

maintained at 37°C and 5% CO2. Cells were regularly monitored for mycoplasma infection. 685 

 686 

HAP1 KO cell line generation 687 

The HAP1 C12orf49 gene knockout cell line was constructed by first cloning a gRNA 688 

targeting C12orf49 (Table S8) into the pX459v2 backbone (Addgene #62988), which was 689 

modified to carry the same restriction overhangs as the pLCKO vector (Addgene #73311). 690 

350k HAP1 WT cells were seeded into a 6-well plate and 24 hours later cells were 691 

transfected with a mix of 2 µg pX459 plasmid (Addgene #62988) carrying a gRNA, 6 µl X-692 

treme Gene transfection reagent (Roche), and 100 µl Opti-MEM media (Life 693 

Technologies). Twenty-four hours after transfection, cells were selected in medium 694 

containing 1 µg/ml puromycin for three days and single cells were sorted onto 96‐well 695 

plates by manual seeding of a single cell suspension at 0.6 cells/well. Following 696 

amplification of cells from individual wells, genomic DNA was extracted with Extracta DNA 697 

Prep (Quanta Bio), Sanger sequencing was performed across the gRNA target sites 698 
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following PCR amplification, and successful gene knockouts were identified following 699 

sequence analysis.  700 

 701 

Library virus production and MOI determination 702 

For CRISPR library virus production, 8 million HEK293T cells were seeded per 15 cm 703 

plate in DMEM medium containing high glucose, pyruvate and 10% FBS. Twenty-four 704 

hours after seeding, the cells were transfected with a mix of 8 µg lentiviral lentiCRISPRv2 705 

vector containing the TKOv3 gRNA library (Addgene #90294) (Hart et al, 2017), 4.8 µg 706 

packaging vector psPAX2, 3.2 µg envelope vector pMD2.G, 48 µl X-treme Gene 707 

transfection reagent (Roche) and 1.4 ml Opti-MEM media (Life Technologies). Twenty-708 

four hours after transfection, the media was replaced with serum‐free, high-BSA growth 709 

media (DMEM, 1.1g/100ml BSA, 1% Penicillin/Streptomycin). Virus-containing media was 710 

harvested 48 hours after transfection, centrifuged at 1,500 rpm for 5 minutes, aliquoted 711 

and frozen at -80°C.  712 

 713 

For determination of viral titers, 3 million HAP1 cells seeded in 15 cm plates were 714 

transduced with different dilutions of the TKOv3 lentiviral gRNA library along with 715 

polybrene (8 µg/ml), in a total of 20 ml medium. After 24 hours, the virus-containing media 716 

was replaced with 25 ml of fresh media containing puromycin (1 µg/ml), and cells were 717 

incubated for an additional 48 hours. Multiplicity of infection (MOI) of the titrated virus was 718 

determined 72 hours post‐infection by comparing percent survival of puromycin-selected 719 

cells to cells that were infected but not selected with puromycin (i.e. puro minus controls). 720 

 721 

Pooled CRISPR dropout screens 722 
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For pooled CRISPR dropout screens, 3 million HAP1 cells were seeded in 15 cm plates 723 

in 20 ml of specified media. A total of 90 million cells were transduced with the lentiviral 724 

TKOv3 library at a MOI~0.3, such that each gRNA is represented in about 200-300 cells.  725 

Twenty-four hours after infection, transduced cells were selected with 25 ml medium 726 

containing 1 µg/ml puromycin for 48 hours. Cells were then harvested and pooled, and 30 727 

million cells were collected for subsequent gDNA extraction and determination of the 728 

library representation at day 0 (i.e. T0 reference). The pooled cells were then seeded into 729 

three replicate plates, each containing 18 million cells (>200-fold library coverage), which 730 

were passaged every three days and maintained at >200-fold library coverage until T18. 731 

Genomic DNA pellets from each replicate were collected at each day of cell passage. 732 

 733 

Preparation of sequencing libraries and Illumina sequencing 734 

Genomic DNA was extracted using the Wizard Genomic DNA Purification Kit (Promega). 735 

The gDNA pellets were resuspended in TE buffer, and the concentration was estimated 736 

by Qubit using dsDNA Broad Range Assay reagents (Invitrogen). Sequencing libraries 737 

were prepared from 50 µg of the extracted gDNA in two PCR steps, the first to enrich 738 

guide-RNA regions from the genome, and the second to amplify guide-RNA and attach 739 

Illumina TruSeq adapters with i5 and i7 indices as described previously using staggered 740 

primers aligning in both orientations to the guide-RNA region (Table S8) (Aregger et al, 741 

2019). Barcoded libraries were gel purified and final concentrations were estimated by 742 

quantitative RT-PCR. Sequencing libraries were sequenced on an Illumina HiSeq2500 743 

using single read sequencing and completed with standard primers for dual indexing with 744 

HiSeq SBS Kit v4 reagents. The first 21 cycles of sequencing were dark cycles, or base 745 

additions without imaging. The actual 36-bases read begins after the dark cycles and 746 

contains two index reads, reading the i7 first, followed by i5 sequences. The T0 and T18 747 

time point samples were sequenced at 400- and 200-fold library coverage, respectively. 748 
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 749 

Construction of color-coded lentiCRISPRv2 vectors for co-culture assay 750 

The color-coded lentiCRISPRv2 vectors were derived from the lentiCRISPRv2 vector 751 

(Addgene #52961) by inserting mCherry (Addgene #36084) or mClover3 (Addgene 752 

#74236) open reading frames between the Cas9 and PuroR expression cassette. To this 753 

end, the lentiCRISPRv2 vector was digested with BamHI, PCR products coding for the 754 

respective fluorescent protein flanked by T2A and P2A self-cleaving peptides were ligated 755 

into the vector using Gibson assembly. The two forward primers (Table S8) were used at 756 

a 1:0.1:1 (P233:P234:P235) ratio in the same PCR reaction with the reverse primer 757 

(primers bind to both fluorescent proteins mCherry and mClover3). 758 

 759 

Validation of genetic interactions using co-culture assays 760 

For validation of genetic interactions, HAP1 parental and gene knockout clones were 761 

transduced with color-coded lentiCRISPRv2 vectors targeting either an intergenic site in 762 

the AAVS1 locus (i.e. negative control), or a specific target gene hit (e.g. LDLR). Each 763 

gene was targeted with three independent and unique gRNAs. Twenty-four hours after 764 

transduction, cells were selected with 1 µg/ml puromycin for 48 hours and seeded for co-765 

culture proliferation assays as follow: 50k of green (e.g. lentiCRISPRv2-mClover3 AAVS1 766 

gRNA) and red (e.g. lentiCRISPRv2-mCherry hit gene gRNA) cells were mixed (total 767 

100k) in a 6-well plate in both color orientations for both parental and gene knockout cells, 768 

respectively. Cells were passaged every 4 days until day 12 (T12). Cells were trypsinized, 769 

washed and stained for dead cells using Zombie NIR (BioLegend). The relative proportion 770 

of red and green cells in the co-culture were assessed using an LSR Fortessa flow 771 

cytometer (BD Bioscience). The relative ratio of Hit:AAVS1 was calculated and averaged 772 

for the three gene-targeting guides and two color orientations. 773 

 774 
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Low-density lipoprotein and transferrin uptake assay 775 

For uptake experiments with labelled probes 150k HAP1 cells were seeded in a 12-well 776 

plate. After 48 hours cells were serum-starved overnight in minimal medium (described 777 

above) complemented with 0.3% BSA (BioShop) instead of FBS. After 16 hours cells were 778 

labelled with Dil-LDL (Invitrogen L3482), pHrodo Red LDL (Invitrogen L34356) or pHrodo 779 

Red Transferin (P35376) at 2 µg/ml (1:500) in minimal medium plus 0.3% BSA for 15 780 

minutes at 37°C. Cells were washed in PBS, trypsinized and stained with 7-AAD 781 

(BioLegend 420404) or Zoombie NIR (BioLegend 423105) cell viability solution at 25 ng/ml 782 

(1:2,000) for 5 minutes at room temperature. Staining was measured using an LSR 783 

Fortessa flow cytometer (BD Bioscience). 784 

 785 

Proximity-based labelling of proteins capture to mass spectrometry (BioID-MS)  786 

BioID-MS analysis was performed essentially as described previously (Hesketh et al, 787 

2017), with minor modifications. In brief, HEK293 Flp-In T-REx lines expressing inducible 788 

N- or C-terminal BirA*-FLAG-tagged C12ORF49 open reading frames were generated. 789 

Cells were treated with 1 µg/ml tetracycline to induce expression of baits and 50 µM biotin 790 

for labelling of proximal proteins. After 24 hours cell pellets were collected and lysed in 791 

RIPA lysis buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 0.1% (w/v) SDS, 1% NP-40, 1mM 792 

EDTA, 1mM MgCl2; 0.5% Deoxycholate and Sigma protease inhibitors were added right 793 

before cell lysis.) at an 1:10 (g:ml) ratio, sonicated three times for 5 seconds with 2 794 

seconds breaks. 1ul/sample TurboNuclease (BioVision) and 1ul/sample RNAse (Sigma) 795 

was added and samples were incubated at 4ºC for 30 minutes. 20% SDS was added to 796 

bring the sample’s final SDS concentration to 0.25%, samples were mixed well and 797 

centrifuged at 14,000 rpm (Microfuge) for 20 mins in 4ºC. The supernatant was added to 798 

Streptavidin resin (pre washed with lysis buffer) using 30µl bed volume and rotated at 4ºC 799 

for 3 hours. Beads were washed after binding as following: a) 1x1ml of 2% SDS buffer 800 
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(2% SDS, 50mM Tris-Hcl pH7.5), b) 1x1ml of lysis buffer, c) 1x1ml of HEK293 lysis buffer 801 

(with 0.1% NP-40), d) 3x1ml of 50mM ammonium bicarbonate (made fresh). After 802 

purification of biotinylated preys using streptavidin sepharose, samples were digested on 803 

beads using trypsin. Samples were separated by liquid chromatography and analysed by 804 

tandem mass spectrometry on a Thermo Orbitrap Elite mass spectrometer.  Data 805 

processing and analysis was performed within the ProHits LIMS (Liu et al, 2016) searched 806 

against the RefSeq human and adenovirus data base, version 57; forward and reverse. 807 

Mascot and Comet search results were jointly analysed using the iProphet component of 808 

the Trans Proteomic Pipeline. High confidence interactions were determined by scoring 809 

bait samples against negative control samples (8 negative controls consisting of either 810 

BirA*-FLAG alone, BirA*-FLAG-EGFP, empty vector backbone or EGFP alone were 811 

analysed; twelve samples for different baits, SLCO4A1, SLC35A1, UAP1L1 and C1orf115, 812 

were also included in this analysis) using the statistical tool SAINTexpress v3.6.1 with two-813 

fold compression of the negative controls and default parameters). Preys with a SAINT 814 

score (FDR) of less than 1% were considered as high confidence hits. All mass 815 

spectrometry data will be deposited to ProteomeXchange through partner MassIVE 816 

(massive.ucsd.edu) upon publication of manuscript. 817 

 818 

Western Blotting 819 

HAP1 WT and FASN KO cells were lysed in buffer F (10 mM Tris pH 7.05, 50 mM NaCl, 820 

30 mM Na pyrophosphate, 50 mM NaF, 10% Glycerol, 0.5% Triton X‐100) and centrifuged 821 

at 14,000 rpm for 10 minutes. The supernatant was collected and protein concentration 822 

was determined using Bradford reagent (BioRad). 10 µg protein was resolved on 4-12% 823 

Bis‐Tris gels (Life Technologies) and transferred to Immobilon‐P nitrocellulose membrane 824 

(Millipore) at 66V for 90 minutes. Subsequently, proteins were detected using anti-FASN 825 
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(1:2,000, Abcam ab128870) and anti-β‐Actin (1:10,000, Abcam ab8226) antibodies and 826 

proteins were visualized on X‐ray film using Super Signal chemiluminescence reagent 827 

(Thermo Scientific). 828 

 829 

Immunofluorescence 830 

Cells were seeded on cover slips and fixed with 4% paraformaldehyde in PBS for 10 831 

minutes at room temperature. Cells were permeabilized with 1% NP-40 in antibody dilution 832 

solution (PBS, 0.2% BSA, 0.02% sodium azide) for 10 minutes and blocked with 1% goat 833 

serum for 45 minutes. Cells were incubated with anti-V5 (1:250, Abcam ab27671) and 834 

anti-GOLGA2 antibodies (1:250, Sigma HPA021799) for 1 hour at room temperature. 835 

Subsequently, cells were incubated with Alexa Fluor488 goat anti-mouse (1:500, 836 

Invitrogen A-11001) or Alexa Fluor647 anti-rabbit antibodies (1:500, Invitrogen A-21245) 837 

and counterstained with 1 µg/ml DAPI (Cell Signaling Technology, 4083S) for 45 minutes 838 

in the dark. Cells were visualized by confocal microscopy (Zeiss LSM 880). 839 

 840 

Protein expression analysis by flow cytometry 841 

Cells were detached using accutase (GIBCO), washed in PBS and 250k cells were stained 842 

with PE-LDLR at 2 µg/ml (1:100, BD Bioscience 565653) for 20 minutes at 4°C and 843 

Zoombie NIR (BioLegend 423105) cell viability solution at 25 ng/ml (1:2,000) for 5 minutes 844 

at room temperature. Staining was measured using an LSR Fortessa flow cytometer (BD 845 

Bioscience). 846 

 847 

RNA-sequencing 848 

Sample preparation: HAP1 WT, FASN KO and C12orf49 KO cells were cultured in minimal 849 

DMEM medium for 48h and either control treated or serum-starved for 4 hours as 850 
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indicated. Each cell line was cultured and processed in three biological replicates. RNA 851 

was extracted using the RNeasy Kit (QIAGEN) according to manufacturer’s instructions. 852 

18 total RNA samples were DNase treated using RNase-free DNase Set (Qiagen, 79254). 853 

Samples were submitted for mRNA-Seq at the Donnelly Sequencing Centre at the 854 

University of Toronto (http://ccbr.utoronto.ca/donnelly-sequencing-centre). RNA was 855 

quantified using Qubit RNA BR (Thermo Fisher Scientific, Q10211) fluorescent chemistry 856 

and 1 ng was used to obtain RNA Integrity Number (RIN) using the Bioanalyzer RNA 6000 857 

Pico kit (Agilent Technologies, 5067-1513). Lowest RIN was 9.5; median RIN score was 858 

9.8. 1000 ng per sample was then processed using the NEBNext Ultra II Directional RNA 859 

Library Prep Kit for Illumina (New England Biolabs, E7760L) and included polyA-860 

enrichment using NEBNext Poly(A) mRNA Magnetic Isolation Module (New England 861 

Biolabs, E7490L), fragmentation for 15 minutes at 94°C prior to first strand synthesis, and 862 

8 cycles of amplification after adapter ligation. 1µL top stock of each purified final library 863 

was run on an Agilent Bioanalyzer dsDNA High Sensitivity chip (Agilent Technologies, 864 

5067-4626). The libraries were quantified using the Quant-iT dsDNA high-sensitivity 865 

(Thermo Fisher Scientific, Q33120) and were pooled at equimolar ratios after size-866 

adjustment. The final pool was run on an Agilent Bioanalyzer dsDNA High Sensitivity chip 867 

and quantified using NEBNext Library Quant Kit for Illumina (New England Biolabs, 868 

E7630L). The quantified pool was hybridized at a final concentration of 400 pM and 869 

sequenced paired-end on the Illumina NovaSeq6000 platform using a S2 flowcell at 2x151 870 

bp read lengths. 871 

 872 

Data Processing: Samples were mixed to obtain an average of 35 million clusters that 873 

passed filtering. Reads shorter than 36bp on either read1 or read2 were removed prior to 874 

mapping. Reads were aligned to reference genome hg38 and Gencode V25 gene models 875 

using the STAR short-read aligner (v2.6.0a) (REF). Approximately 80% of the filtered 876 
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reads mapped uniquely, and the read counts from each sample, computed by STAR, were 877 

merged into a single matrix using R. The raw and processed data will be deposited in the 878 

GEO database upon publication of manuscript. 879 

 880 

Differential expression: Differentially expressed genes were identified using the 881 

Bioconductor packages limma (v3.32.10) and edgeR (v3.24.3). The read count matrix was 882 

filtered using the filterByExpr() function using default parameters. Principal Components 883 

Analysis was performed to examine the main treatment effects, and to exclude the 884 

presence of confounding batch effects, using the base R function prcomp(). Samples were 885 

normalized using calcNormFactors(method=”TMM”) from edgeR and transformed to log2 886 

using voom(). Next, a design matrix was specified to fit coefficients for the CRISPR 887 

knockouts, presence or absence of FBS, and an interaction term to examined differences 888 

in the FBS effect in the mutant backgrounds. Differentially expressed genes were 889 

extracted using topTable() with log2( fold-change ) > 0.58 and adjusted P-value less than 890 

0.05. 891 

 892 

Quantitative real-time (qRT)-PCR analysis 893 

HAP1 WT, FASN KO and C12orf49 KO cells were cultured in minimal DMEM medium for 894 

48h and either control treated or serum-starved for 4 hours as indicated. RNA was 895 

extracted using the RNeasy Kit (QIAGEN) according to manufacturer’s instructions. RNA 896 

was converted into cDNA using the cVilo master mix (ThermoScientific) according to 897 

manufacturer’s instructions. The cDNA was amplified and quantified by quantitative PCR 898 

using the Maxima SYBR Green PCR master mix (ThermoScientific) according to 899 

manufacturer’s instructions. Transcript levels were normalized to GAPDH (see Table S8 900 

for primer sequences). 901 

 902 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/834721doi: bioRxiv preprint 

https://doi.org/10.1101/834721
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

  

Metabolite profiling 903 

HAP1 WT and FASN-KO cells were cultured in minimal medium for 3 days. Cells were 904 

washed twice in warm PBS and subsequently flash frozen on liquid nitrogen. Cells were 905 

scraped in chilled extraction solvent (40% Acetonitrile: 40% Methanol: 20% water, all 906 

HPLC grade), transferred to clean tubes and shaken for one hour at 4°C and subsequently 907 

centrifuged at 4°C at max speed for 10 minutes. The supernatants were transferred to a 908 

clean tube and dried in a speedvac then stored at -80°C until mass spec analysis. Samples 909 

were reconstituted in water containing Internal Standards D7-Glucose and 13C15N-910 

Tyrosine and injected twice through the HPLC (Dionex Corporation) for positive and 911 

negative mode analysis using a reverse phase column (Inertsil ODS-3, 4.6 mm internal 912 

diameter, 150 mm length, and 3 µM particle size). In positive mode analysis, the mobile 913 

phase gradient ramped from 5% to 90% acetonitrile in 16 minutes, remained for 1 minute 914 

at 90%, then returned to 5% acetonitrile in 0.1% acetic acid over two minutes. In negative 915 

mode, the acetonitrile composition ramped from 5 to 90% in 10 minutes, remained for 1 916 

minute at 90%, then returned to 5% acetonitrile in mobile phase (0.1% tributylamine, 917 

0.03% acetic acid, 10% methanol). The total runtime in both the positive and negative 918 

modes was 20 minutes, the samples were maintained at 4°C, and the injection volume 919 

was 10 µL. An automated washing procedure was included before and after each sample 920 

to avoid any sample carryover. 921 

 922 

The eluted metabolites were analyzed at the optimum polarity in MRM mode on an 923 

electrospray ionization (ESI) triple-quadrupole mass spectrometer (ABSciex 5500 Qtrap). 924 

The mass spectrometric data acquisition time for each run was 20 minutes, and the dwell 925 

time for each MRM channel was 10 ms. Mass spectrometric parameters were as 926 

previously published (Abdel Rahman et al., 2013). Metabolite peak areas were determined 927 

using Multiquant software (SCIEX, Toronto, ON, Canada), normalized to internal standard 928 
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in each mode yielding an area ratio and then further normalized to total cell number for 929 

each sample and Malonyl-CoA levels were further normalized to WT cells. 930 

 931 

QUANTIFICATION AND STATISTICAL ANALYSIS 932 

Guide Mapping and Quantification 933 

FASTQ files from single read sequencing runs were first trimmed by locating constant 934 

sequence anchors and extracting the 20 bp gRNA sequence preceding the anchor 935 

sequence. Pre-processed paired reads were aligned to a FASTA file containing the TKOv3 936 

library sequences using Bowtie (v0.12.8) allowing up to 2 mismatches and 1 exact 937 

alignment (specific parameters: -v2 -m1 -p4 --sam-nohead). Successfully aligned reads 938 

were counted, and merged along with annotations into a matrix.  939 

 940 

Scoring of quantitative genetic interactions: the qGI score 941 

To identify and quantify genetic interactions (GI), genome-wide CRISPR/Cas9 screens 942 

were performed using the TKOv3 gRNA library in HAP1 coisogenic cell lines. Coisogenic 943 

knockout (KO) “query” cell lines were obtained from Horizon Genomics (see above) or 944 

generated by introducing mutations in target genes of interest (see above) in the parental 945 

HAP1 cells, which we consider as wild-type (WT). The TKOv3 library contains 71,090 946 

guide (g)RNAs that target ~18k human protein-coding genes, most of them with four 947 

sequence-independent gRNAs (Hart et al, 2017). To quantify GIs, log2 fold-changes (LFC) 948 

between read-depth normalized gRNA abundance in the starting population (T0) and the 949 

endpoint (T18) were computed. Matched T0 measurement assured that differences 950 

between screens during library infection and Puromycin selection would not result in false 951 

positive GIs. Matched T0 were stabilized using the median across many T0 952 

measurements (common T0), and those two estimates were combined in a weighted 953 

fashion to minimize correlation between GI scores and residual T0 (matched T0 – common 954 
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T0). gRNA-level residual scores were derived for a given genetic background by 955 

estimating a non-interacting model between LFC values in this background and 21 WT 956 

HAP1 backgrounds. To do so, for each WT-KO screen pair the population of LFC values 957 

were M-A-transformed, which contrast the per-gRNA LFC difference M with per-gRNA 958 

mean A. A Loess regression was fitted, which was additionally locally stabilized by binning 959 

the data along A and considered equal bin sizes and equal numbers of data points in every 960 

bin. For each gRNA, this resulted in 21 residual scores, which represent the contrasts of 961 

a given KO with the 21 WT HAP1 screen. Under the assumption that genetic interactions 962 

are sparse and that experimental artifacts such as batch effects would introduce additional 963 

signal into the population of residual values, we computed a weighted mean of its 21 964 

residual scores by giving a higher weight to WT HAP1 screens with lower absolute residual 965 

mean of all 71k gRNAs. We refer to the resulting value for each gRNA as the “guide-level” 966 

GI score. Those guide-level GI scores were further normalized. First, locally-defined shifts 967 

towards negative or positive scores were identified and normalized, based on genome 968 

location of the target genes. Next, to remove unwanted effects that would arise from 969 

screen-to-screen variability, we quantified guide-level GI scores for each of the 21 WT 970 

HAP1 screens by contrasting a given WT screen to the remaining WT screens (as 971 

described for the KO-WT comparison above). Patterns that explain substantial variance 972 

among these WT guide-level GI scores are likely to correspond with unwanted 973 

experimental artefacts. To remove these artefacts from the GI data, we performed singular 974 

value decomposition (SVD) on guide-level GI scores of the HAP1 WT screens only. We 975 

then projected guide-level GI scores onto the left singular vectors, and subtracted the 976 

resulting signal from the GI scores. 977 

 978 

Finally, we computed gene-level genetic interaction scores. First, gRNAs were 979 

excluded when their guide-level GI profile disagreed with those of the remaining gRNAs 980 
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against the same gene. Specifically, the mean within-gene guide-level GI profile Pearson 981 

correlation coefficient was computed. For the gRNA with the lowest value we tested if (i) 982 

the mean of all those four gRNA values for a given gene was above a selected threshold, 983 

which indicated that sufficient signal was present in the guide-level GI profiles, and (ii) the 984 

lowest value differed from this mean. All remaining guide-level GI values per gene were 985 

mean-summarized and their significance was computed using limma’s moderated t-test 986 

followed by Benjamini-Hochberg multiple testing correction. 987 

 988 

Screen reproducibility analysis  989 

Reproducibility of the gRNA library screening data in FASN-KO cells was tested across 990 

three independent screens. The three screens were started from independent infections 991 

with lentivirus packaged gRNA library and performed as described above. To assess 992 

reproducibility of fitness effects, a log2 fold-change (LFC) quantifying the drop-out 993 

between T0 (after puromycin selection) and T18 (endpoint) was computed for each gene 994 

by mean-summarizing the respective four gRNA LFC values. The Pearson correlation 995 

coefficients (PCCs) were computed between LFC values of all three pairs of independent 996 

replicates.  997 

 998 

Our experiments were designed to quantify fitness effect differences due to the 999 

introduction of a specific mutation into an otherwise isogenic background (i.e. GIs). To 1000 

assess reproducibility of GIs, PCCs were computed between qGI values of all pairs of 1001 

independent replicates. 1002 

 1003 

To test reproducibility of genes, each gene’s contribution to the covariance 1004 

between a pair of FASN-KO screens was computed and divided by the product of standard 1005 
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deviations of both given screens. The resulting three pairwise (for replicates A-B, A-C, B-1006 

C) gene-level scores were mean-summarized to a FASN qGI reproducibility score. 1007 

 1008 

Reproducibility analysis of FASN interactions 1009 

We used an MCMC-based approach to measure the reproducibility of FASN GIs. 1010 

Specifically, we first independently scored the three independent FASN replicate screens 1011 

and applied an FDR threshold of FDR 50% to generate positive and negative GI profiles 1012 

for each of the three screens. MCMC was then used to jointly infer false negative and false 1013 

positive rates, as well as a binary consensus FASN GI profile (separately for 1014 

positive/negative GI). Then, using this consensus profile as a standard for evaluation 1015 

(assuming pairs with posterior probability of interaction of > 0.5 as positives), we measured 1016 

precision and recall statistics (averaged across the three screens) at two different cut-offs: 1017 

a “standard” cut-off (absolute qGI score > 0.5 and FDR 50%) and a “stringent” cut-off 1018 

(absolute qGI score > 0.7 and FDR 20%). 1019 

 1020 

Precision-recall analysis  1021 

To control quality of genome-wide gRNA screens, gene-level fitness effects were 1022 

estimated by computing a log2 fold-change (LFC) quantifying the drop-out between T0 1023 

(after puromycin selection) and T18 (endpoint) for each gene and mean-summarizing the 1024 

respective four gRNA LFC values. Gold-standard essential (reference) and non-essential 1025 

(background) gene sets were taken from Hart et al., 2015(Hart et al, 2015) and Hart et al., 1026 

2017(Hart et al, 2017). For the identification of reference genes using LFC values of a 1027 

given screen was assessed by computing precision over true positive statistics. 1028 

 1029 

Functional evaluation of genetic interactions 1030 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/834721doi: bioRxiv preprint 

https://doi.org/10.1101/834721
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

  

To calculate the enrichment of metabolic GIs in different functional standards, we 1031 

separated the metabolic GIs in two different sets: all (background) GI scores and high 1032 

confidence (reference) GI (FDR < 0.5, |qGI| >= 0.5). Then we calculated the fold 1033 

enrichment of the reference set against the background set in a particular functional 1034 

standard. First, we computed the overlap of metabolic GI pairs as co-annotations in the 1035 

standard. Then we divided the overlap density of the background set into the overlap 1036 

density of the reference set to determine the fold enrichment. Once we got the fold 1037 

enrichments, we calculated p-values on the actual overlap counts of the reference and 1038 

background sets according to hypergeometric tests. We used four different functional 1039 

standards: Human functional network (Greene et al, 2015), GO biological processes 1040 

(Ashburner et al, 2000), Pathway (Canonical pathways from (Liberzon et al, 2011)), and 1041 

HumanCyc (Romero et al, 2005). 1042 

 1043 

Gene ontology enrichment analysis 1044 

Gene ontology (GO) enrichment analysis for the FASN and C12orf49 GI screen and the 1045 

BioID experiments were performed using the gProfileR R package using the GO-1046 

Bioprocesses, GO-Molecular Function and Reactome pathway standards. For the GI 1047 

screens, enrichment analysis was performed for significant negative GIs (qGI < -0.5, FDR 1048 

< 0.5), enriched pathways (p<0.05, maximum term size 100) with a similarity of > 50% 1049 

were collapsed using the Cytoscape Enrichment Map function and the mean percentage 1050 

overlap of hits within the term were visualized on a bar plot. For the BioID experiments, 1051 

enrichment analysis was performed for significant hits (spectral counts > 10, FDR < 0.01), 1052 

enriched pathways (p<0.05) with a similarity of > 50% were collapsed using the Cytoscape 1053 

Enrichment Map function and the mean percentage overlap of hits within the term were 1054 

visualized on a bar plot. 1055 

 1056 
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Statistical Analysis 1057 

For all experiments the number of technical and/or biological replicates are listed in the 1058 

figure legends or text. Unless otherwise indicated, statistical significance was assessed 1059 

via one or two factor ANOVA with Fisher’s Least Significant Difference test. Statistical 1060 

analyses were performed using GraphPad Prism 8 (GraphPad Software, La Jolla, 1061 

California, USA) or the R language programming environment.  1062 

 1063 

DATA AND CODE AVAILABILITY 1064 

The datasets generated and analysed in this study are included in the manuscript. The 1065 

raw fastq files for all of the sequencing data are available upon request and will be 1066 

uploaded to GEO upon publication. Descriptions of the analyses, tools and algorithms are 1067 

provided in the methods section of this article. Custom code for generating gRNA counts 1068 

from fastq files and code for generating qGI-scores will be made available on Github upon 1069 

publication.  1070 
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FIGURE LEGENDS 1071 

Figure 1. Genome-scale identification of digenic interactions with FASN. 1072 

(a) Schematic outline for the identification of genetic interactions in coisogenic HAP1 cell 1073 

lines. FASN knockout (KO) and wildtype parental cells are infected with a lentiviral 1074 

genome-wide CRISPR gene KO library (TKOv3) and gRNA abundance is determined 1075 

using Illumina sequencing of guide RNA (gRNA) sequences amplified from extracted 1076 

genomic DNA from the starting cell population (T0) and end time point (day 18, T18) of 1077 

the screen. 1078 

(b) Schematic outline for scoring quantitative genetic interactions (qGI) across coisogenic 1079 

query cell lines. First, the log2 fold-change (LFC) for each gRNA comparing sequence 1080 

abundance at the starting (T0) and end time point (T18) in a given query KO or wildtype 1081 

(WT) cell population are computed. Differential LFC for each gRNA are then estimated by 1082 

comparing its LFC in WT and query KO cells. A series of normalization steps and statistical 1083 

tests are applied to these data to generate gene-level qGI scores and false discovery rates 1084 

(see Methods for details). The LFC scatterplot (bottom left graph) visualizes differential 1085 

fitness defects in a specific query KO and WT cells, whereas the volcano plot (bottom right 1086 

graph) visualizes qGI scores for a specific query. 1087 

(c) Replicate analysis of gene loss of function fitness phenotypes in FASN screens. 1088 

Scatter plots of LFC associated with perturbation of 17,804 individual genes derived from 1089 

a FASN query KO mutant screen conducted in triplicate. Reproducibility of fitness effects 1090 

were determined by measuring Pearson correlation coefficients (r) between all possible 1091 

pairwise combinations of FASN-KO replicate screens.  1092 

(d) Evaluation of FASN quantitative genetic interactions (qGIs). qGI scores were 1093 

measured by comparing the LFC for every gene represented in the TKOv3 gRNA library 1094 

in a FASN-KO with those observed in a WT cell line, as described. Scatter plots show 1095 

FASN genetic interactions (qGI scores) derived from all possible pairwise combinations of 1096 
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three biological replicate screens. The Pearson correlation coefficient (r), based on 1097 

comparison of all qGI scores (r shown in grey, calculated on all the grey, blue and purple 1098 

data points in the scatter plots), or only genetic interactions that exceed a given 1099 

significance threshold (|qGI| > 0.5, FDR < 0.5) in one (blue) or two screens (purple). 1100 

(e) Validation of FASN negative genetic interaction. Bar plots depict the ratio of WT and 1101 

FASN-KO (2 independent clones, c1 and c2) cells carrying a gRNA targeting SLCO4A1, 1102 

LDLR or C12orf49, which all showed a negative interaction with FASN, compared to a 1103 

gRNA targeting AAVS1 (intergenic control). Experiments were performed with three 1104 

independent gRNAs targeting each genetic interaction screen hit. All data are represented 1105 

as means ± standard deviation (n = 3 or 4), **p < 0.01, and *p < 0.05; one-way ANOVA. 1106 

(f) FASN negative and positive genetic interactions. A scatter plot illustrating the fitness 1107 

(LFC) of 450 genes individually targeted in a FASN-KO vs. WT parental HAP1 cell line. 1108 

Each of the 450 genes shown exhibited a significant genetic interaction in at least 2 out of 1109 

3 FASN-KO replicate screens (|qGI| > 0.5, FDR < 0.5). Negative (blue) and positive 1110 

(yellow) FASN genetic interactions are shown. Node size corresponds to the mean 1111 

absolute qGI score derived from 3 replicate screens. Genes with mean absolute qGI score 1112 

> 1.5 as well as selected negative interactions involving genes with established roles in 1113 

lipid metabolism are indicated. [Inset] Scatter plot of FASN genetic interaction scores for 1114 

all 17,804 genes targeted by the TKOv3 gRNA library where the color indicates density of 1115 

genes. 1116 

(g) Enrichment for Gene Ontology (GO) molecular function, GO bioprocesses and 1117 

Reactome terms among genes that exhibited a significant negative genetic interaction with 1118 

FASN (significant in at least two FASN replicates, |qGI| > 0.5, FDR < 0.5). The number of 1119 

genes annotated to each term and shown to interact with FASN are indicated. 1120 
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(h) Schematic depicting the function of selected FASN negative interactions known to be 1121 

involved in lipid uptake and homeostasis pathways (red), vesicle transport (black) and 1122 

glycosylation (blue).   1123 

 1124 

Figure 2. Querying five additional lipid metabolism genes for digenic interactions. 1125 

(a) Schematic diagram showing key steps in fatty acid metabolism. The genes encoding 1126 

the proteins mediating these key steps, which are also query genes for genetic interaction 1127 

screens described in the main text, are labelled in red. 1128 

(b-f) Volcano plots showing qGI scores versus false discovery rates (-log10 p-value) for 1129 

the results of the (b) LDLR-KO, (c) SREBF2-KO, (d) ACACA-KO, (e) SREBF1-KO and (f) 1130 

C12orf49-KO screens. Colored dots indicate genes that meet the standard threshold of 1131 

|qGI| > 0.5, FDR < 0.5, where positive GIs are indicated in yellow and negative GIs in blue. 1132 

The dot size is proportional to both qGI and FDR, calculated as described in the methods. 1133 

Genes with |qGI| scores > 1.5 as well as selected top negative GI hits associated with lipid 1134 

metabolism, citrate synthesis and transport are indicated. 1135 

 1136 

Figure 3. Genetic interactions reveal multiple levels of functional enrichment. 1137 

(a) Dot plot of normalized pathway enrichment scores on the HumanCyc category level, 1138 

calculated from qGIs across all six query genes (FASN, C12orf49, LDLR, SREBF2, 1139 

ACACA, SREBF1). A GI is identified for a query-library pair if the |qGI| > 0.5 and FDR < 1140 

0.5. Enrichment for positive (yellow) and negative (blue) GIs is tested in each of the 10 1141 

HumanCyc main pathway categories using a hypergeometric test. Enrichment with p-1142 

value < 0.05 are blue (negative GI) and yellow (positive GI). Dot size is proportional to the 1143 

fold-enrichment in the indicated categories and specified in the legend. Categories 1144 

indicated in bold are further expanded in part (b) and in Supplemental Figure 3a. 1145 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/834721doi: bioRxiv preprint 

https://doi.org/10.1101/834721
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 

  

(b) Dot plot of normalized pathway enrichment of GIs on a sub-category level, calculated 1146 

as described in part (a), except that sub-categories were examined inside the Biosynthesis 1147 

and Macromolecule Modification HumanCyc branches. Enrichment with p-value < 0.05 1148 

are blue (negative GI) and yellow (positive GI). Dot size is proportional to the fold-1149 

enrichment in the indicated categories and specified in the legend. Categories indicated 1150 

in bold text are further expanded in part (c). 1151 

(c) Matrix dot plot of pathway enrichments of GIs for the fatty acid and lipid biosynthesis 1152 

and protein modification sub-categories. Dots show positive (yellow) or negative (blue) z-1153 

transformed qGI scores summarized at a pathway-level. qGI scores were first z-score 1154 

transformed at a gene-level for each genome-wide query screen separately. Then, a mean 1155 

z-score was calculated for each pathway for a given query screen. Dot size corresponds 1156 

to the absolute z-transformed mean qGI score, grey dots represent |z| < 0.5. Pathways 1157 

marked with an asterisk are annotated to both protein modification and carbohydrate 1158 

biosynthesis pathways. Bold pathways are shown in (d-e). Pathways were displayed if 1159 

they shared an absolute z-score larger than 1.5 with any query gene. 1160 

(d-f) Gene-level heatmaps for genes involved in enriched pathways. qGI scores between 1161 

query genes and all genes from the selected pathways. Positive and negative qGI scores 1162 

are indicated in yellow and blue, respectively. 1163 

 1164 

Figure 4. C12orf49 genetic interaction profile suggests a functional role in lipid 1165 

metabolism. 1166 

(a) Bar plot depicting pathway enrichment of negative genetic interactions with C12orf49 1167 

(|qGI| > 0.5, FDR < 0.5) using GO molecular functions, GO bioprocesses and Reactome 1168 

standards. Significantly enriched gene sets (p < 0.05, maximum term size 100). Bars 1169 

depict mean percentage overlap with the indicated term, and the numbers on each bar 1170 
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indicate the number of genes overlapping a particular term and term size, respectively. 1171 

The greyscale color legend for p-values is indicated on the right. 1172 

(b) Scatter plot of C12orf49 and FASN qGIs depicting GI overlap between C12orf49 and 1173 

FASN qGI scores. FASN qGI scores are represented as the mean between three 1174 

independent screens. A common negative GI is called if it is significant (qGI < -0.5, FDR 1175 

< 0.5) in the C12orf49-KO screen and significant in 2 of 3 FASN-KO screens (indicated in 1176 

blue). The top 10 strongest common GIs, lipid metabolism and vesicle trafficking genes 1177 

are labelled. 1178 

(c) Scatter plot of C12orf49 and LDLR qGIs depicting GI overlap between C12orf49 and 1179 

LDLR qGI scores. A common negative GI is called if it is significant (qGI < -0.5, FDR < 1180 

0.5) in both screens (indicated in blue). The top 10 strongest common GIs and lipid 1181 

metabolism genes are labelled. 1182 

(d) Bar plot indicating the C12orf49 profile similarity across genome-wide DepMap 1183 

CRISPR/Cas9 screens. Similarity (i.e. co-essentiality) was quantified by taking all pairwise 1184 

gene-gene Pearson correlation coefficients of CERES score profiles across 563 screens 1185 

(19Q2 DepMap data release). The top 18 out of 17,633 gene profiles most similar to 1186 

C12orf49 are shown. Genes associated with lipid metabolism are indicated in black. 1187 

(e) Volcano plot of pathway enrichment for C12orf49 co-essential genes. C12orf49 co-1188 

essentiality profile scores for all 17,634 genes represented in the DepMap were mean-1189 

summarized by pathway as defined in the HumanCyc standard (Romero et al., 2004). 1190 

Tendencies towards pathway-level similarity (co-essentiality) and dissimilarity (exclusivity) 1191 

with C12orf49 were tested using a two-sided Wilcoxon rank-sum test followed by multiple 1192 

hypothesis correction with the Benjamini and Hochberg procedure. 1193 

 1194 

Figure 5. C12orf49 shuttles between ER and Golgi and regulates lipid uptake. 1195 
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(a) Schematic outlining proximal protein capture using BioID mass spectrometry analysis 1196 

(upper panel) and analysis of subcellular localization of C12orf49 BioID preys (lower 1197 

panel). Barplots depicting the fraction of proteins localizing to indicated cellular 1198 

compartments for preys captured with N-terminal (grey) or C-terminal (black) BirA*-tagged 1199 

C12orf49 in 293 cells. The inset shows a schematic representation of the predicted 1200 

topology and orientation of C12orf49 with respect to the cytoplasm and ER. 1201 

(b) Pathway enrichment analysis of BioID preys captured with N-terminal (top panel) or C-1202 

terminal (bottom panel) BirA*-tagged C12orf49 using the GO molecular function, biological 1203 

process and Reactome standards. Terms for significantly enriched gene sets (p < 0.05, 1204 

maximum term size 100) are indicated and bars depict mean percentage overlap with the 1205 

indicated term. Numbers indicate the number of genes overlapping a particular term and 1206 

term size, respectively. The greyscale color legend for p-values is indicated on the right. 1207 

(c) Immunofluorescence microscopy analysis of C-terminal V5-tagged C12orf49 in HAP1 1208 

cells under normal (left) or serum-starved (right) growth condition. C12orf49-V5 1209 

localization is shown in green, GOLGA2 is a marker of the Golgi apparatus and shown in 1210 

red, and DAPI (blue) marks the nuclei. Scale bars correspond to 10 µm. 1211 

(d) Bar plots showing the results of low density lipoprotein (LDL) uptake assays in the 1212 

indicated cells using the Dil-LDL probe. All data are represented as means ± standard 1213 

deviation (n = 2-6). ***p < 0.001 and *p < 0.05; one-way ANOVA. 1214 

(e) Bar plots indicating FPKM expression values from RNA sequencing data for LDLR and 1215 

LDLRAP1 in WT, C12orf49-KO, and SREBF2-KO cells under normal (+FBS) and serum-1216 

starved (-FBS) growth conditions as assessed by RNA sequencing (n=3). 1217 

(f) Model summarizing functions and locations of key players in lipid metabolism, including 1218 

LUR1 (C12orf49). 1219 

  1220 
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SUPPLEMENTAL FIGURE LEGENDS 1221 

Figure S1. Validation of FASN-KO cells and genetic interactions screens. 1222 

(a) Western blot depicting FASN and β-Actin levels in HAP1 parental wildtype (WT) and 1223 

FASN-KO cells. 1224 

(b) Bar plot depicting malonyl-CoA levels in HAP1 WT and FASN-KO cells as detected by 1225 

mass spectrometry-based metabolite profiling, normalized to parent HAP1 WT cells (n=4); 1226 

p = 0.03, Mann Whitney U test. 1227 

(c) Growth curves of HAP1 WT cells depicting relative cell numbers over 3 days, plotted 1228 

as a function of glucose concentration in mM, in either 0.5 mM (blue), 1 mM (red), 1.5 mM 1229 

(yellow), or 2 mM (black) glutamine. 1230 

(d) Histogram showing a frequency distribution of all pairwise Pearson correlation 1231 

coefficients for LFC values (T0/T18) of the 21 WT HAP1 screens. 1232 

(e) Precision-recall curves for the three CRISPR replicate screens in HAP1 FASN-KO cells 1233 

using the reference core essential gene set (CEG2) defined in Hart et al., 2017. 1234 

(f) Fitness effect (log2 fold-change, LFC) distributions for reference core essential (CEG2) 1235 

and non-essential gene sets defined in Hart et al., 2017 across the three FASN-KO query 1236 

screens. 1237 

(g) Scatter plot showing reproducibility scores as a function of qGI scores for a single 1238 

FASN-KO screen (replicate A). Pairwise reproducibility of a qGI score was calculated by 1239 

computing each gene’s contribution to the covariance between a pair of screens divided 1240 

by the sum of standard deviations. The reproducibility score represents the sum of those 1241 

values across the three pairwise comparisons. Five genes with highest reproducibility 1242 

scores and the most negative qGI scores with the FASN-KO screen (replicate A) are 1243 

labelled. 1244 

(h) Establishing the AAVS1 target locus as a good negative control site in HAP1 WT and 1245 

FASN-KO cells. Schematic depicting co-culture validation assays (upper panel). Parental 1246 
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WT and FASN-KO cells were stably transduced with color-coded gRNA expression 1247 

vectors carrying an intergenic control or screen hit-targeting gRNA. Color-coded cells are 1248 

mixed at an equal ratio, cultured over two weeks and the relative proportion of green and 1249 

red cells was quantified by flow cytometry. Control co-culture experiments performed in 1250 

parallel to the validation of hit genes depicted in main Figure 1e as indicated above each 1251 

barplot (lower panel). Bar plots are depicting the color ratio of cells carrying two colour-1252 

coded gRNAs targeting AAVS1 (intergenic control) across WT and two FASN-KO clones 1253 

as indicated. Experiments were performed with three independent gRNA targeting AAVS1 1254 

and using both color orientations. All data are represented as means ± standard deviation 1255 

(n = 3 or 4). 1256 

(i) Scatter plots reproducibility scores as a function of qGI scores for the negative genetic 1257 

interaction hits depicted in Figure 1h functioning in lipid uptake and homeostasis (red), 1258 

vesicle transport genes (black) and glycosylation (blue).  1259 

(j) Precision and recall values for GIs with FASN measured at the standard (|qGI| > 0.5, 1260 

FDR < 0.5) and stringent (|qGI| > 0.7, FDR < 0.2) thresholds. Precision and recall values 1261 

were computed using an MCMC-based approach (see Methods). 1262 

 1263 

Figure S2. Quality control of genetic interaction screens for fatty acid synthesis-1264 

related query genes. 1265 

(a) Precision-recall curves distinguishing the reference core essential gene set (CEG2) 1266 

defined in Hart et al., 2017 and a non-essential gene set in CRISPR screens in five HAP1 1267 

knockout query cell lines (LDLR, C12orf49, SREBF2, ACACA, SREBF1-KO). 1268 

(b) Fitness effect (LFC) distributions for reference core essential (CEG2) and non-1269 

essential gene sets defined in Hart et al., 2017 across CRISPR screens in five HAP1 KO 1270 

cell lines (LDLR, C12orf49, SREBF2, ACACA, SREBF1). 1271 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/834721doi: bioRxiv preprint 

https://doi.org/10.1101/834721
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 

  

(c) Bar plot of enrichment of co-annotation as defined by the Human Functional Network, 1272 

Gene Ontology Bioprocesses (BP), HumanCyc or and aggregation of pathway standards 1273 

(including REACTOME, KEGG or BIOCARTA) for genetic interactions identified across all 1274 

six query genome-wide screens (FASN, LDLR, C12orf49, SREBF2, ACACA, SREBF1). 1275 

See methods for details of analysis. 1276 

 1277 

Figure S3. Pathway enrichment analysis of genetic interactions for fatty acid 1278 

synthesis-related query genes in additional HumanCyc sub-categories. 1279 

(a) Dot plot of normalized pathway enrichment values for aggregate GIs across the six 1280 

query genes (FASN, C12orf49, LDLR, SREBF2, ACACA, SREBF1) with sub-categories 1281 

from HumanCyc are indicated. A GI is identified for a query-library pair if the |qGI| > 0.5 1282 

and FDR < 0.5. Enrichment for positive (yellow) and negative (blue) GI is tested inside 1283 

Glycan Pathways and Generation of precursor metabolite and energy HumanCyc 1284 

branches using a hypergeometric test. Enrichment with p-value < 0.05 are blue (negative 1285 

GI) and yellow (positive GI). Dot size is proportional to the fold-enrichment in the indicated 1286 

categories and specified in the legend.  1287 

 1288 

Figure S4. Overview of C12orf49, cancer associations, and functional correlates. 1289 

(a) Cartoon of C12orf49 protein sequence features and domains.  1290 

(b-e) Kaplan Meier survival plots displaying univariate analysis of TCGA data across 1291 

multiple tumor types including kidney, breast, liver and sarcoma for C12orf49 high vs. low 1292 

expressing tumor tissue (www.kmplot.com) (Nagy et al, 2018). 1293 

(f-h) GI overlap between C12orf49 and SREBF2, SREBF1 and ACACA qGI scores shown 1294 

as pairwise scatter plots with C12orf49 as function of SREBF2 (f), SREBF1 (g) and 1295 

ACACA (h). A common negative GI is called if it is significant (qGI < -0.5, FDR < 0.5) in 1296 
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both screens (indicated in blue). The top 10 strongest common GIs and lipid metabolism 1297 

genes are labelled. 1298 

(i) Profile similarity of C12orf49 across genome-wide DepMap CRISPR/Cas9 screens. 1299 

Similarity was quantified by taking all pairwise gene-gene Pearson correlation coefficients 1300 

of CERES score profiles across 563 screens (19Q2 DepMap data release). The 1301 

distribution of 17,633 CERES profile similarity is plotted as a quantile-quantile plot, and 1302 

the top 18 most similar out of 17,633 genes are labelled. Genes associated with lipid 1303 

metabolism are indicated in red. 1304 

(j) Pathway analysis of C12orf49 profile similarity. C12orf49 profile similarity scores for all 1305 

17,634 genes represented in the DepMap were mean-summarized by pathway as defined 1306 

in the HumanCyc standard (Romero et al., 2004). Tendencies towards pathway-level 1307 

similarity (co-essentiality) and dissimilarity (exclusivity) with C12orf49 were tested using a 1308 

two-sided Wilcoxon rank-sum test with multiple hypothesis correction using the Benjamini 1309 

and Hochberg procedure. 1310 

 1311 

Figure S5. Regulation of LDL uptake and LDLR expression by C12orf49. 1312 

(a) Bar plots showing the results of a low density lipoprotein (LDL) uptake assay across 1313 

the indicated HAP1 cell lines using pHrodo-LDL probe. All data are represented as means 1314 

± standard deviation (n = 2-3), ***p < 0.001, one-way ANOVA. 1315 

(b) Bar plots showing the results of a transferin uptake assay across the indicated HAP1 1316 

cell lines using pHrodo-Transferin probe. All data are represented as means ± standard 1317 

deviation (n = 2-3). ***p < 0.001, **p < 0.01, and *p < 0.05; one-way ANOVA. 1318 

(c) Gene ontology enrichment analysis of genes upregulated under serum starvation in 1319 

HAP1 wildtype (WT), C12orf49 or SREBF2-KO cells using GO molecular functions, GO 1320 

bioprocesses and Reactome standards. Gene sets with overlapping members have been 1321 
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merged and bars depict mean percentage overlap with the indicated term. Numbers 1322 

indicate the mean overlap and term sizes respectively.  1323 

(d) Boxplots depicting mean expression and induction of genes assigned with the 1324 

indicated term across HAP1 WT, C12orf49 and SREBF2-KO cells under normal (+FBS) 1325 

and serum-starved (-FBS) conditions (n=3), **p < 0.01, student’s t test.  1326 

(e) Bar plot of relative mRNA expression of LDLR across HAP1 WT, FASN-KO and 1327 

C12orf49-KO cells (n=3). ***p < 0.001, one-way ANOVA.  1328 

(f) Bar plot of LDLR surface expression across HAP1 wildtype (WT) and the indicated 1329 

KO and rescue cell lines under normal (+FBS) or serum-starved (-FBS) conditions as 1330 

assessed by flow cytometry. ***p < 0.001, two-way ANOVA.  1331 
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