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The protein–protein association in cellular signaling networks (CSNs) often acts as weak,
transient, and reversible domain–peptide interaction (DPI), in which a flexible peptide segment
on the surface of one protein is recognized and bound by a rigid peptide-recognition domain
from another. Reliablemodeling and accurate prediction of DPI binding affinities would help to
ascertain the diverse biological events involved in CSNs and benefit our understanding of
various biological implications underlying DPIs. Traditionally, peptide quantitative structure-
activity relationship (pQSAR) has been widely used to model and predict the biological activity
of oligopeptides, which employs amino acid descriptors (AADs) to characterize peptide
structures at sequence level and then statistically correlate the resulting descriptor vector with
observed activity data via regression. However, the QSAR has not yet been widely applied to
treat the direct binding behavior of large-scale peptide ligands to their protein receptors. In this
work, we attempted to clarify whether the pQSAR methodology can work effectively for
modeling and predicting DPI affinities in a high-throughput manner? Over twenty thousand
short linear motif (SLiM)-containing peptide segments involved in SH3, PDZ and 14-3-
3 domain-medicated CSNswere compiled to define a comprehensive sequence-based data
set of DPI affinities, which were represented by the Boehringer light units (BLUs) derived from
previous arbitrary light intensity assays following SPOT peptide synthesis. Four sophisticated
MLMs (MLMs) were then utilized to perform pQSAR modeling on the set described with
different AADs to systematically create a variety of linear and nonlinear predictors, and then
verified by rigorous statistical test. It is revealed that the genome-wide DPI events can only be
modeled qualitatively or semiquantitatively with traditional pQSAR strategy due to the intrinsic
disorder of peptide conformation and the potential interplay between different peptide
residues. In addition, the arbitrary BLUs used to characterize DPI affinity values were
measured via an indirect approach, which may not very reliable and may involve strong
noise, thus leading to a considerable bias in the modeling. The Rprd

2 � 0.7 can be considered
as the upper limit of external generalization ability of the pQSAR methodology working on
large-scale DPI affinity data.
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1 INTRODUCTION

Protein–protein interactions play a key role in cell life. Through
formation of the functionally complicated complexes between
two or more interacting protein partners, they participate in a
variety of signal cascades in cells, thereby regulating the life
activities of cells and individuals (Slater et al., 2020). In cell
signaling network, intrinsically disordered proteins (IDP) often
interacts specifically with the peptide-recognition domain of
target protein through a flexible peptide segment on its own
surface (Dyson and Wright 2005). In this way, flexible peptides
tend to spontaneously fold into regular secondary structures, and
then the specific recognition and interaction between peptide-
recognition domains (PRDs) and flexible peptides were created in
a folding-on-binding or binding-on-folding manner (Dyson and
Wright 2002). Different from the permanent and stable
complexes that are commonly formed by binding with global
rigid globulins, the domain–peptide complexes are generally
transient and reversible due to the limited number of residues
and small contact area involved in the complex interfaces. This
feature makes domain–peptide interactions (DPIs) very suitable
to serve as molecular switches in biological signaling pathways
that require exquisitely dynamic regulation and are closely related
to various cellular processes and major diseases.

Although the high-throughput synthesis techniques such as
combinatorial library, phage display and peptide microarray have
considerably promoted DPI discovery over the past decades
(Engelmann et al., 2014; Gray and Brown 2014; Zambrano-Mila
et al., 2020), it is still time-consuming and expensive to practice full
systematic screening against all potential peptide segment candidates
in the human genome. In addition, a variety of peptide-recognition
domains existed in cells also largely intensify the challenge of
systematic screening. To tackle this issue, we previously suggested
the computational peptidology as a new and attractive area to
rationally investigate and design bioactive peptides or peptidic
agents with in silico assistance (Zhou et al., 2013), in which the
peptide quantitative structure-activity relationship (pQSAR) is one
of the most widely used strategies to model the statistical correlation
between peptide structure and biological activity (or toxicity, efficacy
and potency) at sequence level (Zhou et al., 2008a). Machine
learning has been widely used to perform the pQSAR modeling,
but most of previous studies were focused on specific domains and/
or limited samples, and thus unable to systematically evaluate the
feasibility and applicability of pQSAR methodology in predicting
DPI affinities. For example, Hou et al. deployed a series of works to
characterize the 3D-structurally physiochemical properties of
peptide binding to SH3 domain by using dynamics simulation,
molecular field analysis and interaction energy component
decomposition, and then they employed support vector machine
(SVM) to create the pQSAR relationship between the characterized
property parameters and measured DPI affinities (Hou et al., 2006;
Hou et al., 2008; Hou et al., 2009). Jin et al. used random forest (RF)
to perform structure-based pQSAR study of DPI binding behavior
by dissecting residue interaction profile at the complex interface of
PDZ domain with its peptide ligands (Jin et al., 2013). We also
proposed the Gaussian process (GP) as a promising machine
learning approach to predict the binding affinities and biological

activities of diverse peptides against different proteins and domains
(Zhou et al., 2008b; Zhou et al., 2010).

The key to the development of rapid pQSAR virtual screening
technology for genome-wide DPIs is the characterization of
interaction binding behavior and the construction of multivariate
statistical model. The former parameterizes the sequence, structural,
physicochemical and/or energetic properties of DPIs into a set of
multidimensional numerical vectors that can be readily processed in
computer, and the latter generates a regression relationship by
statistically associating the vector set with corresponding DPI
affinities with supervised machine learning approach. Recently, we
have given a systematic review on the application of machine
learning methods (MLMs) to quantitative DPI affinity prediction
and its implications for therapeutic peptide design (Li et al., 2019), in
which we pointed out that, although a number of pQSARworks have
been reported to address the DPI affinity prediction problem, there
was no comprehensive evaluation and systematic comparison of the
pQSAR modeling performance between the different combinations
of peptide-recognition domain types, MLMs and structural
characterization strategies, thus lacking a general conclusion for
the applicability of pQSAR methodology in DPI affinity modeling
and prediction. In this study, we attempted to create, examine and
compare a variety of pQSAR predictors built with PLS, SVM, RF and
GP on >20,000 SLiM peptides involved in SH3, PDZ and 14-3-
3 domain-medicated cell signaling networks. These peptide
structures were characterized at traditional sequence level using
classical amino acid descriptors (AADs) and their affinities were
determined consistently by SPOT peptide syntheses and arbitrary
light intensity assays. This work would shed light on the general
purpose of pQSAR-based DPI affinity modeling and prediction.

2 MATERIALS AND METHODS

2.1 Four Machine Learning Methods That
Have Ever Been Applied in Peptide
Quantitative Structure-Activity Relationship
Four sophisticated MLMs that have ever been applied in the
pQSAR study of DPIs and other protein–peptide binding
phenomena were considered in this work, including one linear
partial least squares (PLS) and three nonlinear support vector
machine (SVM), random forest (RF) and Gaussian process (GP)
(Geladi and Kowalski 1986; Cortes and Vapnik 1995; Breiman
2001; Obrezanova et al., 2007). The PLS is a widely used
multivariate statistical technique in the QSAR community,
which has been intrinsically integrated into the famous 3D-
QSAR methods of comparative molecular field analysis
(CoMFA) and comparative molecular similarity indices
(CoMSIA) as standard modeling tool to perform pQSAR
analysis of SH3–peptide interactions at molecular field level
(Hou et al., 2006). The method provides a multi-dependent
variable to multi-independent variable regression, which can
better deal with the problems difficult to be solved by least
square regression. The SVM has also been successfully
employed to characterize the SH3- and PDZ-mediated DPIs
involved in the human genome (Hou et al., 2008, Hou et al.,
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2009; Li et al., 2011). The method converts quadratic convex
programming problem into the corresponding duality problem
for solving by Lagrange multiplier method, and constructs a series
of kernel functions by using Mercer theorem to realize the high-
dimensional inner product operation in the original space (Cortes
and Vapnik 1995). In addition, the RF and GP were also
introduced previously by our group to investigate DPIs (Zhou
et al., 2008b) and other peptide-related issues such as enzyme-
inhibitory activity (Zhou et al., 2010) and chromatographic
retention behavior (Tian et al., 2009; Zhou et al., 2009). The
former is an ensemble learning algorithm based on decision tree
proposed by Breiman (2001), which also provides additional
features such as variable importance and out-of-bag (OOB)
validation that increase its utility for statistical modeling. The
latter is based on the Bayesian non-parametric model that has a
strict statistical learning theory basis and a strong generalization
ability to adjust the model’s flexibility and achieve a certain
transparency through so-call “hyperparameters” rather than
conventional parameters to avoid fixed basis function in the
traditional sense (Obrezanova et al., 2007).

The details of these machine learning modeling processes can
be found in our previous publications (Rasmussen and Williams
2006). Briefly, the input variables were standardized by autoscaling
for PLS and RF or [–1, +1] scaling for SVM and GP. The model
parameters such as the number of latent variables (NLV) for PLS,
and the ε-insensitive loss function, penalty factor (C) and kernel
radial (σ2) for SVM, the number of trees (ntree) and the optimal
size of the variable subset (mtry) for RF and the hyperparameter set
(Θ) for GP need to be determined before modeling, and we
employed consistent strategies as summarized in Table 1 to
optimize these parameters. Here, the PLS, SVM, RF and GP
modeling and parameter optimization were carried out with in-
house Matlab tool box ZP-explore (Zhou et al., 2009). In addition,
the SVM regression was also carried out using the sophisticated
LibSVM program (Chang and Lin 2011) for comparison purpose.

2.2 Curation of Comprehensive
Sequence-Based Domain–Peptide
Interaction Data Set With a Consistent
Affinity Expression
A variety of peptide-recognition domains that can specifically
recognize and interact with diverse short linear motifs (SLiMs) on

their partner protein surfaces have been discovered over the past
decades (Kuriyan and Cowburn 1997), including but not limited
to SH3, SH2, WW, PDZ, PTB, 14-3-3, EH, GYF, PH, EVH1,
UEV, VHS, FHA, WD40 and so on. Here, we mainly selected
three most common domain categories with considerably
different SLiM properties but highly consistent affinity data
for this study, namely, SH3, PDZ and 14-3-3; they can be
further divided into different subtypes in terms of their parent
proteins. The SH3 domain was first identified in the non-receptor
tyrosine kinase c-Src and can specifically binds PxxP-containing
polyproline-II (PPII) helix peptide segments (Li et al., 2005). The
PDZ domain targets the C-terminal free peptide segments of
substrate proteins with a plastic pattern (Ivarsson 2012). The 14-
3-3 domain has been widely found in hundreds of signaling
proteins to mediate protein–protein interactions by recognizing
peptide segments of phosphoserine or phosphothreonine
residues (Aitken et al., 1995).

Here, we curated totally 21,704 SLiM-containing peptides that
separately target ten SH3 domains, seven PDZ domains and one
14-3-3 domain from previous reports (Boisguerin et al., 2004;
Landgraf et al., 2004; Vouilleme et al., 2010; Panni et al., 2011) to
define a comprehensive sequence-based DPI affinity data set
consisting of 18 panels. These peptides were produced using
SPOT peptide synthesis technology on cellulose membranes and
then their binding affinities to different domains were consistently
indicated by Boehringer light units (BLUs) derived from arbitrary
light intensity assays (Volkmer et al., 2012). This protocol can fast
yield various peptide candidates in a short time scale and test their
domain binding in a high-throughput manner, and thus have been
widely used to measure DPI affinities. By further excluding few
invalid samples such as no binders or no affinity values, we
consequently obtained 21,399 valid peptides; their information
are summarized in Table 2, and their sequences and BLU values
are tabulated in Supplementary Tables S1–S3.

2.3 Statistical Verification of Peptide
Quantitative Structure-Activity Relationship
Models With Internal and External
Validations
The built pQSAR predictive models should pass rigorous
statistical test before practical applications to examine their
effectiveness, illness and generalization ability. Here, we used a

TABLE 1 | Four MLMs used in this study.

MLM Type Variable standardization Model parameter

Parameter Optimization

PLS Linear Autoscaling NLV: number of latent variables Increase of cumulative
cross-validation q2 is below 0.097

SVM Nonlinear [–1, +1] scaling ε: ε-insensitive loss function Systematic grid search for minimizing
cross-validation RMSEcvC: penalty factor

σ2: kernel radial
RF Nonlinear [–1, +1] scaling ntree: number of trees Systematic grid search for minimizing

cross-validation RMSEcvmtry: size of descriptor
subset

GP Linear/nonlinear Autoscaling Θ: hyperparameter set Automatic determination
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combination of internal and external validations to verify the
statistical stability and predictive power of the models. Internal
validation includes goodness-of-fit and 10-fold cross-
validation on training set, while for the external validation
we randomly divided each sample panel into ∼2/3 as a training
set for building pQSAR model, and the remaining ∼1/3 as a test
set for blind testing of the built model. In a highly cited paper,
Golbraikh and Alexander (2002) pointed out that the internal
validation is only a necessary but not sufficient condition to
measure the reliability of a QSAR model, and the model
predictability must be confirmed further through external
validation.

2.4 Structural Characterization of Peptide
Sequences Using Amino Acid Descriptors
Amino acid descriptors (AADs) are a classical approach to
characterize peptide structure at sequence level, which utilize a
n-dimensional vector to represent each of 20 amino acids and are
commonly derived from a large number of original amino acid
properties such as topological, physicochemical, 3D-structural and
quantum-chemical, by using multivariate statistical techniques
such as principal components analysis (PCA) and factor analysis
(FA) (Zhou et al., 2008a). An n-mer peptide can be parameterized
by in turn replacing its each amino acid residue to a corresponding
m-dimensional AAD array, consequently resulting in n × m
descriptors for the peptide, which define the independent
variable space X and can be further correlated statistically with
independent variable y (affinity) usingmachine learning regression.
Recently, we have systematically evaluated totally 80 AADs in
pQSAR modeling and identified a number of AADs with good
performance (Zhou et al., 2021), from which we herein selected
four different types of AADs to characterize the 21,399 SLiM-
containing peptides listed inTable 2, includingMolSurf (quantum-
chemical) (Norinder and Svensson 1998), ST_scale (topological)
(Yang et al., 2010), VHSE (physicochemical) (Mei et al., 2005) and

VSGETAWAY (3D-structural) (Tong and Zhang 2007). Their
values are tabulated in Supplementary Tables S4–S7.

3 RESULTS AND DISCUSSION

There are several indicators that can be used to represent the
binding affinity of DPIs, such as the Kd that can be determined by
fluorescence polarization (FP) and surface plasmon resonance
(SPR) to indicate the apparent dissociation constant for
domain–peptide complex formation, and the ΔG that can be
measured using isothermal titration calorimetry (ITC) to denote
free energy change upon the complex binding. However, neither
Kd nor ΔG can be obtained in a high-throughput manner, and
thus they are not feasible for characterizing the large-scale DPI
affinity data. In recent years, the SPOT peptide synthesis in
conjunction with light intensity assays has been used to
rapidly screen effective domain binders against massive
peptide candidates, where peptides matching the defined
patterns were synthesized at high density on cellulose
membranes by SPOT synthesis technology and the membranes
were probed with GST-fused domain protein, which were then
revealed by an anti-GST antibody and by a secondary anti-IgG
antibody coupled to horseradish peroxidase (POD) to derive the
intensity of each SPOT quantitatively in Boehringer light unit
(BLU) as an arbitrary light intensity unit (Landgraf et al., 2004).
In this study, all DPI affinity data were expressed consistently as
the BLU values collected from Refs (Boisguerin et al., 2004;
Landgraf et al., 2004; Vouilleme et al., 2010; Panni et al., 2011).

3.1 Effect of Machine Learning Methods on
Peptide Quantitative Structure-Activity
Relationship Modeling
The PLSR, GP, RF, SVM and LibSVM regressions were employed
to create three types of DPI affinity predictors for 18 DPI panels

TABLE 2 | Summary of 21,704 SLiM-containing peptide samples binding to ten SH3, seven PDZ and one 14-3-3 domains.

Panel Domain Parent protein Domain Number Species Peptide number

1 SH3 Amphiphysin 1/1 Human 884 Landgraf et al. (2004)
2 Amphyphisin 1/1 Yeast 2032 Landgraf et al. (2004)
3 Boi1 1/1 Yeast 1336 Landgraf et al. (2004)
4 Boi2 1/1 Yeast 1312 Landgraf et al. (2004)
5 Endophilin 1/1 Yeast 1998 Landgraf et al. (2004)
6 Myosin5 1/1 Yeast 1139 Landgraf et al. (2004)
7 Rvs167 1/1 Yeast 1369 Landgraf et al. (2004)
8 Sho1 1/1 Yeast 1015 Landgraf et al. (2004)
9 Yfr024 1/1 Yeast 1282 Landgraf et al. (2004)
10 Yhr016c 1/1 Yeast 1348 Landgraf et al. (2004)

11 PDZ CALP 1/1 Human 80 Vouilleme et al. (2010)
12 NHERF1 1/2 Human 77 Vouilleme et al. (2010)
13 NHERF1 2/2 Human 80 Vouilleme et al. (2010)
14 NHERF2 1/2 Human 80 Vouilleme et al. (2010)
15 NHERF2 2/2 Human 80 Vouilleme et al. (2010)
16 SYNA1 1/1 Human 56 Vouilleme et al. (2010)
17 PSD95 1/1 Human 6068 Boisguerin et al. (2004)

18 14-3-3 14-3-3 1/1 Yeast 1163 Panni et al. (2011)
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based on training samples, which were then used to blindly
predict test samples (all resulting statistics are tabulated in the
Supplementary Tables S8–S10). In order to compare different
MLMs in the modeling and prediction of DPI affinities, we
selected three kinds of samples binding separately to human
amphyphisin SH3 (1/1), human SYNA1 PDZ (1/1) and yeast 14-
3-3 (1/1) domains, and compared their fitting determination
coefficient Rfit

2 on the training set, cross-validation
determination coefficient Rcv

2 on the training set and
predictive determination coefficient Rprd

2 on test set. As can be
in Table 3, the performance of obtained pQSAR models varies
considerably over MLMs and domain types. These models have
high internal fitting ability but generally exhibit moderate or
modest internal stability and external predictability, with Rfit

2 >
0.6 but Rcv

2 < 0.6 and Rprd
2 < 0.5. Among the three types of DPI

affinity predictors the predictive power Rprd
2 of nonlinear GP, RF,

SVM and LibSVM is generally better than that of linear PLS,
suggesting that the DPI events are complicated dynamic process
that involve many nonlinear factors, which can be better handled
by nonlinear than linear methods. Even so, the modeling
performance of both the linear and nonlinear methods is
generally moderately, indicated by the high internal fitting
ability but relatively low internal stability and predictability,
imparting an overfitting phenomenon may exist in these
regression models.

The optimal models were built on human amphyphisin SH3
(1/1)-binding peptide panel with MolSurf characterization. Here,
the scatter plots of fitted/predictive against experimental LogBLU
values over 884 peptide samples using different MLMs are shown
in Figure 1. As can be seen, the resulting external predictive Rprd

2

values are generally larger than 0.5, indicating a good
generalization ability on this panel. In addition, the internal
fitting Rfit

2 values of all these MLMs (except LibSVM) are

significantly higher than 0.65, in which the RF and SVM
perform much better than others. However, there are no
essential difference between the predictive powers of RF and
SVM with PLS and GP (Rprd

2 > 0.6), but are moderately better
than LibSVM (Rprd

2 < 0.6). The nonlinear GP, RF and SVM seem
to have a good generalization ability relative linear PLS, albeit the
difference is not very significant, suggesting that both the linear
and nonlinear approaches exhibit similar predictability on test
set, although the nonlinear methods can give stronger fitting on
training set than linear one. This is also explain why the linear
PLS has been successfully used in previous pQSAR modeling of
DPI affinities, which can perform similarly but are easier to
operate and more readily interpretable than those nonlinear
modeling.

By comparing the SVM regressions modeled by in-house ZP-
explore toolbox (Zhou et al., 2009) and sophisticated LibSVM
program (Chang and Lin 2011), it is revealed that the former can
perform considerably better than the latter, although both of
them used the same machine learning method (SVM), worked
on the same data panel (human amphyphisin SH3 (1/1)-binding
peptides) and characterized the same AAD (MolSurf). This
finding suggested that the pQSAR modeling of DPI affinities
are sensitive to not only the data sets measured, but also the
software used. This issue is usually neglected by the pQSAR
community and previous works have no systematic examination
of different tools/programs/software used in modeling.
Therefore, we herein further compared the external
predictive powers (Rprd

2) of SVM regressions modeled by
ZP-explore and LibSVM on all the 18 DPI sample panels in
Figure 2. It is revealed that the prediction can achieve a
generally consistent power for some panels (e.g., human
amphyphisin SH3 (1/1)- and human Biol1 SH3-binding
peptides), but varies considerably for some others (e.g.,

TABLE 3 | Comparison of different MLMs on different DPI samplesa.

MLM DPIb Training set Test set

Rfit
2c RMSEfit

d Rcv
2c RMSEcv

d Rprd
2c RMSEprd

d

PLS SH3 0.8641 0.4765 0.8335 0.5275 0.3072 0.5851
PDZ 0.9312 0.1062 0.1077 0.3823 0.2263 0.3276
14-3-3 0.4344 0.7048 0.3341 0.7687 0.3625 0.7446

GP SH3 0.8668 0.4719 0.8349 0.5252 0.3147 0.5808
PDZ 0.6984 0.2223 0.1953 0.3631 0.3391 0.3028
14-3-3 0.4334 0.7091 0.3548 0.7566 0.3669 0.7420

RF SH3 0.9470 0.2975 0.2074 1.1509 0.4973 0.4987
PDZ 0.8191 0.1722 0.4005 0.3134 0.3824 0.2928
14-3-3 0.8116 0.4088 0.2562 0.8124 0.3456 0.7715

SVM SH3 0.8772 0.4530 0.8352 0.5248 0.3091 0.5843
PDZ 0.7242 0.2126 0.1880 0.3647 0.2689 0.3594
14-3-3 0.5211 0.6519 0.3614 0.7527 0.3886 0.7279

LibSVM SH3 0.7008 0.2971 0.6817 0.3144 0.4254 0.3693
PDZ 0.8778 0.0813 0.1295 0.1528 0.2766 0.1189
14-3-3 0.4003 0.6085 0.3097 0.6702 0.3025 0.6342

aVHSE, descriptor was used to characterize peptide sequences.
bHuman amphyphisin SH3 (1/1), human SYNA1 PDZ (1/1) and yeast 14-3-3 (1/1) are selected as case analysis.
cRfit

2, Rcv
2 and Rprd

2 are the determination coefficients of internal fitting in training set, internal cross-validation on training set, and external blind prediction on test set, respectively.
dRMSEfit, RMSEcv, and RMSEprd, are the root-mean-square errors of internal fitting in training set, internal cross-validation on training set, and external blind prediction on test set,
respectively.
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FIGURE 1 | Scatter plots of fitted/predictive against experimental LogBLU values over 884 human amphyphisin SH3 (1/1)-binding peptides with MolSurf
characterization and using different MLMs (A,B), PLSR, (C,D), GP; (E,F), RF, (G,H), SVM and (I,J), LibSVM.
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human NHERF1 PDZ (1/2)- and human SYNA1 PDZ (1/1)-
binding peptides). It is worth noting that, although the ZP-
explore can yield a better prediction on certain panels than
LibSVM, the latter appears to be more stable than the former, as
characterized by the ZP-explore predictive outliers for three
PDZ panels in Figure 2, although for most panels the two tools
can work similarly in their predictive behavior.

3.2 Effect of Amino Acid Descriptors on
Peptide Quantitative Structure-Activity
Relationship Modeling
Four amino acid descriptors characterizing different properties of
amino acids, namely MolSurf (quantum-chemical), ST_scales
(topological), VHSE (physicochemical) and VSGETAWAY
(3D-structural), were used to parameterize peptide sequences,
which were then correlated with experimental LogBLU values
with GP modeling on three selected DPI sample panels: human
14-3-3 (1/1), human SYNA1 PDZ (1/1), and yeast endophilin
SH3 (1/1), and the resulting scatter plots of calculated against
experimental LogBLU values over these panels are shown in
Figure 3. It is evident that the calculated results, including
internal fitting ability Rfit

2 on training set, internal cross-
validation stability Rcv

2 on training set, and external
predictability Rprd

2 on test set, vary considerably over pQSAR
models built with different AADs. For the 56 human SYNA1 PDZ
(1/1)-binding peptides, the Rfit

2, Rcv
2 and Rprd

2 all exhibit
considerable illness, indicating that the pQSAR models cannot
work effectively on this panel, no mater which AADs were used.
In contrast, pQSAR modeling seems to have a moderate or good
performance on the 1193 human 14-3-3 (1/1)- and 2025 yeast

FIGURE 2 | Comparison between the external predictive powers (Rprd
2)

of SVM-based pQSAR modeling on different DPI sample panels with ZP-
explore and LibSVM.

FIGURE 3 | Scatter plots of calculated against experimental LogBLU
values over 1193 human amphyphisin SH3 (1/1)-binding peptides (A-D), 56
human SYNA1 PDZ (1/1)-binding peptides (E-H) and 2025 yeast endophilin
SH3 (1/1)-binding peptides (I-L) with GP modeling and using different
AADs.
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endophilin SH3 (1/1)-binding peptides, with a satisfactory profile
of internal fitting ability and cross-validation stability (Rfit

2 > 0.6
and Rcv

2 > 0.5), albeit many have only a moderate or modest
external predictive power (Rprd

2 < 0.4). In addition, for the same
sample panels characterized using different AADs, the pQSAR
models generally exhibit a similar performance on both training
and test sets, suggesting that the descriptor types would not have
significant effect on modeling performance. However, the change
in sample panels can lead to a considerable variation on the
performance, suggesting that the AADs are not primarily
responsible for pQSAR modeling; instead, the sample panels are.

Effects of four AADs on the external predictive powers (Rprd
2) of

PLS-/GP-based pQSARmodels are compared in Figure 4. As can be
seen, the linear PLS (A) and nonlinear GP (B) have a similar profile
of Rprd

2 values over these panels, in which the prediction on human
NHERF1 PDZ (1/2) and Yeast Sho1 SH3 (1/1) vary significantly and
moderately over the four AADs, respectively, while these descriptors
exhibit a generally consistent performance for predicting other
sample panels. For human NHERF1 PDZ (1/2) panel, the
quantum-chemical MolSurf performs much worse, and secondly
the physiochemical VHSE, whereas other two descriptors can work
normally on this panel. For Yeast Sho1 SH3 (1/1) panel, only the
quantum-chemical MolSurf has a particularly low performance as
compared to other three descriptors. Besides, the four AADs seem to
have a consistent performance on other panels. Even so, the pQSAR
Rprd

2 values obtained with different descriptors on these panels
mainly range between 0 and 0.6, imparting that the models have
only a moderate or modest predictive power onmost sample panels,

and the Rprd
2 variation is primarily influenced by sample panels but

not descriptor types.

3.3 Effect of Sample Size on Peptide
Quantitative Structure-Activity Relationship
Modeling
By systematically examining the influence of MLMs and AADs
on pQSARmodeling of different DPI sample panels, it is revealed
that the these models can perform fairly well on the human
PSD95 PDZ (1/1) panel, which contains totally 6,068 peptide
samples. Here, the MolSurf was employed to characterize the
structure of these peptides at sequence level and then we carried
out pQSAR modeling on all the 6,068 samples and two subsets
with PLS, GP, RF, SVM and LibSVM regressions. The two subsets
separately contain 1,000 and 3,000 sample data extracted
randomly from the intact panel. The modeling resulted in 15
pQSAR models, which represent the systematic combination
between five MLMs and three subsets with different sample
sizes. The external predictive power (Rprd

2) of these models on
test set is listed in Table 4. It is seen that the models with fullset-
6068 can generally obtain a consistent predictability for most
MLMs as compared to other two subsets, except the RF modeling
on the subset-3000, which yielded the highest Rprd

2 than subset-
1000 and fullset-6068. In contrast, the pQSAR modeling on
subset-1000 can only obtain a marginal prediction. However,
the Rprd

2 difference is not very significant between different
subsets for the same MLMs, but different MLMs can lead to a

FIGURE 4 | Comparison between the external predictive powers (Rprd
2) of PLS-/GP-based pQSAR modeling on different DPI sample panels with MolSurf,

ST_scale, VHSE and VSGETAWAY.
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considerable variation in the Rprd
2 value. In addition, all the five

MLMs can reach the highest fitting ability (Rfit
2) with the fullset-

6068 relative to subset-1000 and subset-3000. Therefore, it is
revealed that the pQSAR performance is primarily determined by
MLMs used and, secondarily, sample size. The larger the size is,
the higher the performance is. Even so, the Rprd

2 values of pQSAR
modeling on the fullset-6068 are all not above the 0.5, indicating
that the absolute predictive power of different MLMs is improved
with sample size increase, but the increase is quite limited.

4 CONCLUSION

More than 20,000 SLiM-containing peptides as the binders of
3 peptide-recognition domains (PDZ, SH3 and 14-3-3) and 18
domain subtypes were comprehensively collected to perform an
investigation of the applicability of pQSAR methodology in
peptide affinity prediction. With a systematic combination of
five widely used MLMs and four informatively diverse AADs to
perform the pQSAR modeling on these peptide samples it is
revealed that the domains and MLMs have significant effects on
modeling performance, whereas the AADs and sample size can
only influence the performance moderately and modestly.
However, at most conditions the predictive power of pQSAR
models is generally below 0.5 and only very few can be above 0.6,
no matter what the combinations of domains, MLMs, AADs and
sample size are adopted. This can be attributed to the fact that the
high-throughput detection of arbitrary light intensity is a very
indirect approach to characterize DPI affinity and the obtained
BLU can only give a qualitative or semi-quantitative measure of

the affinity values, thus causing a considerable bias in the pQSAR
modeling and prediction. Instead, although some other affinity
indicators such as Kd and ΔG are quantitative and more reliable,
they cannot be tested in a high-through manner and thus are
normally unavailable for large-scale DPI samples. Therefore, it is
suggested that only focus on pQSAR modeling by optimizing
AADs and MLMs is not an essential solution to improve the
modeling performance of DPI affinity. Instead, the source of
affinity data used to perform the modeling is the current
bottleneck to restrict the feasibility and applicability of pQSAR
methodology in DPI affinity prediction.
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