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Abstract. Modern Graphics Processing Units (GPUs) consist of sev-
eral SIMD-processors and thus provide a high degree of parallelism at
low cost. We introduce a new approach to systematically develop parallel
image reconstruction algorithms for GPUs from their parallel equivalents
for distributed-memory machines. We use High-Level Petri Nets (HLPN)
to intuitively describe the parallel implementations for distributed-
memory machines. By denoting the functions of the HLPN with mem-
ory requirements and information about data distribution, we are able
to identify parallel functions that can be implemented efficiently on the
GPU. For an important iterative medical image reconstruction algorithm
—the list-mode OSEM algorithm—we demonstrate the limitations of its
distributed-memory implementation and show how our HLPN-based ap-
proach leads to a fast implementation on GPUs, reusable across different
medical imaging devices.

1 Introduction

In order to achieve good scalability, time-consuming numerical algorithms need
to be parallelized on architectures with both a high degree of parallelism and
large memory bandwidth. One such architecture is the modern Graphics Process-
ing Unit (GPU) that comprises one or several SIMD (Single Instruction Multiple
Data) processors. High-level languages for the general purpose GPU program-
ming like CUDA [3] (Compute Unified Device Architecture) and BrookGPU [1]
have emerged recently; they allow developers to write reasonably fast code for
the GPU without dealing with the details of the underlying hardware. However,
implementing GPU algorithms from scratch is often error-prone and results in
implementations that lack modularity and reusability [5].

We focus on the GPU parallelization problem for iterative medical image
reconstruction algorithms that solve large, sparse linear systems for a 3D recon-
struction image, with a potential to extend our approach to a broader class of nu-
merical algorithms, including iterative linear system solvers. In our approach, we
use already existing parallel algorithms for distributed-memory architectures to
identify parts that can be re-implemented efficiently in a data-parallel manner on
the GPU. We use High-Level Petri Nets (HLPN) to describe parallel algorithms
in a simple, intuitive way. We then annotate the HLPN with memory require-
ments and the type of data distribution that is used in the distributed-memory
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algorithm. This additional information allows us to identify data-parallelism
(which is needed in order to use the SIMD processors efficiently) and memory
requirements (which are important due to the comparatively small amount of
memory available on the GPU) for the parallel functions.

All iterative medical image reconstruction algorithms share similar computa-
tion and communication patterns, because they are usually either multiplicative
or additive versions of the Kaczmarz method [4]. Hence, our approach can be
applied to all such algorithms. As an example algorithm which we parallelize
for GPUs using our Petri Net approach, we use a very accurate, but also quite
time-consuming algorithm used in PET (Positron Emission Tomography) recon-
struction: the list-mode OSEM (Ordered Subset Expectation Maximization) [7].
We present two parallel strategies for this algorithm on the distributed-memory
architecture and show their limitations. By using the Petri Net approach to re-
implement these parallel strategies on the GPU, we overcome the limitations
of the distributed-memory architecture and, at the same time, facilitate code
reusability and modularity.

In medical image reconstruction, the lack of reusability of GPU paralleliza-
tions becomes very critical: Previous GPU implementations of the list-mode
OSEM algorithm (as shown in [6]), as well as implementations for other itera-
tive reconstruction techniques in medical image reconstruction (see [12]), have
focused on the parallelization within the so-called projection step. This leads to
poor reusability of the code: Different PET devices require different projections,
and therefore, for each new device type, a new projection and thus a new GPU
parallelization has to be implemented.

The remainder of this paper is structured as follows: we start with an in-
troduction to PET and the list-mode OSEM algorithm in Section 2. We then
describe the parallelization of the list-mode OSEM algorithm on distributed-
memory computers in Section 3. In Section 4, we introduce our main contribu-
tion, the new Petri Net approach, and describe its application to the strategies
developed in Section 3. We present experimental results in Section 5 and finally
conclude the paper in Section 6.

2 PET and the List-Mode OSEM Algorithm

Positron Emission Tomography (PET ) is a medical imaging technique that dis-
plays metabolic processes in a human or animal body. The data for reconstruc-
tion are collected in the PET acquisition process as follows. A slightly radioactive
substance which emits positrons is applied to the patient who is placed inside
a scanner. Each scanner type has a different number of detectors that can be
arranged either on rings or banks surrounding the patient. The detectors of a
scanner measure so-called events : When the emitted positrons of the radioactive
substance collide with an electron residing in the surrounding tissue near the
decaying spot, they are annihilated. During annihilation, two gamma rays emit
from the annihilation spot in opposite directions and form a line, see Fig. 1. For
each gamma ray pair, one event, i.e., the two involved detector elements, is saved.
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Fig. 1. Detectors register an event in a PET-scanner with 6 detector rings

During one investigation, typically 5 · 107 to 5 · 108 events are registered. From
these events, a reconstruction algorithm computes a 3D image of the substance
distribution in the body.

We focus in this work on the list-mode OSEM reconstruction algorithm [7]
which is an enhanced version of the list-mode Expectation Maximization (EM)
algorithm. EM solves the overdetermined linear system Af = 1 iteratively for
the reconstruction image f , where 1 = (1, ..., 1) and A is a matrix with elements
ai,j estimating the probability that the emission corresponding to event i has
happened in voxel j. The computation of one row Ai of matrix A for event i is
called projection. In general, for each estimate ai,j ∈ Ai, the amount of intersec-
tion of voxel j with the line between the centers of the two detectors of event i
is computed on the fly during each iteration. However, more accurate projection
algorithms take into account, among others, the detector shape and gamma ray
scatter inside the detector. Therefore, for each scanner, there is a different most
accurate projection algorithm and it is thus critical for an implementation to
be able to easily interchange projection algorithms; such implementations are
called reusable.

The list-mode OSEM algorithm speeds up the notoriously slow EM algorithm
by computing several image updates per iteration: the input dataset—consisting
of all measured events—is divided into s equally-sized blocks of events, so-called
subsets. The starting image vector is f0 = (1, ..., 1) ∈ R

N (N is the number of
voxels in the reconstruction image). For each subset l ∈ 0, ..., s−1, a new, more
precise reconstruction image fl+1 is computed and used iteratively for the next
subset computation as follows:

fl+1 = flcl; cl =
1

At
norm1

∑

i∈Sl

(Ai)t 1
Aifl

, (1)

where Sl are the indices of events in subset l. The normalization vector
1

At
norm1

is independent of the current subset and can thus be precalculated. After one
iteration over all subsets, the reconstruction process can either be stopped, or
the result can be improved with further iterations.
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3 Distributed-Memory Parallelization

We start with the two strategies for the distributed-memory parallelization of
the list-mode OSEM algorithm which we analyzed in [11]:

1. the PSD (Projection Space Decomposition) strategy and
2. the ISD (Image Space Decomposition) strategy.

Since fl+1 depends on fl in (1), both strategies need to parallelize the compu-
tations within one subset.

In the PSD (Projection Space Decomposition) strategy, we decompose the
input data, i.e., the events of one subset, into p (=number of processors) blocks
and compute the forward projection for these blocks simultaneously. The calcu-
lations for one subset proceed in five steps, see Fig. 2(a):

– read: Every processor reads its part of the subsets’ events.

– proj: All processors kj compute simultaneously cl,j =
∑

i∈Sl,j
(Ai)

t 1
Aifl

.

– reduce: The processors’ results cl,j are summed up over the network.
– update: fl+1 = flcl is computed on one processor.
– broadcast: fl+1 is sent to all other processors.

In the Image Space Decomposition (ISD) strategy, the output data, i.e., the
reconstruction image, is decomposed into p sub-images f j , j = 1, ..., p. The
computations proceed as follows, see Fig. 2(b):

– read: Every processor reads all the subsets’ events.
– forwproj: Each processor kj performs the forward projection for sub-image

f j , i. e., it computes bi,j = Aj
if

j events i ∈ Sl, where Aj is a sub-matrix of
A that is restricted to the voxels in f j .

– allreduce: bi,j are summed up, with the result bi residing on all processors.

– update: Each processor kj computes af j
∑

i∈Sl
(Aj

i )
t 1
bi

for its subimage f j .

(a) PSD (b) ISD

Fig. 2. Parallel strategies (PSD and ISD) on four distributed-memory processors
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On cluster computers, the PSD strategy outperforms the ISD strategy in almost
all cases [11], because, in the ISD strategy, large amounts of data have to be
read from the remote file system and load imbalances arise from the non-uniform
distribution of the radioactive substance inside the reconstruction region. Only
in the case of very few events per subset, the ISD strategy is preferable to the
PSD strategy.

4 Parallelization: From Distributed-Memory to GPU

4.1 GPU Architecture and Language Support

Modern GPUs (Graphics Processing Units) can be viewed as mathematical co-
processors: they add computing power to the CPU. GPUs are primarily designed
for the 3D gaming sector, where they support the CPU of commodity PCs to gain
better performance, resulting in high-quality graphics at high-screen resolution.

A GPU is a parallel machine (see Fig. 3) that consists of SIMD (Single In-
struction Multiple Data) multiprocessors (ranging from 1 to 16). The stream
processors of a SIMD multiprocessor are called shader units. The GPU (also
called device) has its own fast memory with an amount of up to 1.5 GB. On the
off-the-shelf main board, one or two GPUs can be installed and used as coproces-
sors simultaneously. The GeForce 8800 GTX, which we use in our experiments,
provides 768MB device memory and has 16 multiprocessors each with 8 shader
units. With CUDA (Compute Unified Device Architecture) [3], the GPU vendor
NVIDIA provides a programming interface that introduces the thread-program-
ming concept on GPUs to the C programming language. A block of threads
executing the same code fragment, the so-called kernel program, runs on one
multiprocessor. Each thread of this block runs on one of the shader units of
the GPU, each unit executing the kernel on a different data element. All blocks
of threads of one application are distributed among the multiprocessors by the
scheduler. The GPU’s device memory is shared among all threads. Among the
main features the CUDA programming interface (present version 1.0) lacks, com-
pared to a traditional thread library like pthreads, are mechanisms for mutual

Fig. 3. GPU architecture of modern NVIDIA GPUs: n is the number of multiproces-
sors, m is the number of shader units. SIMDk denotes the k-th multiprocessor, SUk
denotes the k-th shader unit of the multiprocessor.
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exclusion like semaphores and monitors. In the next section, we show how the
lack of mutual exclusion mechanisms impacts the design and programming of
parallel algorithms on the GPU.

4.2 Identification of Data-Parallel Functions Using Petri Nets

Our goal in the Petri Net approach is to systematically develop parallel al-
gorithms for GPUs from HLPN that describe parallel distributed-memory al-
gorithms. HLPN [2] (see Fig. 4 and Fig. 5) consist of places (empty circles),
holding data (filled circles), which are linked to transitions (rectangles). If all in-
put places of a transition contain a data element, the transition “fires”, i.e., the
function corresponding to the transition is executed. The results of the function
are placed in one or more output places, which can either be the endpoint of a
graph, or again input for preceding transitions. We allow guards for conditional
execution of transitions. In order to visualize the parallelism in the Petri Nets,
transitions performed on all processors are filled with hatched bars, whereas the
fully filled transitions are only computed sequentially on one processor.

Fig. 4. HLPN for the PSD strategy. The numbers below the different data elements
denote their memory requirement.

Fig. 5. HLPN for the ISD strategy. The numbers below the different data elements
denote their memory requirement.

The idea is to examine two aspects of the parallel algorithm for distributed-
memory architectures: 1) the amount of data-parallelism, and 2) the required
amount of memory. We start with a HLPN presented in Fig. 4 and Fig. 5. For
each of the four steps, we show its application to the parallel PSD and ISD
strategy:
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1. Identification of data-parallel functions from parallel transitions:
The HLPN is annotated with additional information: “dis ” prefixes are added
to the data elements that are distributed among the processors, whereas the
data elements with local copies on each processor are denoted with “cp ”. The
“dis ” data elements that are input to a parallel transition now indicate data
parallelism for the associated parallel function; i.e., the function can be computed
simultaneously on different parts of the data. In Fig. 4 and Fig. 5, we annotated
the HLPN for the PSD and the ISD strategy with the two prefixes. Since the
“dis events” are input to the parallel proj function of the PSD strategy and the
“dis fl” are input to the parallel forwproj and the parallel update function of the
ISD strategy, these three functions can be computed in a data-parallel manner.

2. Identification of data-parallel functions from sequential transitions:
Each sequential function is analyzed for data-parallelism that could not be ex-
ploited on the distributed-memory architecture, due to the large communication
overhead arising from the distribution and collection of data. In the PSD strat-
egy, the update function multiplies fl and cl element-wise; this can be done in a
data-parallel way.

3. Annotation of data-parallel transitions with memory requirements:
The data-parallel transitions identified in the two previous steps and their in- and
output edges are annotated with their memory requirements. For each data ele-
ment, the amount of data on the total cluster is annotated; e.g., if one data element
takes up k MB on one processor, then the “cp ”-prefixed data element takes up
p*kMB on the total cluster (p is the number of processors). For each transition,
the total memory requirement of the corresponding function is annotated.

4. Translation and evaluation of memory requirements on the GPU:
The “dis ”-annotated data elements will use the same amount of data on the GPU
as on the cluster. For “cp ” data elements, it has to be decided if the local copies on
all processors are identical; if so, only one copy has to be kept in the device memory
from which all GPU processors can read and, thus, requirements are divided by
p. The data-parallel functions’ memory requirements remain unchanged. Now, for
each transition, the total amount of required device memory is added up and is
compared to the device memory available on a given GPU. As described in steps
1 and 2, we identified four data-parallel functions: the proj and update functions
of the PSD strategy, and the forwproj and update function of the ISD strategy.

In CUDA, memory latency is hidden by starting several threads per shader
unit [8]. Hence, the identified data-parallel functions should provide fine-grained
parallelism in order to obtain a fast GPU implementation. However, the “dis”
prefix with which we identified data-parallel functions (step 1) implies that one
thread can be started for each input data element and, thus, fine granularity of
the identified functions is guaranteed.

In general, memory requirements are a function in the algorithm’s input pa-
rameters and input data size. For our particular algorithm, the memory require-
ments depend on the reconstruction image size and the number of events per
subset. In order to simplify matters in this example, we do not determine memory
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requirements as a function of parameters, but rather use the particular memory
requirements of the reconstruction setup that delivers the most accurate images
for our scanner: The image size is 150 · 150 · 280 = 6, 300, 000 voxels which take
up 24MB memory and the number of events per subset are 1,000,000 which take
up 23MB memory.

Steps 3 and 4, applied to the forwproj function, show that the whole sys-
tem matrix for each subset Al ∈ R

mxN (m is the number of events per subset),
which takes up 4.4GB memory, has to be kept in the device memory, because
it is used again as input to the update function. Thus the memory require-
ments add up to 24MB+p*4MB+4.4GB≈4.9GB. With only 768 MB device
memory, the ISD strategy is not feasible to be computed on the GPU. The
update function of the PSD strategy only requires 72MB device memory (see
Fig. 4) and thus can be parallelized on the GPU. The proj function also re-
quires 47MB+p*3KB+p*24MB of device memory (see the sum above the proj
transition in Fig. 4). With the p=128 shader units of our GPU, this adds up to
more than 3 GB, with again only 768MB device memory available. We needed
to adapt the original PSD strategy and, therefore, decided not to use separate
proj and reduce steps. Now, each GPU thread writes directly to the shared cl

that resides on the device memory.
One general problem of the CUDA library is its lack of mechanisms for avoid-

ing race conditions (e.g., semaphores). In our case, it would be helpful to protect
cl with a semaphore and thus allow only one thread at a time to write its result.
Since this is not supported by CUDA, we decided to allow race conditions due
to the following considerations:

– When two threads add one float concurrently to cl,i, then, in the worst case,
one thread overwrites the result of another; i.e., a small error occurs in cl,i.

– The size of cl is high as compared to the number of parallel writing threads
(in our case 6,300,000 voxels vs. 128 threads); therefore, the number of race
conditions and thus incorrect voxels is small. We estimated experimentally
that only for about 0.04% of all writes to cl, a race condition occurs.

– Most importantly: due to the few and very small incorrectnesses in the image,
the maximum relative error over all voxels is less than 1%, which leads to no
visual effect on the reconstructed images. However, in order to use the GPU
implementation in practice, we will perform a study with many different sets
of input data and parameters studied by medical doctors.

With these adjustments to the proj function, its memory requirements only add
up to 71MB+p*3KB≈72MB for p = 128. But even in the best case, where
the maximum number of p = 12288 threads are started simultaneously, memory
requirements only add up to ≈107MB.

The calculation of one subset on p SIMD processors of the GPU now proceeds
as follows:

– read: The CPU reads the subsets’ events and copies them to the GPU

– proj: All processors kj compute simultaneously cl,j =
∑

i∈Sl,j
(Ai)

t 1
Aifl

,

cl,j is directly added to cl.
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– update: f is divided into sub-images f j and each processor computes f j
l+1 =

f j
l cj

l on its sub-image.

If the target parallel machine has two GPUs available, we have two separate
device memories. The computations in this case can proceed as above, with each
GPU computing half of the events during the forward-projections and half of
the sub-images during the computation of fl+1. After all forward-projections,
the two cls residing on the device memories are summed up.

The resulting parallel implementation is reusable for different types of PET
scanners: a new scanner can be introduced by simply exchanging the sequential
projection that computes ai in the proj function. For traditional implementa-
tions that parallelize the projection itself, this exchange would require a new,
complicated and error-prone parallelization. Furthermore, our implementation is
modular, because new functions can be added or interchanged easily; this could
be helpful, e.g., when pre- and postprocessing steps are added.

5 Experimental Results (Distributed-Memory vs. GPU)

In our performance experiments, we studied the reconstruction of data collected
by the quadHIDAC small-animal PET scanner [10]. We used 10 million events
collected during a mouse scan divided in 10 subsets. The reconstruction image
has the size N = (150 × 150 × 280).

Based on a sequential C++ implementation of the list-mode OSEM algo-
rithm, we used MPI (Message Passing Interface) for our parallelization on a
distributed-memory cluster using the two presented decomposition strategies.
We performed runtime experiments on the Arminius cluster with 200 Dual IN-
TEL Xeon 3.2 GHZ 64bit nodes, each with 4 GByte main memory, connected
by an InfiniBand network. In order to obtain results for the distributed-memory
architecture, we used only one of each node’s processors. To exploit the fast
InfiniBand interconnect, we used the Scali MPI Connect [9] implementation on
this machine. In this typical setup, the PSD strategy outperforms the ISD strat-
egy. We measured a minimum runtime of the PSD strategy on 32 processors of

Fig. 6. Runtimes on cluster and GPUs
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17.2 seconds (see Fig. 6). With more processors, runtime deteriorates due to the
large amounts of data to be communicated per subset. Since sequential runtime
measured on one processor of this cluster is about 233 seconds, we achieved a
speedup of 13.5 on 32 processors.

For our experiments with graphics processing units, we used two GPUs of the
type NVIDIA GeForce 8800 GTX. They have 16 SIMD-multiprocessors, each
with 8 shader units running at 1.35 GHz. The device memory is 768MB. Our
CPU is a 2.4GHz dual-core processor with 2GB main memory. The average mea-
sured runtime is about 32 seconds on one GPU, see Fig. 6. With two GPUs, we
achieve a runtime of about 23 seconds. Hence, our parallel GPU parallelization
is only about 1.3 times slower than the cluster reconstruction with 32 processors.

We observe similar scalability results for other typical image sizes N on the clus-
ter as well as on the GPU. However, images with N > 5 · 108 cannot be recon-
structed on the GPU because of the small amount of available device memory. This
is irrelevant for the quadHIDAC scanner or any other PET scanner at our univer-
sity hospital, but it could become an issue for future, higher-resolution scanners.

6 Conclusion

We presented a novel approach to systematically develop parallel algorithms
for GPUs starting from parallel algorithms for distributed-memory machines.
Although we so far limited our considerations to medical imaging, the HLPN
approach can be used to analyze data-parallelism and memory requirements
for parallel algorithms with the two following properties: First, the distributed-
memory implementation has to be made up of separable functions; i.e., each
function output is used as input for the subsequent function and no functions
are called from within other functions. Second, the memory requirements of
the parallel functions can be determined as a function of input parameters and
the size of input data. One of the areas where these requirements are fulfilled,
are iterative linear system solvers, and, in particular, medical image reconstruc-
tion algorithms like the list-mode OSEM algorithm. For the algorithms with
data-parallel functions that fulfill the memory requirements, a fast and modular
implementation on GPUs can be developed systematically.

For a 3D medical imaging algorithm, we demonstrated in detail how our ap-
proach is used to develop a fast, modular and reusable implementation on GPUs.
The runtime of the parallel algorithm on two state-of-the-art GPUs is 1.3 times
slower than the runtime on 32 processors of a computer cluster. If we take into
account the much higher costs for purchase and even more for administration of a
distributed-memory cluster, we come to the conclusion that GPU parallelization
is a cost-effective choice for list-mode OSEM medical image reconstruction.
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