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Abstract

Background: Genome wide association studies (GWAS) are applied to identify genetic loci, which are associated

with complex traits and human diseases. Analogous to the evolution of gene expression analyses, pathway analyses

have emerged as important tools to uncover functional networks of genome-wide association data. Usually,

pathway analyses combine statistical methods with a priori available biological knowledge. To determine significance

thresholds for associated pathways, correction for multiple testing and over-representation permutation testing is

applied.

Results: We systematically investigated the impact of three different permutation test approaches for over-representation

analysis to detect false positive pathway candidates and evaluate them on genome-wide association data of Dilated

Cardiomyopathy (DCM) and Ulcerative Colitis (UC). Our results provide evidence that the gold standard - permuting the

case–control status – effectively improves specificity of GWAS pathway analysis. Although permutation of SNPs does not

maintain linkage disequilibrium (LD), these permutations represent an alternative for GWAS data when case–control

permutations are not possible. Gene permutations, however, did not add significantly to the specificity. Finally, we provide

estimates on the required number of permutations for the investigated approaches.

Conclusions: To discover potential false positive functional pathway candidates and to support the results from

standard statistical tests such as the Hypergeometric test, permutation tests of case control data should be carried out.

The most reasonable alternative was case–control permutation, if this is not possible, SNP permutations may be carried

out. Our study also demonstrates that significance values converge rapidly with an increasing number of permutations.

By applying the described statistical framework we were able to discover axon guidance, focal adhesion and calcium

signaling as important DCM-related pathways and Intestinal immune network for IgA production as most significant

UC pathway.
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Background
Genome wide association studies (GWAS) examine a

substantial set of common genetic variants in larger co-

horts of individuals in order to associate single variants

or sets of variants with biological traits. Hence, GWAS

are usually able to detect significant associations be-

tween single nucleotide polymorphisms (SNPs) and hu-

man diseases. Since the publication of the first GWAS

less than one decade ago in 2005 (e.g. [1] and [2]), far

over 1,000 GWAS have been carried out and published.

The “Catalog of Published Genome-Wide Association

Studies” [3] covers only those GWAS attempting to

assay at least 100,000 SNPs in the initial stage and fur-

thermore considers only SNP-trait associations with p-

values < 1.0 × 10−5. This catalogue lists currently (May,

13th, 2014) 1,920 different papers in PubMed for 1,079

different traits/diseases with 13,380 associations between

variants and the respective traits (for each publication at

most 50 SNPs are considered). Among the most com-

prehensive GWAS considering the screened sample size,

Teslovich and co-workers [4] investigated the genome

for common variants associated with plasma lipids in

more than 100,000 individuals of European ancestry and

reported over 95 significantly associated loci.

The evolution of GWAS analysis can be compared to

the past evolution of expression microarray analysis.

While in first instance the expression of restricted sets

of genes has been analyzed, more substantial sets of gene

expression have been investigated later, and finally, more

sophisticated bioinformatics approaches have been im-

plemented to understand the biological importance and

relevance of the high-throughput gene expression data.

To this end, a large set of gene set enrichment tools and

pathway analysis programs was developed such that

pathway analyses are now a standard for gene expression

studies (no matter whether expression data are ge-

nerated through microarrays or high-throughput tran-

scriptome sequencing). Historically, over-representation

analysis (ORA) was the first method applied, which sta-

tistically evaluates the fraction of genes (e.g. all signifi-

cantly over-expressed genes in a certain disease entity)

in a particular biochemical pathway and compares it to a

background distribution (e.g. all screened genes in the

study that are on the same pathway). Then for each

separate pathway a significance value is calculated based

on common test statistics, e.g., Hypergeometric distri-

bution, binomial distribution or chi-square distribution.

Holmans and co-workers have published a similar ex-

ample of a respective method, however not relying on a

standard distribution [5]. In their ALIGATOR approach

significant SNPs are mapped to significantly associated

genes, each gene is however counted only once regard-

less of the total number of significantly associated SNPs.

To calculate significance values SNPs were drawn

randomly from all SNPs such that the genes containing

this SNP were added to the list of significant genes.

Overall, 5,000 random gene lists were generated and em-

pirical p-values were calculated for all GO categories

with more than 2 significant genes. Following these

over-representation methods, Functional Class Scoring

(FCS) approaches were developed by the scientific com-

munity [6], where first a gene-level statistic is calculated

(e.g. relying on ANOVA, Q-statistic, signal-to-noise ra-

tio, t-test, WMW-test or Z-scores). Next, the gene-level

statistics is aggregated into a pathway level statistics.

Here, one of the most commonly applied approaches is

the Gene Set Enrichment Analysis [7] (GSEA), which re-

lies on a Kolmogorov-Smirnov-like test statistic. To de-

termine the significance level either a self-contained null

hypothesis can be applied where class labels are per-

muted, or a competitive null hypothesis can be applied

where gene labels for each pathway are permuted, and

the set of genes in the pathway is compared to a set of

genes that are not in the pathway. While usually signifi-

cance scores have to be calculated by permutation tests,

at least in the case of an unweighted gene set enrich-

ment analysis, an exact calculation using dynamic pro-

gramming has been developed [8]. GSEA approaches

that originally were applied in gene expression studies

have already been successfully adapted to GWAS [9]. To

carry out over-representation analysis (ORA) and FCS

approaches a manifold of different stand-alone as well as

online tools has been developed over the past decades.

A review by Huang and co-workers lists as much as 68

different computational tools that were developed until

2008 [10].

Notably, ORA as well as FCS in their basic implemen-

tations do not consider pathway topologies but only sets

of genes. Here, genes that are on different parts of the

network have the same meaning as genes that are dir-

ectly influencing each other. Since the direct relation

and interaction of genes can potentially add value to the

gene set analysis, a third generation of bioinformatics

tools has been implemented, covering the topology of

pathways. One class of tools combined classical algo-

rithms such as GSEA with pathway topology as imple-

mented in the FIDEPA algorithm [11]. Other examples

of pathway topology based algorithms include impact

factor based methods [12], NetGSA [13], ScorePAGE

[14]. Recently, we published an integer linear program-

ming approach for detecting significantly dysregulated

pathways in gene expression data [15,16].

While gene set and pathway analyses have become a

standard for gene expression profiling, only a fraction of

published GWAS studies made use of such analyses.

There is a particular challenge as described by Khatri

et al. [6], namely low resolution biological resources.

While GWAS data comprises the different genotypes for
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each SNP, the majority of knowledge bases (such as

KEGG [17], MetaCyc [18] or Reactome [19]) specify

which genes are actively involved in a particular path-

way. Thus, first a SNP to gene and then a gene to path-

way mapping has to be carried out. To this end, several

approaches exist, for example, in the case of the “Path-

ways of Distinction Analysis” (PoDA, [20]) just the most

significant SNP is considered for each gene in order to

get a single reference per gene. This however means that

the respective SNP is not necessarily significantly associ-

ated with the considered disease. Besides comprehensive

scoring approaches such as SPOT [21], another straight-

forward approach treats genes as significant where at

least one significant SNP has been detected. A compre-

hensive comparison of several algorithms for pathway

analysis using Crohn’s Disease is presented in [22].

Liu et al. evaluate ORA and GSEA approaches for

Alzheimer Disease [23]. Additional approaches are listed

in the review by Wang et al. [24].

Additionally, although cohort sizes of GWAS studies

are very large and frequently thousands of patients are

screened, no SNP may pass genome wide significance

after adjustment. This may be due to the fact that the

considered trait actually does not depend on genetics in

the respective study or that the effect sizes are too small.

Here, pathway analysis can contribute to improve the

power, while the single genes are not significant the

overall pathway might be significant.

For all approaches it is essential to identify real associ-

ations and reject as many false positive results as pos-

sible. In the present study, we systematically explore the

effect of different permutation tests in two sets of

GWAS data. The most common approach is permuting

the case–control status (column permutations). How-

ever, frequently raw data are not available but rather ag-

gregated SNP information. In addition, for web-based

applications, uploading of raw data that are required for

permuting case–control status can be too time-

consuming. Thus, we also evaluated strategies that do

not require the case–control status, including permuting

significance values of the original case–control status

(row permutation I) and randomly permuting the gene

labels instead of the significance values of SNPs (row

permutation II). In the latter case, the LD is maintained

and the sizes of random gene sets correspond to the ori-

ginal size of gene sets. Beyond testing the different per-

mutation test strategies, we assess the required number

of permutations to reach statistically stable results. The

pathway computations were conducted exemplary on

two GWAS datasets for Dilated Cardiomyopathy (DCM)

and for Ulcerative Colitis (UC) using the public gene set

analysis toolkit GeneTrail [25,26]. Our study addresses

the questions, which permutation strategy should be ap-

plied to GWAS data and how many permutations are

required in order to reach reliable results. In addition,

our combined analysis strategy provides novel insights

into the molecular pathways involved in DCM.

Results

Influence of permutation tests on the number of

significant genes

First, we evaluated how different permutation tests influ-

ence the number of significant genes. As lead application

we employed our method to a GWAS dataset of 909 pa-

tients suffering from Dilated Cardiomyopathies (DCM)

and 2,120 population-based controls. As first analytical

step, we matched all SNPs to the respective genes ac-

cording to the information provided by the manufac-

turer. When one SNP mapped to multiple genes, all

genes were taken into account. Next, genes were consid-

ered as significant, if at least a single SNP was discov-

ered in that gene (significance value of p < 0.05, adjusted

for GC and covariates). The SNPs were not adjusted for

multiple testing since a standard Bonferroni correction

did not yield any individual genome-wide significant

SNPs in this study. For the original data set we calcu-

lated 6,226 significantly associated genes. By carrying

out 20,000 permutation runs across the columns of the

GWAS matrix, corresponding to permutation of case–

control status, we found a significantly decreased (z-

score based p-value <10−4) number of genes in the range

of 5,500 genes per permutation test, as indicated by the

red distribution in the Histogram plot (Figure 1). We

likewise carried out 20,000 permutations across the rows

of the GWAS matrix, corresponding to randomly per-

muting the significance values per SNP. Hereby we cal-

culated a significantly increased (z-score based p-value

of <10−4) number of significantly associated genes

(around 8,000 per permutation test run), as demon-

strated by the green distribution in Figure 1. Altogether,

both distributions were significantly different from each

other (two-tailed unpaired t-test of <10−10). In the third

permutation test strategy, i.e. permuting the genes, the

number of significant genes was preserved. The sub-

stantial difference between the three analyses is well

explained by the completely different permutation ap-

proaches. While e.g. for the column permutations corre-

lations between SNPs are obtained, this information is

completely lost in the case of permuting SNPs. This fact

is of particular importance when hypotheses are tested

that combine information across SNPs.

Moreover, we also evaluated the influence of the alpha

level on the number of significant SNPs and decreased

the threshold to 0.01, 0.001, 0.0001 and 0.0001, respect-

ively. In this analysis, we found a rapidly decreasing

number of significant genes although we define a gene

as significant if it contains just a single significant SNP.

Specifically, the number of genes decreased to 39.7%,
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7.5%, 1.3% and 0.2% with just 13 genes remaining for

the lowest threshold of 0.0001.

Influence of permutation tests on pathway analysis

Next, we explored the influence of the different permu-

tation strategies for GWAS pathway analyses relying on

the Hypergeometric distribution. By using GeneTrail, we

investigated 241 different biochemical pathways from

the KEGG database and studied whether more or less

genes than expected by chance are located on each path-

way. The respective pathways are then denominated as

enriched or depleted, respectively. While the depleted

pathways contain the genes that are not affected by the

disease, the enriched pathways are significantly altered.

Therefore, here we focus on enriched pathways and pro-

vide the depleted pathways for completeness.

Analogously to the single gene analysis, we evaluated

the influence of the alpha level on the pathway analysis

to calculate significant SNPs by decreasing the threshold

from 0.05 to 0.01, 0.001, 0.0001 and 0.0001, respectively.

Please note that only the significance level for identifica-

tion of SNPs has been varied, while the threshold to dis-

cover significant pathways was in all analyses 0.05

following adjustment for multiple testing. For the ori-

ginal alpha level of 0.05 (gene set size: 6,226), we calcu-

lated 54 significant pathways after adjusting for multiple

testing. By considering SNPs with significance below

0.01 (gene set size: 2,470), just 11 enriched pathways

remained. When increasing the stringency of the thresh-

old to 0.001 (gene set size: 466), no significant pathway

remained. These results suggest that 0.05 or 0.01 are

reasonable thresholds. The results in the manuscript are

based on the least stringent alpha level of 0.05.

For each pathway, we calculated four different signifi-

cance values. Two significance values correspond to the

two distributions described above and outlined in

Figure 1 (column permutations, row permutations I). The

third p-value corresponds to the permutation of genes

(row permutation II) and the fourth p-value corresponds

to the original data, respectively. In the latter case, signifi-

cance values were computed using the Hypergeometric

distribution and significance values were adjusted for mul-

tiple testing using the Benjamini Hochberg approach [27].

For the permutation tests, we calculated a significance

score for each pathway p as the fraction of all 20,000

column and row permutation tests with higher signifi-

cance for pathway p as the original data set. The signifi-

cance values resulting from the four sets of pathway

analysis are presented as bar chart in Additional file 1:

Figure S1. While column permutation tests (average

p-value of 0.33) and row permutation tests I (average

p-value of 0.36) were clearly less significant than the ori-

ginal results (average p-value of 0.24), the second row

permutation test strategy showed substantially smaller

p-values (average p-value of 0.07). As two-tailed paired

t-tests indicate, the difference between original p-values

and row permutations I was higher (2*10−13) than the

dissimilarity between original p-values and column

permutations (2*10−10). The highest difference was

however calculated for row permutations II with a

p-value of < 10−16. Although row I and column permu-

tation tests showed a slightly higher concordance to

each other, the difference between both approaches was

still significant (5*10−7). All significance values for all

pathways and all permutation tests are provided in

Additional file 2: Table S1.

The original motivation for permutation tests is to

cross-check the p-values obtained by classical tests such

as the Hypergeometric distribution to discover putative

false positive pathways. Based on the results above, we

conclude that column permutation as well as row I per-

mutation tests highlight relevant pathways. In contrast,

row permutation tests II in all cases confirmed the re-

sults of the Hypergeometric test, even with substantially

lower significance values, not adding to the specificity of

the pathway analysis.

Consequently, we focus in the following on the inter-

pretation of column permutation tests and row permuta-

tion tests I. To understand the differences between the

Hypergeometric test and the two remaining permutation

tests, we calculated the overlap in significant pathways.

As presented in the area proportional Venn diagram in

Figure 1 The two distributions represent the result of the

column and row I permutation test approach. The original data

set revealed a total of 6,226 significantly associated genes (dashed

line). Following permutations of the case–control status (red), a

significantly decreased number of genes is discovered to be

significant. Following the SNP permutations (row permutations I), a

significantly increased number of genes was discovered to be

significant. The second row based permutation strategy preserved

the number of genes (6,226). The respective gene sets have been

used as input for the pathway analysis.
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Figure 2, 79 distinct KEGG pathways were significant in

at least one of the three tests. The highest number of

significant pathways was discovered for the original data

(54), while permutation testing for columns and rows re-

vealed 41 and 45 significant pathways, respectively. Re-

markably, the overlap between all three tests was

substantial, with 20 pathways remaining significant in all

three tested scenarios. The most significant of these

pathways included “axon guidance”, “calcium signaling”

and “focal adhesion”. All 20 pathways that remained sig-

nificant in the three analyses are shown in Figure 3.

Here, the distance from the center reflects each path-

way’s significance, where larger distances correspond to

increased significance. All pathways outside of the area

represented in the center of Figure 3 are significant at a

threshold of p = 0.05. As this figure shows, the concord-

ance between permutation of rows and columns appears

generally high, at least for the subset of 20 pathways, as

demonstrated by a correlation of 0.84. As mentioned

above, some pathways were highly significant (p-value

<0.005). Notably, the three most significant pathways

with respect to the original distribution belonged to the

20 pathways being significant in all three tests such that

row- as well as column permutations confirmed the ori-

ginal results. These networks contain “axon guidance”,

“calcium signaling pathway” and “focal adhesion” with

adjusted p-values of below 10−5 (original set). As de-

tailed in the discussion section, all three pathways are

important key networks for cardiovascular disorders. Be-

sides these, further 26 pathways have been excluded by

both approaches, being significant just in the original

data set results (Additional file 3: Figure S2).

Again, column and row permutation tests I showed a

generally good concordance in marking potentially

interesting candidate pathways such as “vascular smooth

muscle contraction” or “dilated cardiomyopathy” as likely

false positives. Notably, for these pathways the second row

permutation test strategy found the pathways as highly

significant. In case of “dilated cardiomyopathy” the ori-

ginal p-value was 0.02 while row permutations II reveal a

p-value of 0.0003. For “vascular smooth muscle contrac-

tion” the original p-value was 0.01 and for row permuta-

tions II as low as 10−4. A potential reason is a size bias

since the genes included in both networks are substan-

tially longer compared to the average length of human

genes (p-values according to Wilcoxon Mann–Whitney

test of 2*10−8 and 2*10−6, respectively), demonstrating that

the applied column and row I based permutation ap-

proaches effectively handles this size bias while the second

row based permutation strategy does not.

Our analyses suggest that row I and column permuta-

tions provide fully concordant results and that one of the

two approaches will be sufficient. Nevertheless, while for

the total set of networks included in the Venn diagram in

Figure 2 (all pathways that are significant at least in a single

test) in 31 cases row and column permutation tests were

concordant according to an alpha level of 0.05 and fur-

ther 26 pathways were rejected by both strategies, in as

much as 22 cases discordance between row I and col-

umn permutation tests was observed. Specifically, in 5

cases only the original analysis and column permuta-

tions were significant. In 3 cases only the original ana-

lysis and row permutations were significant (details are

provided in Figure 3B); in 5 and 9 cases, only row per-

mutations or respective column permutations were sig-

nificant. Notably, in as many as 11 cases significant

results in row and column permutations were discov-

ered while original results did not show any significance

Figure 2 Venn diagram showing the overlap between the three different approaches.
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(see Figure 3C). It is however worth mentioning that a

substantial fraction of these 11 paths still exhibited low

p-values, e.g. “Osteoclast differentiation” and the “T cell

receptor signaling pathway” slightly missing the alpha

level in the original analysis with p-values of 0.051 and

0.057. A total of 7 pathways revealed Hypergeometric

test p-values below 0.1 (see Additional file 2: Table S1).

Since row I and column permutation results do not

agree in all cases, a detailed consideration of the results

is required. An example where row permutation tests

yielded a significant enrichment while column permu-

tations revealed a higher and non-significant value in-

cludes the “long term potentiation”, as presented in

Figure 4 (panels A and C). Vice versa, panels B and D

of that figure visualize an example where column

permutations provided a significant result while row

permutations were not significant (hypertrophic

cardiomyopathy, HCM). In both cases, large parts of

genes participating in the pathways are significant

in the GWAS, highlighted in red in the representations

on the lower part of Figure 4. Additional 11 pathways

where the Hypergeometric tests did not yield

any significant result, but permutation tests did, in-

clude Thiamine, Phenylalanine metabolism, Shigellosis,

Hematopoietic cell lineage, Taste transduction, Pancre-

atic cancer, Ubiquinone and other terpenoid-quinone

biosynthesis, T cell receptor signaling, Osteoclast differ-

entiation, Leishmaniasis and Amino sugar and nucleo-

tide sugar metabolism. These pathways are however

only loosely connected to DCM.

Our analyses considered significantly enriched as well

as depleted pathways, representing both tails of the dis-

tribution of all permutation tests. In many cases it makes

sense to treat enriched and depleted pathways separately

from each other, corresponding to a one-tailed analysis.

While the enriched pathways are most affected by the

disease, depleted pathways may provide information on

molecular networks that are not affected by the trait of

interest. We thus calculated for each of the 241 path-

ways how many percent of the row and column permu-

tation tests are enriched and depleted. As shown in

Figure 5, row and column permutation tests revealed on

average a good correlation as indicated by the R2 value

of 0.87. Here, the significantly enriched and depleted

pathways are highlighted in green and red. Notably,

many pathways are enriched or depleted in almost all

permutation test runs including 32 pathways that are

100% enriched and located in the upper right corner

in Figure 5, and 8 pathways that are 100% depleted

and located in the lower left corner of this figure. The

pathways in the upper right corner also contain the

three previously described pathways “axon guidance”,

“calcium signaling pathway” and “focal adhesion”. Re-

markably, four pathways are clear outliers in Figure 5

(upper middle part of the diagram), containing “Cya-

noamino acid metabolism”, “fatty acid biosynthesis”,

“vitamin B6 metabolism” and “butirosin and neomycin

biosynthesis”. These are likely false positives due to a

limited number of SNPs in the genes of the respective

Figure 3 Overview on the 20 significant pathways across all

approaches (Figure 3A), in both permutation tests (Figure 3B)

and just in original calculations (Figure 3C). The figure presents the

significance values for the 20 pathways (ordered clockwise according

to decreasing significance as calculated by the Hypergeometric

test), showing p-values < 0.05 for all three approaches. The further

away from the middle the higher the significance scores (on a

logarithmic scale). The grey shaded area in the middle corresponds

to non-significant pathways. Significance values have been cut

at 10−5.
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pathways or a small number of participants in the

pathway. To effectively adjust for such artifacts, the

analysis could be restricted on larger pathways, how-

ever, leading to a loss of information on smaller paths.

All significance values for enriched and depleted path-

ways are provided in Additional file 4: Table S3.

Required number of permutation tests

Another important question in GWAS pathway analysis

is how many permutations have to be carried out in

order to obtain stable results with respect to the consid-

ered pathways? Here, one common choice is to generate

1,000 different permutations, just a small fraction of the

exponentially growing permutation number. We ex-

plored the Coefficient of Variation (CV), the ratio of the

standard deviation to the mean as potential criterion for

estimating the required number of permutations. In de-

tail, we started by sampling 100 of the 20,000 permuta-

tion tests and stepwise increased the number. For each

permutation set size 1,000 random drawings were car-

ried out to calculate average value, standard deviation

and CV value for column as well as row permutations.

First, we considered the average and standard deviation

for all pathways with 1,000, 2,000 and 5,000 permutation

tests for row and column permutations separately.

Additional file 5: Figure S3 shows exemplarily the de-

pendency between column permutation test number and

CV. Particularly for the significant pathways on the left

of the vertical black line (p = 0.05), the difference be-

tween 2,000 permutations (blue) and 5,000 permutations

(green) was not significantly larger than between 1,000

and 2,000 permutations. To exactly assess at which

number of permutations the significance values converge

for a certain pathway, we estimated the influence of the

number of column and row permutations on the signifi-

cance for “pathways in cancer”. Figure 6 presents the

average significance score and the respective standard

deviation for up to 15,000 of these permutations in the

upper panel. In the lower panel of that figure the coeffi-

cient of variation for both, column and row permuta-

tions, is presented. Here, it can be seen that significance

values converge rapidly, resulting in our example in a

moderate coefficient of variation, such that in our case

indeed 2,000 permutations were sufficient to estimate

Figure 4 Difference between row- and column permutations. The histograms in panel A and B show for two pathways the significance

values as calculated for row and column permutations, respectively. Panels C and D present the respective pathways as provided by KEGG. Here,

red marked genes correspond to significant genes in our GWAS.
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the actual significance value in a reasonably small confi-

dence interval and coefficients of variation of approxi-

mately 0.1.

Ulcerative Colitis (UC) pathways

To validate our approach, we evaluated GWAS data

measured from Ulcerative Colitis (UC) patients. Analo-

gous to our results in the previous chapters, we focused

on the most complex permutation test approach and

carried out 10,000 permutations of the case–control sta-

tus permutations. Following our original analysis strat-

egy, we selected an alpha level of 0.05 to consider a SNP

as significant. For the original data set we calculated

7,082 significant genes. In line with the results for DCM,

we also found a significantly decreased number of genes

in the permutation tests with an average of 6,775 genes.

In the enrichment analysis we discovered as much as

51 KEGG pathways to be significant following adjust-

ment for multiple testing at an alpha level of 0.05. In the

subsequent evaluation of the permutation tests, 30 of

these pathways (59%) were marked as potentially false

positive paths and 21 remained significant. The two

most significant networks with p-values of 6*10−4 and

8*10−4, respectively were “Intestinal immune network

for IgA production” and “Toxoplasmosis”. The next

pathways with significance values of 0.001, 0.002 and

0.003 contain “Maturity onset diabetes of the young”,

“Fat digestion and absorption” and “Glycerophospholipid

metabolism”. The first pathway that has been excluded

by the permutation tests was “Cell adhesion molecules”.

All significance values are provided in Additional file 6:

Table S2.

Next, we evaluated the required number of permuta-

tions for the UC data set with the same approach as for

DCM. Corresponding to our previous results on DCM,

we again did not discover substantial differences for the

relevant pathways (p = 0.05). The difference between

2,000 permutations (blue) and 5,000 permutations

(green) was not significantly larger than between 1,000

and 2,000 permutations (Additional file 7: Figure S4).

Since this analysis revealed that for very significant path-

ways very small permutation test numbers suffice, we

again picked a pathway with a p-value in the range of

0.05 in order to estimate the finally required number of

permutations. As an example, we investigated the path-

way “RNA polymerase”. As was observed in the case of

DCM, the significance values rapidly converged for this

pathway. Additional file 8: Figure S5 demonstrates that,

again, significance values rapidly converge with increas-

ing permutation test number and that for permutation

Figure 5 Comparison between enriched and depleted pathways. Each dot corresponds to one pathway. Red dots correspond to depleted

and green dots to enriched pathways.
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test numbers between 1,000 and 2,000 coefficients of

variation below 10% can be obtained. Generally, the re-

sults calculated for UC matched well to the results ob-

tained for DCM.

Comparison of DCM and UC

Finally, we investigated on the overlap of DCM and UC

genes and pathways. Of the 7,082 genes calculated for

UC, 3,919 (55%) were likewise detected for DCM,

representing a substantial overlap. Considering the

pathways that are significant according to the Hyper-

geometric distribution, still 24 of the 51 UC pathways

are overlapping with DCM (47%). After applying the

permutation tests, however just 2 of the 21 pathways

are overlapping between both diseases (10%). The re-

spective pathways are “GnRH signaling pathway” as

well as “Toxoplasmosis”. This analysis indicates that

the permutation tests filter out a substantial part of

false positive pathway candidates.

Discussion

Pathway analysis for GWAS has already been applied to

various diseases such as pancreatic cancer [28], type 2

diabetes [29], Alzheimer [23], non-syndromic cleft lip

[30] and many others. In our study we explored pathways

in a GWAS of dilated cardiomyopathy and at the same

time systematically evaluated different permutation test

strategies. While we obtain reliable results using a gene-

set based approach, relying on an over-representation sta-

tistics which is calculated via the Hypergeometric test,

topology based methods such as scorePAGE [14] or

optimization based algorithms [15,16] should be consid-

ered to improve the signal to noise ratio in GWAS and

enhance the systems understanding of human pathogenic

processes. Yet, there remain several challenges in GWAS

pathway analysis:

The first challenge is that existing pathway resources

such as KEGG having a lower resolution and comprising

relatively few genes compared to genome-wide SNP

Figure 6 Influence of the number of permutations. The upper panel of the figure shows for column (red) and row (green) permutation tests

the average significance value and the standard deviation for “Pathways in cancer”. The lower panel shows the coefficient of variation (CV) for

both approaches.
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datasets. Additionally, GWAS consider multiple variants

in each single gene and even more variants in non-

coding regions. Thus, associated variants first have to be

assigned to genes and significance scores per gene have

to be calculated. Here, various algorithms such as SPOT

[21] have been developed. Straightforward approaches

treat genes as significant where at least x significant

SNPs have been detected in that gene. This however

may introduce a bias towards longer genes, as we dem-

onstrate in our study. Here, the permutation tests of

rows and columns were very effective to account for po-

tential size bias. Other approaches that could be applied

in order to take gene size into account are to normalize

the number of significant variants per gene by the gene

length or by the total number of variants on this gene in-

cluded in the study. We explored the respective ap-

proaches but did not discover improved results compared

to the straightforward method employed in our study.

Another challenge is significance value calculation of

permutation tests and permutation test numbers to be

carried out. Generally, the significance score for permu-

tation tests is calculated as fraction of all permutations

with more significant result than in the original analysis.

To avoid p-values of zero, the minimal significance score

to be reached by this method is 1/(# of permutations).

One approach to account for this is to calculate p-values

based on tail approximation. Knijnenburg and co-

workers [31] present an algorithm where the tail of the

distribution of permutation values is approximated by a

generalized Pareto distribution, which accurately esti-

mated significance values. Reducing the number of per-

mutations is of special importance when considering

many different biological categories. For our approach

few thousand permutations were sufficient in order to

gain valuable insights into the molecular pathogenesis of

DCM. For our ORA based approach it was however es-

sential to permute the case–control status as well as the

significance values of single SNPs. A similar claim has

already been made by Efron and Thibsirani [32] who ad-

dress the problem of identifying differentially expressed

groups of genes from a microarray experiment based on

the gene set enrichment analysis (GSEA).

Despite these challenges, pathway analysis helps to

understand pathogenic processes on a molecular level.

By applying the ORA based pathway analysis for DCM

we detected association signals to be enriched in differ-

ent pathways indicating their modulation by common

variants. Most importantly, three very highly significant

pathways (adjusted original p-values below 10−5) that

remained significant after column and row permutation

tests were discovered, including “axon guidance”, “calcium

signaling pathway” and “focal adhesion”. The “focal adhe-

sion pathway” for instance is an interacting network of

proteins that is essential for maintaining cardiomyocyte

integrity [33], mechanosensing, and mechanotransduction

[34-36]. Perturbations in this pathway have been observed

following chronic alterations in cardiac afterload and

maladaptive remodeling [37], all important in the

pathogenesis of DCM. While calcium signaling is very

obvious to be important for DCM - a disease with the

hallmark of disturbed calcium homeostasis - axon

guidance, which was most substantially enriched, rep-

resents a more surprising finding. It may indicate a

possible link between DCM and abnormalities in car-

diac innervation. For instance, chronic heart failure

and its progression are associated with increased sym-

pathetic tone, decreased vagal control, and regional

variability in innervation [38,39]. The components of the

axon guidance pathway are also involved in cardiac devel-

opment and differentiation [40,41]. Moreover, the main-

tenance of a normal cardiac function depends on the

autonomic nervous system, characterized by an intricate

balance between the sympathetic and parasympathetic ac-

tivity. Not only do they regulate the cardiac conduction

system, but also orchestrate heart rate and force of con-

traction. In congenital heart diseases as well as cardiac is-

chemia and heart failure, we can find altered cardiac

innervation, with their underlying developmental and

regulatory mechanisms. Vascular sympathetic innervation

is an important determinant of blood pressure and blood

flow, with recent data suggesting that vascular endothelial

cells (EC) express semaphorin 3A (SEMA3A), a repulsive

axon guidance cue. As such, Damon et al. have looked

closely at rat aortic vascular ECs expressing SEMA3A as

well as other class 3 semaphorins and found out that vas-

cular EC-derived SEMA3S inhibited sympathetic axon

growth [42]. Moreover, Fish et al. looked at the interaction

of members of the Slit family of secreted ligands with

Roundabout (Robo) receptors, which provide guidance

cues for many cell types. The Slit-Robo signaling pathway

is involved in the development of the pericardium, the

sinus horn myocardium, and the alignment of the caval

veins. In zebrafish, miR-218 and multiple Slit/Robo signal-

ing components are required for heart tube formation [40].

Mommersteeg et al. uncovered that reduced Slit3 binding

in the absence of Robo1 led to an impaired cardiac neural

crest survival, adhesion, and migration, with pericardial de-

fects created by abnormal localization of the caval veins

combined with ectopic pericardial cavity formation [43]. In

diseased hearts, nonuniform innervation promotes en-

hanced sympathetic activity and therefore life-threatening

arrhythmias. Miwa and collaborators demonstrated that

GDNF promotes sympathetic innervation in both native

cardiac cells as well as stem cell-derived cardiac cells, with

enhanced abnormal sympathetic innervation in patho-

logical conditions such as myocardial infarction or heart

transplantation due to sympathetic “nerve sprouting” as

well as disordered reinnervation [44].
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We also need to carefully consider the overlap of dif-

ferent pathways since biochemical networks e.g. from

the KEGG database are usually not disjoint. While no

gene was located in all three pathways we detected 4

genes common between “axon guidance” and “calcium

signaling” (PPP3R1, CHP2, PPP3CA, PPP3CC), 6 genes

in common between “calcium signaling” and “focal ad-

hesion” (PRKCB, PDGFRA, PRKCA, MYLK4, MYLK,

EGFR) as well as 11 genes in common between “axon

guidance” and “focal adhesion” (PAK1, GSK3B, PAK6,

ITGB1, PAK7, FYN, CDC42, ROCK1, ROCK2, MAPK1,

PTK2), representing likely key-players for DCM. After

removing overlapping genes respectively and repeating

the same analysis, the pathways did not remain signifi-

cant, demonstrating that these genes are of central im-

portance for the pathogenesis of DCM in these three

pathways. To further explore the role of these pathways

we removed all genes from the respective networks and

repeated the analysis. The results demonstrated a substan-

tial shift with much less significant results. The only cat-

egory which remained significant in this analysis and was

also significant in the original results and all permutation

test approaches, was “Graft-versus-host disease”. These re-

sults imply that not only the overlapping genes but also all

genes on the respective paths and, thus, the pathways

themselves play a crucial role in pathogenesis of DCM.

Permutation tests help to filter paths, which are strongly

significant in standard analyses such as the Hypergeo-

metric test, improving the specificity of network analyses.

Remarkably, already the fourth most significant pathway

in our original analysis, “neuroactive ligand-receptor inter-

action” with as many as 124 genes located within this net-

work and being highly significant (p-value of 9*10−6) was

ruled out by both permutation test strategies, where 3,564

permutations of case–control status and 7,510 permuta-

tions of original association p-values showed higher sig-

nificance than the originally calculated 9*10−6.

It is noteworthy that the permutation test strategies

led to significant results in 11 cases while the originally

applied ORA analysis did not reveal a significant result.

Some of the 11 paths showed still low p-values in the

range of 0.05 to 0.1. Nevertheless, few of these 11 path-

ways are related to heart failure at all. Genes on the T

cell receptor signaling pathway for example have shown

to categorize heart failure patients into three risk groups

[45]. The fact that the majority of these pathways is not

related to dilated cardiomyopathies further supports our

hypothesis that the consideration of Hypergeometric test

along with both permutation test strategies lead to the

most reasonable results from a biological perspective.

We repeated the most promising analysis strategy with

UC as second disease. After applying column-based per-

mutations we found a set of pathways, which was very

different from the DCM networks. Interestingly, we

discovered “Intestinal immune network for IgA produc-

tion” as most significant pathway. Immunoglobulin A

(IgA) is an antibody that plays a critical role in mucosal

immunity. More IgA is produced in mucosal linings than

all other types of antibody combined [46]. In its

secretory form, IgA is the main immunoglobulin found

in secretions from the gastrointestinal tract. Secretory

IgA protects the immunoglobulin from being degraded

by proteolytic enzymes, thus IgA can survive in the

harsh gastrointestinal tract environment and provide

protection against microbes that multiply in body secre-

tions. In the gut, IgA can bind to the mucus layer on top

of the epithelial cells to form a barrier capable of neutral-

izing threats before they reach the cell. Therefore, de-

creased or absent IgA, termed selective IgA deficiency, is a

clinically significant immunodeficiency. Recent genetic

studies have shown that a subgroup of patients with muta-

tions in known immunodeficiency genes has severe early

onset colitis. Ongoing projects now systematically screen

all known Immunodeficiency genes in early onset UC pa-

tients for mutations. It is further known that UC patients

have a dysregulated gut microbiome, i.e. especially the

bacterial diversity is reduced in UC patients. Given the im-

portance of IgA in maintaining intestinal homeostasis [47]

and in host-microbe interactions [48], an important role

of the IgA pathway in UC disease etiology is likely. All sig-

nificant genes on the core networks for UC as well as

DCM are summarized in Additional file 9: Table S4.

Although our results already revealed interesting bio-

logical results, future approaches that integrate the top-

ology of networks rather than sets of genes will enhance

the discovery of sub-networks or specific pathways that

are significantly perturbed in a certain trait.

It has to be mentioned that the three tested permutation

test approaches evaluate different null hypothesis. Particu-

larly, it should be noted that permuting SNPs explicitly

does not maintain the LD scattering any single, linked effect

among genes and potentially introducing inflation in the

null distribution. This effect may become even more im-

portant depending on how significant genes are calculated

from a list of significant SNPs. Thus, the results of the SNP

permutations have to be carefully evaluated and, where

possible, case–control permutations should be carried out.

Conclusions

Our study elucidates that for GWAS permutation of

case–control status as well as permutation of the ori-

ginal associations’ p-values are reasonable in order to

systematically uncover potential pathogenic pathways for

human diseases. Especially in the latter case, results re-

quire careful interpretation since this kind of permuta-

tion test does not maintain the LD. While the gold

standard of permuting case–control status should be

carried out, permuting SNPs appears to represent a
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reasonable alternative when case–control permutations

are not possible. The most specific results are obtained for

those pathways, where all three approaches yielded signifi-

cant results. Furthermore we demonstrate that few thou-

sand permutations are sufficient in order to obtain reliable

results for our data example. In summary, the following

parameters for the GWAS pathway analysis showed rea-

sonable performance in our analysis: significance thresh-

old for SNPs – 0.05; permutation approach – case–

control permutations; number of permutations – 2000;

significance threshold for pathways – 0.05. Further ana-

lyses on other traits will show whether these parameters

can be generalized or have to be adapted for other GWAS

studies.

Methods
The GWAS dataset for pathway analyses: data used for

pathway analyses was retrieved from Meder et al. [49]

Stage 1 (screening phase) of this GWAS on DCM con-

sisted of 909 individuals of European descent with DCM

recruited between 2005 to 2008 and 2,120 controls from

the PopGen and KORA population-based cohorts. Case–

control association tests were conducted assuming an

underlying additive genetic model with 1 degree of free-

dom (df) using the PLINK software package version 1.07

(http://pngu.mgh.harvard.edu/purcell/plink). SNPs exhi-

biting minor allele frequencies <3%, call rates ≤95%, or de-

viations from Hardy-Weinberg equilibrium considering a

significance level of 0.05 for controls and 0.001 for cases

were excluded from further analyses. Analyses were ad-

justed for sex and age of the included unmatched individ-

uals by means of logistic regression. The genomic

inflation factor was calculated as median of all SNPs di-

vided by the median of a chi square distribution with 1 de-

gree of freedom and was used to correct p-values of the

association analyses for genomic control (GC) in order to

effectively adjust for population stratification [50].

The second GWAS data set on Ulcerative Colitis was

extracted from Ellinghaus et al. [51], consisting of 987

UC cases and 2968 healthy controls from the PopGen

and KORA cohorts. All probands are of German descent

and were genotyped using the Affymetrix Genome-Wide

Human SNP Array 6.0 plattform (Affymetrix, Santa

Clara, CA). SNPs with a minor allele frequency < 1%, call

rates ≤ 95% or significant deviation from HWE in con-

trols (p < 10−4) were excluded from further analysis. As

for the DCM data set, case–control association tests

were conducted using the PLINK software package ver-

sion 1.07 assuming an underlying additive genetic model

with 1 degree of freedom. The analysis was adjusted for

Genomic Control by using logistic regression.

Permutation tests: In order to validate the significance

of results from pathway analyses, re-sampling approaches

are commonly applied. In our study we carried out a

permutation of the case–control status (permutation of

columns) as well as randomly shuffling the significance

value for each SNP (permutation of rows). First, the case–

control status has been randomly shuffled 20,000 times

and the respective runs have been evaluated according to

the methodology described earlier (in the following de-

noted as column permutations). In order to permute the

original associations’ p-values of the GWAS data analysis

as described above, original significance values have been

randomly assigned to arbitrary SNPs (in the following de-

noted as row permutations I). The latter procedure en-

sured that the total number of significant SNPs did not

vary between the various permutation test runs. Please

note that the number of significant genes nevertheless var-

ies between different permutation test runs. Additionally,

we tested a third permutation variant by randomly per-

muting the gene labels instead of the significance values of

SNPs (row permutations II). In this case, the LD is main-

tained and the sizes of random gene sets correspond to

the original size of gene sets.

Remarkably the number of possible permutations be-

tween those approaches is substantially different. Con-

sidering a GWAS with x cases and y controls and

covering z SNPs (or g Genes), a total of

xþ y
y

� �

¼
xþ yð Þ!

x! y!

different permutations of case–control status are possible

while up to z! (or g!) permutations of SNP significance

values (or genes) can be carried out. Notably, for usual

GWAS the number of SNPs is considerably higher than

the number of screened individuals (z > > x + y) such that

significantly more row permutations are possible.

In order to calculate a p-value for a pathway R based

on permutation tests (either row or column permuta-

tions) we applied the following approach:

pRperm ¼

X

N tot

n¼1

I pRn ≥ pRoriginal

� �

N tot

Here, pRn represents the p-value for pathway R in the

n-th permutation test, pRoriginal represents the original

p-value for that pathway as calculated by the Hypergeo-

metric distribution, Ntot equals the number of permuta-

tions carried out (20,000) and I() is the indicator

function, evaluating to 0 or 1, depending whether the

permutation test is less significant as compared to the

original p-value. In order to avoid significance values of

zero in case that no permutation test is more significant

than the original data a pseudo-count can be added.

Pathway analysis: A total of 60,001 different analysis

runs have been carried out, three times 20,000 permuta-

tion tests for each column and row permutations along
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with the original data set. All calculations have been car-

ried out with the freely available gene set analysis tool

GeneTrail [25]. As biological category 241 different KEGG

[17] pathways were considered such that altogether

around 10 million analyses were performed. To assess the

significance the Hypergeometric test was calculated. Given

a total of g significant genes of which k belong to pathway

R and a total of h genes of which i belong to R, the

p-value for enriched pathways is calculated as

X

g

j¼k

i
j

� �

h‐i
g‐j

� �

h
g

� �

and accordingly for depleted pathways as

X

k

j¼0

i
j

� �

h‐i
g‐j

� �

h
g

� �

After all significance values were calculated, p-values

were adjusted for multiple testing using the Benjamini

Hochberg approach [27]. All pathways with less than

two genes located onto that pathway were excluded from

significance value calculation. Besides KEGG pathways,

GeneTrail potentially offers to carry out calculation for a

substantially larger set of ten thousands of functional

biological categories including e.g. Gene Ontology [52],

chromosomal position, targets of certain miRNAs, tran-

scription factors from TRANSFAC [53] but also many

others.
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