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Abstract: Great progress has been made in recent years towards understanding the properties of

disordered electronic systems. In part, this is made possible by recent advances in quantum effective

medium methods which enable the study of disorder and electron-electronic interactions on equal

footing. They include dynamical mean-field theory and the Coherent Potential Approximation,

and their cluster extension, the dynamical cluster approximation. Despite their successes, these

methods do not enable the first-principles study of the strongly disordered regime, including the

effects of electronic localization. The main focus of this review is the recently developed typical

medium dynamical cluster approximation for disordered electronic systems. This method has been

constructed to capture disorder-induced localization and is based on a mapping of a lattice onto

a quantum cluster embedded in an effective typical medium, which is determined self-consistently.

Unlike the average effective medium-based methods mentioned above, typical medium-based

methods properly capture the states localized by disorder. The typical medium dynamical cluster

approximation not only provides the proper order parameter for Anderson localized states, but it can

also incorporate the full complexity of Density-Functional Theory (DFT)-derived potentials into the

analysis, including the effect of multiple bands, non-local disorder, and electron-electron interactions.

After a brief historical review of other numerical methods for disordered systems, we discuss

coarse-graining as a unifying principle for the development of translationally invariant quantum

cluster methods. Together, the Coherent Potential Approximation, the Dynamical Mean-Field Theory

and the Dynamical Cluster Approximation may be viewed as a single class of approximations

with a much-needed small parameter of the inverse cluster size which may be used to control

the approximation. We then present an overview of various recent applications of the typical

medium dynamical cluster approximation to a variety of models and systems, including single and

multiband Anderson model, and models with local and off-diagonal disorder. We then present

the application of the method to realistic systems in the framework of the DFT and demonstrate

that the resulting method can provide a systematic first-principles method validated by experiment
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and capable of making experimentally relevant predictions. We also discuss the application of the

typical medium dynamical cluster approximation to systems with disorder and electron-electron

interactions. Most significantly, we show that in the limits of strong disorder and weak interactions

treated perturbatively, that the phenomena of 3D localization, including a mobility edge, remains

intact. However, the metal-insulator transition is pushed to larger disorder values by the local

interactions. We also study the limits of strong disorder and strong interactions capable of producing

moment formation and screening, with a non-perturbative local approximation. Here, we find that

the Anderson localization quantum phase transition is accompanied by a quantum-critical fan in the

energy-disorder phase diagram.

Keywords: disordered electrons; Anderson localization; metal-insulator transition; coarse-graining;

typical medium; quantum cluster methods; first principles

1. Introduction

The metal-to-insulator transition (MIT) is one of the most spectacular effects in condensed matter

physics and materials science. The dramatic change in electrical properties of materials undergoing

such a transition is exploited in electronic devices that are components of data storage and memory

technology [1,2]. It is generally recognized that the underlying mechanism of MITs are the interplay of

electron correlation effects (Mott type) and disorder effects (Anderson type) [3–7]. Recent developments

in many-body physics make it possible to study these phenomena on equal footing rather than having

to disentangle the two.

The purpose of this review is to bring together the various developments and applications of

such a new method, namely the Typical Medium Dynamical Cluster Approach (TMDCA) [8–12], for

investigating interacting disordered quantum systems.

The organization of this article is as follows: Section 2 is dedicated to a few basic aspects of

modeling disorder in solids. We discuss a couple of examples of materials that are believed to have

relevant technological applications connected to the problem of localization. The corresponding

subsections deal with theoretical modeling. We then follow with a review of the Anderson and Mott

mechanisms leading to electronic localization, as well as their interplay.

In Section 3 we review three alternative numerical methods for solving the Anderson model and

discuss their advantages and limitations in chemically specific modeling. These methods are employed

in Section 7 to validate the developed formalism.

In Section 4 we shift our focus to the discussion of the effective medium methods. First, we present the

concept of coarse-graining. The coarse-graining procedure allows us to draw similarities present in infinite

dimension between the Dynamical Mean-Field Theory (DMFT) [13–19] of interacting electrons and the

Coherent Potential Approximation (CPA) [20–22] of non-interacting electrons in disordered external

potentials. We then provide a detailed discussion of the Dynamical Cluster Approximation [8,23,24],

a non-local effective medium approximation, which systematically incorporates the non-local correlation

effects missing in the DMFT and CPA by refining the course graining.

The central focus of this review is the typical medium theories of Anderson localization, which

are discussed in Section 5. We show how this method is used to study disorder-induced electron

localization. Starting from the single-site typical medium theory, we present its natural cluster

extension, discussing several algorithms for the self-consistent embedding of periodic clusters fulfilling

the original symmetries of the lattice in addition to other desirable properties. We present details

of how this method can be used to incorporate the full chemical complexity of various systems,

including off-diagonal disorder and multiband nature, along with the interplay of disorder and

electron-electron interactions.
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In Section 6 we discuss how the developed typical medium methods can be practically applied

to real materials. This is done in a three-step process in which DFT results are used to generate an

effective disordered Hamiltonian, which is passed to the typical medium cluster/single-site solver to

compute spectral densities and estimate the degree of localization. Section 7 reviews the application of

the TMDCA from single-band three-dimensional models to more complex cases such as off-diagonal

disorder, multi-orbital cases, and electronic interactions. Finally, the concluding remarks are presented

in Section 8.

2. Background: Electron Localization in Disordered Medium

Disorder is a common feature of many materials and often plays a key role in changing and

controlling their properties. As a ubiquitous feature of real systems, it can arise in varying degrees

in the crystalline host for several reasons. As shown in Figure 1, disorder may range from a few

impurities or defects in perfect crystals, (vacancies, dislocations, interstitial atoms, etc.), chemical

substitutions in alloys and random arrangements of electron spins or glassy systems.

Figure 1. Examples of various types of disorder, including substitution and interstitial impurities, and

vacancies. In addition (not shown), disorder can originate from other ways of breaking the translational

symmetry, including the external disorder potentials, amorphous systems, random arrangement of

spins, etc.

One of the most important effects of disorder is that it can induce spatial localization of electrons

and lead to a metal-insulator transition, which is known as Anderson localization. Anderson

predicted [25] that in a disordered medium, electrons scattered off randomly distributed impurities

can become localized in certain regions of space due to interference between multiple-scattering paths.

Besides being a fundamental solid-state physics phenomena, Anderson localization has

a profound consequences on many functional properties of materials. For example, the substitution of

P or B for Si may be used to dope holes or particles into Si increasing its functionality. Disorder

appears to play a crucial role also in formation of inhomogeneities in commercially important

colossal magnetoresistance materials [26]. At the same time, in dilute magnetic semiconductors

such as GaMnAs, there is a subtle interplay between magnetism and Anderson localization [27–31].

Intermediate band semiconductors are another type of material where disorder may play an important

role in manipulating their properties. These materials hold the promise to significantly improve
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solar cell efficiency, but only if the electrons in the impurity band are extended [32–34]. Also recently,

Anderson localization of phonons has been suggested as the basis of relaxor behavior [35]. These

examples show that Anderson localization has profound consequences for functional materials that

we need to understand and try to control for a positive outcome.

In 1977 P. W. Anderson and N. Mott shared one third each of the Nobel prize [36]. Both were,

at least in part, for rather different perspectives on the localization of electrons. In Mott’s picture,

localization is driven by interactions, albeit originally only at the level of Thomas-Fermi screening

of impurities [4]. The transition is first order, with the finite temperature second order terminus.

In Anderson’s picture, localization is a quantum phase transition driven by disorder. Despite more

than five decades of intense research [37,38], a completely satisfactory picture of Anderson localization

does not exist, especially when applied to real materials.

Several standard computationally exact numerical techniques including exact diagonalization,

transfer matrix method [39–41], and kernel polynomial method [42] have been developed. They are

extensively applied to study the Anderson model (a tight-binding model with a random local potential).

While these are very robust methods for the Anderson model, their application to real modern materials

is highly non-trivial. This is due to the computational difficulty in treating simultaneously the effects of

multiple orbitals and complex real disorder potentials (Figure 2) for large system sizes. In particular, it is

very challenging to include the electron-electron interaction. Practical calculations are limited to rather

small systems. Also, the effects from the long-range disorder potential which happens in real materials,

such as semiconductors, are completely absent. This, perhaps, is not surprising, as direct numerical

calculations on interacting systems even in the clean limit often come with various challenges. Reliable

calculations for sufficiently large system sizes infer the behaviors at the thermodynamic limit that

are largely done in specific cases such as systems at one dimension or at special filling in which the

fermionic minus sign problem in the quantum Monte Carlo calculations can be subsided.

During the past two decades or so, several effective medium mean-field methods have been

developed as an alternative to direct numerical methods. For example, for systems with strong

electron-electron interactions, over the past two decades or so, the DMFT [13–19], constitutes a major

development in the field of computational many-body systems and materials science. The DMFT

shares many similarities with the CPA for disordered systems [20,21]. Conceptually, in both these

methods, the lattice problem is approximated by a single-site problem in a fluctuating local dynamical

field (the effective medium). The fluctuating environment due to the lattice is replaced by the local

energy fluctuation, and the dynamical field is determined by the condition that the local Green’s

function is equal to (in CPA, the disorder-averaged) Green’s function of the single-site problem [43].

DMFT has been extensively used on strongly correlated models, such as the Hubbard model [17],

the periodic Anderson model [44], and the Holstein model [45]. It provides a viable computational

framework for strongly correlated systems in a wide range of parameters which were hitherto

impossible to reach by Quantum Monte Carlo on lattice models. Capturing the Mott-Hubbard

transition in a non-perturbative fashion is a major triumph of the DMFT. A significant development

of DMFT is its cluster extension, such as (momentum-space cluster extension of DMFT) Dynamical

Cluster Approximation (DCA) and Cluster DMFT (real-space cluster extension of DMFT) [23,46–48].

Interesting physics which has non-trivial spatial structure, such as d-wave pairing in the cup rates can

be studied by DCA [49]. Two important features of the DCA are that it is a controllable approximation

with a small parameter 1/Nc (Nc is the cluster size) and it provides systematic non-local corrections to

the DMFT/CPA results.

For non-interacting but disordered systems, the first-principles analysis of defects in solids

starts with the substitutional model of disorder. Here, the different atomic species occupy the lattice

sites according to some probabilistic rules. The CPA [20–22,50,51] proved to provide a scheme to

obtain ensemble averaged quantities in terms of effective medium quantities satisfying analyticity

and recovering exact results in appropriate limits. The effective medium (or coherent) ensemble

averaged propagator is obtained from the condition of no extra scattering coming, on average, from
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any embedded impurities. Following the Anderson model Hamiltonian applications [20,21,52],

the CPA was reformulated in the framework of the multiple-scattering theory [53] and used to

analyze real materials by combination with the Korringa-Kohn-Rostoker (KKR) basis [54,55] or

linear muffin-tin orbital (LMTO) basis [56] sets. It has been used to calculate thermodynamic

bulk properties [57–60], phase stability [61–64], magnetic properties [65–67], surface electronic

structures [64,68–70], segregation [71,72] and other alloy characteristics with a considerable success.

Recently, numerical studies of disordered interacting systems using the DFT+(CPA)DMFT method

also become possible [73]. As the CPA captures only the average presence of different atomic species, it

cannot account for more subtle aspects connected to the actual distribution of atomic species, practically

realized in materials. In a recent years, a considerable amount of theoretical effort has been directed

towards the improvement of the original single-site CPA formulation, including the DCA [48]. This is

also the subject of the present review on a cluster development in the form of the typical medium DCA.

Figure 2. Simultaneous treatment of the material-specific parameters, modeling disorder and

electron-electron interactions present one of the major challenges for theoretical studies of electron

localization in real materials.

There are several excellent extensive research papers, reviews, and books covering different

aspects of DMFT/CPA/DFT. These include Refs. [18,19] on DMFT aspects, Refs. [20,21] concerning

CPA, Wannier-function-based methods [74–76] to extract a tight-binding Hamiltonian from the DFT

calculation, multiple-scattering theory [77], and the combined LDA+DMFT approach [78], to enumerate

just a few.

Although these methods allow the study of various phenomena resulting from the interplay of

disorder and interaction, they fail to capture the disorder-driven localization. As we will discuss in

detail in the sections below, the fundamental obstacle in tackling the Anderson localization is the

lack of a proper order parameter. Once the order parameter is identified as the typical density of

states (Section 2.2), it can be incorporated into a self-consistency loop leading to the typical medium

theory [9]. This was subsequently extended to clusters incorporating ideas of the DCA. This theory

came to be known as the Typical Medium Dynamical Cluster Approximation (TMDCA) and is the major

focus of current review.

In addition to being able to capture the Anderson localization properly, the TMDCA also allows

the study of the interplay between disorder and interaction in both weak and strong coupling limits.

Thus, it provides a new basis for studying the Mott and Anderson transitions on equal footing.

As any cluster extension TMDCA inherits, so also the system size (i.e., the number of sites in the

cluster Nc) dependence. In analogy with the DCA , the 1/Nc can be treated as a small parameter,

therefore a systematic improvement of the approximation can be achieved by increasing the cluster
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size. In addition, in contrast to direct numerical methods, the major strength of TMDCA lies in its

flexibility to handle complex long-range impurities and multi-orbitals systems which are unavoidable

features of many realistic disordered system (Figure 3). This review collects the recent results of the

TMDCA applied to the Anderson model and its extension, and to the real materials.

Figure 3. The TMDCA may be used to study electron localization in both simple model Hamiltonians

as well as those extracted from first-principles calculations.

2.1. Anderson Localization

Strong disorder may have dramatic effects upon the metallic state [38]: the extended states that

are spread over the entire system become exponentially localized, centered at one position in the

material. In the most extreme limit, this is obviously true. Consider for example a single orbital that is

shifted in energy so that it falls below (or above) the continuum in the density of states (DOS). Clearly,

such a state cannot hybridize with other states since there are none at the same energy. Thus, any

electron on this orbital is localized, via this (deep) trapped states mechanism, and the electronic DOS

at this energy will be a delta function. Of course, this is an extreme limit. Even in the weak disorder

limit, the resistivity of ideal metallic conductors decreases with lowering temperature. In reality,

at very low temperatures, the resistivity saturates to a residual value. This is due to the imperfections

in the formation of the crystal. If the disorder is not too strong, the perfect crystal remains a good

approximation. The imperfections can be considered as the scattering centers for the current-carrying

electrons. Hence, the scattering processes between the electrons and defects lead to the reduction in

the conduction of electrons.

For low dimensional systems, the scattering can induce substantial change even for weak disorder.

Within the weak localization theory, based on the Langer-Neal maximally crossed graphs, the correction

to the conductivity can be rather large [79–81]. It can drive a metal into an insulator for dimension

D ≤ 2 (D is a dimensionality of the system) if the impurity does not break time reversal symmetry.

Historically, it was first shown by Anderson that finite disorder strength can lead to the localization

of electronic states in his seminal 1958 paper [25]. The technique involved can be considered as a locator

expansion for the effective hopping element of Anderson model Hamiltonian around the limit of the

localized state. He found a region of disorder strength in which the expansion is convergent and

thus the localized state endures. Please note that the probability distribution of the effective hopping

element, instead of its average value, was discussed in the original paper by Anderson. The importance

of the distribution in disordered system is a critical insight in the development of the typical medium

theory [82].

Subsequently, Mott argued that the extended states would be separated from the localized states

by a sharp mobility (localization) edge in energy [83–85]. His argument is that scattering from disorder

is elastic, so that the incoming wave and the scattered wave have the same energy. On the other

hand, nearly all scattering potentials will scatter electrons from one wavevector to all others, since the

strongest scattering potentials are local or nearly so. If two states, corresponding to the same energy
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and different wavenumbers exist, then the scattering potential will cause them to mix, causing both to

become extended.

An important development of the localization theory was the introduction of the concept of

scaling. In 1972, Edwards and Thouless performed a numerical analysis on the dependence between

the degree of localization and the boundary condition of the eigenstate of the Anderson model. They

argued that the ratio of the energy shift from the change in the boundary conditions (∆E) to the energy

spacing (η) can be used as a measure for the degree of localization [86]. The ratio ∆E/η now known as

the Thouless energy is identified as a dimensionless conductance, g(L), where L is the linear dimension

of a system [87]. For a localized state, the Thouless energy decreases as the system size increases and

tends to zero in the limit of a large system. For an extended state, the Thouless energy converges to

a finite value as the system size increases. They further assume that ∆E/η or the conductance g(L) is

the only relevant coupling parameter in the renormalization group sense.

The assumption of a single coupling parameter leads to the development of the scaling theory

for the conductance. It is based on the assumption that conductance at different length scales (say L
′

and L) are related by the scaling relation g(L
′
) = f ((L

′
/L), g(L)). In the continuum it can be written

as
d ln g(L)

dlnL = β(g(L)). The β function can be estimated from small and large g limits. From these

results, Abrahams, Anderson, Licciardello, and Ramakrishnan conclude that there are no true metallic

behaviors in two dimensions, but a mobility edge exists in three dimensions [88]. The validity of

the scaling theory gained further support after the discovery of the absence of ln L2 term from the

perturbation theory [89].

The connection between the mobility edge and the critical properties of disorder spin models was

realized in the 1970s [90]. In a series of papers Wegner proposed that the Anderson transition can be

described in terms of a non-linear sigma model [91–93]. Multifractality of the critical eigenstate was

first proposed within the context of the sigma model [92,94]. All three Dyson symmetry classes were

studied. Hikami, Larkin, and Nagaoka found that the symplectic class corresponds to the system with

spin-orbit coupling that can induce delocalization in two dimensions [95]. In 1982, Efetov showed that

tricks from supersymmetry can be employed to reformulate the mapping to a non-linear sigma model

with both commuting and anti-commuting variables [96].

Many of the recent efforts in studying Anderson localization, focus on the critical properties

within an effective field theory–non-linear sigma model in different representations: fermionic, bosonic,

and supersymmetric [6]. While these works provide answers to important questions, such as the

existence of mobility edges of different symmetry classes at different dimensions, they are not able to

provide universal or off from criticality quantities, such as critical disorder strength, the correlation

length, and the correction to conductivity in the metallic phase. An important development to address

these issues is the self-consistent theory proposed by Vollhardt and Wölffle [97,98]. It has also been

shown that the results from this theory also obey the scaling hypothesis [99].

More recent studies focus on classifying the criticality according to the local symmetry.

Ten different symmetry classes based on classifying the local symmetry are identified generalizing the

three Dyson classes including the Nambu space [100]. The renormalization group study on the sigma

model has been carried out on different classes and dimensions [6]. The importance of the topology of

the sigma model target space is studied extensively in recent works [6,101,102].

2.2. Order Parameter of Anderson Localization

As we discussed in the previous section, effective medium theories have been used to study

Anderson localization; however, progress has been hampered partly due to ambiguity in identifying

an appropriate order parameter for Anderson localization, allowing for a clear distinction between

localized and extended states [9].

An order parameter function had been suggested about three decades ago, in the study of

Anderson localization on the Bethe lattice [103,104]. It has been shown that the parameter is closely

related to the distribution of on-site Green’s functions, in particular the local density of states [105].
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Recently, following the work of Dobrosavljevic et al. [9], there has been tremendous progress along

these ideas, with the local typical DOS identified as the order parameter.

To demonstrate how the local DOS and its typical (most probable value) can be used as an order

parameter for Anderson localization, we consider a thought experiment. We imagine dividing the

system up into blocks, as illustrated in Figure 4. Later, when we construct our quantum cluster theory

of localization, each of the blocks should be thought of as a cluster, and we construct the system by

periodically stacking the blocks. We make two controllable approximations.

Figure 4. To help understand localization, we divide the system into blocks. The average spacing of

the energy levels of a block is δE and the Fermi golden rule width of the levels is ∆. If ∆ ≫ δE then we

have a metal and if ∆ ≪ δE, an insulator.

1. We approximate the effect of coupling the block to the reminder of the lattice via Fermi’s golden

rule—coupling ∆ which is proportional to the density of accessible states.

2. Since on average each cluster is equivalent to all the others, this density will also be proportional

to some appropriate block DOS.

Furthermore, imagine that the average level spacing of the states in a block is δE. If ∆ ≫ δE, then

we have a metal since the states at this energy have a significant probability of escaping from this

block, and the next one, etc. Alternatively, if ∆ ≪ δE the escape probability of the electrons is low, so

that an insulator forms.

So what does this mean in terms of the local electronic density of states (LDOS) that is measured,

i.e., via STM at one site in the system, and the average DOS (ADOS) measured, i.e., via tunneling (or

just by averaging the LDOS)?

In Figure 5 we calculate the ADOS and typical density of states (TDOS) for a simple (Anderson)

single-band model on a cubic lattice with near-neighbor hopping t (bare bandwidth 12t = 3 to establish

an energy unit) and with a random site i local potential Vi drawn from a “box” distribution of width

2W, with P(Vi) = 1
2W Θ(W − |Vi|). As can be seen from the Figure 5, as we increase the disorder

strength W, the global average DOS (dashed lines) always favors the metallic state (with a finite DOS

at the Fermi level ω = 0) and it is a smooth (not critical) function even above the transition. In contrast

to the global average DOS, the local density of states (solid lines), which measures the amplitude of

the electron wave function at a given site, undergoes significant qualitative changes as the disorder

strength W increases, and eventually becomes a set of the discrete delta-like functions as the transition

is approached.
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Figure 5. The global average (dashed lines) and the local (solid lines) DOS of the 3D Anderson model

for small, moderate, and large disorder strength W with units 4t = 1 where t is the near-neighbor

hopping (see text for details).

This must mean that the probability distributions of the local DOS for a metal and for an insulator

is also very different. This is illustrated in Figure 6. In particular, the most probable (typical) value of

the local DOS in a metal is very different than the typical value in an insulator. Consider again the local

DOS in the metal and insulator. In the metal, the probability distribution function is Gaussian-like

form. The local DOS at any one energy the DOS at each site is a continuum. It will change from site to

site, but the most probable value and the average value, will be finite. Now reconsider the local DOS

in the insulator. It is composed of a finite number of delta functions. For any energy in between the

delta functions, the local DOS is zero. Since the number of delta functions is finite, the typical value of

the local DOS is zero, while the average value is still finite. Consequently, the probability distribution

function of the local DOS is very much skewed towards zero and develops long tails. As a result,

the order parameter for the Anderson metal-insulator transition is the typical local DOS, which is zero

in the insulator and finite in the metal. This analysis also demonstrates one of the distinctive features

of Anderson localization, i.e., the non-self-averaging nature of local quantities close to the transition.

0 0.1 0.2 0.3 0.4 0.5 0.6

ρ
i

0

10

20

30

40

P
(ρ

i)

W=2.1
W=1.25
W=0.1

Figure 6. The evolution of the probability distribution function of the local DOS ρi at the band center

(ω = 0) with disorder strength W. The data is the same as in Figure 5.

An alternative confirmation is also possible. Early on, Anderson realized that the distribution

of the DOS in a strongly disordered metal would be strongly skewed towards smaller values.

More recently, this distribution has been demonstrated to be log-normal. Perhaps the strongest

demonstration of this fact is that DOS near the transition has a log-normal distribution (Figure 7) over

10 orders of magnitude [106]. Furthermore, one may also show that the typical value of a log-normal

distribution can be approximated by the geometric average which is particularly easy to calculate and

can serve as an order parameter [9,106].
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Figure 7. The distribution of the local density of states at the band center (zero energy) in a single-band

Anderson model with disorder strength γ/t where t = 1 is the near-neighbor hopping. Near the

localization transition, γ/t = 16.5 the distribution becomes log-normal (see also the inset) for over

ten orders of magnitude, while for values well below the transition, γ/3 is shown, the distribution is

normal [106].

2.3. On the Role of Interactions: Thomas-Fermi Screening

Thus, far, we have ignored the role of interactions in our discussion. Surely the strongest such

effect is screening. In fact, its impact is so large that is often cited as the reason a sea of electrons act as

if they are non-interacting, or free, despite the fact that the average Coulomb interaction is as large or

larger than the kinetic energy in many metals [107–109].

As an introduction to the effect of screening on electronic correlations, consider the effect of

a charged defect in a conductor [110]. Assume that the defect is a cation, so that in the vicinity of the

defect the electrostatic potential and the electronic charge density are reduced. We will model the

electronic density of states in this material with the DOS of free electrons trapped in a box potential;

we can think of this reduction in the local charge density in terms of raising the DOS parabola near the

defect (cf. Figure 8).

-eδU

E
F

e

near charged

defect

Away from

charged defect

Figure 8. The shift in the DOS parabola near a charged defect causes electrons to move away from

the defect.

This will cause the free electronic charge to flow away from the defect. We will treat the screening

as a perturbation to the free electron picture, so we assume that the electronic density is just given

by an integral over the DOS which we will model with an infinite square-well potential with a bare

density of states:

ρ(E) =
1

2π2

(

2m

h̄2

)3/2

E1/2 . (1)
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with the Fermi energy EF = h̄2

2m

(

3π2n
)2/3

. If |eδU| ≪ EF, then we can find the electron density by

integrating the bare DOS shifted by the change in potential +eδU (c.f. Figure 8).

δn(r) ≈ eδUρ(EF) . (2)

The change in the electrostatic potential is obtained by solving the Poisson equation.

∇2δU = 4πeδn = 4πe2ρ(EF)δU . (3)

The solution is:

δU(r) =
qe−λr

r
(4)

The length 1/λ = rTF is known as the Thomas-Fermi screening length.

rTF =
(

4πe2ρ(EF)
)−1/2

(5)

Within this simplified square-well model, rTF in Cu can be estimated to be about 0.5
◦
A. Thus, if we

add a charge defect to Cu metal, its ionic potential is screened away for distances r > 1
2

◦
A.

2.4. The Mott Transition

Consider further, an electron bound to an ion in Cu or some other metal. As shown in Figure 9,

as the screening length decreases, the bound states rise in energy. In a weak metal, in which the

valence state is barely free, a reduction in the number of carriers (electrons) will increase the screening

length, since

rTF ∼ n−1/6 . (6)

This will extend the range of the potential, causing it to trap or bind more states–making the one free

valance state bound.

-e
-r

/r
T

F
/r

r
TF

=1/4

r

r
TF

=1

r

-e
-r

/r
T

F
/r

bound states

free states

r
TF

= n
-1/6

Figure 9. Screened defect potentials. The screening length increases with decreasing electron density n,

causing states that were free to become bound.

Now imagine that instead of a single defect, we have a concentrated system of such ions,

and suppose that we decrease the density of carriers (i.e., in Si-based semiconductors, this is done

by doping certain compensating dopants, or even by modulating the pressure). This will in turn,

increase the screening length, causing some states that were free to become bound, leading to an abrupt

transition from a metal to an insulator, and is believed to explain the metal-insulator transition in

some transition-metal oxides, glasses, amorphous semiconductors, etc. This metal-insulator transition

was first proposed by N. Mott and is called the Mott transition. More significantly Mott proposed

a criterion based on the relevant electronic density such that this transition should occur [4,111].

In Mott’s criterion, a metal-insulator transition occurs when the potential generated by the addition of

an ionic impurity binds an electronic state. If the state is bound, the impurity band is localized. If the
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state is not bound, then the impurity band is extended. The critical value of λ = λc may be determined

numerically [112] with λc/a0 ≈ 1.19, which yields the Mott criterion of

2.8a0 ≈ n−1/3
c , (7)

where a0 is the Bohr radius. Even though electronic interactions are only incorporated in the extremely

weak coupling limit, Thomas-Fermi Screening, Mott’s criterion still works for moderately and strongly

interacting systems [113].

While the Mott and Anderson localization mechanisms are quite different, the TDOS can be used

as an order parameter in both cases. In the Anderson metal-insulator transition, the transition is

entirely due to disorder, with no interaction effects. In the Mott metal-insulator transition, although

the described system is surely strongly disordered, these effects do not contribute to the mechanism

of localization. Nevertheless, both transitions share the same order parameter. On the insulating

side of the transition the localized states are discrete so that the typical DOS is zero, while on the

extended side of the transition, these states mix and broaden into a band with a finite typical and

average DOS. Therefore, both transitions are characterized by the vanishing typical DOS, thus it may

serve as an order parameter in both cases.

Finally, note that while the Mott transition is quite often associated with strong electronic

correlations (in clean systems), for impurities in metals with screened Coulomb interactions, such

transition occurs already in the weak coupling regime. Thus, any cluster solver which captures

interaction effects, at least at the Thomas-Fermi level, (including DFT), with the additional condition

to self-consist the impurity potentials, should be able to capture the physics of this transition.

2.5. Interacting Disordered Systems: Beyond the Single-Particle Description

The interplay of strong electronic interactions and disorder and its relevance to the metal-insulator

transition, remains an open and challenging question in condensed matter physics. There was

an exciting revival of the field after the pioneering experiments by Kravchenko et al. in low-density

high mobility MOSFETs [114–117]. These experiments provided a clear evidence for a metal-insulator

transition in such 2D systems, which contradicted the paradigmatic scaling theory of localization

according to which the absence of metallic behavior is expected in non-interacting disordered electron

systems in D ≤ 2.

Incorporating electron-electron interactions into the theory has been problematic mainly

due to the fact that when both disorder and interactions are strong, the perturbative approaches

break down. Perturbative renormalization group calculations found indications of metallic behavior,

but in the case without a magnetic field or magnetic impurities, the runaway flow was towards

a strong coupling region outside of the controlled perturbative regime and hence the results were not

conclusive [118–124].

Numerical methods for the study of systems with both interactions and disorder are rather

limited. Accurate results are largely based on some variants of exact diagonalization on small

clusters. Given this difficulty, the effective medium DMFT-like approaches for localization would

be particularly helpful. In particular, the approaches which employ the TDOS in the DMFT present

a new opportunity for the study of interacting disordered systems. Consequently, interesting questions

which are controversial in the effective field theory approach, can be studied from an entirely different

perspective. These include the DOS of the disordered Fermi liquid at low dimensions, the existence of

a direct metal to Anderson insulator transition, and the criticality in the transition between the metallic

phase and the Anderson phase.

In Refs. [125–127] the generalized DMFT, using the numerical renormalization group as the

impurity solver, was used to study the Anderson-Hubbard model. Here, a typical medium calculated

from the geometric averaged DOS instead of the usual linear averaged DOS as that in the CPA [126],

was used to determine the effective medium. The effect of disorder and interactions on the Mott
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and Anderson transitions is investigated, and it is shown that the TDOS can be treated as an order

parameter even for the interacting system. However, all these calculations were performed with a local

single-site approximation. In Section 5.5 we show that the cluster extension, within the TMDCA

framework can treat the effects of disorder and interaction on an equal footing. It thus provides a new

framework for the study of interplay between Mott-Hubbard and Anderson localization.

3. Direct Numerical Methods for Strongly Disordered Systems

Here we provide a brief overview of some of the popular numerical methods proposed for

the study of disordered lattice models, including the transfer matrix, kernel polynomial, and exact

diagonalization methods. These methods will be used to benchmark and verify our quantum cluster

method. We will outline the main steps of these methods, highlighting their advantages and limitations,

particularly for applying to materials with disorder.

3.1. Transfer Matrix Method

The transfer matrix method (TMM) is used extensively on various disorder problems [39–41].

Unlike brute force diagonalization methods, the TMM can handle rather large system sizes. When

combined with finite-size scaling, this method is very robust for detecting the localization transition

and its corresponding exponents. Most of the accurate estimates of critical disorder and correlation

length exponents for disorder models in the literature are based on this method [40,41].

The simplifying assumption of the TMM is that the system can be decomposed into many slices

(Figure 10), and each slice only connects to its adjacent slice. Precisely for this reason, the TMM is not

ideal for models with long-range hopping, or long-range disorder potentials or interactions.

H
0

H
1

H
2

H
N-1

H
N

Figure 10. Schematic of a transfer matrix method (TMM) calculation. Assuming the system has a width

and height equal to M for each slice of a N-slice cuboid, forming a “bar” of length N, the amplitude

of the wavefunction in the 0-th slice can be related to that in the N-th slice via the transfer matrix,

Equation (10).

We can understand the computational scaling of the TMM by a simple 3D example without an

explicit interaction. We assume the system has a width and height equal to M for each slice of a N-slice

cuboid, forming a “bar” of length N. The Hamiltonian can be decomposed into the form

H = ∑
i

Hi + ∑
i

(Hi,i+1 + H.c.), (8)

where Hi describes the Hamiltonian for slice i and Hi,i+1 contains the coupling terms between the i

and i + 1 slices. The Schrödinger equation can be written as

Hn,n+1ψn+1 = (E − Hn)ψn − Hn,n−1ψn−1 , (9)
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where ψi is a vector with M2 components which represent the wavefunction of the slice i. This may be

reinterpreted as an iterative equation

[

ψi+1

ψi

]

= Ti ×

[

ψi

ψi−1

]

. (10)

where the transfer matrix

Ti =

[

H−1
i,i+1(E − Hi) −H−1

i,i+1Hi,i−1

1 0

]

. (11)

The goal of the TMM is to calculate the localization length, λM(E) for a system with linear size M

at energy E, from the product of N transfer matrices

τN ≡
N

∏
i=1

Ti. (12)

The Lyapunov exponents, α, of the matrix τN is given by the logarithm of its eigenvalues, Y, at the

limit of N → ∞, α = limN→∞
ln(Y)

N . The smallest exponent corresponds to the slowest exponential

decay of the wavefunction and thus can be identified as corresponding to the localization length,

λM(E) = 1/αmin [128–134].

Since the repeated multiplication of Ti is numerically unstable, periodic reorthogonalization is

needed in the numerical implementation [39–41]. For the 3D Anderson model, the reorthogonalization

is done for about every 10 multiplications. This is the major bottleneck for the TMM method,

as reorthogonalization scales as the third power of the matrix size. Therefore, the method in general

scales as M3.

3.2. Kernel Polynomial Method

The kernel polynomial method (KPM) is a procedure for fitting a function onto an orthogonal

set of polynomials of finite order. For the study of disordered systems, the functions which are

routinely calculated by the KPM include the DOS and the conductance [42,135–138]. These quantities

are not representable by smooth functions; indeed, they are often the sum of a set of delta functions.

Two outstanding characteristics of fitting such functions to orthogonal polynomials are that the delta

functions are smoothed out, and that the fitted function is usually accompanied with undesirable

Gibbs oscillations. Different kernels for reweighing the coefficients of the polynomial are devised to

lessen such oscillations.

Here we highlight the main steps for calculating the DOS by the KPM. For such a polynomial

expansion it is more convenient to rescale the Hamiltonian so that the eigenvalues fall in the range

of [−1, 1]. We assume that the eigenvalues of the Hamiltonian are properly scaled and shifted to be

within this range. The DOS is given as a sum of delta functions,

ρ(E) = ∑
i

δ(E − Ei) ≈
nmax

∑
n=0

gnµnTn(E), (13)

where gn is the kernel function, µn is the expansion coefficient, and Tn is the Chebyshev

polynomial. Jackson’s kernel is usually used for the gn [139]. The expansion coefficient is given as

µn =
∫ 1
−1 ρ(E)Tn(E)dE = 1

D ∑
D−1
k=0 〈k|Tn(H)|k〉, where D is the size of the Hilbert space. The efficiency

of the KPM is based on a simple sampling of a small number of basic functions instead of the

full summation. The Tn(H)|k〉 for different values of n can be calculated with the recursion

relation of the Chebyshev polynomial. The dominant part in using the recursion relation is the

matrix-vector multiplication.
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The Hamiltonian matrix is usually very sparse. For example, the number of non-zero matrix

elements for a 3D Anderson model on a simple cubic lattice is seven for each row. This number

does not change with system size. The method is rather versatile and can be adapted for almost any

Hamiltonian. Unlike the TMM, the KPM can handle long-range hopping and long-range disorder

potentials. It can also be used for interacting systems; however, the matrix size grows exponentially [42],

limiting practical calculations to a few tens of orbitals.

3.3. Diagonalization Methods

Diagonalization methods are designed to solve the matrix problem, Hψ = Eψ, directly. A full

matrix diagonalization scales with the third power of the matrix size. Therefore, practical calculations

are often limited to matrix sizes of the order of ten thousand. For the study of the localization

transition, we are usually interested in the states close to the Fermi level. Indeed, most of the numerical

studies of the Anderson model are focused on the energy at the band center [41]. Methods have been

proposed for calculating the eigenvalues and eigenvectors for sparse matrices in the vicinity of a target

eigenvalue, σ. Particularly, the Lanczos [140] and Arnoldi [141] methods have been widely used for

strongly correlated systems [142–144]. The feature common to these methods is the Krylov subspace,

K, generated by repeatedly multiplying a matrix, H, on an initial trial vector, ψt,

K j = {ψt, Hψt, H2ψt, H3ψt, · · · H j−1ψt}. (14)

As all the vectors generated converge towards the eigenvector with the lowest eigenvalue, the basis set

that is generated is ill-conditioned for large j.

The solution is to orthogonalize the basis at each step of the iteration via the Gram-Schmidt

process. In essence, the difference between the Lanczos and Arnoldi methods is in the number of

vectors in the Gram-Schmidt process. The Arnoldi method uses all the vectors and the Lanczos method

only uses the two most recently generated vectors. The original matrix can then be projected into the

Krylov subspace of much smaller size, where it may be fully diagonalized [145].

The dominant component of the computation is the matrix-vector multiplication described above.

This scales only linearly with the matrix size. For the ground state calculation, matrix sizes of over

one billion are routinely done [146]; however, calculating the inner spectrum is somewhat more

difficult. The matrix must be shifted and then inverted to transform the target eigenvalue, Λ, to the

extremal eigenvalue.

(H − ΛI)−1ψ =
1

E − Λ
ψ, (15)

The inverse of the Hamiltonian with a shifted spectrum is generally not known. Then, instead of

expanding the basis in the Krylov subspace, the Jacobi-Davidson method (JDM) is often employed [147].

It expands the basis (u0, u1, u2, · · ·) using the Jacobi orthogonal component correction which may be

written as

H(uj + δ) = (θj + ǫ)(uj + δ) ∀ uj ⊥ δ, (16)

where (uj, θj) and (uj + δ,θj + ǫ) are the approximate and the exact eigenvector and eigenvalue pairs,

respectively. Upon solving the equation for the vector δ, a new basis vector uj+1 = uj + δ is included

in the subspace. Matrix inversion is again involved in solving the equation. Various pre-conditioners

are proposed for a quick approximation of the matrix inverse [147]. JADAMILU is a popular package

which implements the JDM with an incomplete LU factorization [148,149] as a pre-conditioner [150].

The scaling of this method seems to be strongly dependent on the Hamiltonian. It tends to be

more efficient for matrices which are diagonally dominant, but much less so when off-diagonal matrix

elements are large. This is probably due to the difficulty of obtaining a good approximation of the

inverse based on the incomplete LU factorization used as a pre-conditioner.
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Exact diagonalization methods provide an accurate variational approximation for the eigenvalues

and eigenvectors of the Hamiltonian, thus allowing the calculation of quantities such as multifractal

spectrum and entanglement spectrum which are difficult to obtain from other approaches [151,152].

On the other hand, Krylov subspace methods are not a good option for calculating the DOS as only one,

or a few, eigenstates are targeted at each calculation. A self-consistent treatment of the interaction, even

at a single-particle level, would also be rather challenging. Clearly, the major obstacle for applying it

to systems with an explicit interaction is again the exponential growth of the matrix size with respect

to the system size.

While these numerical methods can provide very accurate results for the models which are

non-interacting, single band, and with local or short-ranged disorder, applying them to chemically

specific calculations is a major challenge. None of these conditions is satisfied for realistic models

of materials with disorder. In this case, the complexity of these methods increases drastically and

obtaining accurate results for sufficiently large system sizes to perform a finite-size scaling analysis is

often impossible. This highlights the importance, or perhaps necessity, of the coarse-grained methods

described below.

4. Coarse-Grained Methods

In this section, and corresponding subsections, we discuss coarse-graining as a unifying concept

behind quantum cluster theories such as the CPA and DMFT as well as their cluster extension, the DCA,

which preserve the translational invariance of the original lattice problem. All quantum cluster theories

are defined by their mapping of the lattice to a self-consistency embedded cluster problem, and the

mapping from the cluster back to the lattice (Figure 11). The map from the lattice to the cluster in

these quantum cluster methods may be obtained when the coarse-graining approximation is used to

simplify the momentum sums implicit in the irreducible Feynman diagrams of the lattice problem (see

Section 4.1). As discussed in Sections 4.2 and 4.3 this approximation is equivalent to the neglect of

momentum conservation at the internal vertices, which is exact in the limit of infinite dimensions, and

systematically restored in the DCA. The resulting diagrams are identical to those of a finite-sized cluster

embedded in a self-consistently determined dynamical host. The cluster problem is then defined

by the coarse-grained interaction and bare Green’s function of the cluster. The mapping from the

cluster back to the lattice is motivated in Section 4.3.2 by the observation that irreducible or compact

diagrammatic quantities are much better approximated on the cluster than their reducible counterparts.

This mapping may also be obtained by optimizing the lattice free energy, as discussed in Section 4.3.3.

Figure 11. The mapping from the cluster to the lattice is accomplished by replacing the Green’s

function and interaction by their coarse-grained analogs in the diagrams for the generating functional,

self-energy and irreducible vertices. In the map back to the cluster, this self-energy is used to calculate

a new cluster host Green’s function.
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4.1. A Few Fundamentals

In this section, we will introduce two central paradigms in the physics of many-body systems:

the Anderson and Hubbard models of disordered and interacting electrons on a lattice, respectively.

We will then use perturbation theory to prove and demonstrate some fundamental ideas.

Consider an Anderson model with diagonal disorder, described by the Hamiltonian

H = − ∑
〈ij〉,σ

t
(

c†
i,σcj,σ + c†

j,σci,σ

)

+ ∑
iσ

(Vi − µ)ni,σ (17)

where c†
i,σ creates a quasiparticle on site i with spin σ, and ni,σ = c†

i,σci,σ. The disorder occurs in the

local orbital energies Vi, which we assume are independent quenched random variables distributed

according to some specified probability distribution P(V).

The effect of the disorder potential ∑iσ Vini,σ can be described using standard diagrammatic

perturbation theory (although we will eventually sum to all orders). It may be rewritten in reciprocal

space as

Hdis =
1

N ∑
i,k,k′ ,σ

Vic
†
k,σck′ ,σeiri(k−k′), (18)

here N is the total number of lattice sites.

The corresponding irreducible (skeleton) contributions to the self-energy may be represented

diagrammatically [77] and the first few are displayed in Figure 12. Here each ◦ represents the scattering

of an electronic Bloch state from a local disorder potential at some site X. The dashed lines connect

scattering events that involve the same local potential. In each graph, the sums over the sites are

restricted so that the different X’s represent scattering from different sites. No graphs representing

a single scattering event are included since these may simply be absorbed as a renormalization of the

chemical potential µ (for single-band models).

Translational invariance and momentum conservation are restored by averaging over all possible

values of the disorder potentials Vi. For example [8], consider the second diagram in Figure 12, given by

1

N3 ∑
i,k3,k4

〈V3
i 〉G(k3)G(k4)e

iri ·(k1−k3+k3−k4+k4−k2) , (19)

where G(k) is the disorder-averaged single-particle Green’s function for state k. The average over the

distribution of scattering potentials 〈V3
i 〉 = 〈V3〉 is independent of the position i in the lattice. After

summation over the remaining labels, this becomes

〈V3〉G(r = 0)2δk1,k2
, (20)

where G(r = 0) is the local Green’s function. Thus, the second diagram’s contribution to the self-energy

involves only local correlations. Since the internal momentum labels always cancel in the exponential,

the same is true for all non-crossing diagrams shown in the top half of Figure 12.
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Figure 12. The first few graphs in the irreducible self-energy of a diagonally disordered system. Each ◦

represents the scattering of a state k from sites (marked X) with a local disorder potential distributed

according to some specified probability distribution P(V). The numbers label the k states of the fully

dressed Green’s functions, represented by solid lines with arrows.

Only the diagrams with crossing dashed lines have non-local contributions. Consider the

fourth-order diagrams such as those shown on the bottom left and upper right of Figure 12. During

the disorder averaging, we generate potential terms 〈V4〉 when the scattering occurs from the same

local potential (i.e., the third diagram) or 〈V2〉2 when the scattering occurs from different sites, as in

the fourth diagram. When the latter diagram is evaluated, to avoid overcounting, we need to subtract

a term proportional to 〈V2〉2 but corresponding to scattering from the same site. This term is needed

to account for the fact that the fourth diagram should only be evaluated for sites i 6= j. For example,

the fourth diagram yields

1

N4 ∑
i 6=jk3k4k5

V2
i V2

j eiri ·(k1+k4−k5−k3)eirj ·(k5+k3−k4−k2)G(k5)G(k4)G(k3) (21)

Evaluating the disorder average 〈...〉, we get the following two terms:

1

N4 ∑
ijk3k4k5

〈V2〉2eiri ·(k1+k4−k5−k3)eirj ·(k5+k3−k4−k2)G(k5)G(k4)G(k3)

−
1

N4 ∑
ik3k4k5

〈V2〉2eiri ·(k1−k2)G(k5)G(k4)G(k3) (22)

Momentum conservation is restored by the sum over i and j; i.e., over all possible locations of the

two scatterers. It is reflected by the Laue functions, Λ = Nδk+···, within the sums

δk2,k1

N3 ∑
k3k4k5

〈V2〉2Nδk2+k4,k5+k3
G(k5)G(k4)G(k3)−

δk2,k1

N3 ∑
k3k4k5

〈V2〉2G(k5)G(k4)G(k3) (23)

Since the first term in Equation (23) involves convolutions of G(k) it reflects non-local correlations.

Local contributions such as the second term in Equation (23) can be combined together with the

contributions from the corresponding local diagrams such as the third diagram in Figure 12 by replacing

〈V4〉 in the latter by the cumulant 〈V4〉 − 〈V2〉2. Given the fact that different X’s must correspond to

different sites, it is easy to see that all crossing diagrams must involve non-local correlations.

The developed formalism also works for interacting systems. Again, we will use perturbation

theory to illustrate some of these ideas. Consider the Hubbard model [153] which is the simplest

model of a correlated electronic lattice system. Both it and the t-J model are thought to describe

at least qualitatively some of the properties of transition-metal oxides, and high temperature

superconductors [154]. The Hubbard model Hamiltonian is given as

H = −t ∑
〈j,k〉σ

(c†
jσckσ + c†

kσcjσ) + U ∑
i

ni↑ni↓ (24)
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where c†
jσ (cjσ) creates (destroys) an electron at site j with spin σ, niσ = c†

iσciσ stands for the particle

number at a given site i. The first term describes the hopping of electrons between nearest-neighboring

sites i and j, and the U term describes the interaction between two electrons once they meet at a given

site i.

As for the disordered case described above, the effect of the local Hubbard U potential can

be described using standard diagrammatic perturbation theory. The first few diagrams for the

single-particle Green’s function are shown in Figure 13. Very similar arguments to those employed

above may be used to show that the first self-energy correction to the Green’s function is local whereas

some of the higher order graphs reflect non-local contributions.

Figure 13. The first few diagrams for the Hubbard model single-particle Green’s function. Here,

the solid black line with an arrow represents the single-particle Green’s function and the wavy line the

Hubbard U interaction.

4.2. The Laue Function and the Limit of Infinite Dimension

The local approximation for the self-energy was used by various authors in perturbative

calculations as a simplification of the k-summations which render the problem intractable. It was

only after the work of Metzner and Vollhardt [13,155] and Müller-Hartmann [14,15] who showed

that this approximation becomes exact in the limit of infinite dimension that it received extensive

attention. Precisely in this limit, the spatial dependence of the self-energy disappears, retaining only

its variation with time. Please see the reviews by Pruschke et al. [18] and Georges et al. [19] for a more

extensive treatment.

In this section, we will show that the DMFT and CPA share a common interpretation as

coarse-graining approximations in which the propagators used to calculate the self-energy Σ and its

functional derivatives are coarse-grained over the entire Brillouin zone. Müller-Hartmann [14,15]

showed that it is possible to completely neglect momentum conservation so that this coarse-graining

becomes exact in the limit of infinite dimensions. For simple models such as the Hubbard and Anderson

models, the properties of the bare vertex are completely characterized by the Laue function Λ which

expresses the momentum conservation at each vertex. In a conventional diagrammatic approach

Λ(k1, k2, k3, k4) = ∑
r

exp [ir · (k1 + k2 − k3 − k4)] = Nδk1+k2,k3+k4
, (25)

where k1 and k2 (k3 and k4) are the momenta entering (leaving) each vertex through its legs of Green’s

function G. However, as the dimensionality D → ∞, Müller-Hartmann showed that the Laue function

reduces to [14]

ΛD→∞(k1, k2, k3, k4) = 1 +O(1/D) . (26)

The DMFT/CPA assumes the same Laue function, ΛDMFT(k1, k2, k3, k4) = 1, even in the context

of finite dimensions. More generally, for an electron scattering from an interaction (boson) pictured

in Figure 14, ΛDMFT(k1, k2, k3) = 1. Thus, the conservation of momentum at internal vertices is

neglected. We may freely sum over the internal momentum labels of each Green’s function leg and

interaction leading to a collapse of the momentum dependent contributions leaving only local terms.
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Figure 14. The Laue function Λ, which described momentum conservation at a vertex (left) with two

Green’s function solid lines and a wiggly line denoting an interaction (perhaps mediated by a Boson). In

the DMFT/CPA we take Λ = 1, so momentum conservation is neglected for irreducible graphs (right)

so that we may freely sum over the momentum labels k̃, k̃′ · · · leaving only local (X = 0) propagators

and interactions.

These arguments may then be applied to the self-energy Σ, which becomes a local (momentum-

independent) function. For example, in the CPA for the Anderson model, non-local correlations

involving different scatterers are ignored. Thus, in the calculation of the self-energy, we ignore all the

crossing diagrams shown on the bottom of Figure 12; and retain only the class of diagrams such as

those shown on the top representing scattering from a single local disorder potential. These diagrams

are shown in Figure 15.

+ + +

x x x

Figure 15. The first few graphs of the CPA local self-energy of the Anderson model. Here the solid

Green’s function line represents the average local propagator and the dashed lines the impurity

scattering. These graphs may be obtained from the full set of graphs shown in Figure 12 by

replacing each graphical element (Green’s function and impurity scattering lines) with its local analog

coarse-grained through the entire first Brillouin zone.

It is easy to show this reduction in the number and complexity of the graphs is fully equivalent to

the neglect of momentum conservation at each internal vertex. This is accomplished by setting each

Laue function within the sum (e.g., in Equation (23) to 1. We may then freely sum over the internal

momenta, leaving only local propagators. All non-local self-energy contributions (crossing diagrams)

must then vanish. For example, consider again the fourth graph at the bottom of Figure 12. If we

replace the Laue function Nδk1+k4,k5+k3
→ 1 in Equation (23), then the two contributions cancel and

this diagram vanishes.

Thus, an alternate definition of the CPA, in terms of the Laue functions Λ, is

Λ = ΛCPA = 1 (27)

i.e., the CPA is equivalent to the neglect of momentum conservation at all internal vertices of the

disorder-averaged irreducible graphs. It is easy to see that this same definition applies to the DMFT for

the Hubbard model. This will be done below in the context of a generating functional-based derivation.

It is easy to see that both DMFT and CPA employ the locality of the self-energy Σ(ω) in their

construction. As a result, the two algorithms are very similar, they both employ the mapping of the

lattice problem onto an impurity embedded in an effective medium, described by a local self-energy

Σ(ω) which is determined self-consistently. The perturbative series for the self-energy Σ in the
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DMFT/CPA are identical to those of the corresponding impurity model, so that conventional impurity

solvers may be used. However, since most impurity solvers can be viewed as methods that sum all

the graphs, not just the skeleton ones, it is necessary to exclude Σ(ω) from the bare local propagator

G(→) input to the impurity solver in order to avoid overcounting the local self-energy Σ(ω) [17]

corrections. This is typically done via the Dyson’s equation, G(ω)−1 = G(ω)−1 + Σ(ω) where G(ω) is

the full local Green’s function. Hence, in the local approximation, the Hubbard model has the same

diagrammatic expansion as an Anderson impurity with a bare local propagator G(ω; Σ) which is

determined self-consistently.

A generalized algorithm constructed for such local approximations is the following (see Figure 16):

(i) An initial guess for Σ(ω) is chosen (usually from perturbation theory). (ii) Σ(ω) is used to calculate

the corresponding coarse-grained local Green’s function

Ḡ(ω) =
1

N ∑
k

G(k, ω) . (28)

(iii) Starting from Ḡ(ω) and Σ(ω) used in the second step, the host Green’s function G(ω)−1 =

Ḡ(ω)−1 + Σ(ω) is calculated. It serves as the bare Green’s function of the impurity model. (iv) starting

with G(ω) as an input, the impurity problem is solved for the local Green’s function G(ω) (various

impurity solvers are available, including QMC, enumeration of disorder, numerical renormalization

group (NRG) method, etc.). (v) Using the impurity solver output for the impurity Green’s function

G(ω) and the host Green’s function G(ω) from the third step, a new Σ(ω) = G(ω)−1 − G(ω)−1 is

calculated, which is then used in step (ii) to reinitialize the process. Steps (ii)–(v) are repeated until

convergence is reached.

Σ
k

G(k)

Σ+−1= −G−1−1−1 GG Σ=G
−

Impurity Solver

−
G= 1

N
_

Figure 16. The DMFT/CPA self-consistency algorithm.

4.3. The DCA

In this section, we will review the DCA formalism [23,24,46,156]. We motivate the fundamental

idea of the DCA which is coarse-graining and then use it to define the relationship between the cluster

and lattice at the one and two-particle level.

4.3.1. Coarse-Graining

Like the DMFT/CPA, in the DCA the mapping from the lattice to the cluster diagrams is

accomplished via a coarse-graining transformation. In the DMFT/CPA, the propagators used to

calculate Σ and its functional derivatives are coarse-grained over the entire Brillouin zone, leading to

local (momentum independent) irreducible quantities. In the DCA, we wish to relax this condition,

and systematically restore momentum conservation and non-local corrections.

Thus, in the DCA, the reciprocal space of the lattice (Figure 17) which contains N points is divided

into Nc cells of identical linear size ∆k. The geometry and point groups of these clusters may be

determined by considering real-space finite-size clusters of size Nc that are able to tile the lattice of
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size N. The tiling momenta K are conjugate to the location of the sites in the cell labeled by X, while

the coarse-graining wavenumbers k̃ label the wavenumbers within each cell surrounding K and are

conjugate to the real-space labels of the cell centers x̃.

The coarse-graining transformation is set by averaging the function within each cell as illustrated

in Figure 18. For an arbitrary function f (k) (with k = K + k̃), this corresponds to

f̄ (K) =
Nc

N ∑
k̃

f (K + k̃) (29)

where k̃ label the wavenumbers within the coarse-graining cell adjacent to K. According to Nyquist’s

sampling theorem [157], to reproduce the function f at lengths <
∼ L/2 (L is a linear system size)

in Equation (29), we only need to sample the reciprocal space at intervals of ∆k ≈ 2π/L. Equation (29)

may be interpreted as the sum of N/Nc such samplings.

Knowledge of f on a finer scale in momentum than ∆k is unnecessary and may be discarded

to reduce the complexity of the problem. For example, convolutions of periodic functions f may be

approximated as

g(q) =
1

N ∑
k

f (k + q) f (k) ≈
1

Nc
∑
K

f̄ (K + Q) f̄ (K) +O(∆k2) , (30)

where Q = M(q). Equation (30) is an approximation where we first average the function over a set of

D dimensional cells and then perform a sum over the cells. Thus, reducing the numerical complexity

from order N to order Nc floating point operations.

kx

ky

~

k

k

K

(π,0)

(π,π)

Figure 17. Coarse-graining cells for Nc = 8 (differentiated by alternating fill patterns) that partition

the first Brillouin zone (dashed line). Each cell is centered on a cluster momentum K (filled circles).

To construct the DCA cluster (e.g., for Nc = 8) we map a generic k to the nearest cluster point K = M(k)

(c.f. Figure 18) so that k̃ = k − K remains in the cell around K.
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Figure 18. The DCA many-to-few mapping of an arbitrary point in the first Brillioun zone to one of

Nc = 8 cluster momenta K.

4.3.2. DCA: A Diagrammatic Derivation

This coarse-graining procedure and the relationship of the DCA to the local approximations

(DMFT/CPA) is illustrated by a microscopic diagrammatic derivation [8] of the DCA. We chose

disorder case for the demonstration. Quantum cluster theories are defined by two mappings: one from

the lattice to the cluster and the other from the cluster back to the lattice.

a. Map from the Lattice to the Cluster

To define the first mapping, we start from the diagrams in the irreducible self-energy Σ(V, G)

of the Anderson model illustrated in Figure 12. We saw above, that when we completely neglect

momentum conservation by first coarse-graining the interactions and Green’s functions over the

entire first Brillioun zone, the diagrams corresponding to non-local corrections vanish, leaving the

reduced set of local diagrams which constitute the CPA illustrated in Figure 15. The resulting

approximation shares the limitations of a local approximation, described above, including the neglect

of non-local correlations.

The DCA systematically incorporates such neglected non-local correlations by systematically

restoring the momentum conservation at the internal vertices of the self-energy Σ. To this end,

the Brillouin zone is divided into Nc = LD
c cells of size ∆k = 2π/Lc (c.f. Figure 17 for Nc = 8). Each

cell is represented by a cluster momentum K in the center of the cell. We require that momentum

conservation is (partially) observed for momentum transfers between cells, i.e., for momentum transfers

larger than ∆k, but neglected for momentum transfers within a cell, i.e., less than ∆k. This requirement

can be established by using the Laue function [24]

ΛDCA(k1, k2, k3, k4) = NcδM(k1)+M(k2),M(k3)+M(k4)
, (31)

where M(k) is a function which maps k onto the momentum label K of the cell containing k

(see Figure 17). This choice for the Laue function systematically interpolates between the exact

result, Equation (25), which it recovers when Nc → N and the DMFT result, Equation (26), which it
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recovers when Nc = 1. With this choice of the Laue function the momenta of each internal leg may be

freely summed over the cell.

This procedure accurately reproduces the physics on short length scales and provides a cutoff

of longer length scales where the physics is approximated with the mean field. For short distances

r <∼ Lc/2, where Lc is now the linear size of the cluster, the Fourier transform of the Green’s function

Ḡ(r) ≈ G(r) +O((r∆k)2), so that short-ranged correlations are reflected in the irreducible quantities

constructed from Ḡ; whereas, longer ranged correlations r > Lc/2 are cut off by the finite size of

the cluster [24]. Longer ranged interactions are also cut off when the transformation is applied to

the interaction. To see this, consider an extended Hubbard model on a (hyper)cubic lattice with the

addition of a near-neighbor interaction V ∑〈ij〉 ninj where 〈ij〉 denotes near-neighbor pairs. When

the point group of the cluster is the same as the lattice the coarse-grained interaction takes the form

V sin(∆k/2)/(∆k/2)∑〈ij〉 ninj. It vanishes when Nc = 1 so that ∆k = 2π. If Nc is larger than one, then

non-local corrections of length ≈ π/∆k to the DMFT/CPA are introduced.

When applied to the DCA, the cluster self-energy will be constructed from the coarse-grained

average of the single-particle Green’s function within the cell centered on the cluster momenta. This

is illustrated for a fourth-order term in the self-energy shown in Figure 19. Each internal leg G(k) in

a diagram is replaced by the coarse–grained Green’s function Ḡ(M(k)), defined by

Ḡ(K) ≡
Nc

N ∑
k̃

G(K + k̃) , (32)

and each interaction in the diagram is replaced by the coarse-grained interaction

V̄(K) ≡
Nc

N ∑
k̃

V(K + k̃) , (33)

where N is the number of points of the lattice, Nc is the number of cluster K points, and the k̃

summation runs over the momenta of the cell about the cluster momentum K (see Figure 17). For the

Anderson model, where the scattering potential is local, the interaction is unchanged by coarse-graining.

The diagrammatic sequences for the self-energy and its functional derivatives are unchanged; however,

the complexity of the problem is greatly reduced since Nc ≪ N.

∑ G(K+q) = G(K)
N

N

∆     =      δDCA M(k  ) +1 M(k  ) , 2 M(k  ) +3 M(k  )  4

Q’ Q

K−Q’ K−Q

K−Q’−Q

q

Nc

c

x x x x

k 3 k k 54

Figure 19. Use of the DCA Laue function ΛDCA leads to the replacement of the lattice propagators

G(k1), G(k2), ... by coarse-grained propagators Ḡ(K), Ḡ(K′), ... The impurity scattering dashed lines

and unchanged by coarse-graining since the scatterings are local.

Provided that the propagators are sufficiently weakly momentum dependent, this is a good

approximation. If Nc is chosen to be small, the cluster problem can be solved using conventional

techniques such as QMC. This averaging process also establishes a relationship between the systems of

size N and Nc. When Nc = N a finite-size simulation is recovered. Therefore, there are no mean-field

embedding effects, etc.

b. Map from the Cluster Back to the Lattice

Once the cluster problem is solved, we use the solution of the cluster problem to approximate the

lattice problem. This may be done in several ways, and it is not a priori clear which way is optimal. At

the single-particle particle level, we could, e.g., calculate the cluster single-particle Green’s function

and use it to approximate the lattice result, Gl(k, ω) ≈ Gc(M(k), ω). Or, at the other extreme, we
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could calculate the self-energy on the cluster, and use it to first approximate the lattice result Σl(k, ω) ≈

Σc(M(k), ω), and then use the Dyson equation Gl(k, ω) =
(

1 − Σc(M(k), ω)Gl,0(k, ω)
)−1

to

calculate the lattice Green’s function (Gl,0(k, ω) is the bare lattice Green’s function). The second

way is far better. We will motivate this mapping with more rigor in the next part, where we calculate

and minimize the free energy, but here we offer a physically intuitive motivation.

Physically, this is justified by the fact that irreducible terms such as the self-energy are

short-ranged, while reducible quantities the G must be able to reflect the long length and time scale

of physics. This is motivated in Figure 20. As the particle propagates from the origin to space-time

location x, the quantum phase and amplitude it accumulates is described by the single-particle Green’s

function G(x). Consequently if x is larger than the size of the DCA cluster, then G(x) is poorly

approximated by the cluster Green’s function. However, the self-energy Σ describes the many-body

processes that produce the screening cloud surrounding the particle. As we saw in Section 2.3 these

distances are typically very short, on the order of an Angstrom or less, so the lattice self-energy is often

well approximated by the cluster quantity.

Figure 20. Path-integral interpretation of the screening of a propagating particle. The single-particle

lattice Green’s function, Gl , describes the quantum phase and amplitude the particle accumulates

along its path as it propagates from space-time location 0 to x. It is poorly approximated by the

cluster Green’s function from a small cluster calculation, Gl ≈ Gc, especially when x, r ≤ Lc, the linear

cluster size. Its self-energy, which describes generally short-ranged r screening processes, is well

approximated Σl ≈ Σc, by a small cluster calculation, especially when the cluster size Lc is greater

than the screening length. As discussed in Section 2 this screening length fTF ≈ r which may be less

than an Angstrom for a good metal. Therefore, rather than directly approximating the lattice Green’s

function by the cluster Green’s function, the cluster self-energy is used to approximate the lattice

self-energy in a Dyson equation for the lattice Green’s function Gl = Gl + Gl0 + Gl0ΣlGl , where Gl0 is

the bare lattice Green’s function.

4.3.3. DCA: A Generating Functional Derivation

Finally, in this section, we will derive the DCA for the Hubbard model using the Baym generating

functional formalism. The generating functional Φ is the collection of all compact closed graphs that

may be constructed from the fully dressed single-particle Green’s function and the bare interaction.

Starting from the generating functional, it is quite easy to generate the diagrams in the fully irreducible

self-energy and the irreducible vertex function needed in the calculation of the phase diagram. Please

note that in terms of Feynman graphs, each functional derivative δ/δGσ (σ is a spin index) is equivalent

to breaking a single Green’s function line. Therefore, the self-energy Σσ is obtained from a functional

derivative of Φ, Σσ = δΦ/δGσ, and the irreducible vertices Γσσ′ = δΣσ/δGσ′ . Since we obtain the free

energy, Baym’s formalism is also quite useful for proving a few essentials.

a. Map from the Lattice to the Cluster

To derive the DCA, we first apply the DCA coarse-graining procedure to the diagrams in the

generating functional Φ(G, U). In the DCA, we obtain an approximate Φc by applying the DCA

Laue function to the internal vertices of the lattice Φl . This is illustrated for the second order term

in Figure 21.
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Figure 21. A second-order term in the generating functional of the Hubbard model. Here the undulating

line represents the interaction U, and on the LHS (RHS) the solid line the lattice (coarse-grained)

single-particle Green’s functions. When the DCA Laue function is used to describe momentum

conservation at the internal vertices, the momenta collapse onto the cluster momenta and each lattice

Green’s function and interaction is replaced by the corresponding coarse-grained result.

It is easy to see that the corresponding term in the self-energy Σ(2) is obtained from a functional

derivative of Φ(2), Σ
(2)
σ = δΦ(2)/δGσ, and the irreducible vertices Γ

(2)
σσ′ = δΣ

(2)
σ /δGσ′ . This is illustrated

for the second order self-energy in Figure 22.

Figure 22. A second-order term in the self-energy of the Hubbard model obtained from the first

functional derivative of the corresponding term in the generating functional Φ (Figure 21). When the

DCA Laue function is used to describe momentum conservation at the internal vertices, the momenta

collapse onto the cluster momenta and each lattice Green’s function and interaction is replaced by the

corresponding coarse-grained result.

Above, we justified these approximations in wavenumber space; however, one may also make

a real-space argument. In high spatial dimensions D, one may show [13,14] that G(r, τ) falls of

exponentially quickly with increasing r G(r, τ) ∼ tr ∝ D−r/2 (here t is the hopping probability

amplitude) while the interaction remains local. Thus, when D = ∞ all non-local graphs vanish.

In finite D, due to causality, we may expect the Green’s functions to fall exponentially for large time

displacements; whereas, the decay of the quasiparticle ensures that it also fall exponentially with

large spacial displacements. Therefore, one may safely assume that longer range graphs are “smaller”

in magnitude.

Now, consider a non-local correction to the local approximation where only graphs constructed

from G(r = 0, τ) enter. The first such graph would be when all vertices are at r = 0 apart from one

which is on a near neighbor to r = 0, which we will label as r = 1. We allow G(r = 1)/G(r = 0) to

be the “small” parameter. It is easy to see that the first non-local correction to Φ is fourth-order in

G(r = 1)/G(r = 0).

Likewise, the first such corrections to the self-energy are third order while those for the Green’s

function itself are first order in G(r = 1)/G(r = 0). Thus, the approximation where lattice quantities

are approximated by cluster quantities, is much better for the self-energy than for the Green’s function.

Thus, the most accurate approximation is to replace the lattice generating functional with the cluster
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result, Φl ≈ Φc and the lattice self-energy as the cluster result Σl(k) ≈ Σc(K) and use it in the lattice

Dyson’s equation to form the lattice single-particle Green’s function.

Summarizing, the map from the lattice to the cluster is accomplished by replacing G(k) by Ḡ(K)

and the interaction V(k) by V̄(K) in the diagrams for the generating functional. These are precisely the

generating functional, self-energy and vertex diagrams of a finite-size cluster with a bare Hamiltonian

defined by G, and an interaction determined by the bare coarse-grained V̄(K). In this mapping from

the lattice to the cluster, the complexity of the problem has been greatly reduced since this cluster

problem may often be solved exactly and with multiple methods including quantum Monte Carlo [158].

b. Map from the Cluster Back to the Lattice

We may accomplish the mapping from the cluster back to the lattice problem by minimizing the

lattice estimate for the self-energy. The corresponding DCA estimate for the free energy is

FDCA = −kBT
(

Φc − Tr
[

Σl
σGσ

]

+ Tr ln [−Gσ]
)

(34)

where Φc is the cluster generating functional (we use superscripts c and l to denote the cluster and the

lattice quantities, respectively). The trace indicates summation over frequency, momentum, and spin.

We may prove that the corresponding optimal estimates of the lattice self-energy and irreducible

lattice vertices are the corresponding cluster quantities. FDCA is stationary with respect to Gσ,

−1

kBT

δFDCA

δGσ(k)
= Σc

σ(M(k))− Σl
σ(k) = 0, (35)

which means that Σl(k) = Σc(M(k)) is the proper approximation for the lattice self-energy

corresponding to Φc. The corresponding lattice single-particle propagator is then given by

Gl(k, z) =
1

z − εk − Σc(M(k), z)
, (36)

here is the lattice dispersion, z is the imaginary frequency. A similar procedure is used to construct

the two-particle quantities needed to determine the phase diagram or the nature of the dominant

fluctuations that can eventually destroy the quasiparticle. This procedure is a generalization of the

method of calculating response functions in the DMFT [17,159]. In the DCA, the introduction of the

momentum dependence in the self-energy will allow one to detect some precursor to transitions

which are absent in the DMFT; but for the actual determination of the nature of the instability, one

needs to compute the response functions. These susceptibilities are thermodynamically defined as

second derivatives of the free energy with respect to external fields. Φc(G) and Σc
σ, and hence FDCA

depend on these fields only through Gσ and G0
σ. Following Baym [160,161] it is easy to verify that,

the approximation

Γσ,σ′ ≈ Γc
σ,σ′ ≡ δΣc

σ/δGσ′ (37)

yields the same estimate that would be obtained from the second derivative of FDCA with respect

to the applied field. For example, the first derivative of the free energy with respect to a spatially

homogeneous external magnetic field h is the magnetization,

m = Tr [σGσ] . (38)

The susceptibility is given by the second derivative,

δm

δh
= Tr

[

σ
δGσ

δh

]

. (39)
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We substitute Gσ =
(

G0−1
σ − Σc

σ

)−1
, and evaluate the derivative,

δm

δh
= Tr

[

σ
δGσ

δh

]

= Tr

[

G2
σ

(

1 + σ
δΣc

σ

δGσ′

δGσ′

δh

)]

. (40)

If we identify χσ,σ′ = σ
δGσ′

δh , and χ0
σ = G2

σ, collect all of the terms within both traces, and sum over the

cell momenta k̃, we obtain the two–particle Dyson’s equation

2
(

χ̄σ,σ − χ̄σ,−σ

)

= 2χ̄0
σ + 2χ̄0

σ

(

Γc
σ,σ − Γc

σ,−σ

)

(χ̄σ,σ − χ̄σ,−σ) . (41)

We see again it is the irreducible quantity, this time the irreducible vertex function Γ, for which cluster

and lattice correspond.

Summarizing, the mapping from the cluster back to the lattice problem is accomplished by

approximating the lattice generating functional by the cluster result Φc

Φl ≈ Φc (42)

and then optimizing the resulting free energy for its functional derivatives yields

Σl(k) ≈ Σc(M(k)); Γl(k, k′) ≈ Γc(M(k), M(k′)) (43)

c. The DCA Algorithm

Thus, the algorithm for the DCA is the same as that of the CPA/DMFT, but with coarse-grained

propagators and interactions which are now functions of K: (i) An initial guess for Σ(K, z) is

chosen (usually from perturbation theory). (ii) Σ(K, z) is used to calculate the corresponding cluster

Green’s function

Ḡ(K, z) =
Nc

N ∑
k̃

G(K + k̃, z) (44)

(iii) Starting from Ḡ(K, z) and Σ(K, z) used in the second step, the host Green’s function G(K, z)−1 =

G(K, z)−1 + Σ(K, z) is calculated which serves as bare Green’s function of the cluster model.

(iv) Starting with G(K, z), the cluster Green’s function Gc(K, z) is obtained using the Quantum

Monte Carlo method (or another technique). (v) Using the QMC output for the cluster Green’s

function Gc(K, z) and the host Green’s function G(K, z) from the third step, a new Σ(K, z) =

G(K, z)−1 − Gc(K, z)−1 is calculated, which is then used in step (ii) to reinitialize the process. Steps

(ii)–(v) are repeated until convergence is reached. In step (iv) various QMC algorithms, exact

enumeration of disorder, etc. may be used to compute the cluster Green’s function Gc(K, z) or other

physical quantities in imaginary Matsubara frequency z = iωn. Local dynamical quantities are

then calculated by analytically continuing the corresponding imaginary-time quantities using the

Maximum-Entropy Method (MEM) [162].

This generating-functional-based derivation of the DCA is appealing, since it requires the least

initial assumptions. Quantum cluster theories are defined by the maps between the lattice and cluster.

The map from the lattice to the cluster is obtained from a coarse-graining approximation for the

generating functional Φl ≈ Φc. The map from the cluster back to the lattice is obtained by optimizing

the free energy. One may derive the same algorithm for a disordered system following the same

prescription as described above [163]. However, the treatment of a system with both disorder and

interactions requires Keldysh [164,165], or Wagner formalism [166] via the replica trick [8,167] which

is beyond the scope of this review.



Appl. Sci. 2018, 8, 2401 29 of 74

5. Typical Medium Theories of Anderson Localization: Model Studies

In this section, via a series of subsections, we develop a formalism which incorporates the typical

medium analysis into the DCA. The resulting formalism enables the study of electron localization

in models derived from first-principles DFT calculations. As summarized in Table 1, a progression

of quantum cluster theories is proposed, each incorporating more chemical details of the model,

including both diagonal and off-diagonal disorder, multiple bands, and electronic interactions.

This culminates in a formalism able to deal with the full chemical details provided by modern

electronic structure calculations.

These developments are hampered by the lack of a limit where these mean-field theories are

exact. Typically, we develop mean-field theories which are exact in some physically meaningful limit,

such as the limit of infinite dimensions. The resulting theory then inherits some features due to this

exactness even when applied in finite dimensions, such as thermodynamic consistency, translational

invariance, etc.

However, to be most useful, the mean-field theory must yield results that are reasonably consistent

with the real solution in finite dimensions. Magnetism is a good example. Here, the Weiss mean-field

theory becomes exact in infinite dimensions. With a proper scaling of the model parameters with

the dimensionality D, the phase diagram of the 3D model can be qualitatively reproduced by the

mean-field formalism. However, the details of the transition, such as the universality class, may change

with D, even becoming mean-field like above the upper critical dimension. Despite this, since the

transition persists, the mean-field theory may be used to study it.

For localization, the problem is complicated by the fact that the phenomena do not persist into

infinite dimensions. As we have seen, the CPA/DMFT becomes exact in the infinite dimensional limit.

However, as discussed in Section 2.1, they fail to capture localization due to the self-averaging nature

of the average DOS used to define their effective medium. As a cluster extension of these formalisms,

the DCA also fails to capture Anderson localization phenomena [8] and so fails to provide an adequate

mean-field theory for localization.

A significant step towards this goal was developed by Dobrosavljevic et al. [9]. They demonstrated

that the TDOS vanishes as the disorder strength increases, and hence can serve as a proper order

parameter for Anderson Localization. The authors constructed the typical medium theory (TMT),

where they incorporated the geometric averaging over disorder in the CPA self-consistency loop.

The TMT is the first successful mean-field theory for Anderson Localization. Nevertheless,

because of its local single-site nature, it suffers several drawbacks. It underestimates the critical

disorder strength by about twenty percent and does not capture the re-entrance features in the mobility

edge (see Section 7), The lack of a non-trivial limit where it becomes exact, can make the results difficult

to interpret. For example, the TMT predicts a transition in any dimension, but it is not clear a priori

whether this is more likely true in high or low finite dimensions. The CPA, which is exact in high

dimensions, inherits several features from this exact limit. For example, without a priori knowledge of

the upper critical dimension, we might be more inclined to believe its predictions for a 3D model over

those for a 1D model. This lack of an exact limit makes the imposition of any other a priori known

constraints significant.

5.1. Building Quantum Cluster Theories for the Study of Localization

In this section, we address these difficulties associated with the construction of a mean-field

theory with no known non-trivial exact limiting solution. Our approach will be to construct a theory

which inherits the desirable properties of the DMFT/CPA and DCA in the weak disorder limit, while

also incorporating the TDOS order parameter into the mean-field host ensuring that the method is

also able to capture localization phenomena. The natural way to improve upon the local TMT is to

construct a cluster extension which satisfies the constraints mentioned in Section 2.1 which when

rephrased in terms of clusters are:
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1. We approximate the coupling of the clusters to their lattice environment at the single-particle

level (akin to the Fermi golden rule) neglecting two-particle and higher processes. This coupling

is proportional to the square of a matrix element between the cluster and its host, times

an appropriate DOS which describes the states available on the surrounding clusters.

2. Since on average each cluster is equivalent to all the others, this DOS will also be proportional

to some appropriate cluster density of states. In addition, since the distribution of the DOS

is highly skewed, the typical DOS is quite different than the average DOS. The typical cluster

DOS, which is clearly more representative of the local environment, will be used to define the

effective medium.

In addition, there are several additional desirable properties of a cluster theory, some of which

appear in [77] which should also be satisfied if possible:

3. Maintain the translational invariance of the impurity averaged cluster, i.e., there should be no

distinction between, e.g., sites in the center and those at the boundary of the cluster.

4. The clusters should maintain the point group symmetries of the lattice.

5. The method should be fully causal, with positive definite spectra A(K, ω) = −1/πℑG(K, ω) > 0

6. It should recover the DCA when the disorder is weak.

7. it should recover the TMT when Nc = 1

8. In lieu of interactions, the scatterings at different energies are completely independent of

each other.

9. For large Nc → ∞ it should become exact while avoiding self-averaging effects.

10. It should be extensible to multiple bands, and realistic models with longer ranged diagonal and

off-diagonal disorder

Based on these criteria, we have constructed a set of TMDCA algorithms, listed in Table 1.

By construction, all the algorithms listed in the table satisfy the first two criteria. Furthermore, since

they each map the periodic lattice problem onto a self-consistently embedded periodic cluster, they all

maintain translational invariance.

The point group symmetry of the cluster is a matter of choice. By allowing the cluster to have

a lower symmetry than the lattice, there are far more clusters that can be used, e.g., in cluster size

scaling calculations. The quality and the selection criteria for the clusters have been addressed by

D.D. Betts [168–170].

All proposed algorithms are fully causal. The first two algorithms discussed below may be shown

to be causal with a proof involving two conformal maps [8,24]. This proof is not applicable to the

multiband methods; however, we have not observed any causality violations in the iteration of the

resulting equations.

All the algorithms recover the DCA in the weak disorder limit, whereas they do not all recover

the TMT when Nc = 1. There appears to be a trade-off between this and maintaining the independence

of the scatterings at different energies. The algorithms which use a Hilbert transform to calculate the

imaginary part of the cluster Green’s function, including the original TMT, violate this rule. The ones

that calculate the cluster typical Green’s function directly (and not the typical DOS), both imaginary and

real parts, satisfy the rule. The algorithms which avoid the Hilbert transform are far more numerically

stable, and both are equivalent for large clusters, so we tend to strongly favor the algorithms which

directly calculate the cluster typical Green’s function, avoiding the Hilbert transform.

Each of the algorithms become equivalent to a finite-size simulation when N = Nc, so they

all recover the exact result in this limit, and the thermodynamic limit for large N. On the other

hand, the injunction against self-averaging in item 9 is a bit subtle, which can be illustrated by

an example. Consider another apparently good Ansatz ρtyp(k, ω) = exp〈(ln ρc(K, ω)〉 where

ρc(K, ω) = −1
π ℑGc(K, K, ω). ℑGc(K, K, ω) is the diagonal part of the Fourier transform of the cluster

Green’s function. The sum over sites in this transform involves an average of Gc(X, X, ω) over all
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cluster sites X. Thus, the local part of this transform contains an average of the DOS over all cluster

sites. For large clusters, this is an average quantity, which as we argue above, is not critical at the

transition. Thus, an effective medium of this type fails to describe the localization transition, especially

in three spatial dimensions [171].

5.2. Typical Medium Dynamical Cluster Approximation (TMDCA)

In this section, we develop a cluster extension of the TMT, the typical medium DCA formalism

(TMDCA) for the single-band Anderson model in 3D with diagonal disorder (the Hamiltonian was

given in Section 4.1). Due to the lack of a limit where the formalism becomes exact, the defining Ansatz

for this formalism is not uniquely defined. In consideration of this, we will be guided by the desirable

properties listed above. We found two Ansatzes which satisfy most of these desirable properties.

• Ansatz 1

ρc
typ(K, ω) = exp

1

Nc

Nc

∑
I

〈ln ρc
I(ω, V)〉

〈

ρc(K, ω, V)
1

Nc
∑I ρc

I(ω, V)

〉

. (45)

When the cluster size Nc = 1, this Ansatz [10] recovers the local TMT with ρtyp(ω) = e〈ln ρ(w,V)〉.

For weak disorder, the TMDCA recovers the average DCA results, with ρtyp(K, ω) ≈ 〈ρ(K, w, V)〉.

In addition, in the limit of Nc → ∞, the TMDCA becomes exact. Hence, between these limits,

this Ansatz 1 of the TMDCA systematically incorporates non-local correlations into the local

TMT. Since, this Ansatz uses the TDOS, to get typical cluster Green’s function Gc
typ(K, ω), we use

a Hilbert transformation, with

Gc
typ(K, ω) =

∫

dω′
ρc

typ(K, ω′)

ω − ω′
. (46)

• Ansatz 2

While Ansatz 1 works rather well for simple single-band models with local and non-local disorder,

we find that it can suffer from numerical instabilities when applied to complex first-principle

effective Hamiltonians with many orbitals and non-local disorder potentials. Such numerical

instabilities arise due to the Hilbert transformation which is used to calculate the Green’s function

from the TDOS ρc
typ(K, ω). To avoid such numerical instabilities, we constructed the following

Ansatz 2 [172] where we calculate Gc
typ(K, ω) directly as

Gc
typ(K, ω) = exp

1

Nc

Nc

∑
I

〈ln ρc
I(ω, V)〉

〈

Gc(K, ω, V)
1

Nc
∑I ρc

I(ω, V)

〉

. (47)

This Ansatz 2 again incorporates the typical value of the local DOS, the resulting formalism

again becomes exact in the limit of Nc → ∞, promotes numerical stability of the algorithm,

and converges quickly with cluster size. As noted in Table 1 it does not reproduce the TMT when

Nc = 1. This is due to the lack of a limit where the formalism is exact so that the Ansatz may be

uniquely defined.
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Table 1. A progression of TMDCA algorithms, with each one able to incorporate greater chemical

detail as we go down the list. The first column lists systems that may be studied together with the

label of the defining Ansatz. The second column lists some additional characteristics including a brief

discussion of the desirable properties. The columns labeled VDP and ODP identify the desirable

properties, discussed above, which are notably violated and observed.

System/Ansatz Characteristics ODP VDP

Single Band Recovers TMT at Nc = 1.
Local (diagonal) Disorder Recovers DCA for W << Wc 8 7

Ansatz Equation (45) Calculate ρtyp

Hilbert trans. for Gc
typ

Single Band Not TMT when Nc = 1.
Local (diagonal) Disorder Recovers DCA for W << Wc 7 8

Ansatz Equation (47) Calculate Gc
typ directly

Single Band 2 × 2 matrix
Off-Diagonal Disorder Calculate ρtyp matrix 8 7
Ansatz Equation (59) HT to get Gc

typ matrix

Multiband Systems Matrix in orbital space
Local Disorder Calculate ρtyp matrix 8 7

Ansatz Equation (61) HT to get Gc
typ matrix

Recovers DCA for W << Wc

Realistic Material Systems Matrix in orbital space Gc
typ

Complex Disorder Potentials Recovers DCA for W << Wc 7 8
with full DFT detail

Ansatz Equation (47)

These two Ansatzes will be used below as paradigms for the development of Ansatzes for more

realistic systems and will be referred to as Ansatz 1 and 2, respectively.

The main modification of the DCA self-consistency loop for the TMDCA involves the calculation

of the cluster typical Green’s function Gc
typ(K, ω) using Equations (45) and (46) or Equation (47).

The typical Green’s function is then used to complete the self-consistency loop. A schematic diagram of

the TMDCA self-consistency loop is shown in Figure 23. The TMDCA iterative procedure is described

as follows:

1. We start with a guess for the cluster self-energy Σ(K, ω), usually set to zero.

2. Then we calculate the coarse-grained cluster Green’s function Ḡ(K, ω) as

Ḡ(K, ω) =
Nc

N ∑
k̃

1

ω + µ − ε(k̃ + K)− Σ(K, ω)
. (48)

3. The cluster problem is now set up by calculating the cluster-excluded Green’s function G(K, ω) as

G(K, ω) =
1

1
Ḡ(K,ω)

+ Σ(K, ω)
. (49)

4. Since the cluster problem is solved in real space, we then Fourier transform G(K,ω) to real space:

GI,J = ∑K G(K) exp(iK · (RI − RJ)).
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Figure 23. The TMDCA self-consistent loop.

5. We solve the cluster problem using, e.g., a random sampling simulation. Here, we stochastically

generate random configurations of the disorder potential V. For each disordered configuration,

we construct the new fully dressed cluster Green’s function as

Gc(V) = (G−1 − V)−1. (50)

We then calculate the disorder-averaged, typical cluster Green’s function Gc
typ(K, ω) via the

Hilbert transform using Equation (46) for Ansatz 1, or we can directly calculate the Gc
typ(K, ω)

from Equation (47) if we use Ansatz 2.

6. With the cluster problem solved, we use the obtained typical cluster Green’s function Gc
typ(K, ω)

to obtain a new estimate for the cluster self-energy

Σ(K, ω) = G−1(K, ω)− (Gc
typ(K, ω))−1 (51)

7. We repeat this procedure starting from 2, until Σ(K, ω) converges to the desired accuracy.

We note that instead of using the self-energy in the self-consistency, one can also use the

hybridization function ∆(K, ω). Both procedures are observed to converge to the same solution.

The current implementation of the TMDCA is limited to zero temperature analysis, where the

real-frequency formalism with the positive local DOS allows to perform the geometrical averaging

over the disorder with exp < ln ρ(w, V) >. Such constraint is a limiting factor of the finite temperature

extensions of the TMDCA with the use of the Matsubara frequency formalism, which requires to

perform the analytical continuation to obtain the real-frequency spectrum so that the geometric

averaging can be employed. Since the geometric averaging is performed in every iteration of the

calculation, the errors brought by the analytical continuation will propagate through the iterations and

make the calculations numerically unstable.

5.3. Off-Diagonal Disorder

In this section, we extend the DCA and TMDCA formalisms to enable the study of off-diagonal

disorder. The simplest model used to study the effects of disorder in materials is a single-band

tight-binding model with a random on-site disorder potential. Such a model is justified when the

disorder is introduced by substitutional impurities, as in a binary alloy where the substitution of host

atoms by impurities only leads to changes of the local potential on the substitutional site and, on

average, does not affect the neighbors. Then, the disorder appears only in the diagonal terms of the

Hamiltonian coupling to the electronic density and hence is referred to as diagonal disorder. However,

when the bandwidth of the dopant is very different from that of the pure host, such substitution

results not only in the change of the local potential but may also affect the neighboring sites. A simple

model to capture such effects should include both random local potentials and random hopping

amplitudes which depend on the occupancy of the sites. The dependence of the hopping amplitude
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on the disorder configuration is usually referred to as off-diagonal disorder [173]. Of course, a proper

theoretical description of realistic disordered materials requires the inclusion of both diagonal and

off-diagonal randomness.

Figure 24. For off-diagonal disorder the hopping amplitude depends on the occupancy of the

neighboring sites.

To illustrate these ideas, we will employ a simple binary alloy model with random

nearest-neighbor hoppings. Each site may be one of two types, A and B, with random diagonal

potential depending on the type, VA and VB, and hoppings between nearest neighbors i and j, tij, are

introduced as

tij = tAA, if i ∈ A, j ∈ A

tBB, if i ∈ B, j ∈ B

tAB, if i ∈ A, j ∈ B

tBA, if i ∈ B, j ∈ A, (52)

with all others being zero. The hopping depends on the type of ion occupying sites i and j (Figure 24).

We will assume that the alloy is completely random without clustering, with the concentration of A

sites, cA = 1 − cB.

We may immediately see the difficulty that the off-diagonal disorder poses: the mean field,

contained within G, depends upon the configuration of a site. Physically, the reason for this is clear.

Consider the CPA (Nc = 1) in our binary disorder model. Since the cluster/impurity site couples to

the host only through the near-neighbor hoppings, it will depend on the occupancy of the impurity

and neighboring sites. If we approximate the mean-field coupling with the Fermi’s golden rule,

then we might expect the coupling to depend on the square of the relevant near-neighbor hoppings

multiplied by the local DOS. In the CPA with nearest-neighbor hoppings, this matrix element is just

the nearest-neighbor hoppings. Since it depends on the occupancies, A or B, of the neighboring

sites involved, we expect the mean-field coupling to depend strongly upon the type of impurity and

its neighbors.

5.3.1. DCA with Off-Diagonal Disorder

This poses problems when formulating a Green’s function formalism. Even after averaging over

the disorder, the Green’s functions depend on the type, A or B, of the sites involved. Blackman,

Esterling and Berk [173] (BEB) extended the CPA to systems with off-diagonal disorder. They

developed an elegant formalism to address the problem in multicomponent alloys. BEB showed



Appl. Sci. 2018, 8, 2401 35 of 74

the scalar CPA equation becomes a 2 × 2 matrix equation. For example, for our binary alloy model,

the BEB single-particle Green’s function is a 2 × 2 matrix

G(k, ω) =





GAA(k, ω) GAB(k, ω)

GBA(k, ω) GBB(k, ω)



 . (53)

Since physically the Green’s function describes the amplitude and phase the particle accumulates as it

propagates, we can expect, i.e.,
∫

dω −1
π ℑGAA(k, ω) = cA,

∫

dω −1
π ℑGBB(k, ω) = cB, etc.

In momentum space, if there is only nearest-neighbor hopping between all ions as in our simple

example, the bare dispersion can be written as (the under-bar denotes matrices)

εk =





tAA tAB

tBA tBB



 εk (54)

where in three dimensions for our simple model εk = −2t(cos(kx) + cos(ky) + cos(kz)) with 4t = 1

which sets our unit of energy, and tAA, tBB, tAB, and tBA are unitless prefactors. Using this, we may

define a bare lattice propagator, and a corresponding diagrammatic perturbation theory for the lattice

single-particle propagator G(k, ω).

As done in the previous sections, the CPA or BEB formalism may be derived by replacing the Laue

function by one at each internal vertex of the irreducible quantities, including the generating functional,

and its functional derivatives the self-energy and the vertex functions. However, being single-site

approximations, the CPA and the BEB theories neglect all disorder-induced non-local correlations.

The DCA systematically incorporates such missing non-local corrections by mapping the lattice

problem onto a self-consistently embedded cluster problem. The mapping is accomplished by replacing

the Laue function in the internal vertices of the irreducible quantities by the DCA Laue function.

This causes all the Green’s functions and vertices to be replaced by their coarse-grained counterparts.

The remaining details of the DCA formalism for off-diagonal disorder may then be defined by following

the same procedures discussed in Section 4.3.

To define the mean-field coupling between the cluster and its host, we introduce a DCA

hybridization matrix ∆.

∆(K, ω) =

(

∆AA(K, ω) ∆AB(K, ω)

∆BA(K, ω) ∆BB(K, ω)

)

(55)

which is related to the cluster Green’s function, through the 2 × 2 matrix equation

Gc(K, ω) =
(

ω − ε̄k − ∆(K, ω)− Σ(K, ω)
)−1

(56)

With this result, the mapping between the lattice and the cluster is established, and the cluster

problem may be solved with a variety of methods. We choose to average over the disorder

configurations stochastically. It is possible to enumerate all configurations of the cluster. For a binary

alloy, there are 2Nc such configurations, and an algorithm which enumerates all of them would

scale exponentially in Nc. To avoid the exponential scaling that would come from enumeration, we

randomly sample the configurations. We draw the configurations purely at random and calculate

the corresponding components of the cluster Gc(X, X′), an Nc × Nc matrix. We then average over

the translations and point group operations of the cluster to restore the expected symmetries of

a disorder-averaged system. Our goal is to calculate the average Gc(X − X′) for each link X − X′.
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This may be done by assigning the components according to the occupancy of the sites in the cluster I

and J

(Gc,AA)I J = (Gc)I J if I ∈ A, J ∈ A

(Gc,BB)I J = (Gc)I J if I ∈ B, J ∈ B

(Gc,AB)I J = (Gc)I J if I ∈ A, J ∈ B

(Gc,BA)I J = (Gc)I J if I ∈ B, J ∈ A (57)

with the other components being zero (for any disorder configuration, only 1/4 of the Gc,αβ(X − X′)

are non-zero).

Once the average cluster Gc Green’s function is obtained, we can get the cluster self-energy

Σ(K, ω) or the hybridization function matrix ∆(K, ω) using the Dyson’s equation.

We then close the loop on the DCA algorithm by calculating the coarse-grained lattice Green’s

function as

Ḡ(K, ω) =

(

ḠAA(K, ω) ḠAB(K, ω)

ḠBA(K, ω) ḠBB(K, ω)

)

=
Nc

N ∑
k̃

(

Gc(K, ω)−1 + ∆(K, ω)− εk + ǫ(K + k̃)
)−1

. (58)

A new estimate of the hybridization function is then formed from ∆new = ∆old + Gc(K, ω)−1 −

Ḡ(K, ω)
−1

. This may be used to define a new cluster problem, etc. This procedure continues until

∆ converges.

5.3.2. TMDCA with Off-Diagonal Disorder

In this section, we will discuss the modifications needed for the above DCA off-diagonal disorder

formalism to incorporate the typical medium analysis [174].

In the presence of off-diagonal disorder, following BEB, the TDOS becomes a 2 × 2 matrix, which

we define as

ρc
typ(K, ω) = exp

(

1

Nc
∑

Nc
I=1 〈ln ρI I(ω)〉

)

×























〈

−
1

π
ℑGc,AA(K, ω)

1
Nc

∑
Nc
I=1(−

1

π
ℑGI I(ω))

〉 〈

− 1
π ℑGc,AB(K, ω)

1
Nc

∑
Nc
I=1(−

1
π ℑGI I(ω))

〉

〈

−
1

π
ℑGc,BA(K, w)

1
Nc

∑
Nc
I=1(−

1

π
ℑGI I(ω))

〉 〈

− 1
π ℑGc,BB(K, ω)

1
Nc

∑
Nc
I=1(−

1
π ℑGI I(ω))

〉























. (59)

Here the scalar prefactor depicts the local typical (geometrically averaged) DOS, while the matrix

elements are linearly averaged over the disorder. Also notice that the cluster Green’s function (Gc)I J

and its components Gc,AA, Gc,BB and Gc,AB are defined in the same way as in Equations (53)–(57) above.

For Nc = 1 with only diagonal disorder (tAA = tBB = tAB = tBA) the above procedure reduces to

the local TMT scheme. In this case, the diagonal elements of the matrix in Equation (59) will contribute

cA and cB, respectively, with the off-diagonal elements being zero (for Nc = 1 the off-diagonal terms

vanish because a given site can only be either A or B). Hence, the typical density reduces to the local

scalar prefactor only, which has the same form as in the local TMT scheme.

Another limit of the proposed Ansatz for the TDOS of Equation (59) is obtained at small

disorder. In this case, the TMDCA reduces to the DCA for off-diagonal disorder, as the geometrically

averaged local prefactor term cancels by the contribution from the linearly averaged local term in the

denominator of Equation (59).
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Once the first Ansatz is used to calculate the typical spectra, ρ
αβ
typ, the typical Green’s function

Gc
typ(K, ω) is then obtained by performing Hilbert transform for each component

Gc
typ(K, ω) =











∫

dω′ ρAA
typ (K,ω′)

ω−ω′

∫

dω′ ρAB
typ(K,ω′)

ω−ω′

∫

dω′ ρBA
typ(K,ω′)

ω−ω′

∫

dω′ ρBB
typ(K,ω′)

ω−ω′











. (60)

Once the disorder-averaged cluster Green’s function Gc
typ(K, ω) is obtained from Equation (60),

the self-consistency steps are the same as in the procedure for the off-diagonal disorder DCA. i.e., we

calculate the coarse-grained lattice Green’s function Ḡ(K, ω) using Equation (58). Then, we use the

obtained coarse-grained lattice Green’s function Ḡ(K, ω) to update the hybridization function with

the effective medium as ∆new = ∆old + Gc
typ(K, ω)−1 − Ḡ(K, ω)

−1
, which is used to construct a new

input to the cluster problem. The procedure is repeated, until numerical convergence is reached.

5.4. TMDCA for Multi-Orbital Systems

Since realistic materials also have multiple orbitals, the TMDCA formalism has been generalized

to multi-orbital system at the simple model level [12] as well as for realistic materials [172]. For the

standard DCA, where the Green’s function is averaged over disorder algebraically, the multi-orbital

generalization is as simple as replacing all the quantities in the single orbital system with their matrix

form. This is because all the linear operations performed in the single orbital system are also valid

in the matrix system. However, in the TMDCA, the order parameter is constructed from the typical

values of the LDOS i.e., the TDOS, approximated as the geometric average of the LDOS. Therefore, we

need to construct a multi-orbital generalization of the typical Green’s function with an imaginary part

that can properly reflect the TDOS so that it captures the localization of electrons. Since the off-diagonal

elements of the LDOS are not positive definite, an extension of single-band TMDCA to multi-orbital

systems is not straightforward. Despite the difficulty described above, it has been shown that [12]

the critical behavior of the TDOS is independent of the local basis and the vanishing of the TDOS is

equivalent to the vanishing of the typical value of the LDOS for all the orbitals, leaving some freedom

to construct the appropriate typical Green’s function.

For the simple multi-orbital Anderson model with local diagonal disorder and guided by the

selection criteria discussed in Section 5.1, we construct the following Ansatz for the typical DOS for

the multi-orbital case [12]:

ρc,nn′

typ (K, ω) =























e
1

Nc ∑I〈lnρnn
II (ω)〉

〈

ρnn(K,ω)
1

Nc ∑i ρnn
II (ω)

〉

, i f n = n′

e
1

Nc ∑I

〈

ln|ρnn′
I I (ω)|

〉 〈

ρnn′ (K,ω)
1

Nc ∑i |ρ
nn′
I I (ω)|

〉

, i f n 6= n′

(61)

with

ρnn′

I I (ω) = −
1

π
Im[Gc,nn′

I I (ω)] . (62)

Here, n and n′ are orbital indices. As one can see, the orbital diagonal part (n = n′) takes the same

form as the single-band TMDCA Ansatz 1, while the orbital off-diagonal part (with n 6= n′) is of

a similar form but involves the absolute value of the off-diagonal ‘local’ DOS. The typical cluster

Green’s function is then constructed through a Hilbert transformation

Gc,nn′

typ (K, ω) =
∫

dω′
ρc,nn′

typ (K, ω′)

ω − ω′
(63)
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This Ansatz has been tested in the two-band Anderson model and it was shown that it successfully

captures the localization of electrons with relatively fast convergence with the cluster size (more details

are described in Section 7.2.2).

However, for more complicated materials such as (Ga,Mn)N, where the disorder potential contains

both diagonal and off-diagonal parts, if a direct generalization of the Blackman off-diagonal disorder

Ansatz above is applied, severe numerical instabilities arise when solving the self-consistent TMDCA

equations. The main source of the instability comes from the Hilbert transformation used to calculate

the full typical Green’s function from the TDOS ρc,nn′

typ of Equation (63). Since the Hilbert transformation

connects the typical Green’s function at all the frequencies and makes the real component of the typical

Green’s function a functional of its imaginary part, this means a small error at certain frequency can

spread to its neighbor frequencies, which makes the calculation numerically unstable, especially for

systems with multiple bands and complicated disorder potentials. This frequency mixing is also

somewhat unphysical, since the scattering processes are purely elastic, and processes at different

energy are independent.

To overcome such numerical instability, an alternative Ansatz for the multi-orbital typical Green’s

function is proposed in Ref. [172]. It has the form:

Gnn′

typ(K, ω) = e
1

Nc ∑I〈ln(∑m ρnn
II (ω))〉









〈

Gc,nn′

AA (K,ω)
1

Nc ∑I,m ρnn
II (ω)

〉 〈

Gc,nn′

AB (K,ω)
1

Nc ∑I,m ρnn
II (ω)

〉

〈

Gc,nn′

BA (K,ω)
1

Nc ∑I,m ρnn
II (ω)

〉 〈

Gc,nn′

BB (K,ω)
1

Nc ∑I,m ρnn
II (ω)

〉









(64)

with

ρnn′

I I (ω) = −
1

π
Im[Gc,nn′

I I (ω)] (65)

This Ansatz is an extension of Ansatz 2 (Equation (47)) for a single-band model to the multi-orbital

system. It incorporates the Blackman formalism, so that off-diagonal disorder can also be included.

For the diagonal disorder case, all four elements in Equation (64) are identical, so that it reduces to the

multi-orbital version of Ansatz 2.

Since in this Ansatz we directly calculate the typical Green’s function without invoking a Hilbert

transformation, the calculated TDOS for each frequency is completely independent of the others. This is

consistent with the elastic scattering in the disordered system and greatly improves the numerical

stability of the calculation. Note, that this Ansatz does not recover the TMT in the limit of Nc = 1, but

as shown in [172], for large cluster sizes, it converges quickly and approaches the exact results.

This Ansatz is one of many tried; and it proved to be the most usable of the different Ansatzes

that we could formulate, and most importantly, it is able to treat the complex potentials extracted

from a supercell DFT calculation. It converges quickly with cluster size and yields a stable numerical

iteration scheme.

5.5. Disorder in Interacting Systems

In this section, we review the modifications of the TMDCA that are required for the study

of interacting disordered systems. To model the interplay between disorder and electron-electron

interactions, we consider the Anderson-Hubbard model given by the Hamiltonian,

H = − ∑
<ij>,σ

tij

(

c†
iσcjσ + h.c.

)

+ ∑
iσ

(Vi − µ) niσ + U ∑
i

ni↑ni↓, (66)

here as before, Vi describes the random disorder potential, and U is the strength of the electron-electron

interaction between electrons at site i.

Electron-electron interactions are unavoidable in any realistic situation and might have a dramatic

effect on the MIT [123,175–177]. The important question is, to what extent do they change the nature

of the localization transition. In fact, as we have seen, near the transition, the hybridization between
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the cluster and its host vanishes, so that U/∆ becomes large suggesting that interaction effects become

more important near the transition.

Great care must be taken while calculating disorder-averaged quantities in the presence of

interactions. This is especially true when there is a need to mix linear and non-linear operations.

Examples include the calculation of typical (as opposed to arithmetically averaged) spectra, or when

performing measurements in a QMC simulation when there is a minus sign problem.

This problem arises since disorder averaging is inherently different than the thermodynamic

averaging used in the calculation of the partition function Z. The latter is always linear but only applied

to the arguments of Z. The situation is somewhat less clear when we must also perform averaging over

disorder. However, we may be guided by our desire to formulate a theory which properly describes

experiments. Nearly all experimental measurements are described by response functions, which may

be expressed as derivatives of the free energy. Furthermore, to obtain a large signal, most experiments,

such as light scattering, are done on relatively large samples. If the sample is disordered, then this

means that the response function, A(k, ω) in our example, is averaged over the sample which has

many local disorder configurations. The same is true for most experiments, including bolometry, nearly

any scattering experiment including ARPES, neutrons, etc. Therefore, to describe these experiments,

we disorder average not the partition function, but the logarithm [167,178] of the partition function

and its functional derivatives which include all the observable response functions.

This rule may easily be applied to quantum cluster calculations. We start by generating disorder

configurations of the cluster potential V stochastically. For a given interaction strength U and randomly

chosen disorder configuration V, we solve the interacting cluster problem, obtaining a set of response

functions, e.g., Gc(K, ω, V). When we have the final response functions for each disorder configuration

V, we then take the average over the disorder.

One of the prominent advantages of the TMDCA is that electron-electron interactions can be

included in a very straightforward way while respecting these rules for disorder averaging. Within

the TMDCA, the only modification to the algorithm for the inclusion of interactions is through the

calculation of the cluster Green’s function for each disorder configuration

Gc(V, U) =
(

G−1 − V − ΣInt(U) + U/2
)−1

, (67)

where ΣInt(U) is a thermodynamically averaged self-energy matrix that may be derived through

a real-space, real-frequency cluster solution of the electron-electron interaction term U in the

Hamiltonian of Equation (66). Please note that the adoption of this form involves no further

approximation, even though when viewed in terms of Feynman diagrams, the self-energy ΣInt

contains only electron-electron interaction graphs and V only disorder potentials. The crossing

diagrams (where interaction and disorder diagrams cross each other) are introduced by disorder

averaging. The inclusion of these diagrams is essential for a proper description of the interplay

between interactions and disorder.

Below, we review in some detail, two perturbation-theory-based cluster solvers for the

interacting problem: a second order perturbation theory (SOPT) [11], and a statistical DMFT

(stat-DMFT) [179]-based solver which needs to be supplemented with a local impurity solver

such as local moment approach (LMA) [180], or the numerical renormalization group [181] etc.

The SOPT-based solver, albeit perturbative, incorporates dynamical non-local corrections properly;

while the stat-DMFT-based solver, despite employing non-perturbative impurity solvers does not

capture true dynamical non-local corrections (that arise through interactions).

5.5.1. SOPT

To understand the effect of weak interaction effects on the critical disorder concentration, as well

as to investigate the effect on the mobility edge, we have incorporated a straight SOPT in the cluster
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momentum space into the TMDCA formalism [11]. In the constructed formalism, the interacting

self-energy ΣInt is obtained using the first and the SOPT contributions (shown in Figure 25)

ΣInt = ΣH + Σ(2) . (68)

Here the first term is the static Hartree correction ΣH = UñI/2. The second term is the non-local

second order contribution, defined as

I +
I J

Figure 25. The diagrams for the first and second-order self-energy of the Hubbatr model labeled in

real space. The indices I, J indicate sites in the real-space cluster, while the lines are Hartree-corrected

propagators G̃.

Σ
(2)
I,J (iωn) =

U2

β2 ∑
mp

G̃I J(iωn + iνp)G̃I J(iωm)G̃J I(iωm + iνp), (69)

where G̃(iωn, V, U) is the Hartree-corrected host Green’s function, G̃−1(iωn) = G−1 − V − ǫd(U),

with ǫd(U) = µ + U/2 − UñI/2 and the cluster Green’s function is finally given by Gc(V) = (G−1 −

ǫd(U)− V − ΣInt)−1.

Although the above expression (Equation (69)) appears to imply that we evaluate the self-energy

on the Matsubara frequency axis, it is not really so. We use the spectral representation of the

propagators within a Hilbert transform to get a real-frequency expression for the imaginary part

of the self-energy (for more details, see the Appendix of [11]). Furthermore, the real part of the

self-energy is obtained through a Kramers-Krönig transform.

Once the cluster self-energy due electron-electron interaction ΣInt is obtained via Equation (68),

we then use Equation (67) to get the interaction-corrected cluster Green’s function for the given

disorder configuration V. This is then used to calculate the TDOS Ansatz 1 of Equation (45), with

ρc(K, ω, V, U) = − 1
π ImGc(K, ω, V, U).

The other parts of the TMDCA algorithm, namely the disorder averaging, coarse-graining etc.

remain the same as in the non-interacting case described above in Section 5. A second order (in U)

self-energy evaluated on the full cluster, either in real or momentum space, can incorporate non-local

dynamical effects. However, by construction, such a cluster solver would only be valid for weakly

interacting systems. If the system is strongly renormalized close to a metal-insulator transition, due to

the reduction in ∆ then this method might break down, since the assumption of weak coupling is not

valid for large U/∆.

5.5.2. Stat DMFT Approach

The SOPT method described above is applicable only in the weakly interacting regime.

Unfortunately for the strong coupling regime, there are very few cluster solvers available for disordered

interacting electron systems. The two most extensively used solvers capable of treating a wide range

of energy and length scales, and are numerically exact, are quantum Monte Carlo methods [182,183]

and exact diagonalization [19,142–144].

Quantum Monte Carlo methods have been extended to clusters [46,158]. However, since the

typical averaging must be performed on the real-frequency spectral function, the ill-posed step of

analytic continuation is required for every disorder configuration and in every TMDCA iteration,

rendering them unusable. Alternatively, exact diagonalization may be used, but as is well-known,
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the cluster sizes that can be treated are very modest, and the associated computational expense is quite

substantial. At present, the only fully non-local cluster solver available that is computationally feasible

and yields a real-frequency self-energy is a straight perturbation theory.

Thus, one must resort to approximate cluster solvers, especially for investigating the strong

coupling regime. Such a solver may be constructed by combining a non-perturbative real-frequency

single-site solver and statistical DMFT [179]. The former must be capable of treating the moment

formation and Kondo physics characteristic of the strong coupling regime. It must also properly

incorporate the eventual many-body screening of the local moment leading to a singlet ground state.

The resulting formalism is then able to capture these local dynamical correlations due to U, while

treating the corresponding non-local correlations at a static level. On the other hand, the correlations

due to the disorder are captured exactly up to a length scale given by the linear cluster size.

There are several excellent real-frequency solvers available to treat the strong coupling regime of

the single-impurity Anderson model. Among them are the NRG, non-crossing approximation and

the LMA [180]. Since we have used the LMA for our investigations, we provide a brief introduction

to this method here. It is a diagrammatic perturbation theory-based impurity solver, starting with

the unrestricted Hartree-Fock static mean-field solution. The symmetry, broken at the mean-field

level, is restored through the inclusion of transverse spin flip dynamics. This symmetry restoration

step, equivalent to restoring adiabatic continuity to the non-interacting limit, leads to the emergence

of a low-energy Kondo scale, TK. The latter is an exponentially small scale in strong coupling,

proportional to exp (−αU/Γ), where α is a number ∼O(1), U is the local Hubbard repulsion, and Γ

is the hybridization of the impurity with the local reservoir at the chemical potential. Since, within

stat-DMFT, the hybridization is site-dependent. Rather than a single Kondo scale for the entire system,

a distribution of Kondo scales, P(TK) is obtained. The form of such a distribution and its consequences

on the properties of the disordered system have been extensively investigated using slave-boson

methods and phenomenological arguments [184–186].

It has been seen in the above-mentioned studies that typical medium theory-based calculations

yield a Kondo scale distribution P(TK) exhibiting a long tail at higher Kondo scales, while diverging

at a specific, lower bound scale. This is determined by the solution of the impurity problem in the

particle-hole symmetric limit [187]. Extensions to statistical DMFT combined with the slave-boson

solver yields a P(TK) that also has a long tail at larger TK but is not divergent at lower scales [125].

Instead, it is highly skewed, has a maximum at a specific scale, and has either a vanishing or

a finite intercept depending on whether the disorder is below or above a critical disorder value. Such

a distribution with a finite intercept has been shown to be a sufficient condition for the system to

exhibit non-Fermi liquid (nFL) behavior in transport and thermodynamics. Thus, these theories have

provided a route to explain the crossover from conventional metallic behavior at low disorder to

singular, non-Fermi liquid behavior at strong disorder [177,188].

Nevertheless, since slave-boson methods are just a renormalized version of the non-interacting

limit, and hence fail to capture dynamics at all energy scales, the above theories do not provide

an insight into the role of dynamics in the Fermi liquid to non-Fermi liquid crossover. Additionally,

since the stat-DMFT does not incorporate an embedding of the disordered cluster into a translationally

invariant medium, it does not allow access to Anderson localization unless the cluster is prohibitively

large. The TMDCA combined with a cluster solver based on stat-DMFT and the LMA does not suffer

from the two shortcomings of the previous work. A rapid convergence with increasing cluster size,

ensured by the embedding of the cluster in a medium, ensures the feasibility of the solver, thus

allowing the replacement of the slave-boson solver by a non-perturbative, albeit more expensive

method such as the LMA. Additionally, the TMDCA captures Anderson localization almost exactly in

the non-interacting case, as discussed in the previous sections.

The stat-DMFT-based TMDCA algorithm is illustrated in Figure 26 [187]. The input to the cluster

solver is the real-space hybridization matrix, derived through the real-space host Green’s function. It,

in turn, can be obtained through a Fourier transform of the K-space host Green’s function, G(K, ω).
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The cluster solver begins with a solution of Nc impurity problems, for which the two required inputs

are the local orbital energy, ǫI = −U/2+ VI , and the local hybridization function, ∆
(o)
I I (ω). The output

of this step is a diagonal self-energy matrix, Σ(ω). The second step uses the modified Dyson’s

equation, namely

Gc(V, ω) =
[

G−1 − Σ − ǫ
]−1

(70)

which incorporates the effects of interactions and disorder on an equal footing and yields the real-space

cluster Green’s function. This can now be inverted as shown in Step-3 of Figure 26, to get a new

local hybridization function, ∆
(n)
I I (ω). The final step involves a stat-DMFT self-consistency check

of the local hybridization function, as shown in Step-4. If ∆I I(ω) is found to have been converged

(within a numerical tolerance), the cluster solver is exited, with the output being the cluster Green’s

function found at Step-2, else the new local hybridization function is plugged back into the Step-1 of

the cluster solver, and these steps are repeated until the convergence is reached [189]. The last box

in Figure 26 shows that the output of the cluster solver is the converged (within stat-DMFT) cluster

Green’s function for a single disorder configuration (as obtained in Step-2). Subsequently this is then

Fourier transformed to cluster momentum space, and the disorder average is carried out, as in the

standard TMDCA algorithm (see Section 5).

Figure 26. The detailed algorithm implemented to solve the interacting disordered problem with

a cluster solver built by combining statistical DMFT and a local impurity solver which could be,

for example LMA or NRG. Note the self-consistency loop within the stat-DMFT cluster algorithm.

In practice, since the number of disorder realizations is very large (∼3000) and the largest cluster

size used was Nc = 38, a very large set of impurities (∼105) need to be solved. Each such solution

yields a Kondo scale, expected to be statistically different from the others due to the unique local

hybridization function generated within the cluster solver. The histogram of all the Kondo scales

yields a very reliable Kondo scale distribution, as well as a physical self-energy which encompasses

disorder and interaction effects on an equal footing. Some of these results are reviewed in Section 7.4.
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5.6. Two-Particle Calculations

Up to this point, the theory has focused on the calculation of single-particle quantities,

i.e., the TDOS to capture the localization transition. However, most experimental measurements are

described by two-particle Green’s functions, including transport, most X-ray and neutron scattering,

NMR, etc. Therefore, the TMDCA has also been extended to include the description of two-particle

quantities including vertex corrections [190] in a similar fashion as that in the CPA and DCA [46,158].

In conventional mean-field theories such as the CPA and DCA, the order parameters are constructed

from the lattice Green’s function defined as

Gl
σ(k, ω) =

1

ω − hσ − εk − Σσ(M(k), ω)
, (71)

where M(k) = K maps an arbitrary wave number k to the closest DCA cluster K, Σ(M(k), ω) is the

self-energy calculated on the cluster, and εk is the lattice dispersion. If the order parameter is local,

the order parameters may also be constructed from the cluster single-particle Green’s function

Gc
σ(K, ω) =

1

ω − hσ − ε̄K − ∆σ(K, ω)− Σσ(K, ω)
. (72)

For example, for the magnetization m

m = ∑
k,ω,σ

σGl
σ(k, ω) = ∑

K,ω,σ

σGc
σ(K, ω). (73)

Since these equations depend on h through the Green’s function and through the dependence of Σ and

∆ on G, to calculate the susceptibility dm/dh|h=0 using the cluster Green’s function, we need to know

both δG/δΣ and δ∆/δG. The former is the irreducible vertex function

Γσ,σ′(K, ω; K′, ω′) =
δGσ(K, ω)

δΣσ′(K′, ω′)
. (74)

but the lack of information on δ∆/δG prevent us from using this representation for the extended states.

However, for the localized states, ∆ vanishes, so that δ∆/δG is not needed and we can use the cluster

Green’s function for the localized states. Since the scattering events at different ω are completely

independent, to avoid using δ∆/δG for the extended states, we introduce a mixed representation with

m = ∑
k,ω,σ

σG
p
σ(k, ω) (75)

where

G
p
σ(k, ω) =

{

Gl
σ(k, ω) if |ω| < ωe;

Gc
σ(M(k), ω) if |ω| > ωe.

(76)

and ωe is the mobility edge energy. Physically, this is more meaningful than the use of one of the

formulas in Equations (71) and (72) alone. Below the mobility edge, ω < ωe, all the states are extended,

and they may be described as states with a dispersion ǫk renormalized by Σ. However, for localized

states ω > ωe, above the mobility edge, the electrons are localized to the cluster with ∆σ(K, ω) = 0 so

that
δ∆σ(K,ω)

δh = 0. These states may not be described as extended states with a renormalized dispersion.

So the usual interpretation fails, and it is much better to think in terms of states localized to the cluster

described by the cluster Green’s function for frequencies above the localization edge. This leads to the

main difference between the typical analysis of the two-particle quantities and the conventional CPA
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and DCA, where for the states above the mobility edge, the TMDCA average cluster Green’s function

Gc
σ(K, ω) is used to construct the two-particle susceptibility matrix

δG
p
σ(k, ω)

δh

∣

∣

∣

∣

∣

h=0

= ∑
k′ ,ω′ ,σ′

χσ,σ′(k, ω; k′, ω′)σ′ (77)

Based on this, and the observation that at convergence, Gc = Ḡ so that for the δ
δGc

σ
= δ

δḠσ
= δ

δGl
σ

the

Bethe-Salpeter equation can be derived with Gp Green’s function

σχσ,σ′σ′ = σχ
p0
σ σ + σχ

p0
σσΓσ,σ′′σ′′σ′′χσ′′ ,σ′σ′ (78)

where χ
p0
σσ =

(

G
p
σ(k, ω)

)2
. This equation may be described diagrammatically as in Figure 27.

Again, the lattice momentum sums on k̃, where k = M(k) + k̃, render the direct solution to

Equation (78) intractable. Fortunately, since the irreducible vertex function above depends only

on the momentum cell centers K, this equation may be coarse-grained, by summing over the k̃, k̃′, . . .

labels. The corresponding coarse-grained Bethe-Salpeter equation becomes

σχ̄σ,σ′σ′ = σχ̄
p0
σ σ + σχ̄

p0
σσΓσ,σ′′σ′′σ′′χ̄σ′′ ,σ′σ′ (79)

where χ̄
p0
σσ = ∑k̃

(

G
p
σ(K + k̃, ω)

)2

=χ
k + qk′ + q

k′ k

χ
k + q

k

Γ

k′′ + qk′ + q

k′ k′′

χ
k + q

k

+δk,k′
0

ω + ν

ω
Figure 27. Bethe-Salpeter equation relating the two-particle Green’s function χ and the irreducible

vertex Γ. While k, k′ and q represent momentum indices, ω and ν represent frequency indices (for

fermionic and bosonic frequencies respectively) and the spin indices are suppressed. Please note that

for the disordered systems considered here, the scatterings are elastic and thus the energy is conserved

following any fermionic Green’s function line. Therefore, we only need two frequency indices to

represent the frequency degree of freedom of the system.

The susceptibility corresponding to different physical quantities can be constructed through the

two-particle Green’s function. For instance, the charge susceptibility can be constructed as

χc = ∑
k,w,σ;k′ ,ω′ ,σ′

χσ,σ′(k, ω; k′, ω′), (80)

which is also used to calculate the DC conductivity at zero temperature for a single-band Anderson

model with results shown in Section 7.3. In this typical analysis, the inclusion of the vertex corrections

follows the same procedure as that described in [46,158].

6. Methodology for First-Principles Studies of Localization

There are two general methods which may be used to study localization from first principles.

The first is a component-based approach wherein the calculation is split into three basic components,

as depicted in Figure 28 and described in Sections 6.1 and 6.2 below. Here, the DFT and TMDCA

calculations are performed separately, connected by the second step where a tight-binding model is

extracted from the DFT to be solved in the third, TMDCA step. The first two steps of this process are

quite mature, allowing researchers to focus on the third step, as we have done thus far in this review.
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Alternatively, in the integrated approach, the coarse-graining ideas behind the DCA, the typical

medium analysis, and multiple-scattering theory-based DFT are integrated together to form a fully

self-consistent treatment of the problem. This multiple-scattering formalism has been developed [191],

but as it has not yet been implemented in a real materials calculation, it is beyond the scope of

this review.

In this section, we focus on the component-based approach-based approach illustrated in Figure 28.

Specifically, the first subsection will describe how to extract low-energy effective models of disordered

materials using the Effective Disordered Hamiltonian Method (EDHM) [192]. The second subsection

will describe how these models with real material parameters are inserted into the Effective Medium

Solver, in this case the TMDCA framework.

Figure 28. Organization of the modular approach to first-principles calculations of localization. A DFT

of the pure system and a DFT supercell calculation of a single impurity are performed as the first

step. In the second step, the EDHM converts the DFT output into model parameters of the disordered

system. In the third step, the TMDCA is used to study the materials-specific localization properties.

6.1. From DFT to the EDHM

To describe the effect of disorder within realistic first-principles simulations, we use our recently

developed EDHM [192]. The EDHM maps DFT calculations of ordered materials onto low-energy

effective tight-binding Hamiltonians. These, then in turn, can be used as input for the TMDCA

calculations.

The EDHM is a Wannier-function-based method [74–76]. It makes the TMDCA more tractable

by significantly reducing the number of basic functions (i.e., from hundreds of plane waves to a few

Wannier functions per atom). Besides the EDHM, there are other electronic structure methods that

aim at reducing the number of basic functions such as Numerical Atomic Orbitals [193–195] and

Density-Functional Tight-Binding theory [196].

Conceptually the EDHM is based on a cluster expansion approximation [197] (not to be confused

with the clusters embedded in the effective medium theories discussed in the previous sections). In this

approximation a physical quantity, the low-energy effective Hamiltonian in this case, is expanded in

impurity clusters of increasing size. Specifically, the effective Hamiltonian of an arbitrary configuration

of N impurities, positioned at (x1, ..., xN), can be exactly rewritten as

H(x1,...,xN) = H0 +
N

∑
i=1

V(xi) +
N

∑
i>j=1

V(xi ,xj) + ... (81)

where H0 denotes the Hamiltonian of the system with no impurities, V(xi) = H(xi) − H0, denotes the

potential of an impurity at xi and V(xi ,xj) = H(xi ,xj) − V(xi) − V(xj) − H0 denotes the two-impurity

correction of a pair of impurities at (xi,xj), etc. We have found that for many materials it

is already highly accurate to retain only the single-impurity potentials and neglect the higher

order corrections [192,198–201]. Furthermore, we are typically interested in very dilute impurity

concentrations for which Anderson and Mott localization take place. In this limit it is unlikely that

multi-impurity corrections to the Hamiltonian need to be considered. Here we emphasize that keeping

only the single-impurity potentials in Equation (81) does not mean that multi-impurity scattering is

not considered. At this point we are deriving the low-energy Hamiltonian which can, in principle, be

solved by exact diagonalization that considers multi-impurity scattering exactly to all orders.

In practice, the EDHM consists of three steps.
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1. In the first step two DFT calculations are performed: a normal cell calculation of the pure host

material and a supercell calculation of the host material with a single impurity in it. For example,

for KFe2−ySe2, an iron-based superconductor that contains Fe vacancies, the normal cell of the

host will be KFe2Se2. To capture the impurity potential of an Fe vacancy one can run a DFT

calculation for a K8Fe15Se16 supercell containing a single Fe vacancy [199].

2. The second step is to derive the low-energy Hamiltonians using a projected Wannier function

transformation in which a set of atomic orbitals is projected on the bands close to the Fermi

level [75,76,202]. For the case of KFe2−ySe2, one can project Fe-d and Se-p orbitals on the bands

within [−6, 2] eV [199]. This results in two ordered tight-binding Hamiltonians. One for the

normal cell H0, and one for the single-impurity supercell H(xj).

3. Finally, a superposition of these ordered Hamiltonians is used to build Hamiltonians of arbitrary

impurity configurations. Specifically, the difference between the single impurity and pure

Hamiltonian is taken to derive the single-impurity potential: V(xj) = H(xj) − H0. To remove

the influence of the periodically repeated impurities in the single-impurity supercell calculation

a partitioning procedure is necessary. A detailed account of this procedure is given in [202].

From single-impurity potential the effective Hamiltonian of a disordered impurity configuration

with N impurities can be assembled as follows: H
(x1,...,xN)
eff = H0 + ∑

N
j=1 V(xj).

To illustrate the accuracy and efficiency of the EDHM we present in Figure 29 a comparison of

spectral functions for a K4Fe8Se10 supercell calculated from the full DFT and the effective Hamiltonian.

The size of the deviations between the spectral functions obtained from the full DFT and the EDHM

should be compared with the size of the impurity-induced changes. For this purpose, the spectral

function of the undoped KFe2Se2 is also plotted as a reference. As can be seen from Figure 29, the

effective Hamiltonian describes the influence of the Fe and K vacancies with high accuracy. All the

detailed gap openings and shadow bands induced by the vacancies are captured. However, the

basis set of Linear Augmented Plane Waves (LAPW’s) used in the full DFT is ∼30 times larger than

the basis set of Wannier functions used in the EDHM. This reduction in the size of the basis set

dramatically improves the efficiency of model-based calculations, especially when combined with

model solvers such as the TMDCA. Many more benchmarks can be found in the supplementary

materials of Ref. [192,198–201] demonstrating the high accuracy and efficiency of the method.

In addition to chemical disorder it is also possible to take into account the influence of magnetic

disorder by mapping the DFT onto a generalized spin-fermion model as we describe below. This is

relevant for dilute magnetic semiconductors in which a strongly interacting impurity is embedded

into a weakly interacting host.

In practice, the generalized spin-fermion model is derived as follows. First we perform

spin-DFT (using for example an LDA+U [203,204] exchange correlation functional). Then we perform

a Wannier transformation of the low-energy bands by projecting only the host orbitals and not the

impurity orbitals.

This effectively integrates out the charge degrees of freedom corresponding to the impurity.

For example in the case of Ga1−xMnxN [205] we project only on the N−sp3 host orbitals thereby

integrating out the charge degrees of freedom of the strongly interacting Mn-d impurity orbitals.

Next, one derives the impurity potential in each of the two spin-channels resulting in V
xj

↑ and V
xj

↓

corresponding to the impurity at site xj. In the generalized spin-fermion model the impurity potential

is given by:

Vxj = ∑
ii′nn′

(

Tnn′

jii′ c†
inσci′n′σ + Jnn′

jii′ c†
inστσσ′τσσ′τσσ′ci′n′σ′ · SjSjSj

)

(82)

which incorporates the effect of the strong Coulomb repulsion at the impurity site. As usual, cinσ

(c†
inσ) annihilates (creates) an electron with spin σ in unit-cell ri in the n-th host orbital. τσσ′τσσ′τσσ′ and SjSjSj

are the Pauli matrices and the spin-vector operator. The non-magnetic and magnetic coefficients are
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determined Tnn′

jii′ = 〈rin|V
xj

↑ + V
xj

↓ |ri′n
′〉 and Jnn′

jii′ = 〈rin|V
xj

↑ − V
xj

↓ |ri′n
′〉 respectively. Here we note

that the impurity potential involves three spatial points labelled by i, i′ and j, meaning that if we

place an impurity at site j the processes from site i to i′ will be modified. We have recently performed

such a derivation for Ga1−xMnxN to resolve a long-standing debate on the valence state of Mn [205].

The main advantage of this approach compared to deriving a multi-orbital Hubbard model [206] is

that by treating the impurity spins classically one can avoid the fermion sign problem [207] and thus

greatly reduce the computational expense of including interactions in the typical medium dynamical

cluster approximation.

Figure 29. Spectral functions of the clean reference system KFe2Se2 (a) and K4Fe8Se10 with one K

vacancy and two Fe vacancies obtained from DFT (b) and the effective Hamiltonian method (c). Reprint

from [199].

Recently, we also generalized the EDHM to include the treatment of phonons [208]. Rather than

making a cluster expansion of the Wannier function-based Hamiltonian of the electrons, a cluster

expansion can be made in the force constant matrices of the phonons. This opens the way for studying

disorder-induced localization of phonons from first principles.

6.2. From the EDHM to TMDCA

To incorporate the EDHM into the TMDCA, we first need to convert the parameters derived from

the EDHM into the form of the multi-orbital Anderson model used in the TMDCA. Moreover, since the

impurity potentials derived are usually quite long ranged, an appropriate coarse-graining procedure

is needed to map the effective impurity potential from the lattice to the DCA cluster (c.f. Section 4.3).

In the following, we outline the procedure of these two steps.

a. Extraction of the Impurity Potential

We start from the effective EDHM Hamiltonian: Heff = H0 + V, where

H0 = ∑
i,i′n,n′ ,σ

tnn′

ii′ c†
inσci′n′σ + h.c. (83)

is the Hamiltonian of the pure host material with i, i′ corresponding to the site indices and n, n′

corresponding to the orbital indices. V is defined in Equation (82) which contains the impurity
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potential induced by the impurity located at site j. Since for each impurity, the induced impurity

potential on neighboring sites has the same form, we can rewrite the parameters in Equation (82) as:

Tnn′

jii′ = Tnn′

i−j,i′−j (84)

Jnn′

jii′ = Jnn′

i−j,i′−j . (85)

Here, since the spin-independent and spin-dependent parameters have similar structures, we only

show the transformation for the spin-independent parameter. The spin-dependent component can be

inferred by analogy.

To investigate the structure of the impurity potential, we first look at the terms induced by a single

impurity located at the origin V0 by letting j = 0 in Equation (82), and further split it into three parts:

V0 = ∑
i,i′ ,n,n′ ,σ

Tnn′

ii′ c+inσci′n′σ

= ∑
i,n,n′ ,σ

Tnn′

ii c+inσcin′σ + ∑
i 6=0,n,n′ ,σ

Tnn′

0i c+0nσcin′σ + ∑
i,i′ 6=0,i 6=i′ ,n,n′ ,σ

Tnn′

ii′ c+inσci′n′σ + h.c. .
(86)

The first term is diagonal disorder which in general, extends to a finite region from the origin.

The second term is the off-diagonal disorder associated with hopping between the impurity site

and a host site. The disorder induced by this term can be properly described in the Blackman

formalism [173]. The last term is the off-diagonal disorder associated with the hopping between

two host sites that are induced by the impurity located on the sites other than these two host sites. Due

to this feature, the disorder caused by this term cannot be described properly in the original Blackman

formalism so a slight modification is made to include these terms in our calculation.

To extend the Blackman formalism we first write He f f for a specific disorder configuration, with

impurities labeled by j,

He f f = H0 + ∑
j

Vj = ∑
i,n,n′ ,σ

ǫnn′

iσ c+inσcin′σ + ∑
i 6=i′ ,n,n′ ,σ

Wnn′

i,i′ ,σc+inσci′n′σ (87)

where,

ǫnn′

iσ = tnn′

ii + ∑
j

Tnn′

jii , (88)

Wnn′

i,i′ ,σ = tnn′

ii′ + ∑
j=i,or,i′

Tnn′

jii′ + ∑
j 6=i,j 6=i′

Tnn′

jii′ . (89)

Here, in Equation (89) the first term is independent of the disorder configuration. The third term

depends on the disorder configuration but is independent of the chemical occupation of sites i and i′.

The second term only depends on the chemical occupation of sites i and i′. If we denote the site as A if

it is occupied by the host atom and B if it is occupied by the impurity atom, then we can see there are

only four possible values for the second term:

∑
j=i,or,i′

Tnn′

jii′ =



























0, i f i ∈ A, i′ ∈ A

Tnn′

i′ii′ , i f i ∈ A, i′ ∈ B

Tnn′

iii′ , i f i ∈ B, i′ ∈ A

Tnn′

i′ii′ + Tnn′

iii′ , i f i ∈ B, i′ ∈ B,

(90)
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so in the Blackman formalism, the hopping term Wnn′

i,i′ ,σcan be written as a 2 by 2 block matrix:

Wnn′

i,i′ ,σ = tnn′

ii′

[

1 1

1 1

]

+

[

0 Tnn′

i′ii′

Tnn′

iii′ Tnn′

i′ii′ + Tnn′

iii′

]

+ ∑
j 6=i,j 6=i′

Tnn′

jii′

[

1 1

1 1

]

.

(91)

Here, we use underscore to denote the 2 by 2 matrix in Blackman formalism and we use overbar to

denote the quantities that are coarse-grained. We can see that the first two terms are configuration

independent and translationally invariant in the Blackman formalism, because

Tnn′

i′ii′ = Tnn′

i−i′ ,0 (92)

Tnn′

iii′ = Tnn′

0,i′−i, (93)

so we can combine the first two terms as

W1,nn′

i,i′ ,σ =

[

tnn′

ii′ tnn′

ii′ + Tnn′

i−i′ ,0

tnn′

ii′ + Tnn′

0,i′−i tnn′

ii′ + Tnn′

i−i′ ,0 + Tnn′

0,i′−i

]

, (94)

and we identify the remaining term as

W2,nn′

i,i′ ,σ = ∑
j 6=i,j 6=i′

Tnn′

jii′

[

1 1

1 1

]

= ∑
j 6=i,j 6=i′

Tnn′

i−j,i′−j

[

1 1

1 1

]

, (95)

so that

Wnn′

i,i′ ,σ = W1,nn′

i,i′ ,σ + W2,nn′

i,i′ ,σ . (96)

Note, W2,nn′

i,i′ ,σ which is related to the last term of Equation (86), is not translational invariant even

in the Blackman formalism, and cannot be described in the original Blackman method, so a slight

modification is made to account for these terms in DCA/TMDCA calculations.

b. Coarse-Graining the Impurity Potential

Then, Wnn′

i,i′ ,σ is coarse-grained in the DCA cluster with periodic boundary conditions to obtain

the cluster parameters W
nn′

I,I′ ,σ used for the DCA and TMDCA calculations in the Blackman formalism,

where the capital indices correspond to the lattice sites in the periodic TMDCA cluster.

Here, since W1,nn′

i,i′ ,σ is translationally invariant, it can be coarse-grained easily in the same manner

as the regular kinetic energy terms:

W1,nn′

k,σ = ∑
i

W1,nn′

i,i′ ,σ eik·(ri−ri′ ), (97)

W
1,nn′

K,σ =
Nc

N ∑
k

W1,nn′

K+k,σ, (98)

W
1,nn′

I,I′ ,σ =
1

Nc
∑
K

W
1,nn′

K,σ e−iK·(RI−RI′ ). (99)

However, W2,nn′

i,i′ ,σ still depends on the disorder configuration, and is not translationally invariant,

so it needs to be coarse-grained differently. We carry out the coarse-graining according to the

following procedure:

W2,nn′

k,k′ ,σ = ∑
i,i′

W2,nn′

i,i′ ,σ ei(k·ri−k′ ·ri′ ), (100)
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W
2,nn′

K,K′ ,σ = (
Nc

N
)2 ∑

k,k′

W2,nn′

K+k,K′+k′ ,σ, (101)

W
2,nn′

I,I′ ,σ = (
1

Nc
)2 ∑

K,K′

W2,nn′

K,K′ ,σe−i(K·RI−K′ ·RI′ ). (102)

The diagonal disorder component from Equation (88) also includes an extended contribution,

Tnn′

jii = Tnn′

i−j,i−j, which needs to be coarse-grained. We implement the following procedure:

Tnn′

k = ∑
i

Tnn′

ii eik·ri , (103)

T
nn′

K =
Nc

N ∑
k

Tnn′

K+k, (104)

T
nn′

II =
1

Nc
∑
K

Tnn′

K e−iK·RI . (105)

Then the coarse-grained version of Equation (88) is just

ǫnn′

Iσ = tnn′

IIσ + ∑
J

T
nn′

I−J,I−J

= ǫnn′

0σ + V
nn′

I ,

(106)

where

V
nn′

I = ∑
J

T
nn′

I−J,I−J (107)

is the diagonal disorder potential in the cluster. Since tnn′

IIσ is local and translationally invariant, it is not

modified by coarse-graining, so we set it to ǫnn′

0σ . For the spin-dependent part, the same procedure can

be carried out completely by analogy.

From the procedure above, we get the parameters needed for the DCA/TMDCA calculation.

These are ǫnn′

Iσ = ǫnn′

0σ + V
nn′

I,σ for the diagonal component and W1,nn′

I,J,σ and W2,nn′

I,J,σ for the off-diagonal

component of the disorder potential. The self-consistent loop is similar to the multi-orbital TMDCA

and more details are described in the Appendix of [172].

7. Applications of the Typical Medium DCA to Systems with Disorder

In this section, we review the applications of the typical medium formalism to a selection of

systems with disorder. We start our discussion with the application of TMDCA to single-band 3D

Anderson model. Then we show how the TMDCA can be used with complex systems, including those

with more generalized types of disorder, multiple orbitals, and electron-electron interactions.

7.1. Results for the Anderson Model

7.1.1. Typical DOS as an Order Parameter for Anderson Localization

We start our discussion of the results by presenting the application of the TMDCA to a single-site

Anderson model in 3D. First we demonstrate that the typical and not the average DOS can serve as

a proper order parameter for defining the Anderson localization transition. In Figure 30, we compare

the algebraically averaged DOS (ADOS) calculated using the conventional DCA scheme (dashed lines)

and the TDOS (solid lines) obtained from both a single-site TMT (left panel, Nc = 1) and finite clusters

obtained from the TMDCA (right panel, Nc = 38). The TMDCA employed Ansatz 1 for various

disorder strengths W for the box disorder distribution with P(V) = 1
2W θ(W − |V|).
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Figure 30. (Left) TMT (Nc = 1); (Right) TMDCA (Nc = 38). The ADOS (dash line) and the TDOS (solid

lines) of the 3D Anderson model for different disorder strengths W in units where 4t = 1. At low

disoder, the ADOS and TDOS coincide. This also indicates that the TMDCA and the DCA solutions are

very similar. As disoder strength W increases the TDOS becomes suppressed and vanishes above the

transition. In the local TMT (Nc = 1) scheme, the mobility edge (indicated by arrows) moves towards

the band center ω = 0 monotonically, while in the TMDCA the mobility edge first moves to higher

energy, and roughly around W > 1.75 it starts moving towards the band center, indicating that TMDCA

can successfully capture the re-entrance behavior missing in the TMT scheme. Reprint from [174].

As seen from Figure 30, as the disorder strength increases, the ADOS broadens but remains finite

while the TDOS obtained from both the TMT (Nc = 1) and the TMDCA (Nc = 38) continuously

decreases. It eventually vanishes even at the band center at the critical disorder strength with Wc(Nc = 1)

≈ 1.65 and Wc(Nc = 38) ≈ 2.25 (in units 4t = 1). Below the transition, for W < Wc, the part of the

spectrum with vanishing TDOS corresponds to localized states, while the part of spectrum with a finite

TDOS corresponds to the extended states. As one can see the band tail localize first. Also, notice that

at small disorder with W << Wc, e.g., W = 0.4 the ADOS and the TDOS are almost the same. This

indicates that at small disorder the TMDCA reduces to the standard DCA scheme, which is consistent

with the analysis used to construct Ansatz 1 in Section 5.2.

Comparing the local TMT (Nc = 1) and the non-local TMDCA (Nc > 1) results, one observes

a crucial difference between them. For the local TMT, the mobility edge (indicated by arrows)

delineating the region with extended states where the TDOS is finite, always becomes narrower

with increasing disorder strength W. For a finite cluster TMDCA, the mobility edge first expands and

then decreases, hence giving rise to the re-entrance behavior, missing in the single-site TMT.

The resulting W − ω (disoder-energy) phase diagram is shown in Figure 31. Here, we show the

mobility edge trajectories, (obtained by the frequencies ω where the TDOS vanishes at a given disorder

strength W), and the band edge trajectories, (where the ADOS calculated within the DCA scheme

vanishes). To benchmark our results, we also present the mobility edge trajectories obtained from the

TMM. The finite cluster TMDCA trajectories gradually approach the TMM results with the re-entrance

behavior, (missing in Nc = 1 case) recovered with increasing cluster size. For a large clusters N ≥ 92

our TMDCA results converge to TMM trajectories within the errors of both approaches.
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Figure 31. Phase diagram of the Anderson localization transition in 3D obtained from TMDCA

simulations. As Nc increases, a systematic improvement of the trajectory of the mobility edge is

achieved. At large enough Nc and within computation error, our results converge to those determined

by the TMM [209].

7.1.2. Cluster Size Convergence

We now consider how the critical disorder strength Wc converges with the cluster size Nc. Since

Wc is defined by the vanishing TDOS(ω = 0) = 0, in Figure 32 we plot the local TDOS(ω = 0) at

the band center as a function of disorder strength W for several clusters Nc. The presented results

are obtained using Ansatz 1. We also did calculations with Ansatz 2 (data not shown) and obtained

very similar results. Our results show that as cluster size Nc increases, the Wc systematically increases

until it converges to Wc ≈ 2.25 which is in good agreement with the Wc ≈ 2.1 values reported

in the literature [209]. The data presented in Ref. [174] for large cluster sizes does not attain full

self-consistency. We pay extra attention to the convergence of the self-energy and redo the calculations

for the data as shown in Figures 31 and 32.
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Figure 32. The TDOS at the band center TDOS(ω = 0) vs. disorder strength W for the 3D Anderson

model calculated with the TMDCA using Ansatz 1 for different cluster sizes Nc = 1, 10, 12, 38, 92 with

units where 4t = 1. The TDOS(ω = 0) vanishes at the critical disorder strength Wc when all states

become localized. For Nc = 1, which corresponds to the TMT method, the critical disorder strength

Wc(Nc = 1) ≈ 1.65. As cluster size Nc increases, the critical disorder strength Wc increases quickly to

≈ 2.25, which is in very good agreement with the results from the TMM Wc ≈ 2.1 [210].
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7.2. Results for Models with More Realistic Parameters

In this section, we apply the typical medium analysis to more complex disordered systems,

including those with off-diagonal disorder, multiple orbitals, and interactions. We continue this

section by showing application of TMDCA to calculate two-particle quantities and explore the effect of

interactions. Finally, we discuss the simulation of some select high temperature superconductors and

dilute magnetic semiconductors.

7.2.1. Off-Diagonal Disorder

So far, we have presented the TMDCA results for systems with local disorder having potentials

coupling only the density operators. As they are diagonal in the creation and annihilation operators,

this is called diagonal disorder. However, in many materials, the disorder not only affects the strength

of the local potential, but it also impacts the strength of the hopping of electrons between different

sites. Since this involves the creation of an electron on one site and the annihilation on another site,

the associated disorder is called non-local or off-diagonal disorder. To demonstrate that our TMDCA

scheme can properly treat such generalized cases of disorder and to understand how the off-diagonal

disorder affects the electron localization, we first present the results for the 3D single-band Anderson

model with disorder and hopping defined by the Hamiltonian Equation (17).

To illustrate the method, we return to our simple model of an AB binary alloy. In Figure 33, we

present the results for the TDOS obtained from the generalized TMDCA and the ADOS obtained

from the DCA schemes for several values of the diagonal disorder strength VA = 0.15, 0.6, 1.0 at fixed

off-diagonal disorder amplitudes tAA = 1.5, tBB = 0.5, tAB = 1.0.
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Figure 33. ADOS and TDOS of the A-B binary alloy model with off-diagonal disorder. The left panel

displays results for the TMT Nc = 1 and the right panel for the TMDCA with Nc > 1. The average DOS

(dash-dotted line) and the TDOS (shaded regions) for Nc = 1 (left panel), Nc = 43 (right panel) and

blue dash lines for Nc = 53 (left panel) for various values of the local potential VA with off-diagonal

disorder parameters: tAA = 1.5, tBB = 0.5, tAB = 0.5(tAA + tBB), and cA = 0.5. We show the TDOS

for several cluster sizes Nc = 1, 43, and = 53 to show its systematic convergence with increasing

cluster size Nc. The ADOS converges within our numerical precision for cluster sizes beyond Nc = 43.

The TDOS is finite for the extended states and zero for localized states. Reprint from [211].
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We also present data for the local Nc = 1 case, to demonstrate the effect of non-local correlations

captured within the finite cluster Nc = 43 and 53 DCA and TMDCA algorithms. The ADOS data for

Nc > 1 shows that non-local multisite effects lead to the development of finite detailed structures in

the DOS and the partial filling of the gap at larger values of disorder strength.

Comparing TDOS and ADOS, we observe that for small disorder VA, both are practically the

same. This is consistent with our analytical construction of the Ansatz (Equation (59)), where for small

disorder strength, the TMDCA should converge to the DCA scheme. As the disorder strength VA

increases, significant differences start to emerge. Increasing VA leads to the gradual opening of a gap

which is more pronounced in the Nc = 1, For weaker disorder, VA = 0.6, it is partially filled for the

Nc > 1 clusters. As compared to the diagonal disorder case [174], the average DOS and TDOS become

asymmetric with respect to zero frequency due to the off-diagonal randomness. We again observe that

the local TMT (Nc = 1) underestimates the extended states regime by having a narrower TDOS as

compared to the case when Nc > 1.

We performed a similar analysis for a range of VA values, and our final result for the VA − ω

parameter space is shown in Figure 34. Here for comparison we present the mobility edge boundaries

(extracted from boundaries where the TDOS vanishes) from the single TMT (Nc = 1) and the non-local

TMDCA (Nc > 1) results, and benchmark with the TMM results. The mobility edges shown in

Figure 34 were extracted from the TDOS, with boundaries being defined by zero TDOS. As can be

seen from Figure 34, while the single-site TMT does not change much under the effect of off-diagonal

disorder, the TMDCA results are significantly modified. The bands for a larger cluster become highly

asymmetric with significant widening of the A sub-band. The local Nc = 1 boundaries are narrower

than those obtained for Nc > 1 indicating that the TMT strongly underestimates the extended states

regime in both diagonal and off-diagonal disorder. On the other hand, comparing the mobility edge

boundaries for Nc > 1 with those obtained using TMM, we find very good agreement. This again

confirms the validity of our generalized TMDCA.
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Figure 34. Disorder-energy phase diagram of the A-B binary alloy model with off-diagonal and

diagonal disorder. Parameters used are tAA = 1.5, tBB = 0.5, tAB = 1.0, and cA = 0.5. The mobility

edges obtained from the TMT Nc = 1 (black dashed line), TMDCA Nc = 33 (green dot-dashed line),

Nc = 43 (purple double-dot-dashed line) and Nc = 53 (red solid line), and the transfer matrix method

(TMM) (blue dotted line). The single-site Nc = 1 strongly underestimates the extended states region

especially for higher values of VA. The mobility edges obtained from the finite cluster TMDCA (Nc > 1)

converges gradually with increasing Nc and shows good agreement with those obtained from the TMM,

in contrast to the single-site TMT. See the text for parameters and details of the TMM implementation.

Reprint from [211].
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7.2.2. Multiple Orbitals

The multi-orbital TMDCA with the Ansatz defined in Equations (61) and (63) has been tested for

a 3D Anderson model with two degenerate bands (denoted by a and b), so that both nearest-neighbor

hopping and disorder potential in this case are 2 × 2 matrices in the band basis given by

tij = t =

(

taa tab

tba tbb

)

, (108)

and

Vi =

(

Vaa
i Vab

i

Vba
i Vbb

i

)

, (109)

respectively. The intra-band hopping is set as taa = tbb = 1, with finite inter-band hopping tab.

The local inter-band disorder Vab
i is set to be zero considering the two bands orthogonal to each other

so that the randomness only comes from the local intra-band disorder potential V
aa(bb)
i that follow

independent binary probability distribution functions with equal strength, Vaa = Vbb and impurity

concentration x = 0.5. As shown in Figure 35, in this two-band system the TMDCA again captures

localization, where the TDOS at the band center gradually decreases as the disorder strength increases,

and eventually vanishes at the critical point. The critical disorder strength reaches convergence within

our numerical precision for a cluster size of roughly Nc = 98.
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Figure 35. The TDOS at the band center (ω = 0) vs. Vaa = Vbb in the a-b two-orbital model with

increasing cluster size, for taa = tbb = 1.0, tab = 0.3, Vab = 0.0. For Nc = 1, the critical disorder

strength is 0.65 and as Nc increases, it increases and converges to 0.74 for Nc = 98. Reprint from [12].

To demonstrate the effect of inter-band hopping in this two-band model, the evolution of the

mobility edge as a function of tab with a fixed disorder strength is also studied and shown in Figure 36.

The dome-like shape around the band center reflects the delocalization effect of the inter-band hopping

which is again in excellent agreement with results from the TMM method.
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Figure 36. Evolution of the mobility edge of the a-b two-orbital model as tab increases, while Vaa and

Vbb are fixed. The results are calculated for Nc = 64. A dome-like shape shows up around the band

center, signaling the closing of the TDOS gap. Reprint from [12].

To further benchmark the method, the calculated ADOS and TDOS using the DCA and TMDCA

are also compared with those calculated using the KPM which is shown in Figure 37. As shown in the

plot, a nice agreement between the (TM)DCA and KPM are achieved.
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Figure 37. Comparison of the ADOS and TDOS of the a-b two-orbital model calculated with the DCA,

TMDCA and KPM with fixed disorder strength Vaa = Vbb = 0.8 with impurity concentration x = 0.5

and various values of the inter-band hopping tab. The KPM uses 2048 moments on a cubic lattice of size

483 and 200 independent realizations generated with 32 sites randomly sampled from each realization.

Reprint from [12].

7.3. Results for Two-Particle Calculations

The typical analysis has been applied to the single-band Anderson model to calculate the DC

conductivity [190]. As shown in Figure 38, the DC conductivity vanishes in the region where the TDOS

is zero. This is expected since when the TDOS is zero, meaning all states are localized on the cluster,

the hybridization function also becomes zero and all clusters are isolated.
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Figure 38. The evolution of the ADOS, TDOS and DC conductivity of the single-band 3D Anderson

model at various disorder strengths W for the single-site TMT and the TMDCA with cluster size

Nc = 64. Here, for the DC conductivity, ω corresponds to the chemical potential used in the calculation.

Arrows indicate the position of the mobility edge, which separates the extended electronic states from

the localized ones. Reprint from [190].

The convergence of the critical disorder strength Wc with the cluster size Nc is also studied.

Figure 39 shows the DC conductivity at zero chemical potential as a function of disorder strength

W for several Nc. Wc is defined by the vanishing of the DC conductivity. The results show that as

cluster size Nc increases for Nc ≥ 12, the Wc systematically increases until it converges to Wc ≈ 2.1.

This is consistent with the values reported in the literature [209]. From this cluster onward, Wc

converges to ≈2.1. The TMDCA results are also compared with the KPM [42,212–214] which leads to

excellent agreement for most values of the disorder strength. The results get noisy near the transition

(Figure 39), but the deviation from the KPM calculations is in the correct direction given that the KPM

is a finite-sized approximation and the conductivity vanishes near the critical disorder strength.
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Figure 39. DC conductivity of the 3D Anderson model at T = 0 and µ = 0 (band center) vs. disorder

W for different cluster size Nc = 1, 10, 12, 64, 92. The DC conductivity vanishes at Wc where all states

become localized. For Nc = 1 (TMT), the critical disorder strength WNc=1
c ≈ 1.65 (units 4t = 1). As the

cluster size increases, Wc systematically increases with WNc≫12
c ≈ 2.10 ± 0.10 (in units of 4t = 1),

showing a quick convergence with cluster size to the KPM result. Reprint from [190].



Appl. Sci. 2018, 8, 2401 58 of 74

7.4. Results for Interacting Models

7.4.1. Results from SOPT

As discussed in the introduction, the interplay between disorder and interactions can be quite

subtle and counterintuitive. Using the TMDCA, we explored the effect of weak interactions in

a strongly disordered Anderson-Hubbard model through second order perturbation theory, described

in Section 5.5.1. A thorough benchmarking study reveals excellent agreement of the perturbation

theory results until U . 1.0 (in units of 4t = 1) with results from the DCA-CTQMC results [11]. Beyond

U ∼ 1.0, deviations begin to appear, and the SOPT does not remain reliable.

One of the main results of this study was the absence of a sharp mobility edge separating the

localized from the delocalized spectrum if the chemical potential is at or beyond the mobility edge of

the corresponding non-interacting system. We show the result for both the particle-hole symmetric

and asymmetric cases in Figure 40. The TDOS on a logarithmic scale vs. ω on a linear scale, for a fixed

cluster size of Nc = 38, various U values and a fixed disorder ratio W/Wc(U) = 0.86 is displayed.

The non-interacting case shows a sharp drop of the TDOS at the band edges, thus exhibiting a sharp

mobility edge. However, for U > 0, the TDOS is seen to have exponential tails at the band edges.
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Figure 40. (Top) The typical DOS as a function of frequency, for the non-interacting case (Nc = 38,

U = 0.0, units 4t = 1) and two weakly interacting cases (U = 0.1, 0.2) are shown for a disorder value

W that is close to the critical disorder, i.e., W/Wc(U) = 0.86 [11] of the 3D Anderson-Hubbard model.

The U = 0 TDOS shows a sharp band edge, while for U > 0, exponential tails are seen, indicating

the broadening of the mobility edge. (Bottom) The typical DOS as a function of frequency, for the

interacting case (Nc = 38, U = 0.2, units 4t = 1) at various chemical potentials (µ). As the µ approaches

the non-interacting mobility edge, the exponential tail seen in the top panel is replaced by a sharp edge.

We also found that the width of the mobility edge depends on the location of the chemical

potential [10] and goes continuously to zero as the energy approaches the chemical potential. Here,

the decay of the states via interactions is suppressed by the lack of phase space for which energy is

conserved and the Pauli principle satisfied. This is similar to the situation in a Fermi liquid. However,

here, the Pauli principle, together with energy and momentum conservation means that the scattering
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rate vanishes quadratically with the energy measured relative to the Fermi energy. As a result, the Fermi

liquid has a resistivity which is quadratic in temperature, a linear in temperature electronic specific heat,

etc. In our case, the momentum conservation is lost since the impurities break translational invariance.

Therefore, we might expect a different power law; perhaps, a lower power reflecting the fact that the

phase space will open more quickly than in a Fermi liquid, due to the reduced number of constraints.

The absence of a sharp mobility edge may also be understood through a perturbation theory argument

(which should be valid in weak coupling), where the starting point is the non-interacting disordered

system having a clear mobility edge. A perturbation theory in U involves convolutions which mix

the localized states below and extended states above the mobility edge, thus leading to a smearing of

the TDOS band edge, and hence to a complete absence of a sharp division between the extended and

localized states.

Since only these states very close to the Fermi surface are probed by most experiments, this

phenomena may be difficult to distinguish from the non-interacting case. The difficulty is that since the

width goes to zero as the chemical potential approaches the remnant of the mobility edge. Therefore,

that experiments (most of them) that probe only the states near the Fermi energy will see a sharp

mobility edge. However, the low-energy excitations may exhibit non-Fermi liquid behavior. To our

knowledge, this phenomena has not yet been explored.

The lack of a sharp mobility edge due to interactions may also be interpreted as a delocalization

of states that would have otherwise been localized by disorder. Further support for such a role of

interactions is also found in the increase of the critical disorder, Wc(U) with increasing U. In Figure 41,

the integrated typical DOS for Nc = 38 as a function of disorder for various interaction strengths is

seen to decrease sharply and vanish at a critical disorder strength, Wc, whose value depends on U.

The inset shows that the Wc(U) increases with increasing U. Using the TMT with an NRG impurity

solver, Byczuk et al. had also found the same result [126]; however, since the TMT is a local theory,

and hence corresponds to Nc = 1, it was not clear if their result was robust against inclusion of

non-local dynamical correlations due to disorder and interactions. The TMDCA results for Nc = 38,

which fully incorporate these correlations, shown in Figure 41 confirm that, indeed interactions can

screen disorder effects, and hence a larger disorder value is needed to localize the system in the

presence of interactions.
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Figure 41. Screening of disorder effects by weak interactions in the 3D Anderson-Hubbard model:

The main panel shows the momentum integrated typical DOS, TDOS(R = 0; ω = 0) for Nc = 38 as

a function of disorder, W for various U values (units 4t = 1). The inset shows that the critical disorder

value, Wc(U) increases with increasing U for three cluster sizes.
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Interestingly, we also found a dip in the DOS at the chemical potential, akin to a pseudogap, at

disorder values that were very close to the critical disorder. Since this is the weak coupling regime,

this pseudogap could be a precursor of the Efros-Shklovskii Coulomb gap [176]; however, the present

model has purely local interactions, while the Coulomb gap is found for long-range interactions, which

have not been explored yet.

7.4.2. Results from Stat-DMFT

The role of strong interactions is also of great interest. Unfortunately, the second order

perturbation theory-based cluster solver is, naturally, restricted to the weakly interacting regime.

Hence, to investigate the interplay of disorder and interactions in the strong coupling regime, we

developed a real-space cluster solver based on statistical DMFT coupled with an impurity solver,

namely the LMA, that can capture local Kondo physics in a non-perturbative way.

Since, within stat-DMFT, the hybridization is different for each site, the Kondo scale, TK, acquires

a highly non-trivial and skewed distribution, P(TK), as shown in Figure 42. For a fixed U = 1.6,

the distribution of Kondo scales as a function of TK [189] is shown for increasing disorder values and

a cluster size, Nc = 38.
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Figure 42. Distribution of Kondo scales vs. TK for various disorder values in the 3D Anderson-Hubbard

model (units 4t = 1). For larger W values, the distribution develops a finite intercept. The inset shows

the same data on a log-linear scale. Reprint from [189].

The figure shows that the distribution of TKs develops a finite intercept at larger disorder values,

indicating the formation of local moments. Many studies have shown that a sufficient condition for

non-Fermi liquid behavior is a non-zero value of P(TK = 0) [185,215]. Indeed, the corresponding

self-energy shows a crossover from low-frequency Fermi liquid to high-frequency non-Fermi liquid

behavior at a crossover scale ωc. This is shown in Figure 43, where the negative of the imaginary

part of the self-energy, −ImΣ(ω) is shown on a linear and log-log scale in the left and right panels,

respectively. The right panel shows clearly that the frequency dependence is Fermi liquid such as (ω2)

at low frequencies, and crosses over to |ω|α, with a disorder-dependent α < 2 at higher frequencies.

The crossover scale, ωc(W) decreases with increasing W, leading us to speculate the existence of

a disorder-driven quantum-critical point where ωc(W) = 0. Our results for the crossover scale along

with inferences from previous works may be combined to get a schematic phase diagram (shown in

Figure 44) of the quantum-critical region of the Anderson-Hubbard model.
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Figure 43. The negative of the imaginary part of the low-frequency (ω) self-energy as a function of ω

on a linear (a-panel) and log-log scale (b-panel) for various disorder values (legends), Nc = 38 and

U = 1.6. The left panel shows that the −ImΣ(ω) is quadratic close to the Fermi level and crosses

over to a power law form (see more clearly in the right panel) with an exponent α(W) < 2, that is

disorder-dependent.

As the schematic suggests, a quantum-critical point at Wc, identified by the vanishing of the

crossover scale, separates a Fermi liquid phase from a second phase which we simply call Phase-2.

This second phase could not be identified within the TMDCA calculations but can be speculated to be

some kind of quantum spin liquid. It was also argued in the work that the quantum criticality cannot

be of a local type or a Hertz-Millis-Moriya type, and hence must be of a new type.

Figure 44. A schematic phase diagram in the disorder-energy plane of the Anderson-Hubbard model

showing a disorder-driven QCP separating a Fermi liquid from an as yet unidentified Phase-2. Reprint

from [189].

7.5. Results of First-Principles Studies of Localization

The combined method EDHM+TMDCA (described in Section 6) has so far been applied to

study localization from first principles in two types of functional materials: superconductors [12] and

diluted magnetic semiconductors [172]. Due to its ability to access systems with multiple orbitals and

complicated disorder potentials, it provides a powerful approach to study localization caused by the

impurities in these functional materials in an unbiased and material-specific way.

7.5.1. Application to KyFe2−xSe2

For example, among the iron-based superconductors, KxFe2−ySe2 has been studied intensely

because of its unique properties. It has a relatively high Tc of 31 Kelvin [216] and an exotic type of

antiferromagnetic order. It was the first iron-based superconductor that only has electron pockets
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and no hole pockets. Moreover, KxFe2−ySe2 is strongly disordered due to a significant amount of Fe

vacancies and it is the only iron-based superconductor whose parent compound is an antiferromagnetic

insulator instead of an antiferromagnetic metal [217]. Like other iron-based superconductors, it is quasi

two dimensional which makes it more sensitive to the disorder. This leads to the question whether

it can be an Anderson insulator. Due to the presence of the strong disorder, the precise number of

electrons in KxFe2−ySe2 is difficult to quantify, we consider two extreme cases with fillings of 6.0 and

6.5 electrons per Fe. The true electron concentration should fall in between these cases. As shown in

Figure 45, the calculated DCA and TDOS indicate that despite the strong Fe vacancy disorder and the

low dimensionality, for both fillings, there are very few states that are Anderson localized in the Fe

bands. Since those states reside far away from the Fermi level it can be concluded that KxFe2−ySe2 is

not an Anderson insulator.
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Figure 45. The average and typical density of states of KFe2Se2 with 12.5% Fe vacancy concentration

calculated by multiband DCA and TMDCA with cluster size Nc = 1 and Nc = 16, compared with the

average density of states of the clean (no vacancy) KFe2Se2. Reprint from [12].

7.5.2. Application to (Ga,Mn)N

Another class of functional materials in which disorder plays an important role are diluted

magnetic semiconductors (DMS). Magnetic impurities give rise to magnetic order in these systems via

the creation of a magnetic impurity band.

To study localization of the impurity band is not only important for the transport properties but

is also essential to understand the magnetic exchange mechanism these materials. When the carriers in

the impurity band are localized, itinerant mechanisms of magnetism, such as double exchange, are

ruled out, in favor of other mechanisms such as superexchange [218].

Among the DMS materials, (Ga,Mn)N is of particular interest since Dietl [219] predicted its

Curie temperature to be above room temperature. However, until now, this prediction remains

far from being fulfilled as various experiments lead to controversial conclusions concerning the

ferromagnetism [220–224].

To enhance the understanding of magnetism in (Ga,Mn)N we have studied localization in this

material from first principles. Figure 46 shows the calculated ADOS and TDOS of the minority

band for various Mn concentrations. We can see that for Mn impurity concentrations less than 10%

(the compositional limit of (Ga,Mn)N), the chemical potential always sits above the mobility edge,

indicating that it is insulating due to localization. Moreover, when the Mn concentration is below

3%, the TDOS of the impurity band vanishes completely, leading to the complete localization of the

impurity band supporting the dominance of the ferromagnetic superexchange mechanism over the

double exchange mechanism for the low concentration.
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Figure 46. DOS (blue) and typical DOS (red) of Ga1−xMnxN for various Mn concentrations: x = 0.02,

0.03, 0.05, 0.1, with Nc = 32, showing that the impurity band is completely localized for x ≤ 0.03.

The chemical potential is set to be zero and denoted as the dash line. Inset: Zoom in of the DOS and

TDOS around the chemical potential. Reprint from [172].

8. Conclusions

Over the past couple of decades, DMFT and its generalization, the DCA have become a major

paradigm in the field of computational strongly correlated systems. They provide a new framework

for the study of strong interaction. Interesting phenomena such as the metal-Mott insulator transition

can be studied in a controllable fashion.

A glaring shortcoming of the CPA (a DMFT analog for disordered systems) is its limitation for

treating strong disorder. The Anderson insulator due to disorder is completely absent not only because

of the local nature of the method but also because the average DOS used in the CPA does not serve

as an order parameter for Anderson localized states. There have been cluster extensions of the CPA,

including the DCA and MCPA. The DCA is the momentum-space quantum cluster theory, which is

based on a mapping from the lattice models onto the quantum cluster embedded in self-consistently

determined effective medium. Such mapping involves the concept of coarse-graining, and has been

used in the CPA, DMFT and their cluster extensions. A very important feature of the DCA is that it

is a controllable approximation with a small parameter of 1/Lc (Lc is the linear cluster size), and its

ability to provide systematic non-local corrections to the CPA and DMFT. This is significant, since while

the CPA and DMFT are exact in the infinite dimensional D limit, a physically meaningful systematic

expansion in 1/D has yet to be formulated. Thus, when viewed as an extension of the DMFT/CPA, the

DCA is significant in that it adds a control or small parameter to these quantum cluster approaches.

When applied to disordered systems, the DCA incorporates the non-local correlations missed

in the CPA, and as a result it provides a better qualitative description of the average spectra, it still

cannot capture the large disorder effects, including Anderson localization. This limitation from the

fact that the average DOS used in the DCA is not critical at the transition, and hence cannot serve as

an order parameter.

The proposal to identify the TDOS (with the geometrical not algebraic averaging over disorder)

as the order parameter of Anderson localization has inspired the development of the TMT which

incorporates the TDOS within the CPA formalism. The TMT is an important development in

generalizing the CPA for capturing the Anderson MIT. However, a single-site approximation cannot
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provide a quantitatively accurate calculation at finite dimensions. In addition, thus, a cluster extension

along the lines of the DCA which can handle both strong interactions and disorder is desired.

The TMDCA, which is a main focus of this review, is such cluster extensions, for disordered

and interacting systems. Inheriting some properties from the DCA, the TMDCA is a controlled

approximation with a small parameter of 1/Lc, and it systematically includes the non-local corrections

to the TMT results. We discuss various benchmarks of the accuracy of the TMDCA against other

conventional methods for the Anderson model, including KPM and TMM methods. The versatility of

the TMDCA makes it a superior choice when dealing with more complicated models and systems. We

survey a series of extensions of the TMDCA to include more chemical details of the model, including

off-diagonal disorder, multiple orbitals, long ranged disorder potential and electronic interactions.

These extensions make it possible to incorporate the TMDCA with first-principles calculations to study

the localization in a material-specific way. We also discuss the calculation of two-particle response

functions, such as the conductivity, which can be directly measured in experiments.

A prominent advantage of the TMDCA is that it can include electronic interactions and treat the

disorder and interaction on equal footing. Since in the TMDCA a geometric average of the local DOS

is used for the self-consistency, it requires a real-frequency cluster solver to provide reliable spectra for

each disorder configuration. A general real-frequency cluster solver that can cover the whole range of

electronic interaction will greatly improve the TMDCA results to study the interplay between disorder

and correlation effect.

We presented two calculations for the Anderson-Hubbard model using two perturbation-based

cluster solvers each of which is suitable for weak or strong interaction, respectively. Most significantly,

we show that in the limits of strong disorder and weak interactions treated perturbatively, that the

phenomena of 3D localization, including a mobility edge, remains intact. However, the metal-insulator

transition is pushed to larger disorder values by the local interactions. We also study the limits of

strong disorder and strong interactions capable of producing moment formation and screening, with

a non-perturbative local approximation. Here, we find that the Anderson localization quantum phase

transition is accompanied by a quantum-critical fan in the energy-disorder phase diagram.

The TMDCA has been successfully combined with the Density-Functional Framework to study

functional materials including the iron-based superconductors and DMS. This opens a broad venue of

various applications of the developed method to realistic systems with disorder. In the future it can be

applied to systems where disorder plays an important role, such as intermediate band semiconductors,

topological Anderson insulators [225,226]. Combinations of this method with other first-principle

methods, including multiple-scattering theory for disordered systems is underway. Although some

systems can be successfully described, as we show in our contribution, in combination with the DFT,

additional methodological developments such as the full self-consistency are needed to be able to

better describe the experimental observations.
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Abbreviations

The following abbreviations are used in this manuscript:

Acronym Description

ADOS Average Density of States

AL Anderson Localization

BEB Blackman Esterling Berk

CPA Coherent Potential Approximation

DCA Dynamical Cluster Approximation

DFT Density-Functional Theory

CDMFT Cluster Dynamical Mean-Field Theory

EDHM Effective Disorder Hamiltonian Method

JDM Jacobi-Davidson Method

KKR Korringa-Kohn-Rostoker method

KPM Kernel Polynomial Method

LAPW Linear Augmented Plane Wave

LDOS Local Density of States

LMA Local Moment Approach

MCPA Molecular Coherent Potential Approximation

MS Multiple-Scattering

NLCPA Non-Local Coherent Potential Approximation

ODD Off-Diagonal Disorder

QC Quantum-Critical

QMC Quantum Monte Carlo

SOPT Second Order Perturbation Theory

TDOS Typical Density of States

TMDCA Typical Medium Dynamical Cluster Approximation

TMM Transfer Matrix Method

TMT Typical Medium Theory

Symbol Description

k wavenumber

K Cluster wavenumber

x lattice site coordinate

X Cluster site coordinate

N Number of lattice sites

Nc Number of cluster sites

ω, ωn, z Real and complex frequencies

M(k) DCA coarse-graining many to one map

ρ Density of states

V Electronic potential

ǫ Electronic energy

µ Electronic chemical potential

σ spin index

t Electronic Hopping matrix element (energy)

m Magnetization

h Magnetic Field

χ Two-particle Green’s function (tensor)

F Full vertex function (tensor)

G Single-particle Green’s function

A Single-particle spectral function

∆ Mean-field hybridization between cluster and host

G Host or cluster-excluded Green’s function

Σ Single-particle self-energy
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Γ Irreducible vertex function

Λ Laue function

Oc A superscript “c” designates a cluster quantity

Ol A superscript “l” designates a lattice quantity

Otyp A subscript “typ” designates a cluster quantity

Ō denotes a coarse-grained quantity

OI,J,··· uppercase subscripts indicate indices in cluster space

Oi,j,··· lowercase subscripts indicate indices in lattice space

O denotes a matrix in the Blackman formalism or in the multi-orbital system
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7. Dobrosavljević, V.; Trivedi, N.; Valles, J.M., Jr. Conductor Insulator Quantum Phase Transitions; Oxford

University Press: Oxford, UK, 2012.

8. Jarrell, M.; Krishnamurthy, H.R. Systematic and causal corrections to the coherent potential approximation.

Phys. Rev. B 2001, 63, 125102. [CrossRef]
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215. Tanasković, D.; Dobrosavljević, V.; Abrahams, E.; Kotliar, G. Disorder Screening in Strongly Correlated

Systems. Phys. Rev. Lett. 2003, 91, 066603. [CrossRef] [PubMed]

216. Guo, J.; Jin, S.; Wang, G.; Wang, S.; Zhu, K.; Zhou, T.; He, M.; Chen, X. Superconductivity in the iron selenide

KxFe2Se2 (0 ≤ x ≤ 1.0). Phys. Rev. B 2010, 82, 180520. [CrossRef]

217. Wei, B.; Qing-Zhen, H.; Gen-Fu, C.; Green, M.A.; Du-Ming, W.; Jun-Bao, H.; Yi-Ming, Q. A Novel Large

Moment Antiferromagnetic Order in K 0.8 Fe 1.6 Se 2 Superconductor. Chin. Phys. Lett. 2011, 28, 086104.

218. Jungwirth, T.; Sinova, J.; Mavsek, J.; Kuvcera, J.; MacDonald, A.H. Theory of ferromagnetic (III,Mn)V

semiconductors. Rev. Mod. Phys. 2006, 78, 809–864. [CrossRef]

219. Dietl, T.; Ohno, H.; Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated

semiconductors. Phys. Rev. B 2001, 63, 195205. [CrossRef]
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