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Short Communication

Systematic Reverse Genetic Screening of T-DNA Tagged Genes in Rice for 
Functional Genomic Analyses: MADS-box Genes as a Test Case

Shinyoung Lee 1, Joonyul Kim 1, 3, 4, Jun-Seock Son 1, Jongmin Nam 2, Dong-Hoon Jeong 1, Keunsub Lee 1, 
Seonghoe Jang 1, Jihye Yoo 1, Jinwon Lee 1, Dong-Yeon Lee 1, Hong-Gyu Kang 1 and Gynheung An 1, 5

1 National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and 
Technology (POSTECH), Pohang 790-784, Republic of Korea 
2 Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, PA 16802, U.S.A.

;
We have generated 47 DNA pools and 235 subpools

from 21,049 T-DNA insertion lines of rice. DNA pools of
500–1,000 lines were adequate for screening a T-DNA inser-
tion within a 2-kb region. To examine the efficacy of the
DNA pools, we selected MADS-box genes, which play an
important role in controlling various aspects of plant devel-
opment. A total of 34 MIKC-type MADS-box genes have
now been identified from rice sequence databases. Our
PCR screening for T-DNA insertions within 12 MADS-box
genes resulted in the identification of five insertions in four
different genes. These DNA pools will be valuable when iso-
lating T-DNA insertional mutants in various rice genes. The
DNA pool screening service and the mutant seeds are avail-
able upon request to genean@postech.ac.kr.

Keywords: Insertional mutagenesis — MADS-box genes —
Pool screening — Rice — T-DNA.

Because sequencing of the rice genome is nearly com-
pleted (Goff et al. 2002, Sasaki et al. 2002, Yu et al. 2002b), the
determination of gene function is now a most challenging goal.
To this end, several reverse genetic approaches have been
developed, including homologous recombination (reviewed
in Hanin and Paszkowski 2003), anti-sense or RNAi suppres-
sion (Chuang and Meyerowitz 2000), and insertional muta-
genesis (Feldmann 1991, Jeon et al. 2000a). Among these
methods, random insertional mutagenesis by transposons or
T-DNA have been most widely used for large-scale analyses.
This technique is not only efficient, but can also be employed
for promoter trapping and activation tagging. The establish-
ment of a large number of insertional mutants in Arabidopsis
has accelerated the reverse genetics approach (Feldmann 1991,
Azpiroz-Leehan and Feldmann 1997, Krysan et al. 1999,
Parinov et al. 1999, Parinov and Sundaresan 2000, Sessions et
al. 2002, Szabados et al. 2002).

For functional analyses of insertional-mutant lines, it is
essential that one be able to easily identify disrupted genes.
One method is to establish the flanking sequence database of
the insertion sites. In one study, for example, flanking se-
quences were analyzed from 932 independent Dissociation
transposant lines, and a 1,200 insertion-site database was devel-
oped from the nonautonomous defective Suppressor-mutator
lines in Arabidopsis (Parinov et al. 1999). Moreover, 85,108
insertion sequences from 52,964 T-DNA lines were isolated
using the high-throughput modified thermal asymmetric
interlaced (TAIL)-PCR protocol (Sessions et al. 2002)
(www.tmri.org). In rice, the Tos17 insertion sequence database
also has been constructed (Hirochika 2001, Yamazaki et al.
2001). From these insertion sequence databases, one can read-
ily identify knockout mutants in a gene of interest. However,
establishing such a database requires much time and effort.

As an alternative, insertional mutants can be identified
through a pooling strategy. In this method, PCR analyses of
DNA pools from several hundred to a thousand mutant lines
enable researchers to locate those insertional mutants without
knowing the flanking sequences of each position. This strategy
has been successfully applied with Arabidopsis, petunia, and
maize (Koes et al. 1995, Krysan et al. 1999, Mena et al. 1996,
Parinov and Sundaresan 2000). For example, 17 insertions in
63 genes involved in signal transduction and ion transport, 47
insertions in 36 members of the R2R3 MYB gene family, and
22 mutations in 70 P450 genes were isolated from Arabidopsis
(Krysan et al. 1996, Meissner et al. 1999, Winkler et al. 1998).
PCR-based reverse genetic screenings of the Ac and Tos17
insertion lines in rice have been reported as well (Enoki et al.
1999, Hirochika 2001). Of 14 randomly selected genes, two
knockouts were identified from the Ac pools made from 6,000
individuals (Enoki et al. 1999). One knockout mutant in
OSH15 was isolated from 47 DNA pools consisting of an aver-
age of 550 individuals (Sato et al. 1999). Three independent
phytochrome-A mutants were also found from Tos17 pools
(Takano et al. 2001).

3 Present address: MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, 
East Lansing, MI 48824, U.S.A.

4 The first two authors contributed equally to this work.
5 Corresponding author: E-mail, genean@postech.ac.kr; Fax, +82-54-279-0659.
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Because Tos17 and Ac insertions appear to have hot
spots, alternative methods, e.g. T-DNA insertional mutagene-
sis, will be valuable for complementing the transposon taggings
(Yamazaki et al. 2001). We have previously reported the estab-
lishment of a large number of T-DNA insertional mutants in
rice (Jeon et al. 2000a, Jeong et al. 2002). The transgenic plants
contain an average of 1.4 loci of T-DNA inserts (Jeon et al.
2000a). Here, we report construction of DNA pools from T-
DNA mutant lines. We also elucidate the usability of this pool
by screening knockout mutants in the MADS-box genes, which
are involved in various aspects of plant development (reviewed
in Theissen et al. 2000).

Before we could make these DNA pools, we had to deter-
mine the optimum pool size. Therefore, a stringent PCR
annealing temperature (65�C) and long primers (25–30 bp)
were employed because these allowed more individual lines to
be pooled (Krysan et al. 1996, Krysan et al. 1999). PCR con-
sisted of 96�C for 5 min, followed by 36 cycles of 95�C for
15 s, 65�C for 30 s, 72�C for 2 min; and finally 72�C for 7 min.
Several analyses were done to set the proper screening condi-
tions. As test cases, we selected four genes, into which T-DNA
was inserted. Two of them encode for OsMADS3 and
OsMADS8 (Kang et al. 1995, Kang et al. 1997). The other two,
with unknown functions, were designated as Test1 (GenBank
accession number D22254) and Test2 (GenBank accession
number BAA94238). Within the 5-kb regions from the T-DNA
insertion points, the total GC contents of the first three genes
(OsMADS3, OsMADS8, and Test1) were 34%, 37%, and 38%,
respectively, which are lower than the GC content of the rice
genome (Yu et al. 2002b). In contrast, the GC content of Test2
was 46%, which is higher than average.

To examine the detection range of our PCR analysis, we
designed five gene-specific primers, located 1, 2, 3, 4, and 5 kb
from the T-DNA insertion sites. We also determined the mini-
mum amount of template required for screening. PCR products
of up to 3 kb could be detected for the OsMADS3 and
OsMADS8 genes at all template levels evaluated (Fig. 1). How-
ever, amplification efficiency was lower for Test1. Product was

not detectable when the template amount was reduced below
0.1 ng and the primer site was located at �2.0 kb. Unlike the
first three genes, the PCR products for the Test2 gene were
hardly amplified, and our results were inconsistent under stand-
ard reaction conditions (data not shown). This was probably
due to a higher level of GC in the gene. Because betaine has
been successfully used in the amplification of GC-rich regions
(Hengen 1997, Henke et al. 1997), we examined its effect here
in rice. PCR products were amplified reproducibly for Test2
when 0.8 M betaine was added to the reaction mixture (Fig. 1).
However, both efficiency and the targeting range were low
compared with the first three genes, all of which contained
lower levels of GC. We also observed that an annealing temper-
ature of 58–60�C was related to the most efficient amplifica-
tion when 0.8 M betaine was added (data not shown). These
results indicate that special care is needed when screening
knockout mutants in rice genes because a significant propor-
tion consists of high GC levels (Yu et al. 2002b).

For screening a knockout from the DNA pools of Arabi-
dopsis, 50–100 ng of template DNA has been used (Galbiati et
al. 2000, Meissner et al. 1999, Winkler et al. 1998). Because
0.1 ng of template DNA is required for rice, we estimated that a
DNA pool of 500 to 1,000 individuals would be adequate. To
test whether this was correct, we made DNA pools composed
of 100, 300, 500, 1,000, and 1,500 independent T-DNA tagged
lines. In each pool, we included the four lines that carry T-DNA
insertions in the OsMADS genes or test genes. PCR amplifica-
tion of target fragments in the DNA pools showed that inser-
tions within OsMADS8 could be detected from all pool sizes
(Fig. 2). However, signals were not as strong when the ampli-
fied fragment was longer than 3 kb. For the three other genes,
hybridization signals were weaker especially when the inser-
tion sites were located beyond 2 kb. Furthermore, hybridiza-
tion intensity decreased as the pool size enlarged (Fig. 2).

In Arabidopsis, Krysan et al. (1999) set the maximal size
at ~2,350 lines per pool, whereas Winkler et al. (1998) reported
that pool sizes of 600 to 1,000 lines were acceptable for screen-
ing T-DNA knockout mutants in the P450 family gene. Because

Fig. 1 Template detection limit and targeting
range of PCR. Various amounts of genomic DNA
templates (0.01, 0.03, 0.10, 0.30, or 1.00 ng) of
four tagged genes (OsMADS3, OsMADS8, Test1,
and Test2) were used for PCR analyses in which a
T-DNA specific primer and five gene-specific prim-
ers were located about 1, 2, 3, 4, or 5 kb from the
T-DNA insertion sites.
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the rice genome is about four times larger than for Arabidop-
sis, a pool of 500 lines was deemed sufficient for PCR-based
screening in rice. Sato et al. (1999) have also used pools of
�550 lines to isolate a Tos17 insertion in OSH15. Therefore,
our results (Fig. 2) were consistent with these previous obser-
vations that a pool size of 500 to 1,000 was adequate when
screening for a knockout mutant within the 2-kb targeting
range.

After surface sterilization, 15 seeds from each individual
line were germinated on soil, and DNA was extracted from the
leaves of 10- to 14-day-old seedlings. We then made DNA
from the subpools of an average of 90 lines. About 15 g of
fresh leaves were harvested for each subpool; DNA yield was
about 0.1 mg per gram of tissue. As shown in Table 1, a total of
235 subpools were created: 104 from the pGA2707-tagged
lines for gene trap using the GUS reporter (Jeong et al. 2002),
60 from the pGA2715-tagged lines for activation tagging
(Jeong et al. 2002), and 71 from the pGA2717-tagged lines for
gene trap using the GFP and GUS reporters (unpublished data).
Five subpools were combined to make a pool.

To determine the efficacy of the DNA pools, we selected
the MADS-box genes present in rice by searching for DNA
fragments that contained the conserved MADS-box domain
from the public rice sequence databases registered in NCBI,
TIGR, and rice GD (http://www.ncbi.nlm.nih.gov/, http://
www.tigr.org/tdb/tgi/ogi/, http://btn.genomics.org.cn/rice/). This
search resulted in the identification of 34 non-redundant
MIKC-type MADS-box genes, which contain the domain adja-
cent to the putative start codon ATG and K-box (Table 2). For

comparison, 39 non-redundant MIKC-type MADS-box genes
have been identified in Arabidopsis by complete genome-wide
analyses (Parenicova et al. 2003).

A phylogenic tree of the 34 MIKC-type proteins from rice
and 39 from Arabidopsis is shown in Fig. 3. These genes can
be divided into 11 groups, based on sequence and functional
homologies. Some of the A-, B-, and C/D-group MADS-box
genes are well-known regulators of floral organ identity
(Chung et al. 1995, Jeon et al. 2000b, Kang et al. 1995, Kang et
al. 1998, Kyozuka and Shimamoto 2002, Nagasawa et al.
2003). Rice possesses four A-group genes (OsMADS14,
OsMADS15, OsMADS18, and OsMADS20), three B-group
genes (OsMADS2, OsMADS4, and OsMADS16), and three C/
D-group genes (OsMADS3, OsMADS13, and OsMADS21). In
addition, the three B sister (Bs)-group genes (OsMADS29,
OsMADS30, and OsMADS31) identified in rice are homolo-
gous to the Arabidopsis ABS gene that is involved in normal
endothelium development as well as seed pigmentation in the
endothelium body (Nesi et al. 2002). Finally, five rice MADS-
box genes (OsMADS1, OsMADS5, OsMADS7, OsMADS8, and
OsMADS34) belong to the SEP group while two (OsMADS6
and OsMADS17) are part of the AGL6 group. All of these
belong to groups of genes known to be expressed preferen-
tially in the reproductive organs, thereby suggesting a major
role in floral and seed development.

On the other hand, the MADS-box genes in the remaining
groups are expressed in vegetative tissues (Shinozuka et al.
1999). Four rice genes (OsMADS26, OsMADS33, OsMADS35,
and OsMADS36) belong to the AGL12 group, which also con-

Fig. 2 Screening efficacy according to various pool sizes.
DNA pools of 150, 300, 500, 1,000, and 1,500 lines were
PCR-amplified, with the T-DNA specific primer and gene-
specific primers located about 1, 2, 3, and 4 kb from the T-
DNA insertion sites. For all PCR reactions, 50-ng-pool
templates were used.

Table 1 DNA pools generated from the T-DNA insertion lines

Tagging vectors

pGA2707 pGA2715 pGA2717 Total 

Number of pools 21 12 14 47
Number of subpools 104 60 71 235
Number of individuals 4,357 9,784 6,908 21,049

http://www.ncbi.nlm.nih.gov/
http://www.tigr.org/tdb/tgi/ogi/
http://btn.genomics.org.cn/rice/
http://www.tigr.org/tdb/tgi/ogi/
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Fig. 3 Unrooted phylogenic tree of the MIKC
type MADS-box genes. MADS-box protein
sequences from rice and Arabidopsis were
aligned using the program MAFFT (Katoh et al.
2002). The neighbor-joining (NJ) tree was con-
structed via the program MEGA2 (Kumar et al.
2001) with p-distance, complete deletion of gaps,
and 500 bootstrap resamplings. Numbers beside
each branch are percentiles of the resamplings.
The scale bar indicates the number of amino acid
substitutions per site.
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tains one Arabidopsis MADS-box gene. These genes may be
diversified for elaborate control of rice development. Another
two rice genes (OsMADS50 and OsMADS56) belong to the
SOC1 group. Interestingly, this group is more diversified in
Arabidopsis, with six MADS-box genes being represented
there. Three rice genes (OsMADS22, OsMADS47, and
OsMADS55) belong to the SVP group, while four ANR1-group
genes (OsMADS23, OsMADS25, OsMADS27, and OsMADS57)

are also present in the rice genome sequence databases. Finally,
four orphan MADS-box genes (OsMADS32, AGL15, AGL18,
and AGL63) have been found, with the first being unique to rice
and the others, to Arabidopsis. The FLC-group MADS-box
genes are not identified in rice (Fig. 3).

Among the 34 rice MIKC-type genes, full-length cDNA
clones for 19 are present in GenBank (Table 2). In addition,
partial clones of OsMADS32 and OsMADS47 have been regis-

Table 2 The MADS box genes in rice

a MADS-box genes identified in this study are underlined.
b China contig or scaffold numbers.
c GenBank accession no. Newly identified cDNA are underlined. Full-ORF cDNA of OsMADS20, OsMADS23, OsMADS25, OsMADS27,

OsMADS47, OsMADS55, and OsMADS57 were isolated from mixed libraries made from roots, sheaths, shoot apical meristems, panicles, and
seed coats. In addition, full-ORF cDNA of OsMADS30, OsMADS32, and OsMADS33 were isolated from the mixed cDNA prepared from calli,
2-week-old seedlings, mature leaves, young panicles (�5 cm), mature panicles, and developing seeds.

d Number of knockout mutants isolated from screening the 12 selected MADS-box genes.

Gene a Genomic sequence 
accession number

cDNA accession 
number c

Protein 
size (a.a.)

Exon 
number Chromosome Knockout 

screening d Reference

OsMADS1 AF204063 L34271 257 8 3 Chung et al. 1994
OsMADS2 AP003561 L37526 209 7 1 Chung et al. 1995
OsMADS3 AP003105 L37528 236 8 1 Kang et al. 1995
OsMADS4 AC109595 L37527 210 7 5 Chung et al. 1995
OsMADS5 AB026295 U78890 225 8 6 Kang and An 1997
OsMADS6 AP004178 U78782 250 8 2 Moon et al. 1999b
OsMADS7 AP005529 U78891 249 8 8 Kang et al., 1997b
OsMADS8 Contig1517 b U78892 248 8 Kang et al., 1997b
OsMADS13 AL513004 AF151693 270 7 12 Lopez-Dee et al. 1999
OsMADS14 AF377947 AF058697 246 8 3 Moon et al. 1999b
OsMADS15 AP004342 AF058698 267 8 7 Moon et al. 1999b
OsMADS16 AP004329 AF077760 223 7 6 Moon et al. 1999a
OsMADS17 AL606688 AF109153 249 8 4 Moon et al. 1999b
OsMADS18 AP005175 AF091458 249 8 7 Moon et al. 1999b
OsMADS20 Scaffold1920 b AY250075 233 7 0 This study
OsMADS21 AP003379 AY177693 1 0 This study
OsMADS22 AP004159 AB003322 229 8 2 Pelucchi et al. 2002
OsMADS23 AP003868 AY345220 159 5 8 0 This study
OsMADS25 AL731609 AY177695 227 7 4 0 This study
OsMADS26 AP004566 AB003326 222 7 8 Pelucchi et al. 2002
OsMADS27 AP004766 AY177696 240 6 2 0 This study
OsMADS29 AP004113 AY177697 2 0 This study
OsMADS30 AP003633 AY174093 221 7 6 2 This study
OsMADS31 AL731610 4 This study
OsMADS32 AP003343 AY177699 196 7 1 1 This study
OsMADS33 AL513004 AY177700 202 7 12 0 This study
OsMADS34 AF377947 AB003324 239 8 3 Pelucchi et al. 2002
OsMADS35 Contig40982 b This study
OsMADS36 Contig16005 b This study
OsMADS47 AC125471 AY345221 244 7 3 This study
OsMADS50 AC098695 AB003328 230 7 3 Shinozuka et al. 1999
OsMADS55 AP004322 AY345223 245 8 6 0 This study
OsMADS56 AC092697 AY345224 230 7 10 1 This study
OsMADS57 AP005751 AY177702 241 5 2 0 This study
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tered in the EST databases. Therefore, we newly identified 13
genes in this study. RT-PCR was then performed to examine
whether they are functional. For our first analysis, we conducted
experiments using mixed cDNA prepared from calli, 2-week-
old seedlings, mature leaves, young panicles (�5 cm), mature
panicles, and developing seeds. This resulted in the iden-
tification of 10 expressed MADS-box genes—OsMADS20,
OsMADS21, OsMADS23, OsMADS25, OsMADS27, OsMADS29,
OsMADS30, OsMADS33, OsMADS55, and OsMADS57
(Table 2). We then investigated their expression patterns in four
organs: seedling roots and shoots, young panicles, and develop-
ing seeds (Fig. 4). Five genes (OsMADS27, OsMADS30,
OsMADS33, OsMADS55, and OsMADS57) were expressed
ubiquitously, whereas three others were detected in only one
organ type. Transcripts of the OsMADS21 and OsMADS29
genes were observed in developing seeds and the OsMADS25
transcript was measured in the roots. OsMADS20 transcript was
detected in both shoots and seeds, while the OsMADS23 tran-
script was found in roots and seeds. Transcripts of three
MADS-box genes (OsMADS31, OsMADS35, and OsMADS36)
were not detected, probably because they either are expressed
in tissues not examined here or are inducible only under cer-
tain conditions. Alternatively, some of them may not be func-
tional.

Fig. 5 T-DNA insertions in rice MADS-box genes were screened by PCR, using the pool DNAs as templates plus gene-specific primers and T-
DNA primers: the right border primer, ATCCAGACTGAATGCCCACAGG, and the left border primers, CGATTTTTGAAATGCGAGAGCG (for
pGA2707), ATCTTGAACGATAGCCTTTCCTTTATCG (for pGA2715), and GTCGGCCATGATATAGACGTTGTG (for pGA2717). PCR was
performed under standard conditions using 50-ng pools as templates. Products were separated on 1% agarose gel, transferred to a nylon-
membrane, and hybridized with gene-specific probes. When a hit was identified from a pool, subsequent PCR analysis of the subpools resulted in
isolation of insertion positions in the MADS-box genes. PCR bands were sequenced to locate insertion sites, which are represented by open trian-
gles above the schematic diagram of the MADS-box genes. Filled boxes indicate exons; filled bars, introns; open bars, regions outside the last
exons; interruptions, long introns.

Fig. 4 Expression patterns of uncharacterized MADS-box genes.
Total RNAs were isolated from seedling roots at 5 days post-germina-
tion (R), seedling shoots at 5 days after germination (S), panicles
between 5 and 10 cm (P), and developing seeds (DS), using the RNA
isolation kit (Tri Reagent; MRC Inc., Cincinnati, OH, U.S.A.). For RT-
PCR, the first-strand cDNAs were synthesized from 2 �g total RNAs
after DNase treatment, using M-MLV reverse transcriptase (Promega,
Madison, WI, U.S.A.). RT-PCR analyses were performed with cDNA
templates.
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At the global level, expression patterns of the newly iden-
tified rice genes were similar to those of homologous Arabi-
dopsis MADS-box genes. Rice ANR1 homologs (OsMADS23,
OsMADS25, and OsMADS27) were expressed in roots, similar
to the patterns of Arabidopsis ANR1, AGL17, and AGL21
(Burgeff et al. 2002, Rounsley et al. 1995). Except for
OsMADS25, these genes were also detected in developing
seeds, c.f. ANR1 and AGL21 (Burgeff et al. 2002). Interest-
ingly, Alvarez-Buylla et al. (2000) have reported that another
ANR1-group gene, AGL16, shows a higher level of expression
in stems and rosette leaves than in roots and siliques, a pattern
similar to that found here with OsMADS57.

In the case of the Bs-group genes, the OsMADS29 tran-
script was detected only in developing seeds while that of
OsMADS30 was present in all organs. The profile of the former
was similar to the Arabidopsis homolog ABS, which is
expressed in both flowers and seeds, but not in vegetative
tissues (Nesi et al. 2002). Just as with Arabidopsis AGL12
(Rounsley et al. 1995), the OsMADS33 gene was expressed
preferentially in the roots. Moreover, the SVP homolog,
OsMADS55, was ubiquitous, similar to the activity of SVP or
AGL24 in Arabidopsis (Hartmann et al. 2000, Michaels et al.
2003, Yu et al. 2002a). However, no transcripts of either
OsMADS20 (A-group) or OsMADS21 (C/D-group) were
detected in the developing panicles (i.e. 5–10 cm long). These
results contradict the reported patterns of other genes in those
two groups, where expression is found in the developing flow-
ers (Flanagan et al. 1996, Kang et al. 1995, Kyozuka et al.
2000, Lopez-Dee et al. 1999, Rounsley et al. 1995, Savidge et
al. 1995, Yanofsky et al. 1990).

We attempted to identify knockout mutants in two unchar-
acterized MADS-box genes (OsMADS32 and OsMADS56) as
well as the 10 newly identified genes whose transcripts were
detectable. In all, five T-DNA insertions were identified in four
genes (Fig. 5), and two independent insertions were found
in OsMADS30. The T-DNA insertions in OsMADS32 and
OsMADS56 occurred outside of those genes (538 bp and
1,591 bp downstream from the stop codon, respectively).
Hence, expression may not have been affected by the inser-
tions. In contrast, the T-DNA insertions in OsMADS27 and
OsMADS30 likely influenced expression, because the T-DNA
was large and contained at least one transcription terminator in
either orientation.

In conclusion, we have now generated DNA pools from
21,049 T-DNA tagged lines, and have demonstrated that these
pools can be used for identifying insertional mutants in rice
genes. If T-DNA inserts randomly into rice chromosomes, this
means that approximately 20% of the genes can be tagged
(Jeon and An 2001). We also showed that the chance of find-
ing a T-DNA insertion in any given gene was higher than the
estimated value, probably because T-DNA prefers genic regions.
We are now increasing the size of our DNA pools, thereby
enhancing the probability of finding knockout mutants for par-

ticular genes. Therefore, our research provides a systematic
framework for bridging the genomic resource to functional
analysis of rice genes. The DNA pool screening service
and the mutant seeds are available to public upon request to
genean@postech.ac.kr.
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