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Vigdis By Kampenes a,b,*, Tore Dybå a,c, Jo E. Hannay a,b, Dag I.K. Sjøberg a,b

a Department of Software Engineering, Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway
b Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, NO-0316 Oslo, Norway

c SINTEF ICT, NO-7465 Trondheim, Norway

Received 23 October 2006; received in revised form 19 January 2007; accepted 8 February 2007
Available online 17 February 2007
Abstract

An effect size quantifies the effects of an experimental treatment. Conclusions drawn from hypothesis testing results might be errone-
ous if effect sizes are not judged in addition to statistical significance. This paper reports a systematic review of 92 controlled experiments
published in 12 major software engineering journals and conference proceedings in the decade 1993–2002. The review investigates the
practice of effect size reporting, summarizes standardized effect sizes detected in the experiments, discusses the results and gives advice
for improvements. Standardized and/or unstandardized effect sizes were reported in 29% of the experiments. Interpretations of the effect
sizes in terms of practical importance were not discussed beyond references to standard conventions. The standardized effect sizes com-
puted from the reviewed experiments were equal to observations in psychology studies and slightly larger than standard conventions in
behavioral science.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Software engineering experiments investigate the cause-
effect relationships between treatments applied (process,
method, technique, language, tool, etc.) and outcome vari-
ables measured (time, effectiveness, quality, efficiency, etc).
An effect size is the magnitude of the relationship between
treatment variables and outcome variables, and is com-
puted on the basis of the sample data to make inferences
about a population (analogously to the concept of hypoth-
esis testing). An effect size tells us the degree to which the
phenomenon under investigation is present in the popula-
tion. There are several types of effect size measures,1 for
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1 We will refer to specific values as effect sizes and ways (Formulae) to
compute effect sizes as effect size measures.
example, correlations, odds ratios and differences between
means.

Wrong or imprecise conclusions might be drawn from
hypothesis testing results if effect sizes are not judged in
addition to statistical significance. In particular, p-values
are insufficient for decision-making; if an experiment
includes a sufficient number of subjects, it is always possi-
ble to identify statistically significant differences, or if the
experiment includes too few subjects (insufficient power),
p-values may also be misleading. So, whereas p-values
reveal whether a finding is statistically significant, effect size
indicates practical significance, importance or meaningful-
ness. Interpreting effect sizes is thus critical, because it is
possible for a finding to be statistically significant but not
meaningful, and vice versa [7,27]. Hence, as also recom-
mended by others [12,23,29], effect sizes should be part of
experimental results in software engineering.

There is no unambiguous mapping from an effect size to
a value of practical importance. Hence, observed effect
sizes must be judged in context [2,9,18,21,35,36,41,42,45].
Even small effects might be of practical importance. For
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example, the optimization of a defect-detection method
that yields only a one percent increase in error detection
would be of little practical importance for most types of
software, but might be of high practical importance for
safety-critical software, particularly if the added one per-
cent belongs to the most critical type of errors. This means
that a contextual, subjective judgment of observed effect
sizes must be made and a ritualized interpretation avoided.
Hence, not only is the reporting of effect sizes important,
but also a nuanced interpretation and discussion of those
values.

Effect size estimation is not a new method. An approach
to determining the magnitude of the effect of agricultural
treatments was published seven decades ago [3], and
reporting effect sizes in addition to statistical significance
has been recommended for a long time in behavioural sci-
ence [4,45]. Reporting effect sizes is also urged in medical
science. A group of scientists and editors have developed
the CONSORT statement to improve the quality of report-
ing of randomized clinical trials. One recommendation is
that one should report ‘‘for each primary and secondary
outcome, a summary of results for each group and the esti-
mated effect size and its precision (e.g., 95% confidence
interval)’’ [1: p.682].

In addition to being meaningful in the analysis and
reporting of experimental results, previously published
effect sizes can be used in meta-analyses [17] and in statis-
tical power analyses [5,27], and for comparison purpose.
Such use requires the reporting of either effect sizes, or suf-
ficient data for effect size estimation.

This article reports on a systematic review of the litera-
ture on effect size issues in controlled experiments pub-
lished in empirical software engineering. A total of 113
controlled experiments were reported in the decade from
1993 to 2002 in 12 leading journals and conference pro-
ceedings in software engineering [39]. Of these 113 experi-
ments, this review investigates the 92 for which statistical
hypothesis testing was performed and primary tests were
identifiable. The aim of this review is to investigate the
following:

• The extent of effect size reporting and the interpretation

of the effect sizes given by the authors of the reviewed

experiments, i.e., the extent to which effect sizes are
used to describe the experimental result as a supple-
ment to statistical significance, and when effect sizes
are reported, how they are described and interpreted.
This investigation is motivated by the belief that the
use of effect sizes affects conclusions made from
experiments.

• The extent to which experimental results are reported in

such a way that standardized effect sizes can be estimated.
This is an assessment of the completeness of the report-
ing of descriptive statistics. A complete reporting of
descriptive statistics will allow the reader to verify the
reporting of test results and effect size estimates, and
to estimate effect sizes other than those reported.
• The standardized effect sizes detected in software engi-

neering experiments. The rationale for this investigation
is to provide an overview of effect sizes detected in soft-
ware engineering experiments so that researchers can
make relative comparisons of observed effect size
estimates.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes relevant concepts and measures of effect
size. Section 3 describes the research method applied in this
review. Section 4 reports the results. Section 5 discusses the
findings, the implications for power analysis, the limita-
tions of the study, and presents guidelines for reporting
effect sizes. Section 6 concludes.

2. Background: effect size

The effect that one inspection method has on the num-
ber of defects detected compared with another inspection
method is an example of an effect in software engineering
that we wish to investigate by conducting experiments. This
unknown effect is referred to as the population effect size. It
cannot be computed directly as long as we do not have
access to the total population of subjects that falls within
the scope of the research questions of our investigation.
However, the population effect size may be estimated from
sample data from a single experiment. Estimated effect sizes

from several experiments can further be aggregated and
analyzed to provide even stronger foundations for infer-
ences about the population effect size (meta-analysis).

Fig. 1 gives an overview of the effect size concepts
described in the next sections. Measures of effect size can
be classified as standardized or unstandardized. Standard-
ized measures are scale-free because they are defined in
terms of the variability in the data. Types of standardized
measures of effect size are presented in Section 2.1. Unstan-
dardized measures encompass all other types of effect size
measures and will be described in Section 2.2.

2.1. Standardized effect size

Two families of standardized effect size measures are
often referred to in the literature: the d family and the r

family. Below, we will emphasize Hedges’ g in the d family

and the point-biserial correlation in the r family, because
these are the two types applied in this review.

2.1.1. The d family

The d family consists of variations over standardized
mean difference. Assume that we have two groups, Group
1 and Group 2. Moreover, assume that the experimental
observations in Group 1, y11, . . ., y1n, are normally distrib-
uted with mean l1 and variance r2, and the observations in
Group 2, y21, . . ., y2m, are normally distributed with mean
l2 and variance r2. More specifically:

Y 1 � Nðl1; r
2Þ



estimates

Effect size estimate 
The observed effect of one experimental treatment condition (specific software engineering process, 
method, technique, language or tool) compared with another treatment condition with regards to a 
measured outcome. An example is the observed difference in comprehension of design documents 

(measured outcome) presented in UML and natural language (the two treatment conditions).

Standardized effect size estimate
A scale-free effect size estimate 

Unstandardized effect size estimate
Measure expressed in the original outcome 
scale or in terms of percentages/proportions

r family 
Correlations,

“variance accounted 
for”

Population effect size
The effect of one software engineering process, method, technique, language or  tool compared with 

another one with regards to a measurable feature. An example is the difference in comparison of 
comprehension of design documents presented in UML versus natural language.  

• Point-
biserial
correlation

• Mean difference 
• Median difference 
• Difference in 

percentage or 
proportions

• Ratio of mean 
values

• Other

other

• odds ratio 
• log odds 

ratio

d family 
Variations of 

“Standardized mean 
difference”

• Hedges’ g
• Cohen’s d
• Glass’ Δ

Fig. 1. Population and estimated effect size as defined for software engineering and examples of types of effect size measures for the comparison of two
treatment conditions.
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and

Y 2 � Nðl2; r
2Þ

The population standardized mean difference effect size
measure, which we will call dpop, is defined as

dpop ¼
l1 � l2

r
ð1Þ

The population standardized mean difference takes positive
or negative values, depending on the choice of l1 and l2. It
is estimated by the difference between sample means (X 1,
X 2) divided by an estimate of population standard devia-
tion. Different estimators of the population standard devi-
ation give different effect size estimators. The three
estimators most often referred to in the literature are
Hedges’ g, Cohen’s d and Glass’ D [24,34]. Hedges’ g has
the pooled standard deviation, sp, as the standardizer:

Hedges’ g ¼ X 1 � X 2

sp

ð2Þ

The pooled standard deviation is based on the standard
deviations in both groups, s1, s2:

sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þs2

1 þ ðn2 � 1Þs2
2

ðn1 � 1Þ þ ðn2 � 1Þ

s
ð3Þ

Cohen’s d also has the pooled standard deviation as its
standardizer, but with ni replacing (ni � 1) in Formula (3)
and in the estimators of the single si. Glass’ D applies the
standard deviation in one group only; the one considered
to be the control. According to [17], these three estimators
have the same properties in large samples (i.e., they are
equivalent in the limit (n1 + n2) fi1), but Hedges’ g has
the best properties for small samples when multiplied by
a correction factor that adjusts for small sample bias (For-
mula (4)). Hence, we applied Hedges’ g as the estimator for
dpop in our investigation and will not consider Cohen’s d

and Glass’ D further.

Correction factor for Hedges’ g ¼ 1� 3

4ðN� 2Þ � 1
; ð4Þ

where N is the total sample size.
Hedges’ g assumes homogeneity of variance in the two

experimental groups. Kline [24] suggests that if the ratio
of the largest standard deviation over the smallest standard
deviation is larger than four, the effect sizes should be cal-
culated twice using each standard deviation and the diverg-
ing results discussed. Other solutions are to replace sp with
an estimate of the standard deviation of whichever sample
is the reasonable baseline comparison group [14], or to use
the square root of the mean of s1, s2 [5].

Formulas (2) above are applicable for outcomes mea-
sured on the continuous scale. When aggregating study
results from several studies and the standardized mean dif-
ference is to be estimated, there is a need for estimators that
approximate a standardized mean difference effect size
for variables that are measured on scales other than the
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continuous. When the outcome is dichotomous (binary),
approximations to the standardized mean difference can
be expressed in terms of an arcsine transformation [15] or
an odds ratio [24,37,38]. When the outcome is ordinal
(e.g., small, medium, large) a continuous scale might be
assumed and Formula (2) applied, but note that when
the number of categories is less then five, this approach will
underestimate the population effect size [38]. When nomi-
nal outcomes are used, the standardized mean difference
must be computed for pairs of categories applying the
methods for dichotomous outcomes.

When raw data is unavailable, or means and standard
deviations are not reported, effect size estimation can be
based on various kinds of statistics. This is relevant for
meta-analyses or statistical power analyses, or if a reader
wants to judge published results in terms of effect sizes
when these are not reported. Table 7 shows the set of for-
mulas for computing Hedges’ g that we applied in our
investigation. Computation of Hedges’ g in 40 different
ways is provided by the ES software tool [37,38]. Descrip-
tions of computations of standardized mean difference
effect size estimates for ANOVA designs are provided in
[11].

2.1.2. The r family

The r family consists of the Pearson product–moment
correlation in any of its combinations of continuous and
dichotomous variables [33]. For two treatment conditions
and a continuous outcome, the effect size is called the
point-biserial correlation, which we will refer to as rpb-

pop. When rpb-pop is squared, it is also called g2 and it can
be interpreted to mean the proportion of variance
accounted for by the population means. Hence, we can
express the population point-biserial correlation as follows:

rpb-pop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

treatment

r2
total

;

s
ð5Þ

where the numerator is the variance of the population
means around the grand mean, and the denominator is
the variance of all scores around the grand mean. rpb-pop

has the value range [0,1]. An estimator of, rpb-pop, based
on information from an ANOVA table, is obtained by tak-
ing the square root of the explained variance expressed in
terms of the sum of squares of the treatments and the total
sum of squares:

rpb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SStreatment

SStotal

r
ð6Þ

Formulas based on t-values and other statistics, as well as
estimators that adjust for bias, are provided in
[24,28,31,32,35].

The point-biserial correlation is affected by the propor-
tion of subjects in each experimental group. It tends to
be highest in a balanced design and approaches zero when
the design becomes more unbalanced [24]. As a conse-
quence, rpb values from studies with different splits in the
sample size will not be directly comparable. To counteract
this, the following corrected rpb is recommended [19]:

Corrected rpb ¼
arpbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 � 1Þr2
pb þ 1

q ; ð7Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25=pq

p
, and p and q are the proportions of

subjects in each experimental group (p + q = 1).
Formula (6) above is applicable for outcomes measured

on a continuous scale. When both variables are dichoto-
mous, the population point-biserial correlation is called U
and is expressed in terms of the proportions in a 2*2 table,
[14]. When reporting results from a table larger than 2*2,
an effect size estimator called Cramer’s V can be applied
[14]. When a categorical outcome is measured on an ordi-
nal scale (e.g., small, medium, large), a continuous scale
can be assumed and a point-biserial correlation calculated
as for continuous outcome [14]. The population effect size
will be under estimated if fewer than five categories are
applied [38].

It is possible to compute rpb from Hedges’ g, and vice

versa. Information might be unavailable for computing
one or the other, or one may prefer to view the results
in terms of a correlation coefficient when g, say, is
reported in an article. The following formula maps g to
rpb [5,35]:

rpb ¼
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ ð1=pqÞ � ððN� 2Þ=NÞ
p ; ð8Þ

where N is the total sample size. Note that the formula is
simplified by the factor 1/pq = 4 for a balanced design,
(p = q = 0.5).
2.1.3. Interpretation of standardized effect sizes

It is not intuitively evident how to interpret standardized
effect sizes. Some approaches are listed below and
described further in this section.

• Standardized effect sizes can be interpreted in terms of
the properties of the formula, for example, distribu-
tional overlap for the standardized mean difference
and explained variance for the point-biserial correlation.

• Standardized effect sizes can be compared with
– effect sizes reported in similar experiments
– effect sizes reported in the research field in question, for

example, software engineering as a whole, and
– standard conventions for small, medium and large eff-

ect sizes developed for research in behavioural science.
The population standardized mean difference, dpop, is
expressed in terms of mean difference divided by a measure
of the variability in the data. We can interpret this formula
as the degree of distributional overlap of values for two
populations. A large degree of non-overlap means a large
effect size, and when the two distributions are perfectly
superimposed, the effect size is zero [5], see Table 1. This
is further visualized in Fig. 2: The unstandardized effect



Table 1
Distributional non-overlap percentages for values of dpop [5]

dpop 0.0 0.5 1.0 1.3 2.0 3.0 4.0

Degree of non-overlap (%) 0 33 55 65 81 93 98

 

a b

Unstandardized effect size 

Fig. 2. Illustration of how the standardized mean difference effect size can
be interpreted in terms of distributional overlap.
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sizes (represented by the differences between the full and
dotted vertical line) are equal in (a) and (b). However,
the standardized effect size in (a) is larger than the one in
(b), because the degree of non-overlap is larger in (a) than
in (b). The standardized mean difference reflects what is
visualized in the figure: The effect size seems important in
(a) but might be hardly noticeable in (b).

A point-biserial correlation can be interpreted in terms
of the property of its square root (see Formulas 5 and 6);
the percentage of total variance that is explained by
treatment.

The second possibility of interpretation of a standard-
ized effect size is to take advantage of its standardized
property, i.e., that it is comparable across measurement
scales. The best interpretation arises from comparison with
experiments that test the same hypothesis as the one in
question [9]. In the absence of such experiments, an alter-
native is to compare the observed effect size to effect sizes
reported in the field of interest. We present effect sizes
observed in software engineering experiments in Section
4.2.2. A third alternative is to compare the observed effect
size against standard conventions that have been developed
in behavioural science. Values for small, medium and large
population standardized effect sizes corresponding to vari-
ous statistical tests and types of effect size measures are
defined by Cohen [5,7]. His definitions are based on a com-
bination of a subjective view of average effect sizes
observed in behavioural science and a view of what small,
medium and large effect sizes should mean. The definitions
for dpop and rpb-pop are shown in Table 2.
Table 2
Values for small, medium, and large dpop and rpb-pop [5]

Effect size index Effect size values

Small Medium Large

dpop Standardized mean difference .20 .50 .80
rpb-pop Point-biserial correlation .10 .24 .37
Cohen proposed his definitions for statistical power
analyses, to help researchers guess on effect sizes when no
other sources for effect size estimation existed, i.e., no sim-
ilar experiments or pilot studies. His definitions are also
used to interpret observed effect sizes, but this is also only
advisable when no other sources for effect size estimation
are available [43]. In later papers, Cohen recommends
reporting effect size with a corresponding confidence inter-
val, but does not himself recommend applying the small,
medium and large categories in the evaluation of observed
effect sizes [6,8].

The interpretations described above do not include any
contextual information. To evaluate whether an observed
effect is of practical importance for a specific context, the
effect size must be discussed in relation to each relevant
contextual factor, for example, whether the size of effi-
ciency improvement compensates for the effort needed for
learning the new method.

2.2. Unstandardized effect size

Unstandardized effect size measures are expressed in
terms of raw units of whatever is being measured. This
may make the effect sizes easier to interpret, but in contrast
to standardized effect sizes, they are not independent of
measurement scale. Examples are these: (i) the difference
between mean values (e.g., the difference in time taken to
perform a given task when using two different methods),
(ii) percentage mean difference, and (iii) the difference in
proportion of subjects (e.g., the difference between experi-
mental groups with respect to the proportion of subjects
viewing a script as correct). The concept of population
effect size applies here as well, for example, the effect size
measure for population mean difference is expressed as
follows:

Population mean difference ¼ l1 � l2; ð9Þ
where li is the mean value in population i, which is esti-
mated by the mean xi, The standardized counterpart is
the standardized mean difference (Formula (1)).

Unstandardized effect sizes lend themselves more
directly to interpretations of practical importance than do
standardized values. For example, an unstandardized effect
size of eight hours difference in development effectiveness
between two methods used for the same task serves as a
better basis for judging the practical importance of the
result than a standardized effect size of g = 0.5.

2.3. Nonparametric effect size

The standardized effect size measures described in the
preceding sections assume parametric models for the out-
come variable. Most of the standardized effect size mea-
sures developed are parametric. However, assuming
parametric models may be inappropriate in many
instances, and standardized nonparametric effect size mea-
sures based on median values have been suggested in the
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literature [16,25,26]. Computation of these measures
requires raw data that is seldom available in articles pre-
senting experimental results. Hence, these nonparametric
effect size measures are appropriate for reporting effect
sizes, but not always useful in meta-analyses.

Alternatives or supplements to the standardized non-
parametric effect size measure are the unstandardized dif-
ference in median values or graphical presentations, for
example, two box plots within the same figure for easy
comparison.

3. Research method

This section describes how we identified the controlled
experiments and primary tests, what kind of information
we gathered, and how effect size estimates were computed.

3.1. Identification of controlled experiments and primary

tests

We assessed all the 103 papers on controlled experi-
ments (of a total of 5453 papers), identified by Sjøberg
et al. [39]. Table 3 shows the actual journals and conference
proceedings, which were chosen because they were consid-
ered to be representative of empirical software engineering
research. Furthermore, since controlled experiments are
empirical studies that employ inferential statistics, they
were considered a relevant sample in this study. The 103
articles reported 113 controlled experiments. The article
selection process was determined from predefined criteria
as suggested in [22], see [39] for full details.

Since the term ‘‘experiment’’ is used inconsistently in the
software engineering community (often being used synony-
mously with empirical study), we use the term ‘‘controlled
experiment’’. A study was defined as a controlled experi-
ment if individuals or teams (the experimental units) con-
Table 3
Distribution of articles describing controlled experiments in the period
January 1993–December 2002

Journal/conference proceedinga Number (%)

Journal of Systems and Software (JSS) 24 23.3
Empirical Software Engineering (EMSE) 22 21.4
IEEE Transactions on Software Engineering (TSE) 17 16.5
International Conference on Software Engineering

(ICSE)
12 11.7

IEEE International Symposium on Software Metrics
(METRICS)

10 9.7

Information and Software Technology (IST) 8 7.8
IEEE Software 4 3.9
IEEE International Symposium on Empirical Software

Engineering (ISESE)
3 2.9

Software Maintenance and Evolution (SME) 2 1.9
ACM Transactions on Software Engineering (TOSEM) 1 1.0
Software: Practice and Experience (SP&E) – –
IEEE Computer – –
Total 103 100

a The conference Empirical Assessment and Evaluation in Software

Engineering (EASE) is partially included in that 10 selected articles from
EASE appear in special issues of JSS, EMSE, and IST.
ducted one or more software engineering tasks for the
sake of comparing different populations, processes, meth-
ods, techniques, languages or tools (the treatments). We
did not distinguish between randomized experiments and
quasi-experiments in this study, because both designs are
relevant to software engineering experimentation. In this
article, we consistently use the term ‘experiment’ in the
above-mentioned sense of ‘‘controlled experiment’’.

Results from several statistical tests were often reported
in the reviewed articles; one article reported 74 tests. We
therefore, classified each statistical test as either primary

or secondary. The primary tests test what the experiment
is designed to evaluate. They were specified in the article
by hypotheses or research questions. If no hypothesis or
research question was stated, we classified as primary those
tests that were described to address the main incentive of
the investigation. Secondary tests comprised all other tests.

Two of the authors of this paper read all the 103 articles
and made separate extractions of the primary tests. Then
three of the authors reviewed these two data sets to reach
a consensus on which experiments and tests to include. In
14 of the experiments, no statistical testing was performed,
and the corresponding articles were thus excluded from the
investigation. Seven experiments were excluded because it
was impossible to track which result answered which
hypothesis or research question. Four experiments were
reported in more than one article. In these cases, we
included the most recently published. We identified 459 sta-
tistical tests corresponding to the main hypotheses or
research questions of 92 experiments. Of these tests, we
excluded 25 tests of interaction effects, because no well-
developed procedures exist for computing effect sizes for
interactions [11]. In addition, five tests were excluded
because they were regression analyses and involved no
treatment. Thus, the final set comprised 429 primary tests,
detected in 92 experiments and 78 articles (Fig. 3).

3.2. Information extracted

For each primary test, we recorded

• whether a standardized and/or unstandardized effect
size or a graphical visualization of the effect size was
reported,
5350 Articles with no  
controlled experiments 

25 Articles 
excluded 

Analyzed in this review:
78 Articles reporting    
92 experiments and  

429 primary tests   

All articles 
1993 – 2002  

n=5453 

103 Articles with 
controlled experiments 

Fig. 3. Results of the literature review selection process.



V.B. Kampenes et al. / Information and Software Technology 49 (2007) 1073–1086 1079
• when an effect size was reported, the interpretation of
the effect size and whether practical importance was dis-
cussed, and

• sample size, level of significance, p-value or information
about rejection or acceptation of the null hypothesis,
and whether the test was one or two-sided.

In addition, we registered descriptive statistics and esti-
mated the standardized mean difference effect size for those
tests with sufficient information reported. Our aim with
this computation was to investigate the range of effect sizes
in software engineering experiments across experimental
topic, treatment and outcome. We therefore estimated the
same standardized mean difference population effect size,
dpop, for all tests, applying the absolute value for Hedges’
g as the estimator. Each estimate was corrected for bias
by Formula 4 in Section 2.1.1.

The primary tests included parametric tests that com-
pare mean values, nonparametric tests that compare med-
ian values or ranks, and tests of the values of
dichotomous variables. The applied estimation formulas
are listed in Table 7.

We investigated the effect between two treatment condi-
tions. Hence, when the primary test was an overall compar-
ison of more than two treatment conditions, we looked at
the pair-wise comparisons (contrasts) for our effect size
estimation.

We wanted to present the effect sizes as point-biserial
correlations as well as standardized mean differences. The
g-values were transformed into rpb, by applying Formula
(8) in Section 2.1.2. Then the values were corrected for
unbalanced design by Formula (7). This correction did
not change the values to a great extent, since half of the
tests had balanced design and the split in sample size was
larger than 70–30 for eight tests only (see Section 2.1.2).
For those primary tests for which g could not be computed,
there was not sufficient information to compute rpb, either.

As stated in Section 2.1.1, the pooled standard deviation
assumes that the standard deviations are equal in both
treatment groups. To check this assumption, we calculated
the ratio of standard deviations, when these were reported.
The ratio of the largest standard deviation over the smallest
standard deviation exceeded four (Section 2.1.1) in seven
tests. Consequently, we did not include effect sizes for these
tests.
Table 4
Extent of effect size reporting for experiments and tests, presented per type of

Levels of effect size reporting Experiments Primary tests

Total Param

N % N % n

Both standardized and
unstandardized

2 2.2 3 0.7 3

Standardized (only) 8 8.7 52 12.1 46
Unstandardized (only) 17 18.5 43 10.0 32
No effect size 65 70.7 331 77.2 212
Total 92 100.0 429 100.0 293
Ten tests were one-sided with results in the direction
opposite to the alternative hypothesis. We regarded effect
sizes for these tests as real effects and included them in
our analysis.

4. Results

The findings comprise two main parts: (1) how effect
sizes were reported in the surveyed experiments, with
respect to the extent of reporting and interpretation of
the reported values and (2) the result of our estimation of
standardized effect sizes from information reported in the
surveyed experiments.

4.1. The reporting of effect sizes in the surveyed experiments

4.1.1. Extent of effect size reporting

Only 29% of the experiments reported at least one effect
size; see Table 4. Two of the 92 experiments reported both
standardized and unstandardized effect sizes, eight reported
standardized effect sizes only and 17 reported unstandard-
ized effect sizes only. Standardized and unstandardized
effect sizes were reported for, respectively, 55 and 46 of
the 429 primary tests of the reviewed experiments.

The different types of effect size measures are related to
types of outcome and thereby to types of statistical test.
Table 4 shows that standardized effect sizes were reported
most frequently for parametric tests (46+3 of 293, that is,
17%), only a few for nonparametric tests (6%) and not
for any tests of dichotomous variables. The corresponding
parametric tests were ANOVA and t-tests; the nonpara-
metric tests were Wilcoxon match pair tests. The standard-
ized mean difference was reported for all but one test, for
which the point-biserial correlation coefficient was reported
(for an ANOVA test).

Unstandardized effect sizes were reported in equal pro-
portions for parametric tests and tests of dichotomous vari-
ables (32+3 of 293 and 5 of 42, respectively, that is, 12%)
and to a lesser extent for nonparametric tests (6%) see
Table 4. Most of the 46 unstandardized effect sizes were
reported as percentage mean difference (21 tests), but
reported were also absolute mean difference (9 tests), differ-
ence in proportions or percentage (5 tests), ratio of mean
values (5 tests), difference in average rank values (3 tests)
and confidence interval for the mean difference (3 tests).
statistical test method

etric tests Non-parametric tests Tests of dichotomous variables

% n % n %

1.0 0 0 0 0

15.7 6 6.4 0 0
10.9 6 6.4 5 11.9
72.4 82 87.2 37 88.1

100.0 94 100.0 42 100.0
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For most of the 331 primary tests for which no effect
size was reported, mean values, frequencies or graphical
presentations of results per experimental group were
reported.

We compared the extent of effect size reporting accord-
ing to whether the results were significant or not (as defined
by the authors); see Table 5. For standardized effect sizes
there was no difference, but unstandardized effect sizes were
reported to a greater extent when significant results
occurred than when non-significant results occurred
(17.9% versus 3.7%).

Another factor that seems to influence the extent of
effect size reporting is the number of treatment conditions
tested in the experiment. None of the 51 primary tests that
compared more than two treatment conditions reported
the standardized effect size for the pair wise comparisons
of treatments. Only four of these 51 tests reported the
unstandardized effect size.

4.1.2. The interpretation of the effect sizes given by the

authors of the reviewed experiments

Possible ways of interpreting the standardized effect size
was presented in Section 2.1.3. In one of the surveyed
experiment, the point-biserial correlation was interpreted
as the percentage of explained variance, but the standard-
ized mean difference effect size was not interpreted in terms
of distributional overlap for any of the experiments.

One article reported and compared the standardized
effect sizes from three related experiments. For the
other experiments, standardized effect sizes were not
compared with related research. In two experiments,
effect sizes were reported to aid future researchers in
planning their experiments, but the sizes were not dis-
cussed as part of the result. For the other experiments,
standardized mean difference effect sizes were compared
with Cohen’s conventions from behavioral science [5],
for example:

We intend to discuss all practically significant results
and not constrain ourselves to discussing only statisti-
cally significant results. For this exploratory study we
consider effects where c P 0.6 to be of practical signifi-
cance (the unit is one standard deviation). We make this
decision on the basis of effect size indices proposed by
Cohen.
Table 5
Reporting of effect size and significance of results

Levels of effect size reporting Primary test results

N Significant Non-
significant

n % n %

Both standardized and unstandardized 3 3 1.42 0 0
Standardized effect size (only) 52 24 11.3 28 12.9
Unstandardized effect size (only) 43 35 16.5 8 3.7
No effect size 331 150 70.8 181 83.4
Total 429 212 100.0 217 100.0
This author judged sizes above 0.6 to be of practical
importance. Two authors considered sizes above 0.5 to be
of practical importance and one author regarded observed
sizes of 0.77 as large. The unstandardized effect sizes were
reported with no interpretations or references to practical
importance, for example, ‘‘Procedural roles reduced the
loss of only singular defects by about 30%.’’

4.2. Our computation of standardized effect sizes from

information provided in the surveyed experiments

To identify the sizes of treatment effects found in software
engineering experiments, we estimated standardized effect
sizes for the primary tests in the reviewed experiments.

4.2.1. Extent of information available for effect size

estimation

We managed to estimate standardized mean difference
effect sizes for a total of 284 primary tests based on infor-
mation provided in the reviewed articles. These tests were
located in 64 (70%) of the 92 reviewed experiments.

The numbers of effect sizes that were estimated for the
various statistical tests are shown in Table 6. Tests compar-
ing two treatment conditions had sufficient information for
effect size estimation to be reported for 64% of the para-
metric tests of continuous variables. The results for non-
parametric tests and tests of dichotomous variables were
33% and 79%, respectively. The corresponding results for
tests comparing more than two treatment conditions were
lower; respectively, 33%, 25% and 25%. Hence, when more
than two treatment conditions were compared in a test,
information for effect size estimation for the corresponding
pair-wise tests was, overall, sparsely reported in the
reviewed articles.

Table 7 shows the formulas applied in our effect size esti-
mation. Formula (2) was applied for the majority of tests,
including 33 nonparametric tests. We considered mean val-
ues to be an appropriate measure of distributional location
for nonparametric tests, as long as they were reported in
the paper. In those cases where means and standard
deviations were not reported, Formulas (3)–(7) which are
based on t-value, F-values, p-value, mean square error
and/or sample sizes, respectively, were applied for
parametric tests. Formula (8) was applied for tests of
dichotomous variables when frequencies and sample sizes
were reported.

4.2.2. Standardized effect size values

The values for the 284 estimates of Hedges’ g range from
0 to 3.40 with a median value of 0.60; see Table 8. The
cumulative percentages in the table are, for each g, the per-
centage of effect sizes equal to or below that value. For
example, 68% of the effect sizes in our review are equal
to or below g = 1.00. For readers who prefer to view stan-
dardized effect sizes in terms of correlations, the rpb values
are also presented in Table 8. The range of values is (0,
0.87) with a median value of 0.3 and represents effect sizes



Table 6
Extent of effect size estimation per type of statistical test method

Statistical test method Total number of
primary tests

Primary tests
comparing two
treatment conditions

Primary tests comparing
more than two treatment
conditions

Total number of effect sizes
computed

N #ES % N n % #ES

Parametric test of continuous

dependent variable

293 250 160 64 43 14 33 55 215

ANOVA 116 78 50 64 38 12 32 40
t-test 79 79 67 85 0
Paired t-test 39 39 35 90 0
ANCOVA 28 28 0 0 0
Tukey’s pair wise comparisons 18 18 0 0 0
Repeated ANOVA 8 5 5 100 3 1 33 6
Poisson regression 3 3 3 100 0
Duncan posttest ANOVA 1 0 1 0 0
Repeated MANOVA 1 0 1 1 100 9

Nonparametric test of continuous

dependent variable

94 90 30 33 4 1 25 3 33

Wilcoxon 41 41 22 54 0
Mann–Whitney 39 39 2 5 0
Kruskal–Wallis 8 4 0 0 4 1 25 3
Rank-sum test 6 6 6 100 0

Dichotomous dependent variable 42 38 30 79 4 1 25 6 36
v2 25 21 16 76 4 1 25 6
Fisher’s exact test 15 15 12 80 0
Proportion test 2 2 2 100 0

Total 429 378 220 58 51 16 31 64 284

N: total number of primary tests, n: number of primary tests for which effect sizes could be estimated for the pair-wise comparisons, for tests comparing
more than two treatments. #ES: number of effect sizes estimated.

Table 7
The estimation formulas for Hedges’ g that were applied in this investigation

No. Data needed and definition of terms Estimation formulas References Number of
g estimated

1 Hedges’ g g reported in the paper 18

2 Mean values, standard deviations and group sample sizes g ¼ X 1�X 2

sp
[28] 190

3 Independent t-test value and sample size (n) for each group g ¼ t
ffiffiffiffiffiffiffiffiffi
n1þn2

n1n2

q
[28] 16

4 F-ratio from two groups, one way ANOVA g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðn1þn2Þ

n1n2

q
[28] 13

5 P-value and sample size/degrees of freedom Find t-value based on the p-value and
sample sizes, and use Formula (3)

[28] 1

6 Repeated measure design. One between-subject factor and
one within-subject factor, t is the number of time points,
MSbse is the between-subject mean square error and
MSwse is the within-subject mean square error

Formula (2) using the following
estimate for standard deviation

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSbseþðt�1ÞMSwse

t

q
[38], where also
estimators for MSbse and
MSwse are provided

4

7 Data from factorial designed experiments Formula based on means, sample sizes,
standard deviations, corrected
for the other factors

[11,30] 6

8 2*2 table of frequencies for dichotomous outcome g ¼ lnðodds outcome AÞ�lnðodds outcome BÞ
p=
ffiffi
3
p [15,28,38] 36

Total 284
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that can be expected in studies with balanced design. When
the design is unbalanced, the effect sizes tend to decrease
with increased split in experimental group sizes and the
researcher should be aware of this when comparing rpb val-
ues from different experiments.
We defined size categories of the estimated g and rpb val-
ues by viewing the lower 33% of the effect sizes, the middle
34%, and the largest 33%. In Table 9, we present these cat-
egories, and we let the median value in these categories rep-
resent small, medium and large effect sizes.



Table 8
Cumulative percentages for estimated values for Hedges’ g and the point-
biserial correlation

Hedges’ g Cumulative
percentages for 284 g

effect size estimates
in software
engineering
experiments

Point-
biserial
correlation

Cumulative
percentages for 284
rpb effect size
estimates in software
engineering
experiments

0.00 7 0.00 7
.10 11 0.10 19
.20 19 0.20 35
.30 28 0.30 50 median
.40 35 0.40 62
.50 42 0.50 70
.60 50 median 0.60 84
.70 56 0.70 92
.80 60 0.80 97
.90 64 0.90 100

1.00 68
1.10 71
1.20 73
1.30 77
1.40 83
1.50 86
1.60 88
1.70 90
1.80 90
1.90 93
2.00 95
2.30 97
2.50 97
3.00 99
3.40 100

Mean g 0.81 Mean rpb 0.34
Std g 0.69 Std rpb 0.23

Table 9
Small, medium and large categories for 284 estimated values for Hedges’ g

and the point-biserial correlation

Size category Hedges’ g Point-biserial
correlation, rpb

Effect sizes Median Effect sizes Median

Small (lower 33%) 0.00–0.376 0.17 0.00–0.193 0.09
Medium (middle 34%) 0.378–1.000 0.60 0.193–0.456 0.30
Large (upper 33%) 1.002–3.40 1.40 0.456–0.868 0.60

Table 10
Number of articles reporting effect size

Source Type of statistical test method
applieda
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5. Discussion

This section discusses the findings, their implications,
and the limitations to this review.
ANOVA t-test v2

Articles reporting controlled
experiments in software
engineering (This review)

3%
(1 of 32)

16%
(5 of 32)

0%
(0 of 9)

Articles reporting psychology
studies [13]

32%
(38 of 120)

15%
(16 of 108)

13%
(16 of 126)

a In our review, 116 ANOVA tests were reported in 32 articles, 118 t-
tests were reported in 32 articles and 25 v2 tests were reported in nine
articles.
5.1. Comparison with research in behavioural science

It is only in the psychological and educational sciences
that we have found similar investigations of effect size
reporting, and these assessed only the reporting of stan-
dardized effect sizes. An assessment of 226 articles on edu-
cational and psychology research in 17 journals published
in 1994–1995 revealed that standardized effect sizes were
reported in 16 articles (7.1%) [20]. Both univariate and mul-
tivariate tests, analyzed by several different statistical meth-
ods, were included in these 226 articles. This is similar to
the proportion of articles reporting standardized effect sizes
found in our review (7.7%).

A study by Fidler et al. [13] investigated 239 articles
published in 1993–2001 that reported new empirical data
in the Journal of Consulting and Clinical Psychology. They
found that standardized effect size was reported to a greater
degree in articles that reported ANOVA tests and v2 tests,
compared with our review; 32% and 13% compared with
3% and 0%, respectively; see Table 10. The extent to which
standardized effect sizes were reported in articles that
reported t-tests was similar in our and Fidler et al.’s inves-
tigation (15% and 16%, respectively).

Considering the maturity of psychological and educa-
tional research compared with the relative young field of
empirical software engineering, the sparse reporting of
effect sizes in our field may be expected. It was more sur-
prising to find similar results to those of Keselman et al.
and Fidler et al. Still, this is a poor consolation, because
the extent of effect size reporting in the field of psycholog-
ical and educational research is regarded as too low,
[13,20].

The sparse reporting of standardized effect sizes in soft-
ware engineering might be due to effect size estimation’s
being little known. It is not a topic in standard research
methods courses, and formulas for the calculation of effect
sizes do not appear in many statistical text books (other
than those devoted to meta-analysis). This may improve,
as recent literature in empirical software engineering rec-
ommends the reporting of effect sizes [12,23,29].

However, encouragements for the reporting of effect
sizes do not seem to suffice. In the behavioural sciences,
it has been suggested that changes in editorial policies will
be required before reporting effect sizes will become a mat-
ter of routine [13,44]. Trusty et al. [42] report that 23 jour-
nals in the social sciences now require that effect sizes be
reported, and in their paper, they provide practical infor-
mation for studies submitted to the Journal of Counseling
and Development on generating, reporting and interpreting
effect sizes for various types of statistical analysis.
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We found one study in the behavioural sciences on the
aggregation of standardized effect sizes that was compara-
ble with ours; 1766 effect sizes (standardized mean differ-
ences) were estimated from 475 psychotherapy studies
[10,40]. This study found the same distribution of effect
sizes as we obtained. Hence, the treatment effects observed
in software engineering experiments are of the same magni-
tude as effects found in a large number of psychotherapy
studies; the same average and nearly the same spread of
values.

As shown in Table 9, we categorized the effect sizes in
our review into the 33% smallest, the 34% middle and
33% largest values and let the median values in these cate-
gories represent small, medium and large values in the
data. In Table 11, we compare the standardized mean dif-
ference effect sizes with corresponding results from an
aggregation of average effect sizes from meta-analyses of
psychological, educational and behavioural treatments
effectiveness [27] (including the study of psychology studies
by Smith et al.) and the conventions for small, medium and
large effect sizes in the behavioural sciences [5].

The medium and large effect sizes in our review are lar-
ger than those observed in the meta-analyses and the con-
ventions from the behavioural sciences. Note that when we
considered the median value as appropriate measure of the
middle of the categories, the middle point values were even
larger: (small: 0.19, medium: 0.69 and large: 2.2). The dis-
crepancies between the aggregated effect sizes on a study
level and the aggregated effect sizes on a meta-analysis level
can be explained by the fact that the smallest and largest
values on a study level disappear in the overview of average
values on the meta-level. The standard conventions in the
behavioural sciences seek to represent average values,
which seems to be confirmed by the results from the aggre-
gation of meta-analyses. Hence, as our results are the same
Table 11
Small, medium and large standardized mean difference effect sizes as observed i
the conventions in the behavioural sciences

Source

Software engineering experiments (this review)a

Meta-analyses of psychological, educational and behavioural studies, [27]b

Conventions from the behavioural sciences, [5]

a The effect sizes were obtained as the median values for the 33% smallest, t
b The effect sizes were obtained as the middle point among the 33% smallest

Table 12
Potential problems of inference, when the effect size is not reported, as a func

Statistical significance Effect size

Acceptably large

p-Values low enough No inferential problem

p-Values too high (A) Failure to perceive practical import
‘‘non-significant’’ results
as those from the aggregation of psychology studies, this
might indicate that the conventions from the behavioural
sciences (i.e. Cohen’s definitions) are appropriate compar-
ators for average effect sizes in software engineering exper-
iments as well (when relevant related research is not
present). The effect sizes obtained in our review provide
additional information about the range of values in our
field for Hedges’ g and the point-biserial correlation.

5.2. Guidelines for reporting effect sizes

This section offers guidelines on how to report effect
sizes.

5.2.1. Always report effect size

We recommend always reporting effect sizes as part of
the experimental results, because there is a risk of making
poor inferences when effect sizes are not assessed: (A) non-
significant results might erroneously be judged to be of no
practical importance, and (B) statistical significance might
be mistaken for practical importance; see Table 12.

The advantage of assessing both effect sizes and statis-
tical significance when making inferences is illustrated by
one of the reviewed experiments in which object-oriented
design was compared with structured design with respect
to the percentage of task-related questions that were
answered correctly. The results of statistical tests were
nonsignificant at the 0.1 level. The standardized effect
size was reported as 0.7, which was regarded as practi-
cally important according to Cohen’s definitions. The
sample size was 13, whereas 56 subjects were needed to
achieve a power of 80% at the 0.1 level of significance.
If only statistical significance had been reported, the
result would have seemed less important than the effect
size suggested it to be.
n this review, in an aggregation of meta-analyses in the social sciences and

N Standardized mean difference values

Small Medium Large

284 effect sizes 0.17 0.60 1.40
102 average effect sizes 0.15 0.45 0.90
Not empirically based 0.20 0.50 0.80

he 34% medium and the 33% largest values.
, the 34% medium and the 33% largest values.

tion of statistical significance and effect size [35]

Unacceptably small

(B) Mistaking statistical significance for practical
importance

ance of No inferential problem
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5.2.2. Discuss practical importance

The evaluation of effect sizes based on average values or
standard conventions is a first step on the road to assessing
the practical importance of the result. For a complete eval-
uation of practical importance, the effect sizes must be
judged in context. Since judging the practical importance
of one’s experiment is nearly impossible without the rele-
vant situational context and since the experimental results
may be applicable in a wide range of contexts, it may be
unrealistic to expect researchers to grade their results in
terms of practical importance in their research papers. Nev-
ertheless, we believe that the relevance of software engi-
neering studies would be increased if researchers
discussed this issue, possibly through illustrative examples.

Moreover, when an appropriate effect size is reported,
the reader can assess practical importance by applying it
in their context-specific cost-benefit analysis, as also sug-
gested by [36].
5.2.3. Report both standardized and unstandardized effect

size

We recommend reporting both standardized and
unstandardized effect sizes, because these two types are
supplementary. A standardized effect size includes the var-
iability in the data and gives a complete ‘‘average’’ based
on all the data in the sample. There are several approaches
to interpreting standardized effect sizes as described in Sec-
tion 2.1.3. Apply each of them if they bring more informa-
tion to bear regarding discussion of the result. Moreover,
reporting standardized effect sizes aids researchers in plan-
ning new experiments (power analysis) and enables com-
parisons with their own findings.

An unstandardized effect size is easier to interpret than a
standardized one and serves as a good basis for discussing
practical importance. We place particular emphasis on the
value of measures in percentages, which makes the measure
applicable to larger-scale projects.
5.2.4. Use the tool box of effect size measures

Many types of standardized effect size measures have
been developed, 40 of which are presented in Kirk [21].
However, only two types were reported in the reviewed
experiments: the standardized mean difference and the
point-biserial correlation. Both of these are parametric.
No standardized nonparametric effect size measures were
used for the 22% of tests that were analysed by nonpara-
metric methods, neither were any unstandardized effect size
measures based on median values used.

When reporting experimental results, we will urge
researchers to apply the effect size measure that best suites
the data, e.g., nonparametric effect size measures for obser-
vations that cannot be assumed to have any known distri-
bution. When aggregating results from different
measurement scales, the choices are limited; the standard-
ized mean difference effect size and the point-biserial corre-
lation are most commonly used, because they provide good
approximation formulas for variables that are not
continuous.

5.2.5. Report confidence intervals

When reporting an effect size, the accuracy of the esti-
mate, measured in terms of a confidence interval, should
be reported as well. Although the exact calculation of con-
fidence intervals for a standardized effect size is compli-
cated, good approximations exist for small effect sizes
and sample sizes that exceed 10 per group. Descriptions
of both exact methods and approximations are found in
[14,17,24]. Calculating a confidence interval for an unstan-
dardized effect size is simpler and is provided by most sta-
tistical reporting tools.

5.2.6. Report descriptive statistics

We recommend always reporting, for each experimental
group, results as mean values, standard deviations, fre-
quencies and sample sizes. When performing analysis of
variance, report standard ANOVA table results. Such
information enables the reader to estimate effect sizes. Even
if you report the effect size measure you find most appro-
priate, the reader might wish to compute a different one,
to aggregate results or for purposes of comparison. For
factorial design, there might be different views on how to
include the effect of different factors; hence, descriptive sta-
tistics for subgroups might be useful.

5.3. Implication for power analysis

For statistical power analysis, Dybå et al. [12] recom-
mend applying a medium effect size, as defined by Cohen,
(for example, g = 0.5) when no other information about
the population standardized effect size is available. Table
8 can be used as a guide to assess the likelihood of obtain-
ing specific values for Hedges’ g and the point-biserial cor-
relation. For example, there is a likelihood of 58% (100%–
42%) that Hedges’ g will be larger then 0.5 in software engi-
neering experiments.

If only large effects are interesting to detect, a large effect
size is appropriate to apply in the power-analysis. More-
over, if sufficient power is seen as difficult to achieve, we
recommend abstaining from hypothesis testing, and recom-
mend instead reporting effect sizes and confidence intervals
when investigating hypotheses. Note that confidence inter-
vals contain all the information to be found in significance
tests and much more [8].

5.4. Limitations of this study

The main limitations to this investigation are selection
bias regarding articles and tests, and possible inaccuracy
in data extraction. The limitations regarding selection of
articles and tests are described in, respectively, [39] and
[12].

The coding of effect size reporting has two limitations: it
was performed by one person only, and the quantitative
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categorization represents a simplification of the complex
matter of reporting experimental results. Important nuan-
ces might have been lost and some experiments treated
‘‘unfairly’’. However, the categorization was checked,
rechecked and discussed among all authors.

The effect size calculations were also performed by one
person only. Moreover, those tests for which an effect size
was not calculated, due to lack of sufficient information
reported in the article, represent a limitation to the com-
pleteness of the presentation of effect sizes. Possible effect
size calculation formulas and data that may have been used
for effect size calculation might have been overlooked in
the reported experiments. Finally, the calculated effects
might be biased by any methodological inadequacies of
the original studies.

6. Conclusion

This review investigated the extent of effect size report-
ing in selected journals and conference proceedings in the
decade 1993–2002, the interpretation of the effect sizes
given by the authors of the reviewed experiments, the
extent to which experimental results are reported in such
a way that standardized effect sizes can be estimated, and
the standardized effect sizes detected in software engineer-
ing experiments.

We found that effect sizes were sparsely reported in the
reviewed experiments. Only 29% of the 92 experiments
reported at least one standardized and/or unstandardized
effect size, and only two experiments reported both. The
extent to which standardized effect size was reported was
equal to or below what is observed in research in psychology.

The standardized effect sizes were compared mainly with
the standard conventions for small, medium and large val-
ues defined by Jacob Cohen for the behavioural sciences.
The practical importance of the effect size in context was
not discussed in any of the experiments.

We found sufficient information in the reviewed experi-
ments to compute standardized effect sizes for 25%–79% of
the primary tests, depending on the type of test.

The effect sizes computed in this investigation were sim-
ilar to what is observed in individual studies in research in
psychology. These values are slightly larger than the stan-
dard conventions for small, medium and large effect sizes
in the behavioural sciences.

Based on our experiences with working with this review,
we have three main recommendations to make regarding
effect size reporting. (1) Always report effect size in addi-
tion to statistical significance, to avoid erroneous infer-
ences. (2) Avoid allowing the effect size interpretation to
become rigorous and a matter of routine. Apply the
unstandardized effect size for discussions of practical
importance in context. (3) Always report basic descriptive
statistics, such as means, standard deviations, frequencies
and sample size, for each experimental group. This will
enable researchers to estimate their own choice of effect
sizes.
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