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INTRODUCTION

Meta-analysis of diagnostic test accuracy studies is a 

useful method to increase the level of validity by combining 
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data from multiple studies. Ideally, an analytic method used 

for this type of meta-analysis should estimate diagnostic 

accuracy with the least bias, incorporating various factors 

known to affect the results. Several different methods have 

been proposed for meta-analysis of diagnostic test accuracy 

studies (1-7), but there is still considerable uncertainty 

regarding the best method to synthesize those studies (8). 

These methods provide either summary points of different 

accuracy parameters (for example, sensitivity, specificity, 

positive and negative likelihood ratios, and diagnostic 

odds ratio [DOR]; for definitions, please refer to Part I 

of this two-part review) or a summary receiver operating 

characteristic (SROC) curve (9).

There are several unique characteristics of meta-

analysis of diagnostic test accuracy studies compared 

to therapeutic/interventional studies (8, 10). The most 

important difference is that diagnostic accuracy of a test 

is generally measured by a pair of summary points, namely, 

sensitivity and specificity. Although a DOR is a single 
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statistical methods are available (12-15). In this review, 

we summarize the methodological differences between 

therapeutic/interventional meta-analysis and meta-analysis 

of diagnostic test accuracy studies (Table 1). In addition, 

we compare the different statistical methods used to 

compute summary points of diagnostic accuracy and obtain 

SROC curves, and further discuss their appropriate use. 

Overview of a Choice of Meta-Analytic Methods

As summarized in Table 2, the meta-analytic summary 

measures can be categorized into summary points (e.g., 

summary sensitivity, specificity, and DOR) and summary 

lines (i.e., SROC curves) (1, 8). It is appropriate to calculate 

summary points if the sensitivities and specificities of 

primary studies do not vary substantially across studies. 

In general, but not always, this situation occurs when all 

studies use the same diagnostic threshold (i.e., cut-off 

value or criterion to categorize the test results as positive 

or negative) in similar clinical settings. However, such a 

situation is ideal and rarely occurs in real-world practice 

or clinical research (11). If there is evidence of a lack of 

heterogeneity in sensitivity and specificity across studies, 

two univariate meta-analyses for these measures using 

either fixed- or random-effects models could be considered. 

However, if sensitivity and specificity vary markedly and/or 

there is an evidence of a threshold effect between studies, 

summary points alone should be avoided, since the summary 

dimensional parameter for a diagnostic accuracy, it does not 

provide meaningful practical information for clinical practice 

(8). Second, a binary medical diagnosis (i.e., presence vs. 

absence of a target disease condition) is usually based on 

a certain diagnostic criterion or a threshold that is chosen 

from a wide range of values or findings. Different studies 

have different thresholds or criteria that greatly influence 

the estimation of summary points. In general, a threshold 

of a diagnostic test that is changed to increase sensitivity 

results in decreased specificity, and vice versa (3). Third, 

between-study heterogeneity of diagnostic test accuracy 

studies is generally larger than that of therapeutic/

interventional studies. Imaging scanners and protocols vary 

greatly between institutions. Even in the same institution, 

several different scanners and protocols for imaging 

diagnosis may exist. Moreover, diagnostic imaging studies 

often greatly differ in their design, conduct, population, 

and reference standards (1). 

Sophisticated statistical methodologies have been 

evolving to deal with these unique characteristics of 

diagnostic meta-analysis, especially during recent decades. 

Some of the most recent methods may not yet be familiar 

to many radiology researchers or practitioners who want 

to understand or perform meta-analysis of diagnostic test 

accuracy studies (11). Although it may be difficult to arrive 

at a formal unified consensus on the “standard” method 

to perform meta-analysis of diagnostic test accuracy 

studies, general recommendations regarding the appropriate 

Table 1. Comparison of Meta-Analysis of Therapeutic/Interventional Studies and Diagnostic Test Accuracy Studies

Therapeutic/Interventional Study Diagnostic Test Accuracy Study

Number of outcome  

  variables
Single outcome

Pair of outcomes, sensitivity and specificity, which  

  generally inversely correlated

Analysis of  

  heterogeneity  

  between studies

Chi-square test (Cochrane Q statistic): p < 0.1  

  generally indicates significant heterogeneity

Higgins’ I2 statistic: rough guide to interpretation  

  is as follows (10);

0% to 25%, might not be important

25% to 50%, may represent low heterogeneity

50% to 75%, may represent moderate heterogeneity

75% to 100%, high heterogeneity

Cochrane Q or Higgins’ I2 statistics alone may not be  

  informative as they do not consider threshold effect

Visual evaluation of coupled forest plot or SROC plot  

  to find threshold effect

Spearman correlation analysis between sensitivity  

  and false positive rate: r ≥ 0.6 generally indicates  

  considerable threshold effect (12) 

Meta-analytic  

  summary

Summary point and its 95% CI obtained with

Fixed-effects model: when study heterogeneity does  

  not exist

Random-effects model: when existence of study  

  heterogeneity is suspected

Summary point

Summary sensitivity and specificity and their 95% CIs  

  obtained with bivariate model: recommended

Summary plot (SROC curve)

Moses-Littenberg model: not recommended

HSROC curve: recommended

CI = confidence interval, HSROC = hierarchical summary receiver operating characteristic, SROC = summary receiver operating 
characteristic
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points such as summary sensitivity, specificity or DOR do 

not correctly reflect the variability between studies and 

may miss important information regarding heterogeneity 

between studies (1). In this case, it is more appropriate 

to construct a summary line such as a SROC curve to show 

how the different sensitivities and specificities of primary 

studies are related to each other. The SROC curve can be 

calculated with several different methods, as discussed 

below. Of note, the Diagnostic Test Accuracy Working Group 

of the Cochrane Collaboration and the Agency for Healthcare 

Research and Quality (AHRQ) currently recommend the use 

of hierarchical models (15, 16).

Methods to Compute Summary Points of 
Diagnostic Accuracy Parameters

Separate Pooling of Sensitivity and Specificity

Since sensitivity and specificity are proportions, we can 

pool these parameters separately by calculating a weighted 

average using either fixed- or random-effects model, similar 

to the calculation of a pooled estimate in meta-analysis 

of therapeutic/interventional studies that have a single 

proportional outcome. Separate pooling of sensitivity 

and specificity is still widely used in many meta-analyses 

of diagnostic test accuracy. Nevertheless, this separate 

pooling method is applicable only if the sensitivity and 

specificity are independent of each other, a condition that 

is rarely satisfied. In fact, sensitivity and specificity are 

generally correlated, and hence, a separate pooling would 

inadvertently produce inaccurate results by ignoring the 

correlation. Moreover, these pooling methods do not have 

meaningful results unless the studies use the same explicit 

diagnostic threshold, and thus sensitivity and specificity do 

not vary widely across studies (1, 3). 

In separate pooling methods, either fixed- or random-

effects model could be used. A fixed-effects model assumes 

that the true effect for a test accuracy (in both magnitude 

and direction) is the same (i.e., fixed) across studies 

and between-study variations or heterogeneities are due 

solely to random error (i.e., a sampling error). Under this 

assumption, the underlying common effect is estimated 

through a weighted average of study results. Specifically, in 

a fixed-effects model, pooling is made by only considering 

the weights of included studies using either an inverse-

variance method, in which the weight (wi) is based on the 

variance of normal approximation for a proportion (wi = n 

/ p [1 - p]), or the study size alone (wi = n) (1). On the 

contrary, a random-effects model provides an estimate of 

the average effect of a diagnostic test accuracy by assuming 

that the between-study variation or heterogeneity is due to 

not only random variation (i.e., random error) but also from 

inherent differences in the magnitudes of test accuracy 

Table 2. Statistical Methods for Meta-Analytic Summary Statistics of Diagnostic Test Accuracy Studies

Method Summary Measures Weighting Comments

Summary point

Separate pooling

Summary sensitivity,  

  specificity, LR+, LR-,  

  and DOR

Fixed effects or  

  random effects

Not recommended: 

  Conducts separate meta-analyses for each summary point

   Ignores threshold effect as well as correlation between sensitivity  

    and specificity 

Hierarchical methods  

  (bivariate/HSROC model)

Summary sensitivity,  

  specificity, LR+, LR-,  

  and DOR

Random effects

Recommended: 

  Accounts for correlation between sensitivity and specificity 

  For practical reasons, bivariate model is preferred for  

    computing summary points, while HSROC model  

    is preferred for constructing HSROC curve

Summary line (SROC analysis)

Moses-Littenberg model
SROC curve, AUC,  

  and Q*

Similar to fixed  

  effects

Not recommended: 

  Does not account for variability between studies

  Does not weight studies optimally

  Ignores correlation between sensitivity and specificity

Hierarchical model

HSROC curve, AUC,  

  confidence region,  

  and prediction region

Random effects

Recommended: 

  Accounts for within- and between-study heterogeneity

  Accounts for correlation between sensitivity and specificity

AUC = area under the ROC curve, DOR = diagnostic odds ratio, HSROC = hierarchical summary receiver operating characteristic, SROC = 
summary receiver operating characteristic
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(usually known as a tau-squared, τ2) between studies, for 

example, due to differences in the study populations or 

procedures used (note that a random-effects model does 

not assume a variation of direction of the study’s test 

accuracies). In the random-effects model, these two sources 

of variation are considered together in calculating a weight 

(wi*) for each of the included studies in terms of wi* = (τ2 

+ wi
-1)-1. Here, τ2 is the estimated variation or heterogeneity 

between the effects for test accuracy observed in different 

studies. The simplest, and hence most commonly used, 

method of pooling in a random-effects model is the 

DerSimonian and Laird method (17).

As noted in Part I of this review (9), heterogeneity 

is almost always presumed in diagnostic test accuracy 

systematic reviews, and hence, a use of a random-effects 

model is recommended by default. A use of a fixed-effects 

model is only appropriate when there are too few studies 

to estimate between-study variations or when there is 

no evidence for heterogeneity. A routine use of Cochran’s 

Q-test or Higgins’ I2 statistic, however, is not recommended 

in a diagnostic test accuracy review to assess an existence 

and degree of heterogeneity since they do not account for 

variation due to a threshold effect. Instead, the Cochrane 

handbook suggests graphical representation of the 

magnitude of heterogeneity; for example, the amount of 

heterogeneity due to the threshold effect in meta-analyzed 

studies could be examined by estimating the degree of 

closeness of observed study results to the SROC (15), as 

well as by calculating how much larger 95% prediction 

regions are compared with 95% confidence regions (18).

Pooling of a DOR

Diagnostic odds ratio is a single parameter of diagnostic 

accuracy, hence, it is relatively straightforward to compute 

pooled summary estimates of DOR. This parameter is also 

often reasonably constant regardless of variation in the 

threshold (1). Therefore, DOR can be pooled in the same 

way as the odds ratio, a common proportional outcome in 

therapeutic/interventional studies, using either the fixed-

effects model with an inverse-variance method or the 

DerSimonian and Laird random-effects model. The main 

disadvantage of using DOR as a summary measure is that it 

is less intuitive and more difficult to interpret in a clinically 

relevant way. Specifically, it does not distinguish between 

the ability to detect diseased cases (sensitivity) and the 

ability to detect non-diseased cases (specificity). The 

same DOR may also be achieved by different combinations 

of sensitivity and specificity. For this reason, DOR is not 

only rarely used as a summary statistic in primary studies 

for diagnostic test accuracy but also not recommended 

as an outcome index for its meta-analysis. One exception 

is studies with the specific aim to analyze the diagnostic 

association between sensitivity and specificity (19).

Joint Modeling of Sensitivity and Specificity

A joint modeling of both sensitivity and specificity to 

preserve the two-dimensional nature of diagnostic accuracy 

using hierarchical models is currently regarded as the 

optimal method for obtaining summary statistics for meta-

analysis of diagnostic test accuracy studies by several 

authoritative bodies such as the Diagnostic Test Accuracy 

Working Group of the Cochrane Collaboration or the AHRQ (3, 

11, 15, 16). These models are highly recommended when 

there is a threshold effect in meta-analysis (20). 

There are currently two analytical models available for 

hierarchical modeling: the bivariate model (3) and the 

hierarchical summary receiver operating characteristic 

(HSROC) model (21). The HSROC model is occasionally 

referred to as the Rutter and Gatsonis HSROC model, after 

the inventors of this model (3, 8, 21). Both models utilize 

a hierarchical structure of the distributions of data in terms 

of two levels, and provide equivalent summary estimates for 

sensitivity and specificity under the special condition, as 

described below. At the first level, a within-study variability 

(i.e., random sampling error) is considered by assuming a 

binomial distribution for the sensitivity and 1-specificity of 

each study, respectively. For example, the number of test 

positives (yij) for each study (i) in each disease group (j) 

is assumed to follow a binomial distribution of yij ~ B(nij, 

πij), j = 1, 2, where nij and πij represent the total number of 

tested subjects and the probability of a positive test result, 

respectively. The first level is the same in both models. 

However, they differ at the second level when modeling 

a between-study difference (i.e., heterogeneity). In the 

HSROC model, the probability of a subject in study i with 

disease status j being positive for a test (πij) is modeled 

with a cut-off point (i.e., the proxy of threshold) (θi) and 

an accuracy parameter (i.e., a natural logarithm of DOR) 

(αi) that incorporate both the sensitivity and specificity of 

the study i in the form of a logit (πij) = (θi + αi Xij) exp (-β 

Xij). In here, logit implies a natural logarithm of odds (odds 

is defined as the ratio of a probability being a success to 

a probability being a failure), the variable Xij represents a 

dummy variable for the true disease status of the subject 
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in study i with disease status j, and the parameter β 

is a scale parameter that is assumed to be a normally 

distributed random effect for a test accuracy, which can 

be used for modeling a possible asymmetry in the ROC 

curve. The between-study variation is, in fact, allowed in 

the HSROC model by assuming that parameters θi and αi 

are independently and normally distributed with a mean 

threshold of Θ and a mean accuracy of Λ, respectively. 

Covariates (Zi) that affect unexplained heterogeneity 

across studies, if any, can be taken into account in the 

HSROC model by assuming the mean of the parameters 

θi and αi as a function of the covariates, namely, Θ + YZi 

and Λ + λZi, respectively. Whereas, in the second level of 

the bivariate model, the logit-transformed sensitivity and 

specificity of the study i are assumed to have a bivariate 

normal distribution with means μA and μB, variances σ2
A 

and σ2
B, respectively, and the covariance σAB between logit 

sensitivity and specificity. This means that the bivariate 

model allows for a potential correlation between sensitivity 

and specificity and manages the differences in the precision 

of the sensitivity and specificity estimates using the five 

parameters, namely, μA, μB, σ2
A, σ2

B, and their correlation 

ρAB = σAB / (σAσB). Like the HSROC model, the bivariate 

model can also take into account the effect of covariates 

that affect sensitivity and specificity by replacing the 

means of μA and μB with linear predictors in the covariates. 

This means that explanatory variables can be added to 

the bivariate model, which leads to separate effects on 

sensitivity and specificity. Conceptually, the bivariate model 

is similar to the HSROC model except that the relationship 

between sensitivity and specificity is addressed by the 

correlation of its logit transformation in the former and the 

threshold in the latter. Further mathematical details are 

beyond the scope of this review, and interested readers are 

encouraged to read more technical articles (3, 7, 8). 

Both the bivariate model and Rutter and Gatsonis 

HSROC model could be used to estimate the SROC curve, 

the summary values of sensitivity and specificity, 95% 

confidence regions of the summary values, and its 95% 

prediction regions of the SROC curve. In the absence 

of covariates or when the same covariates are used for 

sensitivity and specificity (in the bivariate model) or for 

the cut-off point and accuracy parameters (in the HSROC 

model), the two models are mathematically equivalent and 

provide equivalent estimates of expected sensitivity and 

specificity (22). When there are covariates, the bivariate 

model is easier to use due to its ability to incorporate 

the covariates into the model, as compared to the HSROC 

model. The bivariate model is preferred for the estimation of 

a summary value of sensitivity and specificity, as well as for 

evaluating how their expected values may vary with study 

level covariates; whereas, the HSROC model is favored for 

the estimation of the SROC curve for assessing test accuracy 

and determining how the curve’s position and shape may 

vary with study level covariates (15). 

Methods to Obtain SROC Curves

It is recommended to summarize the results of primary 

studies with varying diagnostic thresholds, with a SROC 

curve, rather than using summary points such as summary 

sensitivity or specificity (1). This is because the sensitivity 

and specificity of a diagnostic accuracy test usually vary 

with variation in the threshold (i.e., threshold effect). 

Graphical examination is an easy way to evaluate the 

threshold effect. When pairs of sensitivity and specificity 

extracted from each primary study are plotted on a 

ROC space, a between-study heterogeneity as well as a 

relationship between sensitivity and specificity can be 

observed. The horizontal axis of the ROC space uses a false 

positive rate, that is 1-specificity, while the vertical axis 

uses sensitivity of primary studies. A SROC curve could be 

derived from this plot using various statistical modeling 

methods. 

Moses-Littenberg SROC Curve

The Moses-Littenberg method is the simplest and 

previously the most commonly used model for deriving a 

SROC in meta-analysis of diagnostic tests (5). This is a sort 

of fixed-effects model since it does not provide estimates of 

the heterogeneity between studies; hence, it should be used 

solely for exploratory purposes. The Moses-Littenberg model 

fits a straight regression line to the logits of sensitivity 

and 1-specificity of each study, and uses the estimated 

intercept and slope in a form of back-transformed values 

to construct the SROC curve (Fig. 1). A brief description 

on construction of the Moses-Littenberg SROC curve is as 

follows: First, the pairs of logit-transformed sensitivity 

and 1-specificity estimates from each study are used to 

compute D = logit (sensitivity) - logit (1-specificity) and 

S = logit (sensitivity) + logit (1-specificity). Note that the 

variable D is the natural logarithm of DOR itself, while the 

variable S is a quantity related to the overall proportion 

of positive test results. Note that, because S increases as 
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the overall proportion of test positives increases, S can 

be considered as a proxy for a test threshold. Second, a 

simple linear regression model D = α + βS + ɛ is fitted 

using D as a dependent variable and S as an independent 

variable. Third, use the parameter estimates of α and β 

to estimate an expected value of sensitivity using the 

following formula: E (sensitivity) = 1 / [1 + exp {-(α + 

[1 + β] logit [1-specificity]) / [1 - β]}]. Finally, an SROC 

curve can be derived by drawing a curve using the expected 

values of sensitivity across a chosen range of possible 

values of specificity on the original ROC coordinates. Note 

that the range of specificities over which the curve is drawn 

is usually confined to the range observed in the data. An 

explanation of a more detailed mathematical theory can be 

found elsewhere (23).

In the Moses-Littenberg model, the area under the ROC 

curve (AUC) and an index termed Q* are provided as global 

summary measures of the SROC curve. If a test is perfectly 

accurate, the value of AUC is 1.0, and decreases toward 

0.5 as the diagnostic performance of the test decreases. 

However, since ROC curves of different shapes can have the 

same AUC, it is inappropriate to interpret the AUC alone 

when the shape of the ROC curve is unknown. If the test 

results in the diseased and non-diseased groups have a 

logistic distribution with equal variance in both groups, the 

symmetric ROC curves can be obtained in which all points 

on the curve have a common DOR. When the DOR changes 

with threshold, the SROC curve becomes asymmetrical (4). 

Q* is a point where the SROC curve intersects the diagonal 

that runs from the top left to the bottom right of the ROC 

plot, in where sensitivity equals specificity. If Q* is located 

in the upper left corner on the SROC curve, it indicates 

that the test has a good diagnostic performance. The point 

Q* can also be calculated by Q* = (√DOR / [1 + √DOR]). 

However, the use of Q* to compare different diagnostic 

tests is controversial because the range of estimates of 

sensitivity and specificity from primary studies may not 

include values near the Q* point (1, 23). Since Q* often 

gives a wrong impression of accuracy if SROC curves are 

asymmetric, and it may bear little relation to the values 

observed in primary studies used in the meta-analysis, a 

use of Q* is generally discouraged (15). 

Although the Moses-Littenberg method allows for the 

correlation between sensitivity and specificity and is 

convenient for less mathematically or statistically complex 

meta-analyses, it has several limitations. First, this 

method is not statistically rigorous because the model’s 

independent variable S is not a fixed but a random variable. 

Thus, its inherent measurement error violates the basic 

assumptions of linear regression such as homogeneity of 

variance and covariates measured without error. Second, 

since the analysis is based on the DOR, summary measures 

of sensitivity and specificity are not directly estimated. 

Third, this method does not take into account the within- 

and between-study heterogeneity in test accuracy (8). In 

addition, this method can lead to improper SROC curves 

where sensitivity decreases as 1-specificity increases if 

there are outlying studies that influence the determination 

Fig. 1. Examples of forest plot, separate pooling of sensitivity and specificity, and construction of Moses-Littenberg SROC curve 
(method currently not recommended) using Meta-disc software.
A. Use of Meta-disc. First, data are entered in data window (1). In analyze tab, choose Plots function (2). Then, select plot to draw from new 
pop-up window (3). Results can be reviewed in Results window (4). B. Moses-Littenberg SROC curve. SROC curves and summary estimates, 
including area under ROC curve (AUC) and Q* index are presented. SROC = summary receiver operating characteristic

A B
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of the slope of the regression line (15). 

Hierarchical Models

As discussed earlier, hierarchical models, namely, the 

bivariate model and HSROC model, are multivariate methods 

that jointly analyze sensitivity and specificity. These 

models utilize the within-study binomial structure of the 

data while accounting for both within- and between-

study heterogeneity; hence, they are currently the most 

statistically rigorous and recommended methods for dealing 

with a threshold effect (3, 7). Both models produce a 

HSROC curve as well as summary points of sensitivity and 

specificity, together with their confidence and prediction 

region (Fig. 2). As explained earlier, the HSROC model 

directly estimates HSROC parameters such as accuracy 

(αi), threshold (θi), and shape parameter (β) as random-

effects variables, which enables direct construction of a 

HSROC curve. On the other hand, in the bivariate model, re-

calculation of HSROC parameters is required by transforming 

the estimated parameters of the bivariate model, and 

subsequently, a HSROC curve can be fitted. For these 

reasons, the HSROC model is preferred for estimating a 

HSROC curve. In the HSROC space, the confidence region 

and prediction region are used to describe an uncertainty of 

the summary sensitivity and specificity (24). The confidence 

region relates to the summary estimates of sensitivity and 

specificity jointly in the HSROC space while it also accounts 

for their inverse association based on the included studies. 

However, this region does not represent the between-study 

heterogeneity (1). On the other hand, the prediction region 

refers to potential values of sensitivity and specificity that 

might be observed in a future study by describing the full 

extent of the uncertainty of the summary points, which 

therefore can reflect the between-study heterogeneity. The 

prediction region is a region within which, assuming the 

model is correct, there is a 95% confidence for the true 

sensitivity and specificity of a future study (22). Therefore, 

the prediction region can predict the summary sensitivity 

and specificity of a similar prospective diagnostic accuracy 

study (1).

Software Programs

There are several statistical software programs available 

for meta-analysis of diagnostic test accuracy studies. The 

RevMan program (downloadable at http://tech.cochrane.

org/revman/download) provides a coupled forest plot, as 

well as the Moses-Littenberg SROC curve; the Meta-disc 

program (downloadable at http://www.hrc.es/investigacion/

metadisc_en.htm) is also quite straightforward to use and 

enables a separate pooling of sensitivity and specificity, 

drawing of the Moses-Littenberg SROC curve, and meta-

regression analysis using covariates (Fig. 1). However, 

since they do not provide hierarchical modeling, the 

methods provided by these software programs are no longer 

recommended. 

Fig. 2. Example of meta-analysis with hierarchical modeling (method currently recommended). Metandi module in STATA is used. 
A. Data input. Simply click data editor button (1) and enter data in Data Editor window (2). B. Calculation of summary estimates. Summary 
estimates of sensitivity, specificity, DOR, LR+, and LR- can be obtained using command “metandi tp fp fn tn”. C. HSROC curve is obtained using 
command “metandiplot tp fp fn tn”. Circles represent estimates of individual primary studies, and square indicates summary points of sensitivity 
and specificity. HSROC curve is plotted as curvilinear line passing through summary point. 95% confidence region and 95% prediction region are 
also provided. DOR = diagnostic odds ratio, HSROC = hierarchical summary receiver operating characteristic, LR = likelihood ratio

A B C
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Well-established software programs for hierarchical 

modeling include an open-access program language (R) 

or commercial statistical softwares (SAS or STATA). The 

available software programs for diagnostic meta-analysis 

with the bivariate model or the HSROC model include R 

(mada package), STATA (midas or metandi modules) or 

SAS (nlmixed procedure or metadas macros) (24, 25). The 

HSROC curves can be plotted through the RevMan using the 

parameter estimates obtained from these softwares as input 

values. The Diagnostic Test Accuracy Working Group of the 

Cochrane Collaboration has developed practical tutorials 

for the ‘metadas’ macro of the SAS, as well as the ‘metandi’ 

command of the STATA (http://srdta.cochrane.org/software-

development). 

CONCLUSION

The need for meta-analysis of diagnostic test accuracy 

studies has noticeably increased in recent decades with the 

rapid advances in diagnostic imaging tests and increased 

understanding of evidence-based medicine in the field. At 

the same time, the statistical methodology for meta-analysis 

of diagnostic test accuracy studies has been constantly 

evolving. Authoritative bodies such as the Cochrane 

Collaboration and the AHRQ currently recommend the use 

of hierarchical models; hence, the bivariate and HSROC 

models are expected to be used more frequently in meta-

analysis of diagnostic test accuracy studies. As a result, it 

is imperative for radiology researchers or practitioners to 

have a good understanding of the methodology and should 

strive towards a good conceptual grasp of the methods. At 

the same time, given the complexity of the new statistical 

methods, it is crucial for clinical researchers to closely 

collaborate with experienced biostatisticians.
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