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Take-home message: In the re-analysis of
1148 individual data sets lower CVP values
had low predictive power for fluid
responsiveness.
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Abstract Purpose: Central
venous pressure (CVP) has been
shown to have poor predictive value
for fluid responsiveness in critically
ill patients. We aimed to re-evaluate
this in a larger sample subgrouped by
baseline CVP values. Methods: In
April 2015, we systematically sear-
ched and included all clinical studies
evaluating the value of CVP in pre-
dicting fluid responsiveness. We
contacted investigators for patient
data sets. We subgrouped data as
lower (\8 mmHg), intermediate
(8–12 mmHg) and higher
([12 mmHg) baseline CVP. Re-
sults: We included 51 studies; in the
majority, mean/median CVP values
were in the intermediate range
(8–12 mmHg) in both fluid respon-
ders and non-responders. In an
analysis of patient data sets
(n = 1148) from 22 studies, the area
under the receiver operating curve
was above 0.50 in the\8 mmHg
CVP group [0.57 (95 % CI
0.52–0.62)] in contrast to the
8–12 mmHg and[12 mmHg CVP
groups in which the lower 95 % CI

crossed 0.50. We identified some
positive and negative predictive value
for fluid responsiveness for specific
low and high values of CVP, respec-
tively, but none of the predictive
values were above 66 % for any
CVPs from 0 to 20 mmHg. There
were less data on higher CVPs, in
particular[15 mmHg, making the
estimates on predictive values less
precise for higher CVP. Conclu-
sions: Most studies evaluating fluid
responsiveness reported mean/median
CVP values in the intermediate range
of 8–12 mmHg both in responders
and non-responders. In a re-analysis
of 1148 patient data sets, specific
lower and higher CVP values had
some positive and negative predictive
value for fluid responsiveness,
respectively, but predictive values
were low for all specific CVP values
assessed.
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Introduction

Fluid therapy is a key intervention in optimizing the
cardiovascular status in critically ill patients [1]. Previous
studies have shown that only 50 % of patients respond to
fluid administration with an increase in stroke volume
(SV) or cardiac output (CO), so-called fluid

responsiveness [2]. The ability to discriminate between
fluid responders and non-responders is important, as fluid
overload may be associated with increased mortality in
critically ill patients [3].

Central venous pressure (CVP) continues to be widely
used in guiding fluid therapy [4, 5] and is recommended
to guide fluid therapy in patients with septic shock [6].
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However, systematic reviews of the literature have con-
cluded that CVP has no predictive value for fluid
responsiveness in critically ill patients [7, 8]. The latter
observations may be in conflict with the physiological
rationale according to which extreme values of CVP
would be expected to have some predictive value even if
CVP may be considered the downstream pressure of
venous return rather than a measure of preload [5]. Along
this line, a recent consensus statement recommended
immediate fluid resuscitation in shock states associated
with very low levels of preload parameters (e.g. CVP) [9].

In the study reports on fluid responsiveness it is often
difficult to read the number of patients having extreme
values of CVP, because overall median or average values
are presented. Given the context of clinical research in
critically ill patients, it may be that patients who were
obviously hypo- or hypervolaemic were less likely to be
included in the studies assessing fluid responsiveness. A
number of studies, and in particular the smaller ones, may
therefore have included few patients with extreme values.
If so this may have contributed to the observed poor
predictive values of CVP for fluid responsiveness.

The aim of our systematic review was to re-evaluate
the predictive value of CVP for fluid responsiveness by
reassessing and reanalysing the reported data and indi-
vidual patient data on the basis of baseline values of CVP.

Methods

Two authors (T.G.E. and M.W.) searched PubMed and
Embase individually to identify all relevant studies
investigating fluid responsiveness including CVP as a
parameter. The following search string was used:

1. CVP OR central venous pressure OR CVC OR central
venous cath*

2. Fluid responsiveness OR fluid OR fluid status OR fluid
therapy OR volume OR volume status OR responsive-
ness OR resuscitation OR PLR OR passive leg raising

3. #1 AND #2

Study selection

The search was restricted to hospitalised patients. No
restrictions were made regarding language, patient cate-
gories or study settings. The search was done in
December 2014 and updated in April 2015. Identified
studies were screened on title, abstract or both by two
authors (T.G.E. and M.W.). All potentially relevant
studies were evaluated in full text. Bibliographies of
included studies were reviewed for further relevant
studies. The inclusion criteria of studies were (1) clinical

setting, (2) adult patients, (3) performance of at least one
fluid loading, (4) baseline CVP values reported, (5)
evaluation of fluid responsiveness and (6) CVP data
presented discriminating fluid responders from non-re-
sponders. Doubts regarding inclusion or exclusion of
studies were resolved with the senior author (A.P.).

Data extraction

Two authors (T.G.E. and M.W.) extracted the data inde-
pendently using a standardised form (Tables 2 and 3 in
the supplementary material). The extracted data included
(1) patient population, (2) number of patients, (3) poten-
tial exclusion criterion based on a certain CVP value, (4)
the technique used to define fluid responsiveness, (5)
definition of fluid responsiveness, (6) method used to
induce a change in preload, (7) potential type of fluid and
fluid volume, (8) body position, (9) use of ventilation and
(10) key results. The corresponding authors of all inclu-
ded studies were contacted by e-mail requesting the
individual patient’s baseline CVP data grouped by fluid
responders and non-responders.

From the studies from which we received individual
patient data we extracted the following quality indicators
of CVP measurements: levelling, zeroing, dealing with
respiratory variations, CVP measured at end expiration,
excluding patients recruiting expiratory muscles or giving
muscle relaxants, and if CVP was a measured value of the
trace rather than a registered value of a monitor.

Statistical analyses

We subgrouped studies and individual patient data sets on
the basis of baseline CVP values (mean/median for the
studies) as lower (\8 mmHg), intermediate
(8–12 mmHg) and higher ([12 mmHg) CVP groups
(these cut-off points have been used to guide fluid therapy
[10]) and on the basis of setting [operating room patients
or intensive care unit (ICU) or other patients].

We compared the area under the receiver operating
characteristics curves (AUC-ROC) for the individual
patient data sets grouped as lower, intermediate and higher
CVP values using GraphPad Prism 6 (GraphPad Software
Inc.).We calculated positive and negative predictive values
and likelihood ratios with 95 % confidence intervals (CI)
for specific CVP cut-off points in the range 0–20 mmHg.

We performed sensitivity analyses of studies including
ICU patients, studies including solely mechanically ven-
tilated patients, studies reporting to have included
observations on changes in CVP due to the fluid chal-
lenge, studies reporting the timing of the CO/SV
measurement after the fluid challenge, studies reporting
three or more of the quality indicators for CVP mea-
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surements and studies using thermo- or lithium dilution or
oesophageal Doppler to define fluid responsiveness as
these methods may be considered clinical reference
methods for detecting changes in SV and CO during fluid
loading [11].

Results

The search resulted in 4767 unique citations: 135 studies
were reviewed in full text and 51 studies were included,
the majority of which were done in the ICU and in the
operating room (Fig. 1; Table 1 and Tables 1–3 in the
supplementary material).

In the majority of studies, the patients were
mechanically ventilated [12–50] with tidal volumes
varying from 5 to 12 ml/kg. In nine studies mixed
populations of mechanically ventilated and non-venti-
lated patients were included [51–59], and in one study
non-ventilated patients were included [60]. In two
studies (4 %) patients were excluded if they had high
CVP values or other signs of hypervolaemia, and in two
studies (4 %) patients were excluded if they had low
CVP values.

In most of the studies colloid solutions were used to
induce the change in preload, and 500 ml was given [18,
19, 23, 24, 27–31, 34, 35, 37–41, 43, 44, 52, 57, 58, 60];
in the remaining studies fluid volumes varied between 100
and 1500 ml [14, 21, 47, 51, 53, 54, 56, 61], 6–10 ml/kg
[12, 13, 22, 32, 33, 36, 42, 45, 48, 50, 55, 62] or
10–20 ml 9 BMI [15, 26]. A few studies used passive leg
raising [16, 17, 25, 59] to induce the change in preload.

Table 1 Characteristics of all included studies and those studies with individual patient data

Characteristic Specification All studies
(n = 51)

Studies with
individual patient
data sets (n = 22)

Patient population OR 21 6
ICU/others 30 16

Method defining fluid responsiveness Thermodilution 34 12
Lithium dilution 3 1
TEE 2 1
TTE 4 4
Other Doppler methods 4 1
Non-calibrated pulse contour 2 2
No information 2 1

Parameter defining fluid responsiveness CO 10 6
CI 21 7
SV 6 2
SVI 10 4
SI 2 1
Subaortic VTI 1 1
PLR-induced change in PP 1 1

Ventilation Mechanical ventilation 39 15
Spontaneous breathing registered 9 4
Non-ventilated 1 1
No information 2 2

Mean/median CVP value in responders \8 mmHg 20 10
8–12 mmHg 29 11
[12 mmHg 2 1

Mean/median CVP value in non-responders \8 mmHg 11 6
8–12 mmHg 35 15
[12 mmHg 5 1

Values are number of studies
CVP central venous pressure, OR operating room, ICU intensive
care unit, TEE transoesophageal Doppler, TTE transthoracic

echocardiography, SV stroke volume, SVI stroke volume index, SI
stroke index, CO cardiac output, CI cardiac index, VTI velocity
time integral, PLR passive leg raising, PP pulse pressure

Fig. 1 Search, inclusion and exclusion of studies
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In most studies fluid responsiveness was defined as a
change in SV or CO as measured by thermodilution, but a
variety of methods were used as reference technique
(Table 1).

Analyses of CVP subgroups of reported data

The majority of reported mean/median baseline CVP
values in the 51 studies were in the intermediate CVP
range (8–12 mmHg) both in ICU and operating room
patient groups and in fluid responders and non-responders
(Table 1). There were more responders than non-respon-
ders in the lower CVP subgroup of studies (\8 mmHg),
whereas the opposite was observed in the higher CVP
subgroup ([12 mmHg) (Fig. 1 in the supplementary
material). Comparable results were observed in the 37
studies using thermo- or lithium dilution or oesophageal
Doppler to define fluid responsiveness (Fig. 2 in the
supplementary material).

Analyses of individual patient CVP data sets

Investigators of 22 studies including 982 patients [15, 16,
24, 25, 28, 31, 34, 35, 38–40, 43, 44, 47, 48, 52, 54, 55,
59–62] submitted raw baseline CVP data on fluid
responders and non-responders resulting in 1148 patient
data sets. The 22 studies differed in patient population,
reference technique, definition of fluid responsiveness,
and fluid type and volume to induce a preload challenge
(Table 1).

In ten studies ICU patients were investigated (451 data
sets), and in 13 studies (687 data sets) [16, 24, 25, 28, 31,
38, 40, 43, 47, 48, 54, 55, 61] thermo- or lithium dilution
or oesophageal Doppler was used to define fluid respon-
siveness. In 15 studies (727 data sets) mechanically
ventilated patients were included, in four studies both
mechanically ventilated and spontaneously breathing
patients were included, and in one study spontaneously
breathing patients were included. No information was
provided on mode of ventilation in two studies. Eighteen
(938 data sets) out of the 22 studies reported to include
observations on changes in CVP due to the fluid chal-
lenge, and in 12 studies (845 data sets) the timing of the
CO/SV measurement after the fluid challenge was
reported. Nineteen studies reported quality indicators for
CVP measurements (Table 4 in supplementary material);
in eight studies (603 data sets), three or more indicators
were reported to have been used.

The median CVP value was 9 mmHg (interquartile
range 6–12 mmHg) in the full data set (n = 1148), and
47 % of the CVP values were in the lower CVP subgroup,
30 % in the intermediate subgroup (8–12 mmHg) and
23 % in the higher CVP subgroup. Overall 48 % of the
assessments were in fluid responders (551/1148) and

52 % in non-responders (597/1148), and the ratios
between responders and non-responders varied depending
on baseline CVP subgroup (Fig. 2 and Fig. 3 in the sup-
plementary material).

The AUC-ROCs were 0.57 (95 % CI 0.52–0.62) for
the lower CVP subgroup, 0.54 (0.48–0.60) for the inter-
mediate CVP subgroup and 0.56 (0.48–0.63) for the
higher CVP subgroup (Fig. 3 and Fig. 4 in the supple-
mentary material). Comparable results were observed
using the individual patient data sets from the studies
including only patients who were mechanically venti-
lated, the studies of ICU patients only, the studies using
thermo- or lithium dilution or oesophageal Doppler to
define fluid responsiveness, the studies reporting the
timing of the CO/SV measurement after the fluid chal-
lenge, and those reporting the use of three or more quality
indicators for CVP measurements (Fig. 3 and Figs. 5–9 in
the supplementary material). In exploratory analyses the
highest positive and negative predictive values were at
CVP cut-off points of 2 mmHg (65 % (95 % CI 54–76))
and 14 mmHg [66 % (58–73)], respectively (Table 2).
The highest positive and negative likelihood ratios were
also at CVP cut-off points of 2 mmHg [2.04 (1.27–3.26)]
and 14 mmHg [0.56 (0.41–0.77)], respectively (Table 2).

Discussion

The main finding of this systematic review was that most
of the reported mean/median CVP values in studies were
in the intermediate range (8–12 mmHg) for both operat-
ing room and ICU/other patient groups and for fluid
responders and non-responders. For the studies with
available individual patient data sets 47 % of the CVP
values were in the lower (\8 mmHg) range. In this lower
CVP subgroup the AUC-ROC was different from 0.50 (no

Fig. 2 Distribution of responders (R) and non-responders (NR) in
the CVP subgroups [lower (\8 mmHg), intermediate
(8–12 mmHg) and higher ([12 mmHg) baseline CVP groups] of
individual patient data sets (n = 1148)
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overall predictive value), but the observed value of 0.57
indicated that CVP was a poor test for fluid responsive-
ness even in the lower range of CVP values. This was
supported by the low positive predictive values and
likelihood ratios of specific CVP cut-off points (6, 4, 2
and 0 mmHg). However, our estimates were less precise
the lower the CVP cut-off point as the 95 % CIs widened,
because of lower numbers of individual patient data sets

with very low CVP values. For the intermediate and
higher CVP subgroup, the AUC-ROC did not differ from
0.50 and no specific CVP cut-off points had negative
predictive value for fluid responsiveness above 66 %. Our
estimates of the predictive values were less certain at
CVP cut-off points[15 mmHg because of lower num-
bers of individual patient data sets with CVP values above
this level.

Fig. 3 Forest plot including
AUC-ROC with 95 % CIs for
the lower, intermediate and
higher CVP groups of the
individual patient data sets
(n = 1148) and the sensitivity
analyses of the five subgroups
(use of mechanical ventilation,
use of thermo- or lithium-
dilution or oesophageal Doppler
to define fluid responsiveness,
ICU patients, timing of CO/SV
measurement reported, and
three or more quality indicators
for CVP measurements). AUC
area under the curve, ROC
receiver operating characteristic

Table 2 Predictive values and likelihood ratios of CVP for fluid responsiveness in 1148 individual patient data sets

CVP cut-off
point (mmHg)

Number of data
sets for the CVP
ranges given

Positive
predictive
value

Negative
predictive
value

Positive
likelihood
ratio

Negative
likelihood
ratio

0 \2: 72 64 % (39–89) 52 % (49–55) 1.95 (0.66–5.78) 0.99 (0.98–1.00)
2 2–3: 125 65 % (54–76) 53 % (50–56) 2.04 (1.27–3.26) 0.95 (0.93–0.98)
4 4–5: 163 64 % (57–71) 55 % (52–59) 1.92 (1.47–2.51) 0.88 (0.83–0.92)
6 6–7: 177 59 % (54–65) 57 % (54–61) 1.59 (1.33–1.89) 0.81 (0.75–0.88)
8 8–9: 187 56 % (52–61) 59 % (56–63) 1.40 (1.24–1.59) 0.74 (0.66–0.83)
10 10–11: 161 53 % (50–57) 61 % (56–66) 1.24 (1.13–1.35) 0.69 (0.59–0.81)
12 12–13: 108 51 % (47–54) 61 % (55–67) 1.12 (1.05–1.19) 0.69 (0.55–0.85)
14 14–15: 79 50 % (47–53) 66 % (58–73) 1.09 (1.04–1.14) 0.56 (0.41–0.77)
16 16–17: 39 49 % (46–52) 64 % (54–75) 1.04 (1.00–1.07) 0.60 (0.38–0.94)
18 18–19: 22 48 % (45–51) 59 % (44–75) 1.01 (0.99–1.03) 0.74 (0.39–1.41)
20 [19: 15 48 % (45–51) 53 % (28–79) 1.00 (0.99–1.01) 0.95 (0.35–2.60)

The numbers in brackets are 95 % confidence intervals
CVP central venous pressure
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Our main finding, that CVP is of limited value in the
prediction of fluid responsiveness, is in agreement with
previous systematic reviews [7, 8]. Our analyses of a large
number of individual patient data sets are novel and
include a reasonable number of extreme CVP values, in
particular in the lower end. These analyses also indicate
low predictive values for fluid responsiveness even at
extreme values of CVP, at least in the average way CVP
is used in the included studies. However, it does appear
that patients with higher CVP levels were less likely to be
included in the original studies even though only few
studies had specific exclusion criteria driving this. If this
was a systematic error, it may have happened because
clinicians follow the general physiological principle and
the observations supporting that the higher the baseline
CVP, the less the response to fluid [54]. In any case, it
represents a potential selection bias, which is difficult to
quantify. Because we observed fewer individual patient
data sets with CVP values above 15 mmHg, the negative
predictive values above this CVP cut-off point should be
interpreted with some caution.

There are alternative methods to CVP for the pre-
diction of fluid responsiveness, but a number of
prerequisites have to be fulfilled for these to be valid
(continuous SV or CO measurement for passive leg
raising test and sinus rhythm, controlled ventilation with
tidal volumes[7 ml/kg and sedation for the use of pulse
pressure variation and stroke volume variation), which
limits their use [63, 64].

Measuring CVP in the clinical setting is not an easy
task and there are several confounders that may reduce
CVP’s predictive value for fluid responsiveness. CVP
measurements are sensitive to both the zeroing and the
levelling of the transducer, where small differences can
result in significant measurement differences [5]. Being
an intramural pressure CVP is sensitive to several factors
influencing both the vessel distensibility and the trans-
mural pressure. Effective circulating volume and diastolic
and systolic cardiac function, pericardial, intrathoracic
and intra-abdominal pressures all influence CVP [5]. The
intra-thoracic pressure increases when applying positive
pressure ventilation and higher positive end expiratory
pressure (PEEP), which will increase CVP. And the
Frank–Starling curve describing the relationship between
venous return (preload) and SV is a very simplified
approach because the curve is influenced by several fac-
tors. Pathophysiological conditions such as heart failure
and cardiogenic shock affect the contractile state of the
heart, which may reduce the increase of SV due to an
increase in preload [65]. Also, CVP is the downstream
pressure for mean systemic filling pressure to deliver
venous return to the right side of the heart [5, 66].

Before we can conclude that CVP is of limited value
in guiding fluid therapy, we need larger studies that
control for the confounding factors and studies where the
use of CVP is integrated with estimates of mean systemic

filling pressure. Preferably, these studies should be per-
formed in patient populations at higher risk of hypo- or
hypervolaemia [67].

The strengths of this study include those of a sys-
tematic review in general. The search for studies was
done systematically using a wide search string in multiple
databases without limitations. The inclusion and exclu-
sion of studies were predefined and done systematically
by two independent investigators. The collection of data
was structured using a standardised form. In addition, we
predefined the subgroup and sensitivity analyses includ-
ing the cut-off points of the three CVP subgroups. We
obtained a large sample of individual patient data sets
enabling us to perform pooled analyses with better sta-
tistical power than in the individual studies.

The limitations of the study include the weaknesses of
systematic reviews in general. It is possible that we did not
identify all the relevant studies. The included studies were
heterogeneous in both setting and design. In particular the
studies differed in the amount of fluids given and in their
cut-off points for fluid responsiveness. This limits our
analyses of both reported and individual CVP values. The
clinical translation of our results is also hampered by the
definition of fluid responsiveness. The cut-off values for
fluid responsiveness are chosen because of the cut-off
points of the methods for measurement of SV or CO; this
is somewhat artificial. On the other hand, there are limited
data supporting alternative ‘outcome measures’ for a fluid
challenge. We obtained individual patient data from less
than half of the studies and several included more data sets
from some patients, which may have affected the results of
our re-analyses. Also, we did not obtain more detailed
patient data, excluding the possibility for explorative
analyses based on differences in clinical setting, car-
diopulmonary status and/or ventilator settings. Finally, it
may be that the pooling of results in studies and systematic
reviews of clinicians’ complex assessments of potential
fluid responsiveness including CVP and other character-
istics represents too rough a reduction of these complex
data, so that the signals are lost.

Conclusions

Most studies on fluid responsiveness reported mean/me-
dian CVP values in the intermediate range of 8–12 mmHg
in both responders and non-responders. In our re-analyses
of a large sample of individual patient data sets, lower
CVP values (\8 mmHg) predicted fluid responsiveness
and had some positive predictive value at 2 and 4 mmHg.
Overall, the intermediate (8–12 mmHg) and higher
([12 mmHg) ranges of CVP values did not predict fluid
responsiveness, though we found some negative predic-
tive value using 14 and 16 mmHg as cut-off points.
However, there were fewer data on higher CVP values, in
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particular[15 mmHg, resulting in less certain estimates
of predictive values of higher CVP values. In any case,
the predictive values, both positive and negative, were
generally low for all the specific CVP values assessed in
the range 0–20 mmHg.
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