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Abstract

Currently there are 850,000 people with Alzheimer’s disease in the UK, with an estimated rise to 1.1 million by 2025.

Alzheimer’s disease is characterised by the accumulation of amyloid-beta plaques and hyperphosphorylated tau in the brain

causing a progressive decline in cognitive impairment. Small non-coding microRNA (miRNA) sequences have been found to be

deregulated in the peripheral blood of Alzheimer patients. A systematic review was conducted to extract all miRNA found to be

significantly deregulated in the peripheral blood. These deregulated miRNAs were cross-referenced against the miRNAs

deregulated in the brain at Braak Stage III. This resulted in a panel of 10 miRNAs (hsa-mir-107, hsa-mir-26b, hsa-mir-30e,

hsa-mir-34a, hsa-mir-485, hsa-mir200c, hsa-mir-210, hsa-mir-146a, hsa-mir-34c, and hsa-mir-125b) hypothesised to be

deregulated early in Alzheimer’s disease, nearly 20 years before the onset of clinical symptoms. After network analysis of the

10 miRNAs, they were found to be associated with the immune system, cell cycle, gene expression, cellular response to stress,

neuron growth factor signalling, wnt signalling, cellular senescence, and Rho GTPases.
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Dementia

Dementia is a common syndrome in people over 65 years of age

and is characterised by a progressive decline in memory and

other abilities [1]. In 2014, there were 850,000 people living with

Alzheimer’s disease in the UK, costing the economy £26.3 bil-

lion a year. Due to the ageing population, this is set to rise to over

1.1 million people with Alzheimer’s disease in 2025 [2].

The Prime Ministers Challenge on Dementia 2020,

established by the UK Government, found in 2010/11 that

only 42% of estimated dementia sufferers in England had a

formal diagnosis [3]. In 2016, the diagnosis rate increased to

67% [4]. This has been attributed to an increased public

awareness of dementia, a reduction in the stigma associated

with dementia, and an increase in dementia research. Due to

the nature of dementia, the accuracy of the diagnosis corre-

lates with the severity of the symptoms and varies from 9 to

41% [4]. Onset of dementia can occur 20–30 years before the

first symptoms appear [5]; therefore, the earlier a diagnosis

can be made, the less developed the degeneration will be,

increasing the probability of a successful treatment.

Alzheimer’s Disease

Alzheimer’s disease is the most common form of demen-

tia accounting for 62% of the dementia patients [2] and is

characterised by the presence of amyloid plaques and

hyperphosphorylated tau in the brain. In 1991, Braak

and Braak mapped the movement of both amyloid-β and

hyperphosphorylated tau in the brain during the progres-

sion of the disease [6]. The movement of amyloid was

split into three Stages (A–C) and that of tau into six (I–

VI), as shown in Fig. 1.

Amyloid deposits are mainly found in the isocortex of the

cerebral cortex. The plaques are not uniform in shape or size

and early stage accumulation suffers from inter-individual var-

iation. The amyloid deposition develops before the onset of

tau. However, the presence of amyloid does not mean that tau

pathology will develop [6]. During Stage A, amyloid is found

in the base layer of the frontal, temporal, and occipital lobes.

In Stage B, amyloid progresses to almost all isocortex areas

and during Stage C, amyloid becomes densely packed [6].

Tau Braak Stages correlate with the progression of

Alzheimer’s disease. It is estimated that it can take 48 years to
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develop from Braak Stage I to Braak Stage V in which

Alzheimer’s disease symptoms are apparent. A large proportion

of that time is when the disease is non-symptomatic as it can

take 30 years to progress from Braak Stage I to Stage III [5].

Braak Stages I and II are centred around the transentorhinal

region with Stage II being more densely packed with tau pa-

thology than Stage I. At Stage III, the pathology moves into

the entorhinal region with low levels of tau seen in CA1 of the

hippocampus and no or mild changes present in the isocortex

[6]. The hippocampus is responsible for episodic memory,

which is memory of autobiographical events [7]. This corre-

sponds with early symptoms seen in Alzheimer’s disease and

is defined as mild cognitive impairment (MCI). Patients that

fit this definition are 3–5 times more likely to develop demen-

tia within 3–5 years [8].

At Stage IV, there is increased pathology in the entorhinal

region and CA1 hippocampus. At this stage, there is no de-

tectable brain atrophy, and the pathology does not meet the

criteria for neuropathologic diagnosis of Alzheimer’s disease.

At Stage V, tau is found in almost all areas of the hippocampus

and isocortex, with the areas becoming severely affected by

Stage VI. Involvement of the isocortex corresponds to late

Alzheimer’s disease and clinical diagnosis [6].

Alzheimer disease symptoms have been classified by criteria

published in 1984 by both the National Institute of

Neurological and Communicative Disorders and Stroke

(NINCDS) and the Alzheimer’s Disease and Related

Disorders Group (ADRDG). It concludes that a definitive diag-

nosis can only be given when histological analysis by biopsy or

autopsy has been conducted [1]. If a biopsy cannot be conduct-

ed, then a possible or probable diagnosis is given. A probable

diagnosis has a sensitivity of 81% and specificity of 70%, a

possible diagnosis has a sensitivity of 93% and specificity of

48% [9]. Sensitivity is the ability to distinguish between normal

and Alzheimer’s disease, while specificity is the capability to

differentiate Alzheimer’s disease from other types of dementia.

Diagnostic Techniques for Alzheimer’s Disease

An ideal diagnostic technique for Alzheimer’s disease would

be that which can identify the disease with adequate reliability

considerable time before the onset of symptoms for treatments

to be effective, and which is minimally invasive, low-cost, and

easy to be applied for mass screening. Current diagnostic

techniques for Alzheimer’s disease primarily include cogni-

tive testing [10], neuroimaging [11], and biomarker detection

[12]. Other more recently reported diagnostic tests include

retinal imaging of amyloid beta, structural changes in the ret-

ina [13, 14], and alterations in an Alzheimer patient’s sense of

smell [15]. Cognitive testing, for example questionnaires like

the mini mental state examination (MMSE), is the most com-

monly used tool to asses a patient’s symptoms for Alzheimer’s

disease [16]. Therefore, cognitive testing is unable to diagnose

the disease in the pre-symptomatic stage [17]. Neuroimaging

diagnosis, for example magnetic resonance imaging, looks for

hippocampal atrophy [18]. However, this is an expensive and

specialised technique, which is logistically challenging to be

used for mass screening.

Fig. 1 Schematic of the Braak and Braak amyloid and tau stages during the progression of Alzheimer’s disease. Mild, moderate, and severe correspond

to the density of amyloid/tau protein
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Detection of biomarkers in patients is heavily reported for

cerebrospinal fluid (CSF) and peripheral blood [references].

Other biological samples, such as urine [19], breath [20], and

saliva [21, 22], have the potential for biomarker detection

although they are less prominent in the literature.

CSF requires an invasive lumbar puncture procedure

under general anaesthetic with common side effects in-

cluding mild to moderate headache in up to 46% of cases

[23–25]. The most commonly reported CSF assay looks

for a decrease in amyloid-beta 42 and increased levels of

total tau and phosphorylated tau. The test’s sensitivity

ranges between 68 and 95% and specificity between 83

and 97% [26–30]. To quantify concentrations of amyloid

beta and tau, studies use enzyme-linked immunosorbent

assays (ELISAs). Multi-centre studies conducted using

ELISAs have demonstrated a large variability in results

[31]. Currently, this variation remains too high to estab-

lish international cut-off values, which differentiate

Alzheimer patients from normal controls [32].

Another approach is to screen for biomarkers in pe-

ripheral blood. Blood collection is significantly less in-

vasive than lumbar puncture and routinely conducted.

Therefore, detecting biomarkers in peripheral blood is

potentially more applicable to mass screening and regu-

lar monitoring of disease progression. Several studies

have found differences in specific protein and

microRNA (miRNA) concentrations between normal

and Alzheimer’s disease blood, highlighting its potential

as a diagnostic procedure [12, 33–36]. This review will

focus on miRNAs only.

miRNAs

miRNA are small non-coding RNA, normally 22–23 nu-

cleotides, that control gene expression by binding to the

3′-untranslated region (UTR) region in messenger RNA

(mRNA). Through this, they suppress translation or in-

duce degradation of the target mRNA [37]. miRNAs are

transcribed by RNA polymerase II/III in the nucleus to

large RNA precursors called pri-miRNA. The pri-

miRNA is processed by the RNase III enzyme Drosha to

be approximately 70 nucleotides in a hairpin structure.

The pri-miRNA is then exported to the cytoplasm by

exportin 5. After subsequent processing by the RNase

III enzyme Dicer, it releases a small RNA duplex which

is then loaded into an Argonaute (Ago) protein. The ma-

ture miRNA then directs the Ago-miRNA complex to the

target mRNA (Fig. 2) [37–39]. The Ago-miRNA complex

is very stable in body fluids, and miRNA can be attributed

to specific organs and pathologies, making miRNA an

ideal biomarker target [40].

miRNA Implicated in Alzheimer’s Disease

The literature includes a number of recent studies reporting

miRNAs in blood, CSF, or brain as candidate biomarkers for

Alzheimer’s disease [references]. Besides variations in the quan-

tification methods and protocols used, the comparability of these

studies is particularly challenged due to discrepancies in the stage

of Alzheimer’s disease for patients included in the studies. In

Fig. 2 Schematic showing the

synthesis of miRNA
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view of this challenge, the objective of this reviewwas to identify

the miRNAs that are deregulated in peripheral blood in late

Alzheimer’s and compare them with those found altered in the

brain during an early stage of the disease (Braak Stage III).

Correlation of deregulated blood-based miRNAs in peripheral

blood with those altered in Braak Stage III will allow nearly a

20-year window for screening of patients at risk of Alzheimer’s

before the onset of pathological symptoms (Fig. 1).

To establish the number of miRNA found to be significant-

ly deregulated in Alzheimer’s patients, keywords were placed

in search databases including Web of Science, Google

Scholar, and PubMed. Keywords chosen were BmiRNA,^

BAlzheimer,^ Bdiagnosis,^ and Bbiomarker^ with either

Bblood,^ Bserum,^ Bplasma,^ Bcerebrospinal fluid,^ or

Bbrain.^ Both the article title and abstract were assessed for

applicability into the review. Last searches were conducted in

October 2017. The following inclusion and exclusion criteria

were used for the systematic review. The inclusion criteria

were as follows:

1. All samples tested were human

2. Aged matched controls were used

3. Articles were in English

4. A sample group of three or more.

Exclusion criteria:

1. Review articles, conference abstracts, and studies without

a complete set of data.

2. Articles that do not mention Alzheimer’s or dementia in

the title or abstract.

The following information was then extracted from the

selected articles: Fist named author, year of publication, par-

ticipant country, blood sample type used, number of control

participants, number of Alzheimer patients, any other partici-

pant group used, Alzheimer’s disease diagnostic technique,

and the significantly deregulated miRNA.

miRNA Deregulation in Blood

From the systematic review, 20 articles were found to look at

miRNA blood deregulation in Alzheimer patients. Nineteen

articles were published between 2012 and 2016 and one in

2007 are summarised in Table 1.

From the 20 articles, 102 miRNAs were found to be

deregulated in Alzheimer patient’s blood compared to aged

Table 1 Summery of articles found after systematic review of miRNA

deregulated in the peripheral blood in Alzheimer patients

Total number of articles 20

Year of publication 2012 to 2016 and 2007

Most frequent technique

used to diagnose Alzheimer’s disease

12 articles used MMSE

Most frequent miRNA detection technique used 15 articles used PCR

Table 2 Number of articles and miRNA found to be deregulated

between Alzheimer patients and controls for different blood components

Blood component Number of articles Number of miRNA

Serum 10 56

Plasma 4 10

Whole blood 1 11

BMC 3 10

Exosomes 2 15

BMC, blood mononuclear cells

Fig. 3 Forest plot showing the distribution of MMSE scores from 10

articles. Study ID: (1) Kiko (2014) [51], (2) Cheng (2014) [42], (3)

Leidinger (2013) [41], (4) Zhu (2014) [59], (5) Kumar (2013) [48], (6)

Geekiyanage (2012) [56], (7) Wang (2015) [61], (8) Tan (2014) [47], (9)

Dong (2015) [57], and (10) Tan (2014) [44]

Table 3 MiRNA found

to be consistent and

contradictory in serum

between different articles

miRNA First article Second article

9 ↑ ↓

125b ↓ ↓

181c ↓ ↓

135a-5p ↑ ↓
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matched controls [41–57]. Ten articles looked at serum blood

samples [44–47, 50, 55, 57–60], 4 at plasma [48, 50, 51, 61],

3 at blood mononuclear cells (BMC) [43, 52, 62], 2 in

exosomes [42, 49], and 1 in whole blood [41]. This

corresponded to 56 miRNAs found to be deregulated in se-

rum, 10 in plasma, 11 in whole blood, 10 in BMC, and 15 in

exosomes as shown in Table 2. The highest fold changes were

seen in the plasma.

Twelve articles in the systematic review used theMMSE to

diagnose Alzheimer’s disease, 10 gave an MMSE score with

the standard deviation. The numbers were extracted and com-

piled into the plot in Fig. 3, which shows a decreasing pro-

gression of MMSE scores fromMCI at 21 to severe cognitive

impairment at 10.

Eight miRNAs have been found to be significantly

deregulated when comparing both control and MCI, and con-

trol and Alzheimer’s disease candidates. Two miRNAs are

significantly different between MCI and Alzheimer’s disease

(193b and 200b) [49, 55]. However, the presence ofMCI does

not guarantee an Alzheimer disease diagnosis; therefore, the

miRNA specific to MCI that develops into Alzheimer’s dis-

ease must be extracted.

FourmiRNAswere found to be significantly deregulated in

two different articles (Table 3). However, only two were con-

sistent between articles (125b and181c) and two were incon-

sistent (9 and 135a-5p). Both mir-9 and mir-181c haveMMSE

scores assigned to the two articles, the first article has an

MMSE score of 10.5 and the second 15.

Sensitivity and specificity values were extracted from nine

articles and are shown in Table 4.

A further literature study was conducted to establish the

role of each blood deregulated miRNA. This is to determine

whether the miRNA in the blood are predominately associated

with inflammation, amyloid-beta, or tau signalling pathways.

Table 4 Sensitivity and specificity values for blood deregulated miRNA

Study ID Author No. of patients No. of controls Blood component Sensitivity Specificity miRNA profile

1 Wang (2015) 97 81 Plasma 0.90 0.78 mir-107

3 Tan (2014) 105 150 Serum 0.87 0.53 mir-9

0.81 0.68 mir-125b

0.75 0.64 mir-181c

4 Tan (2014) 208 205 Serum 0.85 0.71 mir-342-3p

0.81 0.68 mir-342-3p, -98-5p, 885-5p,

-191-5p, 483-3p, -7d-5p.

6 Cheng (2014) 39 59 Serum 0.87 0.77 mir-30e-5p, -101-3p, -15a-5p, -20a-5p,

-93-5p, -106b-5p, -18b-5p, -106a-5p,

-1306-5p, - 3065, -582-5p, -143-3p,

-335-5p, -424-5p, -342-3p, -15b-3p

7 Kumar (2013) 31 37 Plasma 0.20 0.88 mir-545-3p

0.95 0.53 let-7g-5p

0.85 0.88 mir-15b-5p

0.95 0.94 mir-545-3p, -7g-5p, -15b-5p

0.65 1 mir-142-3p

0.95 0.76 mir-191-5p

0.75 0.88 let-7d-5p

8 Leidinger (2013) 142 43 WB 0.92 0.95 mir-7f-5p, -1285-5p, -107, -103a-3p,

-26b-5p, - 532-5p, -151a-3p, -161,

-7d-3p, -112, -5010.

9 Bhatnagger (2014) 110 123 BMC 0.92 0.96 mir-34a

0.84 0.74 mir-34c

Inflama�on

Apoptosis

Amyloid

Tau

Other

Unknown

Fig. 4 miRNA deregulated in peripheral blood experimentally found

targets grouped into inflammation, apoptosis, amyloid, and tau

signalling pathways
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Results in Fig. 4 show that 44miRNAs have unknown targets,

14 from amyloid, 10 from inflammation, 7 from apoptosis, 3

from tau, and 13 from other signalling pathways.

MiRNA Deregulated in the CSF

Twelve articles were found to contain data for deregulation of

miRNA in the CSF; this resulted in 153 deregulated miRNAs.

Nineteen miRNAs were found to be deregulated between

more than one article; all but 6 had consistent results.

A recent multi-centre study looking at the deregulation of 4

miRNAs in the CSF of Alzheimer patients and found signif-

icant differences between results from the three centres [63].

All centres used PCR for analysis and the same RNA isolation

procedure. After analysis, the multi-centre study found a sig-

nificant difference between centrifuged and non-centrifuged

samples before freezing and correlations between the PCR

cycle threshold (Ct) values and storage time. This highlights

the need for detailed standardised procedures.

miRNA Deregulation in the Brain

Twenty-seven articles were found looking at deregulated

miRNA in the brain, corresponding to 250 miRNAs. The

search included 13 articles from the temporal cortex

[64–76], 6 from the hippocampus [65, 77–81], 8 from the

frontal cortex [77, 78, 82–87], 1 from the entorhinal region

[81], and 1 the parietal lobe [88].

Articles that define the Braak Stagewere extracted and split

into three groups, Braak Stage I-II, Braak Stage III-IV, and

Braak Stage V-VI. Braak Stages I and II are generally used as

control cases, 27 miRNAs were deregulated at Braak III–IV

and 99 at Braak V–VI, as shown in Fig. 5. Five hundred

millilitres of CSF can be absorbed into the blood daily, and

damage to the blood brain barrier during Alzheimer’s disease

enables exchange of miRNA between the brain and peripheral

blood [89]. Therefore, miRNAs deregulated in the blood were

cross-referenced against those deregulated at Braak Stage III.

miRNA Deregulated in the Brain and Blood

All deregulated miRNAs in the peripheral blood were

cross-referenced against the miRNA deregulated in the

brain. Forty-seven miRNAs are deregulated in both the

brain and peripheral blood, 30 of these could be

assigned a Braak Stage. From the 30 miRNAs, 10 were

found to be deregulated at Braak Stage III; these

miRNA are shown in Table 5.

Among these, 10 miRNAs that were deregulated both in

the brain Braak Stage III and in peripheral blood; 4 miRNAs,

namely mir-26b, mir-34a, mir-146a, and mir-125b, were

found to be differently deregulated in the two tissues, i.e.

upregulated in the brain but downregulated in blood.

However, mir-34a was reported to be upregulated in blood

mononuclear cells in a study (current reference [52] i.e.

Schipper et al).

Fig. 5 Schematic showing the number of miRNA deregulated in the different areas of the brain

Table 5 MiRNA deregulated at Braak Stage III in the brain and in the

peripheral blood of Alzheimer patients

miRNA Brain Blood

107 ↓ TC [66] ↓ WB [41, 61]

↓ P

26b ↕ TC [69] ↓ WB [41]

30e ↑ H [78] ↑ EXO [42, 47]

↑ S

34a ↑ H [76, 78] ↑ BMC [51, 52]

↓ TC ↓ P

↑ FC

485 ↓ FC [77] ↓ S [47]

200c ↑ H [78] ↑ P [90]

210 ↓ H [78] ↓ S [59]

146a ↑ H [78, 80] ↓ P [51, 57]

↑ FC ↓ S

34c ↑ H [80] ↑ S [43, 46]

↑ BMC

125b ↑ H [78] ↓ S [60]

TC, temporal cortex; H, hippocampus; FC, frontal cortex; WB, whole

blood; P, plasma; S, serum; EXO, exosomes; BMC, blood mononuclear

cells
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Network Analysis of Deregulated miRNA
at Braak Stage III in the Brain and Peripheral
Blood

The 10 miRNAs found to be deregulated at Braak Stage

III and in the blood (Table 5) were imputed into the

mirnet online software [91]. Seven of the 10 miRNAs,

namely mir-107, mir-26b, mir-30e, mir-34a, mir-210,

mir-146a, and mir-125b, resulted in Alzheimer’s disease

as at least one of their target diseases from the software

analysis. Interestingly, out of these 7 miRNAs that

targeted Alzheimer’s disease, 3 miRNAs, namely mir-

107, mir-30e, and mir-210, were found to be similarly

deregulated in the brain and peripheral blood according

to Table 5.

The mirnet online software was also employed to ana-

lyse the target genes for the 10 miRNAs listed in Table 5.

The resulting network diagram, shown in Fig. 6, resulted

in 5173 targets associated with the 10 miRNAs. A

reactome analysis was conducted using the mirnet soft-

ware to determine the roles of the target genes. Only sta-

tistically significant (p ≤ 0.05) groups were then extracted

from mirnet. The statistically significant groups with

more than 85 target genes are shown in Fig. 7.

Eight different groups are outlined in Fig. 7: immune

system (716 targets), cell cycle (469 targets), Rho

GTPases (212 targets), gene expression (295 genes), cel-

lular response to stress (130 targets), nerve growth fac-

tors (NGF) signalling (100 targets), Wnt signalling (90

targets), and cellular senescence (87 genes).

Chronic inflammation is well reported in the brain

during Alzheimer’s disease leading to oxidative stress.

Because of this, anti-inflammatory and anti-oxidant

agents are being investigated as a disease-modifying

therapy [92–94]. Both mir-125b and mir-146a have been

connected to neuroinflammation, and they are signifi-

cantly upregulated by NF-kB, a pro-inflammatory tran-

scription factor [95].

Abnormal expression of cell-cycle proteins have been

found in neurons; generally, neurons are post-mitotic

[96]. mir-26b has been implicated in cell-cycle regula-

tion through Rb1/E2F and p27/kip1 [69], mir-107 regu-

lates CDK6 [97], and mir-125b can downregulate the

cell-cycle inhibitor CDKN2A [98]. mir-34a has also

been found to be important in the regulation of the neu-

ronal cell cycle and apoptosis [99].

Rho and its effectors have been linked to amyloid-

beta production, as inhibition of Rho-associated kinase

was found to reduce cortical amyloid-beta 42 by 33% in

mice [100]. Amyloid beta has been found to target Rho

GTPases, which may result in changes in the actin cyto-

skeleton [101]. mir-34a can repress expression of RhoA

Fig. 6 Network diagram

extracted from mirnet [91]

miRNA’s ( ) targets ( )
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[102], which is reduced in the post-mortem Alzheimer

disease brain [103].

Altered gene expression in the brain between aged

control and Alzheimer patients has been documented

[104–106].

The increased oxidative stress in the brain during

Alzheimer’s disease induces a stress response in the cells,

for example the release of IL-6, which is altered in the brain

of Alzheimer patients [107]. Cell culture models using

neurones have found an upregulation in mir-210 and mir-

146a in response to increased ROS [108, 109].

There is a moderate increase in NGF in all brain regions

except for the nucleus basalis in Alzheimer’s disease [110].

NGF is a protein, which promotes the growth and survival of

cholinergic neurons, which degenerate in the nucleus basalis

during Alzheimer’s disease [111]. However, this is not an

early pathological event in Alzheimer’s disease as cholinergic

neurons in early Alzheimer’s disease (mild cognitive impair-

ment) show no significant difference to patients with no cog-

nitive impairment [112]. Decreased expression of mir-210 has

also been found in response to NGF treatment [113].

Various Wnt signalling components are altered in

Alzheimer’s disease, for example Dkk1 is increased in the

Alzheimer disease brain and is implicated in tau phosphory-

lation. Some studies have also shown Wnt signalling to be

neuroprotective [114, 115]. Mir-107 has been shown to regu-

late Dkk1; however, this was in osteosarcoma [116].

The presence of cellular stress can induce senescence. Cell

culture models have shown that amyloid beta can accelerate

cellular senescence [117] and there is an increased number of

senescent astrocytes in the brain [118]. mir-125b is a negative

regulator of p53 in humans [119]. p53 is implicated in cell-

cycle control, apoptosis, DNA, and cellular stress and contrib-

utes to cellular senescence [120].

Conclusion

The review outlines an alternative approach to finding early

miRNA biomarkers for Alzheimer’s disease. It utilises

miRNA deregulated in the blood during late Alzheimer’s dis-

ease and compares to miRNA found to be altered in the brain

during early Alzheimer’s disease. However, the literature is

riddled with inconsistency. This could stem from technical var-

iations or from limitations in comparability due to differences in

a patient’s stage of Alzheimer’s disease (Fig. 3). To improve

comparability, Alzheimer patients could be grouped into Braak

Stages, and direct comparisons could be made between their

pathology and miRNA profile in peripheral blood. Multi-centre

comparisons would also benefit from having a standardised

analytical protocol, storage time, and quantification method.

The review also highlights the possibility of using miRNA

deregulated in post-mortem brain samples to identify potential

biomarker targets, which is possible due to the higher stability

of the miRNAs compared to that of mRNA.
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