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Abstract: As non-renewable energy sources are in the verge of exhaustion, the entire world turns
towards renewable sources to fill its energy demand. In the near future, solar energy will be a
major contributor of renewable energy, but the integration of unreliable solar energy sources directly
into the grid makes the existing system complex. To reduce the complexity, a microgrid system
is a better solution. Solar energy forecasting models improve the reliability of the solar plant in
microgrid operations. Uncertainty in solar energy prediction is the challenge in generating reliable
energy. Employing, understanding, training, and evaluating several forecasting models with available
meteorological data will ensure the selection of an appropriate forecast model for any particular
location. New strategies and approaches emerge day by day to increase the model accuracy, with an
ultimate objective of minimizing uncertainty in forecasting. Conventional methods include a lot of
differential mathematical calculations. Large data availability at solar stations make use of various
Artificial Intelligence (AI) techniques for computing, forecasting, and predicting solar radiation
energy. The recent evolution of ensemble and hybrid models predicts solar radiation accurately
compared to all the models. This paper reviews various models in solar irradiance and power
estimation which are tabulated by classification types mentioned.

Keywords: solar energy; forecast; time series models; hybrid model; ensemble learning; AI techniques

1. Introduction

The abundant availability of different forms of renewable energy and the latest re-
newable energy-harvesting technological improvement look attractive for world energy
producers [1]. In addition, due to mass production of renewable energy components,
the per unit cost of renewable energy products has come down drastically. Government
policies encourage energy producers to generate more energy from renewable energy. India
has committed to the ‘Mission 500 GW plan that sets a target of expanding the scope of
renewable energy capacity to 500 GW by 2030. Solar and wind provide major contributions
of renewable energy out of which solar PV-based power generation is a widely preferred
option due to easy transportation, maintenance, and availability, etc. [2]. Photovoltaic and
renewable energy capacity additions in GWs are illustrated in Figures 1 and 2, respectively.

In solar power generation, the other option of solar thermal systems has been getting
attraction in recent years. A concentrated solar power system can have high power genera-
tion capacity and can store thermal energy easily [3]. The high initial cost limitation, i.e.,
the requirement of both solar and steam plants that limits the advantage of thermal energy
storage technologies in CSP even though they have better performance in integrating with
the grid, is a drawback for both types of systems. The photovoltaic system reduces cost in
the current market as it favors photovoltaic installations.
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Figure 1. Photovoltaic capacity additions in GW.

Figure 2. Renewable energy capacity additions in GW.

Many PV investors and producers are participating directly in electricity markets,
minimizing financial penalties for any imbalance between generation, production, and
supply. These problems are quite common in renewable energy source integration into the
grid, i.e., because of stand-alone and grid-connected systems [4]. At any particular time,
the generated electricity should be balanced with load usage. The plant should be designed
such that it should handle changes, disturbances in the load, and faults in the power system
grid, and it should provide continuous electricity to the customers. An accurate solar
radiation forecasting method is required to control the losses and voltage sags and improve
the reliable transmission of electricity. Accurate forecasts of the power output of PV plants
maintain the economical and secure operation of the power system. They are also used
for estimating the storage reserves, trading, scheduling power management, and reducing
electricity production costs.

The persistence model forecasts solar energy based on previous solar radiation. The
physical approach deals with data from weather stations and satellites that include nu-
merical weather prediction (NWP), or satellite images to obtain solar forecasts. Time
series-based forecasting models are statistical models that have been used for solar energy
estimation [5]. There are two basic time series models: the Autoregressive (AR) model and
the Moving Average (MA) model. The combination of these two yields several models
such as Autoregressive Moving Average (ARMA); the Autoregressive Integrated Moving
Average (ARIMA) model; the Autoregressive Fractionally Integrated Moving Average
(ARFIMA) model, i.e., a generalization of ARMA and ARIMA models; the the Seasonal
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Autoregressive Integrated Moving Average (SARIMA) model, a variation of ARIMA used
for seasonal time series forecasting; Vector Auto-Regressive (VAR); Vector Auto-Regressive
with exogenous inputs (VARX); Autoregressive Moving Average with exogenous inputs
(ARMAX); and the coupled autoregressive and dynamical system (CARDS). The models
that do not include a lot of mathematical calculations and take less time to predict the
forecasted output are Artificial Intelligence (AI) models, sometimes named soft computing
techniques. They include different methods such as machine learning (ML) algorithms,
deep learning (DL) models, genetic algorithms (GA), fuzzy logic (FL), probabilistic models,
Markov chains (MC), etc., to develop solar energy forecasters. These AI models are further
divided into machine learning models, deep learning models, probabilistic models, and
special artificial intelligence models in this paper.

The artificial neural network is a powerful forecasting tool for nonlinear analysis of
data, and this model uses data as inputs to obtain the corresponding solar energy forecasted
output. Machine learning algorithms require less data compared to deep learning and
less time to compute. The accuracy of ANN drops with larger time horizons. The persis-
tence models, time series-based models, and artificial intelligence models use statistical
calculations and are taken under a common classification as statistical models. Statistical
approaches use the stored data to train a model, compare the predicted values with the
actual values, and predict the output through minimization of error. The solar direct normal
irradiance, the diffuse irradiance, and the ground reflected irradiance sum up the total
incoming solar irradiance. The individual percentage of these irradiances depends on
factors such as climate, location, and other atmospheric conditions [6].

The main objective of this paper is to review the impact of different irradiance fore-
casting techniques for solar energy prediction. In this article, the survey is carried in the
following aspects:

• This review work intends to give a clear and detailed understanding of different
forecasting models used for solar radiation prediction and forecasting.

• It drafts a systematic understanding of the selection and application scopes of the
various forecasting models. The forecasting models are classified into eight categories.

• The tabular literature summaries were made, which will provide a synopsis of the
overall features of most of the significant research work developed in solar forecasting
models. It also elaborates on details of various feature reduction techniques.

• The physical models, time series models, machine learning models, deep learning
models, special artificial intelligence models, probabilistic models and hybrid and
ensemble models, including the basic reference model, i.e., the persistence model, are
the eight models explored in our discussion.

2. Classification of Forecasting Methods

There are no constant classification criteria for solar forecasting. Researchers group PV
power forecasting methods through different perspectives such as forecast scale, historical
data, time horizon, location, and some other weather data. Based on the application,
i.e., different aspects of grid operation, the major forecast classification is based on the
time horizon. Depending on the spatial area, forecasting can be further labeled into local
forecasts and regional forecasts. Considering the balance between supply and demand,
regional forecasts are more preferred for plant and grid control operations.

2.1. Time Horizon

The time horizons are defined as the time interval to the times solar energy has to be
forecast from the present time. The clustering of time horizons [7] decides the applications
where solar energy has to be used. The time duration decides the model that best suits the
accurate PV power forecast. Before the selection of the model, a proper time horizon should
be selected to obtain a forecast with acceptable accuracy. Solar forecasting is classified
based on time horizon as immediate forecasting in the period of a few seconds to 1 h ahead.
Short-term power forecasting are the time intervals carried out from 1 h to 48 h ahead.
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It helps in continuous monitoring of solar plants, variable load control in solar energy
markets, and in achieving unit commitment. Medium-term power forecasting ranges the
time interval of 2 days to 1 week ahead and is preferred for maintenance and scheduling
of PV power plants and its operations [8]. Long-term power forecasting takes the time
interval from 1 week to 1 or more years and is used to plan solar power plants.

2.2. Spatial Resolution

Spatial Resolution is the measurement of the smallest object in the ground area drawn
for the sensor or sensor’s instantaneous field of view. It is the linear dimension of the
earth represented by each pixel. Many aspects such as temperature, humidity, moisture,
etc., influence the area to be selected. Depending on the spatial region, the model used to
predict solar power is chosen. The estimation of solar energy can be performed either for a
single site or for a region [9]. Stand-alone or isolated systems distribute the power from the
source to that particular site. They never transfer power to the grid or take from it, whereas
in grid-connected systems, the power produced during peak periods is stored in a battery,
and the excess power is sent to the grid. In off-peak times, sufficient power from the grid is
taken to the site to meet its load

2.3. Forecast Theme

Theme of the forecast is important, whether the researchers are predicting solar
irradiance or PV plant power directly [9]. Predicting solar PV power directly predicts the
PV power output, and the former model estimates the output indirectly based on a plant’s
performance.

2.4. Weather Factors

Before forecasting solar power, a researcher should look into two major points [10].

1. Effect of primary weather elements determined from various PV analytical models
and their contributions to the solar power forecast.

2. Forecast of solar power ramping events caused by unexpected weather changes.

The classification survey of solar irradiance and power forecasting models is listed in
Table 1.

Table 1. Classification survey of solar irradiance and power forecasting models.

Reference Title of the Paper Year Summary

S. Sreekumar et al. [11]
Solar power prediction models:

classification based on time horizon,
input, output and application

2018 Presents the classification of solar power forecast
models majorly by type of inputs

Priya Gupta et al. [12] PV power forecasting based on
data-driven models: a review 2021

Presents the classification of solar power forecast
models based on theme i.e., direct forecasting

and indirect forecasting

J. Antonanzas et al. [13] Review of photovoltaic power forecasting 2016
Presents the classification of solar power forecast
models based on spatial region with single and

regional solar power forecasts.

Muhammad Naveed
Akhter et al. [7]

Review on forecasting of photovoltaic
power generation based on machine

learning and meta-heuristic techniques.
2019 Presents the classification of solar power forecast

models based on time horizon of forecast.

3. Survey on Solar Irradiance and Power Forecasting Models
3.1. Survey on Persistence Models

Rui Huang et al. [14] used a system advisor model (SAM) to analyze previously
generated solar data from solar anywhere. They performed their entire work in simulations
in the system identification toolbox, Matlab platform. The authors concluded that the
persistence model accurately predicts for very short-term solar power forecasting.
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Prado-Rujas [15] et al. carried out an analysis between simple persistence and smart
persistence models to predict solar irradiance. They verified these methods for 1, 11, 31,
and 61 min. The simple persistence dominates for 1 and 11 min, whereas for 31 and 61 min,
smart persistence works the best.

3.2. Survey on Physical Models

M.J. Mayer et al. [16] compared different physical models based on NWP data such as
9 separation, 10 transposition, 3 reflection, 5 cell temperature, 4 PV performance, 2 shading,
and 3 inverter models on 16 PV plants to predict solar irradiance for intraday and day-
ahead time horizons. The PHYSICAL reflection calculation, EVANS PV, beam shading
calculation, and CONSTANT inverter efficiency models perform well with the best RMSE
and MAE values.

Ozge et al. [17] compared various physical models such as 11 daily global solar radia-
tion decomposition models and 7 different cell temperature models. The results prove that
the CPRG model and the Skoplaki models perform better than other models respectively.

3.3. Survey on Time Series Models

Bismark Singh et al. [18] proposed an ARMA model with data taken from the Aus-
tralian site. In 14 h of daily data, the Augmented Dickey–Fuller test (ADF) and the Ljung–
Box test were used for each hour to test the stationarity and autocorrelation in the time
series. The ARMA model was compared with the smart-persistence model to estimate solar
radiance. The proposed ARMA model performs better than a smart-persistence model.

Rui Huang et al. [14] compared both the persistence and the ARMA model. For
short- and medium-term solar power estimation in the microgrid operation, the authors
dealt with reducing the error and suggested using the ARMA model rather than the
persistence model.

Mbaye et al. [19] used the Akaike information to determine the p and q value of AR
and MA models. The model uses the Box–Pierce test to analyze the error in the model, and
the order (29, 0) fits the data and is reliable to the model performance with the acceptable
white noise of 5%. The model was validated with metrics such as the RMSE = 0.629, the
correlation coefficient = 0.963, the MAE = 0.528, and the MBE = 0.012.

Mohamad As’ad et al. [20] suggested ARIMA as the best model to find the solar power
forecast up to seven days. One-year data from New South Wales, Australia, from June
2010 to May 2011 was considered for constructing a model. The results proved that the six
months data is used to predict solar power for one day, and three months data is used for
two or more than two days in a week.

Ilhami Colak et al. [21] proposed persistence, ARMA, and ARIMA models for one pe-
riod, two periods, and three periods ahead for solar radiation forecast. The Log-Likelihood
Function (LLF) tells whether the model fits the data or not. The accuracy of the ARMA (1, 2)
and ARIMA (2, 2, 2) models was obtained by the metrics MAE and MAPE. ARIMA (2, 2, 2)
gives the best results compared to the ARMA and persistence models.

Yanting Li et al. [22] evaluated five time series models such as ARMAX, ARIMA, single
moving average, double exponential smoothing, and Holte Winter’s additive models for
the one-day ahead forecasting of the mean daily output power of a 2.1 kW grid-connected
PV system. The exogenous inputs such as daily average temperature, precipitation amount,
insulation duration, and humidity were included in the ARMAX model for estimating
solar power. These models were compared with the metrics RMSE, MAD, and MAPE.
The results show the ARMAX model as the best with RMSE, MAD, and MAPE of 125.84,
98.61, and 82.69%, respectively, compared to the ARIMA (1, 1, 1) model. The authors also
concluded the ARMAX model performs better than the neural network model for one-day
head forecasting.
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3.4. Survey on Machine Learning Models

Guo et al. [23] used the K-nearest neighbor (KNN) algorithm and two robust fusion
algorithms. The authors used the KNN algorithm for the classification in the data and a
mean square positioning error of less than 5 cm was achieved as result.

Leva et al. [24] used the ANN algorithm to forecast solar radiation 24 h ahead on three
different days such as a sunny day, a partially cloudy day, and a cloudy day with one-year
data taken from Italy.

Muhammad Waseem et al. [25] compared extra trees (ET) and random forest (RF)
models with other popular machine learning algorithms for a PV system installed in Cardiff,
UK. The authors proved these models perform better than support vector regression (SVR).
The results show that the training and prediction time is less for the extra trees model
compared to the random forest model.

Feng et al. [26] used a support vector machine model to recognize patterns in the
first four hours of data to categorize a day in the forecasting stage for short-term solar
power forecasting.

Hashemi et al. [27] proposed a paper to calculate snow loss on a PV farm in Ontario,
Canada. The snow on the PV panel’s surface reduces solar energy generation. The authors
compared five machine learning algorithms such as gradient boosted tree (GBT), random
forest, regression tree (RT), recurrent artificial neural networks (RNN), and support vector
regression. The results prove that the gradient boosted tree performed best.

C. Pan, J. Tan [28] proposed a paper on the prediction of day-ahead hourly solar
power generation and divided the model into two parts: cluster analysis and an ensemble
model (EM). To cluster the data, the authors compared spectral clustering (SC), hierarchical
clustering (HC), and K-means clustering (KMC) models and the best method taken to
cluster the data. Silhouette and the Calinski–Harabasz index also provided help to set the
number of clusters to three. The authors concluded that spectral clustering and hierarchical
clustering perform better than K-means clustering.

Jiaying Zhang, Yingfan Zhang [29] proposed a paper to predict solar power with data
every 15 min from a China Electric Power Station. The density-based spatial clustering of
applications with noise (DBSCAN) algorithm was used to cluster data, and thereby the
bidirectional long short-term memory (Bi-LSTM) and conventional neural networks (CNN)-
gate recurrent unit (GRU) are used on clustered data to forecast solar power, respectively.
The authors concluded using the DBSCAN algorithm results in a prediction with a more
accurate solution.

Souhaila Chahboun and Mohamed Maarouf [30] proposed a machine learning model
to predict solar power. The authors removed unwanted features from the data and consid-
ered only six important features that vary 91% of the total variance. The machine learning
methods applied to the output data of principal component analysis (PCA) and Bayesian
regularized neural networks provided the best result.

Jiapeng Xiu et al. [31] combined principal components analysis and neural networks
to forecast PV power. The authors analyzed past data, and through PCA, they transformed
30 inputs into 5 major inputs. Finally, they applied a neural network to estimate solar
power to obtain an accurate prediction.

Shojaeighadikolaei et al. [32] proposed a study on the influence of day-ahead weather
prediction on weather-aware distributed energy management in microgrids. Reinforce-
ment learning (RL) is employed to improve the model’s accuracy. The outcomes show
that the suggested distributed energy management algorithm can effectively deal with
generation uncertainty.

3.5. Survey on Deep Learning Models

C.-J. Huang, P.-H. Kuo [33] presented a deep convolutional neural network model
(CNN) for short-term PV power forecasting. The authors used a real-time solar power
dataset from 2015. The model takes temperature, solar radiation, and PV system output
power for the previous five days, and the result is an estimate of PV power for the next 24 h.
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The authors compare the proposed model with SVM, RF, decision tree (DT), multi-layer
perceptron (MLP), and long short-term memory (LSTM) by the MAE and RMSE metrics.
The results prove that the proposed model outperforms the other approaches.

Ahmad Alzahrani et al. [34] proposed a deep learning neural network model to forecast
short-term solar irradiation. The authors took the data from a solar farm in Canada as input
to the model. The training data input samples included four different weather conditions:
few clouds, scattered clouds, overcast skies, and clear skies. This study compared the
forward neural network (FNN), SVM, and LSTM models. The LSTM approach had the
lowest RMSE and produced good outcomes. Among the other approaches, FNN had the
worst performance. The performance of the support vector machine was superior to that of
the FNN. The deep learning LSTM, on the other hand, outperformed the other approaches.

LIU et al. I [35] proposed a model using the backpropagation neural network (BPNN)
to estimate day-ahead PV power in northwestern China. The proposed model included
AI data as an extra input variable, leading to a significant reduction in average prediction
error on cloudy days while maintaining similar prediction accuracy on sunny days.

WEN et al. [36] proposed a radial basis neural network (RBNN) model treated as a
simplified MLP with only one hidden layer. The main differences between MLP and (radial
basis function) RBF neural networks are that the linkages between the input and hidden
layers in RBNN models are not weighted, and the activation functions on the nodes of the
hidden layer are totally symmetrical. The Gaussian, multiquadric, inverse quadric, and
polyharmonic spline functions are popular algorithms in RBNN networks. The parameters
of RBNN are synaptic weights in the output layer, centers, and spread of the activation
functions in the hidden layer. Although it is preferred to have the RBNN centers in each
point in the input space, clustering chooses only a fraction of all possible points.

H.J. Lu et al. [37] used a radial basis function neural network with a decoupling
method to estimate day-ahead PV power. The findings of the proposed paper compared the
ARIMA, the backpropagation neural network (BPNN), and the radial basis function neural
network (RBFNN). Finally, they concluded that the proposed model accurately predicts PV
power compared to other models.

3.6. Survey on Special Artificial Intelligence Models

Ratshilengo et al. [38] used a genetic algorithm, a recurrent neural network, and K-
nearest neighbor models to predict high-frequency solar irradiance from January 2020 to
October 2020 data in South Africa. The genetic algorithm model predicted solar irradiance
to the best mark with an optimum RMSE of 35.50 kW/m2 and MAE of 26.74%.

3.7. Survey on Hybrid and Ensemble Models

Ospina et al. [39] developed a unique hybrid wavelet-based LSTM–deep neural net-
work (DNN) forecasting model for predicting the PV power available in a PV system during
a medium to short forecasting period. The results prove the suggested model forecasts
the nonlinear response of solar power generation in a PV system and beat other examined
models in prediction accuracy.

G Li et al. [40] used the Limberg solar power dataset to develop a hybrid deep learning
model that uses artificial intelligence algorithms to predict solar power for short-term
horizons. In this case, the model uses CNN to extract essential PV power and weather
change features. By using past PV power data on the same date, LSTM generates a forecast
for the subsequent time. The authors compared persistence, BPNN, and RBFNN with
the hybrid algorithm. The simulation results show that the proposed method has low
estimation error.

Seyed Mohammad et al. [41] proposed a hybrid solar irradiance forecasting model with
a reinforcement approach. The authors used two different solar stations near Phoenix and
Los Angeles in the United States to develop the model. The deep Q learning reinforcement
learning technique decidespd the proper subsets of the combined deep optimized CNN
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models. The proposed deep RL-ensemble approach excelled at existing powerful standard
algorithms in diverse time-step horizons.

Bendali et al. [42] proposed a novel hybrid method that uses a genetic algorithm
to optimize the deep neural network for solar irradiance forecasting. The model uses
2016 to 2019 time series data of solar irradiance recorded from a Moroccan city. The
performance of the developed models was evaluated rigorously for different seasons,
including summer, autumn, winter, and spring. The GA-added deep learning models
improved their performance significantly. The LSTM-GA and GRU-GA performed well
compared to RNN-GA.

Tatiane et al. [43] used data of Algeciras, Spain and Petrolina, Brazil sites to develop
an ensemble model of MLP, RBF, SOM, and CFBP. The 4-day data was chosen randomly
from these sites to analyze the ensemble and individual models. The ensemble model
outperforms the remaining models by the metrics RMSE of 24.086 W/m2 and R of 0.996 in
Spain and RMSE of 35.467 W/m2 and R2 of 0.988 in Brazil.

T. Ahmad et al. [44] proposed a K-nearest neighbor algorithm generalized linear re-
gression (LR) model and an ensemble model for forecasting solar power. The mean absolute
errors for the k-NN model in winter, spring, summer, and autumn are 1.62, 1.42, 1.19, and
1.29. This model predicts the best compared to the one-step-secant backpropagation neural
network, decision tree, and BFGS quasi-Newton backpropagation neural network models.

Jing Bi et al. [45] proposed an integrated forecasting system based on a new combi-
nation of the Savitzky–Golay filter, wavelet decomposition (SGW), and stochastic config-
uration networks (SCNs). In addition, the research shows the SG filter outperforms the
original, MA, and MM filter models with better prediction accuracy.

4. Statistical Metrics for Solar Power Forecasting

4.1. Pearson’s Correlation Coefficient (R2)

Pearson’s correlation coefficient [46] gives the similarity of two sets, i.e., test and
training set, through data visualization or some value-based percentage. It is indicated by
‘ρ’. The larger the ‘ρ’ is, the better the relation between the particular sets. In mathematics,
it is represented as

ρ =
cov(p, q)

σpσq
(1)

4.2. Root Mean Squared Error (RMSE)

RMSE compares two datasets with various scales. It gives error as output that went
through the forecasting period verified with the train and test data split. It is given as [47]

RMSE =

√√√√ 1
N

N

∑
k=0

(pk − qk)
2 (2)

where ‘qk’ is the actual solar power generation at the kth time step; ‘pk’ is the corresponding
solar power generation estimated by a forecasting model; and N is the number of points
estimated in the forecasting period.

RMSE is a function of three variables such as magnitude average error, number of
error samples, and error distribution, and it gives some inappropriate values. Since it is
taken root, it gives a small value, so large errors have some effect on the final result.

4.3. Normalized Root Mean Squared Error (NRMSE)

The normalized root mean square error (NRMSE) [9] compares the RMSE among the
complete range of the observed variables. NRMSE is the division of the RMSE to the total
variables observed. The mathematical expression is

NRMSE =
RMSE

Pobs,max − Pobs,min
(3)
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where ‘Pobs,max’ and ‘Pobs,min’ are the maximum and minimum variables. The difference
between maximum and minimum gives a number of variables that are observed.

4.4. Maximum Absolute Error (MaxAE)

Absolute error is the deviation between the original and predicted values. The maxi-
mum absolute error gives the maximum deviation of it [46].

MaxAE = Max|pk − qk| (4)

The MaxAE expresses the local difference of forecast errors. It is mainly used in
short-term PV power forecasting.

4.5. Mean Absolute Error (MAE)

MAE gives the value of the average of absolute errors taken from two sets (predicted
and original sets of data), i.e., by comparing every variable in a set and taking its deviation
and averaging the deviations. This metric is mainly used to generate an error in linear
regression analysis in machine learning algorithms [48].

MAE =
1
N

N

∑
k=1
|pk − qk| (5)

4.6. Mean Absolute Percentage Error (MAPE)

It is the division of MAE by the demand or capacity. It is also indicated as an average
of absolute deviations of percentage errors [9].

MAPE =
1
N

N

∑
k=1

|pk − qk|
Capacity

(6)

4.7. Mean Bias Error (MBE)

It is similar to mean absolute error. It gives the value of the average of many estima-
tions taken from deviations for each value in the two sets [48].

MBE =
1
N

N

∑
k=1
|pk − qk| (7)

4.8. Kolmogorov–Smirnov Test Integral (KSI)

It helps in calculating the model’s capacity and propagating statistical observed distri-
butions [46].

KSI =
∫ xmax

xmin

Dndx (8)

4.9. Confusion Matrix (CM)

It is a table drawn between actual values and estimated values with positive and
negative rates. In the table, the positive rate is denoted as one, and the negative rate
with zero. The positive rates are given by true positives and true negatives, while the
negative rates are false positives and false negatives. False-positive (FP) is a Type 1 error
and false-negative (FN) is a Type 2 error. The model, should try to minimize Type 1 and
Type 2 errors [49]. The confusion matrix in given in Table 2.
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Table 2. Confusion matrix.

Actual Values

T/F 1 0

Predicted values
1 TP FP

0 FN TN

4.10. Accuracy

Accuracy is one of the measures of natural performance. It is defined as the ratio of
the observations that are estimated correctly to overall observations. If the dataset is more
balanced, then the more the accuracy metric performs well [49].

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

4.11. Precision

Precision is the ratio of positive observations that are assessed correctly of the total
number of positive observations [49].

Precision =
TP

TP + FP
(10)

4.12. Recall

It is defined as the number of positive predicted values present in the total actual
positive values. It is also referred to as the true positive rate, and it is well known as
sensitivity. For achieving good performance through recall in the model, the FN value
should be low or reduced as much as possible [49].

Recall =
TP

TP + FN
(11)

4.13. Forecast Score

It is defined as the ratio of prediction efficiency of the proposed model forecast to the
prediction efficiency of the persistence forecast as given below [50].

4.13.1. Fβ Score

In some models, false positive and false negative are both important; then both
precision and recall should be considered, or an F1 score or Fβ is used.

If β = 1, then it becomes F1 score, and if β = 0.5, then it is an F = 0.5 score. We can also
select the β value as 0.5, 1, 2. . . .

Fβ =
(1 + β2)(Precision×Recall)

β2 × Precision + Recall
(12)

4.13.2. F1 Score

F1 score is the harmonic mean of precision and recall. It takes recall and precision both
into account and finally gives the result.

F1Score =
2× Precision× Recall

Precision + Recall
(13)

If FP and FN are both important, then select β = 1. Suppose the importance of FP is
higher than FN; then select β = 0.5, i.e., decrease the β value below 1. In the same manner,
increase β value for the vice versa model.
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5. Solar Irradiance and Power Forecasting Methodologies
5.1. Persistence Model

The persistence forecast model is used as the basic referral forecast method to compare
and evaluate the performance of other advanced forecasting measures. The persistence
method enables future data based on the past data with clear sky indices as a trivial
model [51]. This model predicts the best with a clear sky or no clouds time interval and
there obtains the change of error with solar irradiance. The accuracy of the persistence
model is disturbed by the change of cloudiness. The summary of the physical models along
with time-horizon-based results are shown in Table 3. The classification of the clear sky
forecast models are shown in Figure 3.

Table 3. Summary of Basic models.

Reference Year Model Location Forecast
Horizon Data Conclusion Analysis

Yang
et al. [52] 2012 Persistence Orlando and

Miami, USA 1 h ahead
Orlando 2005

October, and Miami
2004 December

RMSE value of
156.81 W/m2 in Miami

160.61 W/m2 in
Orlando

Features can be further
added from specific to

tropical climates to
improve forecasting.

Voyant
et al. [53] 2012 Persistence Mediterranean,

France 1 h ahead 6 years data Average nRMSE is
26.2%

Complex and costly to
implement in real time
Gid connected systems

Marquez
et al. [54] 2013 Persistence Davis and

Merced, USA

30, 60, 90,
and

120 min
ahead

1 year, (1 January
2011 to 6 June 2011
and 23 November

2011 to
31 January 2012)

RMSE value of 61.24 to
107.47 W/m2

Low importance to the
ANN architecture

optimization analysis
and to lag feature
selection process.

Figure 3. Classification of clear sky forecast models [55].
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5.1.1. Persistence Model 1

This model predicts the power y for all future times is the power y observed at the
time of the forecast.

Kt+1 = Kt + KE (14)

where KE is the error due to irradiance.
Persistence model 1 is a benchmark more suited to short-term forecasts.

5.1.2. Persistence Model 2

This model states the power forecast for a given time is the power observed the day
before at the same time.

Kt+1 = Kt + KE − 24 h (15)

Persistence 2 model is a benchmark model for day-ahead forecasts.
The error increases with fast changes in solar irradiance. Estimation of the measured

irradiance and the clear sky irradiance clusters the various persistence models. Since it
forecasts through clear sky data, this model takes some time to display the energy that
is predicted.

5.1.3. Smart Persistence Model

This model predicts based on previous values, and it includes some modifications to
the persistence model. This model adds the calculated change of radiation based on clear
sky irradiance. In this case, the data has to be standardized.

y(t + h) = y(t) + |y(t)|[ Ics(t + h)
Ics

− 1] (16)

5.2. Physical Model

Satellite imagery (SM) models are preferred to forecast the high spatial resolution
cloudiness [56]. These models depend on locating the cloud’s position. The cloud cover
and optical depth decide the satellite model performance. The classification of the satellite-
based forecast models are shown in Figure 4. These models are used to forecast radiance up
to 6 h ahead. The physical satellite models depend on atmospheric component interaction
modeled by a radiative transfer model (RTM), and statistical satellite models depend on the
regression between the pyrometer-based solar irradiance at ground level and simultaneous
digital counts provided by satellite-based instruments [57].

Figure 4. Classification of satellite-based forecasting models [8].
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Sky image (SI) models [58,59] are different from NWP and satellite models and are
helpful in intra-hour solar forecasting. The physical models concerning sky images include
cloud motion, cloud detection, and cloud classification. The solar radiance reaches the
Earth’s surface through the atmosphere. Surface irradiance is highly sensitive to the clouds
rather than air matter, vapor, and aerosols. The sky images give the cloud features such
as brightness, size, shape, spectrum, and texture. The texture is a regional feature that
describes the spatial distribution of each pixel in an image. From another perspective, the
sky images alone perform the regional forecasts on different forecast horizons through a
single camera. The sky imager takes the sky image. There are mainly two components
in a sky imager camera and hemispherical mirror. A sunshade is required to shelter the
camera from the direct solar radiance. It is on top of the hemispherical mirror with the
support of the frame. Along with the sky imager, irradiance meters are in a PV power plant
to picture the sky image and measure the irradiance simultaneously. Some parts of the sky
image reduce the forecast’s accuracy by creating unwanted noise; so these parts should
be separated and terminated. The forecast models based on the NWP physical system are
clearly classified in Figure 5.

Figure 5. Classification of forecasting models based on NWP physical system [55].

In numerical weather prediction models [60], numerical modeling of the atmosphere
serves as the basis. The NWP model is a mixture of calculus and important physical
relations of weather to vary the climatic conditions. In the NWP model, the physical
laws predict the cloud coverage and solar radiation depending on the basis. It helps in
forecasting the output up to 15 days in advance with more output time of prediction. The
adequate extraction of features from the raw NWP data requires time in this data mining
phase in addition to the choice of the statistical learning algorithm. The area and time
concerns limit the detection of all features of cloud images in NWP models and cannot
predict solar radiance for short time horizons. The metrical summary of various physical
models based on satellite, sky image, and NWP data are shown in Table 4.

Table 4. Summary of Physical models.

Reference Year Model Location Forecast
horizon Data Conclusion Analysis

Yeom
et al. [61] 2019 Kawamura Korea 1 h ahead April 2011 to

December 2017
RMSE of

91.79 W/m2

Misclassified results
affect the forecast

performance of solar
radiation

Garniwa
et al. [62] 2021 Beyer Seoul, Korea 1 h ahead 2018 year data RMSE of

118.95 W/m2
LSTM performs well than

physical model

Garniwa
et al. [62] 2021 Perez Seoul, Korea 1 h ahead 2018 year data RMSE of

89.67 W/m2
LSTM performs well than

physical model

Pereira
et al. [63] 2019 NWP

Evora and
Sines,

Portugal
1 h ahead 2015 year data

RMSE =
57.8–164.4 W/m2

based on sky
condition

Increase in data can
further improve forecast

performance.
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Table 4. Cont.

Reference Year Model Location Forecast
horizon Data Conclusion Analysis

Mathiesen
et al. [64] 2013 NWP USA 1 h to 1 day

ahead
Hourly GHI from the
SURFRAD network

rMBE 17.8% and
rMAE 25.4%

Based on the cloud
parameters, resolution

and ramp rate, the result
can be further improved

Alfredo
et al. [65] 2012 NWP Spain 6 to 39 h

ahead
362 days (2 June 2007

to 27 May 2008)

RMSE error of
11.79% of rated
power output

Addition of new input
parameters in the third
module may increase
further performance

5.3. Time-Series-Based Forecast Models

The auto-regressive moving average model is a well-known practical tool to estimate
the future value of the stationary time series model. The auto regressive component predicts
the future based on the previous data. The auto-correlation factor is the metric used in the
AR method. The expression for the AR model (order m) is

Xt = c +
m

∑
k=1

ϕkXt−k + εt (17)

The moving average [66] component predicts the future based on the error or residual
in the past data. The partial auto-correlation factor is the metric used in the MA method.
The expression for the MA (order n) model is

Xt = µ +
n

∑
k=1

θkεt−k + εt (18)

The auto-regressive moving average (ARMA) is the sum of auto-regressive and mov-
ing average components. It estimates the future value based on the past data and residual
errors. The autoregressive moving average model can be expressed as

Xt = c +
m

∑
k=1

ϕkXt−k +
n

∑
k=1

θkεt−k + εt (19)

The drawback of the ARMA model is it does not perform for non-stationary data.
Below is an auto-regressive integrated moving average (ARIMA) model [51] to overcome
that limitation. ARIMA combines three parts: an AR part, an MA part, and an integrated
part (number of lagged differences (d) to reach stationary data from non-stationary data).

Yt = (1− L)dXt (20)

(1−
m

∑
k=1

ϕkLk)(1− L)dXt = (1 +
n

∑
k=1

θkLk)εt (21)

The ARIMA model represents the form ARIMA (m, d, n). The drawback of the ARIMA
model is it cannot take informative variables such as temperature, humidity, precipitation,
etc. Including these variables leads to better accuracy. The auto-regressive moving average
with exogenous inputs (ARMAX) model can take exogenous inputs into account to estimate
solar output. A Hausman’s test determines the ‘p’ number of external inputs (order p)
to the model. The ARMAX model combines m AR terms, n MA terms, and p exogenous
inputs terms.

Xt = c +
m

∑
k=1

ϕkXt−k +
n

∑
k=1

θkεt−k + εt +
p

∑
k=1

δkdt−k (22)
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where ‘Xt’ is the estimated solar irradiance at a time (t), ‘Xt−k’ is the past solar irradiance
data up to ‘k’ times, ‘ϕk’is AR models coefficient, ‘θk’ is MA model coefficient, ‘m’ is AR
model order, L indicates the lag operator, d is the number of non-seasonal differences, ‘n’ is
MA model order, ‘εt’ is the white noise. Mathematically, ARIMA (m, d, n) can be converted
to the ARMA (m, n) model when d = 0, the d order made the ARIMA a popular tool in time
series forecasting to estimate solar power. Mathematically, ARMA (m, n) can be converted
to the AR (m) model when n = 0 and to the MA (n) model when m = 0, δk is the parameter
of the exogenous input. The computational summary of the time series models is shown in
Table 5. The operational analysis of ARMA and ARIMA models with stationary dataset is
described in Figure 6 by flowchart representation.

Table 5. Summary of time series models.

Reference Year Model Location Forecast
Horizon Data Conclusion Analysis

Moreno-Munoz
et al. [67] 2008 Auto

Regressive south Spain 5 min ahead 4 years data,
(1994–1997). Best Fit : 65%

The use of AI models
enhance better prediction

performance.

Y. Li et al. [68] 2014 Moving
average

Coloane
island,
Macau

1 day ahead 1 January 2011 to
30 June 2012.

RMSE value of
196.22 W/m2

Analysis of cloud further
enhance the performance

Bacher et al. [69] 2009 ARX Small village
in Denmark

Up to 36 h
ahead 1 year data

RMSE
improvement of

35% in ARX
model over naïve
predictor model.

Further forecast can be
improved with other
Time series and AI

models Analysis of cloud
further enhance the

performance

Y. Li et al. [68] 2014 ARIMA
Coloane
island of
Macau

1 day ahead 1 January 2011 to
30 June 2012.

RMSE value of
171.73 W/m2

Analysis of cloud further
enhance the performance

Yang et al. [52] 2012 ARIMA Orlando and
Miami, USA 1 h ahead

Orlando 2005
October, and
Miami 2004
December

RMSE value of
29.73 W/m2in

Miami and
32.80 W/m2 in

Orlando

Features can be further
added from specific to

tropical climates to
improve forecasting.

Y. Li et al. [68] 2014 ARMAX
Coloane
island of
Macau

1 day ahead 1 January 2011 to
30 June 2012.

RMSE value of
125.84 W/m2

Analysis of cloud further
enhance the performance

Ricardo et al. [70] 2015 VAR Evora,
Portugal

Six hours
ahead

1 February 2011
and 6 March 2013

Improvement of
8% to 1.5% over

AR model

The algorithms like GA,
PCA for future selection

can achieve better
performance.

Ricardo et al. [70] 2015 VARX Evora,
Portugal

Six hours
ahead

1 February 2011
and 6 March 2013

Improvement of
10% to 5.5% over

AR model.

Addition of Weather
station and NWP data

enhance prediction
accuracy.

Ines et al. [71] 2017 NARX North of
Barcelona Any time 1 year 2010 RMSE value of

18.64%

The results should be
compared with high solar

radiation fluctuations.

Piazza et al. [72] 2016 NARX Palemo,
Silicy, Italy 1 h ahead 2002 to 2008 nRMSE value of

6.1%

The exogeneous variable
has to be changed to new

parameter from
temperature to increase

accuracy.

Voyant et al. [73] 2014 ARMA Mediterranean,
France 24 h ahead 10 years data

nRMSE ranges
from 28.6 to

32.8%

The use of exogenous
input increases the

performance.
Additionally, the deep
and machine learning

models can be applied to
improve the result.
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Figure 6. Flow chart for ARMA and ARIMA models.

Artificial Intelligence (AI) is an interesting method to create machines that perform
functions with intelligent minds. AI has the capability of human thinking, activities such
as decision making, computing, and learning and can perform work with high speed and
efficiency. Most performance of the AI depends on the training data. The data processing
stage is an important part in developing AI models. An analysis of historical data is
required to forecast solar power. The inverter failure and the offset in the solar radiation
during the off-peak hours mislead the data of PV power radiance. In peak hours, there
is missing data because of failure in sensors such as temperature, humidity, etc. The
removal of the missing data in these time intervals is mandatory. The entire data should
be numerical to validate the input–output relationship, and this also reduces the time
of training [74]. Factors such as air mass, clouds, and other environmental variables
impact the solar radiation flow from the sun to the Earth’s surface depending on the
frequency of sunshine. Wavelet transformation helps the components of solar irradiance
corresponding to various time–frequency domains [75]. It is fundamental signal processing
that reduces noise in nonstationary series analysis through the wavelet decomposition and
wavelet reconstruction process [76]. The Savitzky–Golay (S-G) filter, known as least square
polynomial smoothing, is a data smoothing method. It can remove the noisy components
while retaining the original signal’s peak and width [77].

5.4. Machine Learning Models

Machine learning [78,79] is a branch of artificial intelligence (AI) and computer science
which focuses on the use of data and algorithms to imitate the way that humans learn,
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gradually improving its accuracy. Figures 7–9 show the approach to perform the machine
learning models with flow charts. Figures 10–13 discuss the pros and cons of machine
learning models.

Figure 7. Flow chart for supervised machine learning models.

Figure 8. Flow chart for clustering based unsupervised models.
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Figure 9. Flow chart for feature reduction based unsupervised models.

Figure 10. Pros. (Light Green) and Convs. (Light Red) of Supervised learning models [80].
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Figure 11. Pros. (Light Green) and Convs. (Light Red) of Unsupervised learning models [81].

Figure 12. Pros. (Light Green) and Convs. (Light Red) of Reinforcement learning models [78,82].

Figure 13. Pros. (Light Green) and Convs. (Light Red) of Semi-supervised learning models [82].
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5.4.1. Supervised Learning

Supervised learning is a popular machine learning algorithm used for a dataset that
is already labeled. The algorithm is trained through the labeled data to map an input–
output relationship. Output can be either a numerical value or classification class. The
training data decide the algorithm based on the output that either is a classification or a
numerical value.

M =
N

∑
i=1

XiYi (23)

where ‘N’ is the number of training samples, ‘Xi’ is the multi-dimensional input vector,
and ‘Yi’ is the output response. The required work regression or classification decides the
algorithm to predict the output. Supervised learning algorithms such as linear regression,
multi-linear regression (MLR), logistic regression, K-nearest neighbor (KNN), support
vector machine (SVM), decision tree (DT), random forest (RF), extra trees, ensemble learning
machine (ELM), gradient boosting (GB), extreme gradient boosting (EGB), and adaptive
gradient boosting (AGB) are present. This paper presents some of the popularly used
algorithms. An artificial neural network (ANN) combines many processing elements
arranged in a sequence of randomly interconnected layers to form a data processing system
taken from the methodology involved in the brain’s cerebral cortex. The ANN learns
to adjust weights to obtain the accurate output and recalls the weighted adjustment to
provide the necessary information [83]. A linear regression model [84] is a frequently used
supervised algorithm to establish a linear relationship between two variables. This model
predicts output for both regression and classification. When the prediction depends on
only one predictor, it is simple regression. The multi-linear regression model uses two or
more variables to predict the desired value.

Y = mX + C (24)

where ‘Y’ is the output variable, and it depends on the input variable ‘X’ with slope ‘m’. The
linear regression model is unable to predict nonlinear data. In such cases, the polynomial
regression (PR) model is suggested to estimate the nonlinear data. This model includes
a linear regression model and some other independent variables interaction to predict
the dependent variable output even from the nonlinearity in the data. The polynomial
regression is given by

Y = θ0 + θ1X + θ2X2 + . . . + θnXn (25)

where ‘Y’ is the output variable, and it depends on the input variable ‘X’ with slope
or weights θ1, θ2,+ . . . + θn, θ0 is the bias or constant term, and ‘n’ is the degree of the
polynomial. In addition, ‘n’ determines the suitability for the nonlinear model. The logistic
regression (LoR) model is a statistical method based on probability theory mainly used to
classify the data. The sigmoid function estimates the probability. The activation function is
given by

f (x) =
1

1 + e−x (26)

The input–output relationship is linear to the small data. The high-dimensional data
overfit the model. The predicted output depends on an assumption as linear input–output
relationship acts as a drawback to this model. The K-nearest neighbor model (KNN) [85] is
a non-parametric decision algorithm to classify or regress the data in a supervised machine
learning. This algorithm recognizes the patterns and works well to discriminate patterns in
data. The KNN algorithm works classifying the neighborhood points based on Euclidean
and Manhattan distance. The ‘K’ value decides the number of neighborhood points taken
into account to predict the classification of the data points. If K = 1, the closest neighbor
decides the output. If K = 5, the nearest five neighbors’ probabilities calculate the result.
The low ‘K’ value underfit and the high ‘K’ value overfit the model, so a proper ‘K’ value is
to be chosen to generalize the model. Generally, the ‘K’ value is taken as the square root of
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a number of samples present in the data. The factors such as K number, size of the training
set, and type of metric decide the performance of the K-nearest neighbor.

The decision tree algorithm [86] is a popular classification algorithm that follows the
divide-and-conquer strategy similar to a flowchart with each internal node divided into
nodes to reach the leaf node. The splitting of the nodes concludes with the leaf node as a
solution to the work. The decision node is a split node to divide the tree into branches to
reach the best possible result. The root node serves as the base node for the entire tree. The
metrics entropy, information gain, gain ratio, and Gini index verify the predicted answer
and make the decision tree predict the output accurately. Overgrowth of the tree leads to
complexity of the model. The pruning indicates the cutting of unwanted branches and
leaves to reduce the complexity and generalize the model. The chi-square test directs the
model to remove insignificant nodes in the tree. Many decision trees combine to form
an ensemble machine learning random forest model [87] to predict solutions to many
regression and classification tasks.

The classification and regression is by the majority in votes and average of values
of the prediction models, respectively. The overfitting is a drawback to the decision tree
model where the random forest overcomes it. Random forest models can provide accurate
results with adjustable changes in the model’s hyper parameters. The extra trees model
is extremely randomized decision trees based on score computation. In the decision tree,
different splitting rules are applied at each node, and the best split rule is chosen to increase
the training speed by making the induction process easy to obtain extra tree model. The
major difference between the random forest and extra trees is the selection of a threshold
for feature extraction for randomly sampled data. The other difference is no bagging in
the extra tree model because the entire dataset is being given to each decision tree to grow,
whereas in the random forest, only some random data are used. The changes in the extra
trees increase the calculation speed with increased bias and reduced variance compared
to other bagging methods. Cortes and Vapnik [88] introduced a support vector machine
(SVM) as a machine learning model to solve classification and regression tasks.

The SVM [89] is a popular tool to learn the model by training dataset and gives its
effort to generalize the model and predict the required information on new data. The
model chooses the finest hyper plane from the training data with +1 and −1 as labels
with maximum distance from the data points. The model decides the data points based
on the features as some data points are behind one label and others are under another
label. The name support vectors because the data points close to labels control the hyper
plane position.

The hyper plane equation is
ωx + b = 0 (27)

The model finalizes the solution after minimizing the following equation

minω,b J(ω, b) =
1
2
||ω||2 + c

n

∑
i=1

δi∀i[yi(ω, φ(xi) + b) ≥ 1− δi] (28)

where δi ≥ 0, ‘ω’ is the normal vector of the hyperplane or the weights to be updated to set
the orientation, ‘b’ is the offset of the hyper plane to the origin, φ(xi) is the mapping from
input space to feature space, and δi are the slack variables that permit the non-separable case
by allowing misclassification of training instances. A boosting algorithm is an ensemble
model that combines different weak models to develop a model with high accuracy. The
first model’s output is input to the second model, the second model output to the third
model, and the process repeats to obtain the accurate value as a final result. The gradient
boosting algorithm [90] learns better than the boosting algorithm by optimizing the loss
function by creating a new model with a negative gradient directed to reduce the error in
the preceding model. The main drawback of the GBDT algorithm is overfitting the data.
To overcome this limitation, some regularization terms were added to the gradient boost
algorithm by Chen Tianqi and named as the extreme gradient boost algorithm [91].
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5.4.2. Unsupervised Learning

There should be sufficient knowledge in feature engineering to label data for large
datasets. Supervised learning performs the best with labeled data, and unsupervised
learning handles the unlabeled data. Unsupervised learning reduces the burden of labeling,
and for all tasks, labeled data is not available. The unsupervised algorithms use the raw
data as input and detect patterns in the input data to cluster it. These algorithms label the
data to feed the labeled data to supervised or semi-supervised learning to achieve good
performance in prediction models. Several research improvements in clustering algorithms,
principal component analysis (PCA), etc., made unsupervised learning possible in various
categorizing applications.

The K-means clustering algorithm [92] is a well-known unsupervised algorithm pro-
posed by MacQueen and rich in clustering the data. K-means clusters the dataset with
similarity to the same clusters and dissimilarity to different clusters. The iteration process
occurs in the K-means algorithm to find the optimum cluster centers. K-means makes every
effort to minimize the squared error difference between the data points and the cluster’s
mean in that cluster. The K-means algorithm quickly clusters the large datasets, but the
model limits the centroid computation result in local optimum points. The hierarchical
clustering is a well-known cluster method that builds a hierarchy of clusters by either
combining or dividing the sequence of clusters. There are two popular approaches as
agglomerative and divisive algorithms generate an optimum clustered solution in hierar-
chical clustering. Agglomerative clustering is a bottom-up clustered method that initiates a
model with data within singleton clusters and combines clusters in a row to develop a final
model with all data in a single cluster or sequence. The most common distance metrics
used in agglomerative clustering are single linkage, complete linkage, and average linkage.
The single linkage metric usage makes the agglomerative clustering the same as the nearest
neighbor clustering model. Divisive clustering is a top-down approach that usually splits
the input data into smaller sub classes and iterates until the sub classes split into singleton
datasets [93,94].

The DBSCAN algorithm decode clusters based on splitting the high density, medium
density, and sparse density data point regions by separate tags. The same cluster samples
are closely connected, and if the same category sample data points are high, then it is highly
dense; if not it becomes sparse. Two parameters ‘ε’ and ‘minPts’ play a vital role in the
DBSCAN algorithm with one serving as a threshold to consider a data point as a neighbor
and the other giving the number of neighbors in the threshold radius respectively. A‘k’
distance graph helps in finding the ‘ε’ radius value. These parameters decide the clusters
based on the local density of data points in an ‘ε’ radius region. The minimum minPts to be
chosen in the DBSCAN algorithm is three. Mainly three data points are clustered, namely
the core point, border point, and the noise point within the ‘ε’ radius based on minPts
number. The principal component analysis (PCA) [30] technique reduces the dimension
of multi-featured data by reducing the similarity by converting the samples of correlated
features into a new set of samples with uncorrelated features. The PCA [95] is a tool that
depicts the geometric properties and reduces similar features in the multivariate statistical
data to an unrelated single feature by using matrices.

5.4.3. Reinforcement Learning

Reinforcement learning [96] is one of the most popular algorithms in machine learning
that makes the object reach the target by rewards and punishments. The RL agent interacts
with the information in an uncertain, potentially complex environment and takes the
sequence of decisions to reach the objective. The RL model provides the balance between
exploitation and exploration. It is a benefit to the RL model compared to supervised models.

5.4.4. Semi-Supervised Learning

In every case, the complete labeled data are not available, and they price high to collect
the labeled dataset. Semi-supervised learning trains the model based on both labeled
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and unlabeled data. Many models train with the combination of labeled and unlabeled
data. Mostly unlabeled data are taken in large quantity compared to labeled data in these
models. The metrical summary of the machine learning algorithms such as supervised,
unsupervised, etc., for solar energy forecast is shown in Table 6.

Table 6. Summary of machine learning models.

Reference Year Model Location Forecast Horizon Data Conclusion

Aslam et al. [97] 2020 FFNN Seoul/Korea Hourly 2000 to 2017 RMSE of 109.11 W/m2

Mohammadi
et al. [98] 2015 SVM Bandar Abbas, Iran Daily and

Monthly ahead 1992–2005 MAPE = 3.2601–6.9996%

SANJARI
et al. [99] 2017 ANN Australia 15-min ahead Two year data

2014 and 2015 CRPS score = 3.81

Marquez
et al. [54] 2013 ANN Davis and Merced,

USA
30, 60, 90, and 120

min ahead

1 year (1 January
2011 to 31 January

2012)

RMSE value of 55 to
80 W/m2

Torres et al. [100] 2019 SVR Oklahoma, USA 3 h ahead 1994 to 2007 MAE = 2225.2 KJ

Wang, J
et al. [101] 2018 GBDT Oregon, USA 1 day ahead

Random 240 day
data from the
2015 and 2016

years.

nRMSE varies from 6.96 to
7.72% based on monthly

test data

Torres et al. [100] 2019 XGB Oklahoma, USA 3 h ahead 1994 to 2007 MAE = 2190.9 KJ

Yap et al. [102] 2012 Linear regression Darwin, Australia 1 h ahead 2008 to 2010 RMSE of 6.72%

Benali et al. [103] 2019 Random Forest Odeillo, France hourly 3 years nRMSE of 19.65% to
27.78%

Liu et al. [104] 2020 SVM 80 sites in China Daily 1957–2017 R2 = 0.613–0.933 for
different sites

Jimenez Perez
et al. [105] 2016 EM model Malaga, Spain Hourly 2010–2013 rMABE = 15.2%

Basaran
et al. [106] 2019 EM model

Afyon, Agri, Sinop,
and Hakkari in

Turkey
Hourly data 2012–2016 RMSE varies from

4.6–14.6%

Sun et al. [107] 2018 K-means and
LSSVM Beijing, China Day ahead 2009–2015 MAPE 3.27% to 4.65%

from single to multi-step

Bae et al. [108] 2017 SVM RBF Daejeon, South
Korea 1 h ahead

26 months
(January 2012 to

April 2014)

RMSE =
(49.26–62.57) W/m2

5.5. Deep Learning Models

The input data sometimes contain interconnections and combinations and are not
even in the proper structure. To handle datasets of this format through the previous models
is not possible. There, we introduce the applications of deep learning, a subset of machine
learning. Deep learning models differentiate from machine learning by having a lot of
hidden layers by their weights and biases with many activation functions to handle complex
datasets. Recent research developments such as long short-term memory, gate recurrent
unit, and their combinations proved that the deep learning models predict solar power with
accurate results. Figure 14 shows the approach to perform the machine learning models
through flowcharts. Figure 15 discusses the merits and demerits of deep learning models.
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Figure 14. Flow chart for deep learning models.

Figure 15. Pros. (Light Green) and Convs. (Light Red) of deep learning models [109].

There are two methods of supervised and unsupervised learning in deep learning.
Mainly, three supervised and three unsupervised deep neural networks are discussed in
this study.

1. Deep multilayer perceptron.
2. Convolutional neural networks.
3. Recurrent neural networks.
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4. Auto encoder (AE).
5. Restricted Boltzmann Machine (RBM).
6. Self-Organizing Maps (SOM).

5.5.1. Supervised Deep Learning

The basic model of DNN is the feed-forward neural network, and here it is named
deep multilayer perceptron (DMLP) [110]. DMLP operates through the fully interconnected
neuron layers. There is a difference in the number of hidden layers for MLP in DNN
compared to ANN architectures. Since the number of hidden layers is high, there will
be many more weights, bias, and activation functions in the DMLP infrastructure. The
number of neurons in the hidden layer is calculated using empirical formulas during the
formulation of the ANN-based model. The formula is given as

n =
√

ni + n0 (29)

where n is the hidden layer’s neuron number, ni is the input layer’s neuron number, n0 is
the output layer’s neuron number, and an is a bias value ranging from 1 to 10. Computation
shows that the hidden layer’s neuron number is set to 60. MLP neural networks [1]
are a kind of nonlinear model effective in detecting patterns, modeling, and time series
analysis of data. An MLP depends on the data’s structural relationship, a nonlinear
mapping between two or more variables. The data supplied to MLP are propagated from
the input to the output layer through a hidden layer after the MLP architecture is setup.
After the learning phase, the output can be considered assimilated. A suitable learning
algorithm minimizes the errors during the training process. It is worth remembering that
the MLP model’s learning algorithms depend on the backpropagation approach, which is
the steepest gradient descent method. The primary goal of the backpropagation method is
to reduce network inaccuracies.

Convolutional neural networks (CNN) [111] are deep learning models that consist of
four layers: convolutional, pooling, fully connected, and regression. The convolutional
layer contains several convolution filters, each used to create a single feature map. The
data can be either a value, image, or video signal. Some algorithms depend on the input
dimensions, and they cannot decide the input by feature extraction. Conventional neural
networks overcome the disadvantage of detecting features from images with a pooling
layer present inside them and perform the best on the multidimensional arrays. The
convolutional layer contains several convolution filters, each used to create a single feature
map. CNNs also stabilize the neuron layer to layer connections to obtain an accurate
prediction. The research developments in graphics and tensor processing units made the
CNNs work on large multidimensional data tasks. The function of the pooling layer is to
reduce feature map resolution so that input features aggregate. The convolutional layer
equation is as follows:

y1
i,j,k = F((w1

k)
Tx1

i,j + b1
k) (30)

Maximum and average pooling are the two most used pooling operations. A CNN
model [112] is made up of numerous convolutional layers stacked on top of each other, as
well as pooling layers. The following function describes the equation of the pooling layers

P1
i,j,k = pool(y1

m,n,k) (31)

In most cases, the fully connected layer is beside the regression layer. Every neuron
in this layer connects to every neuron from the previous layer in the complete linked
layer. The fully connected layer performs the high-level analysis by moving the learned
scattered feature representation to one space. The output of the regression layer, which is
the final layer of the CNN model, is the final output of the CNN, Zhen et al. and [113]
C. Xu et al. [114]. Compared to CNNs and ANNs, the recurrent neural network performs
with a different topology. The outputs from the previous state feed as input to the next
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models in RNNs to capture the temporal features. The gap between RNN and ANN is that
RNN uses the last feed-forward’s information generated from its internal state. The RNN
uses the Gradient descent algorithm as the back propagation algorithm to solve tasks, but
the problem of finding global minima and maxima arises in every case accurately. Gradient
vanishing and gradient explosion troubles the RNN in the training phase. Gradient clipping
is a simple solution to the gradient explosion problem. Since the gradients are too small to
propagate, the gradient vanishing problem makes the model hard to solve. As a result, RNN
training performance is not always optimal. The equations for RNN [115] are as follows:

S(t) = σ(UTx(t) + WTS(t− 1) + b) (32)

y(t) = σ(VTS(t) + c) (33)

where ‘x(t)’ takes the primary input at time ‘t’. W, U, and V are weight matrices with b and
c as constants; ‘y(t)’ is the response at time t, and σ is the activation function. Advanced
research methods such as long short-term memory (LSTM), and gated recurrent units
(GRUs) overcome some of these problems by storing information for a long time and using
gate functions. C.-H. Liu et al. [116] Hochreiter and Schmidhuber proposed the long short
term memory (LSTM) unit in 1997 as a variant type of RNN. They suggested LSTM as a
competent implementation with numerous enhanced modifications. In an LSTM neural
network, memory blocks swap the hidden units of an RNN. The essential aspect of LSTM
is that it employs an input gate, a forget gate, and an output gate, allowing it to learn what
needs to be saved, discarded, and read by regulating the three gates. In LSTM, the previous
output first passes through a forget gate, which allows some memory to drop. Then, an
input gate injects some additional memories into it. Finally, the output gate processes the
final output y(t). The following equations [117] depict the operation of LSTM units

f (t) = σ(wT
f [h(t− 1), x(t)] + b f ) (34)

i(t) = σ(wT
i [h(t− 1), x(t)] + bi) (35)

g(t) = Tanh(wT
g [h(t− 1), x(t)] + bg) (36)

o(t) = σ(wT
o [h(t− 1), x(t)] + bo) (37)

c(t) = f (t)c(t− 1) + itgt (38)

where ‘w’ and ‘b’ are the weight matrices and biases of associated gates, and σ is the
activation function. The Bi-LSTM [118] can learn a representation depending on the past
and the future and is most sensitive to the input values. It does this by combining another
LSTM that moves back to the forward LSTM through the sequence. Therefore, a Bi-LSTM
is constructed as multiple inputs on a time scale and produces a series of vectors as output,
Dabbagh Manesh et al. [119] Z. Huang et al. [120]. The gate recurrent unit (GRU) is a
variant of RNN that uses a gating mechanism to maintain past inputs in the networks’
internal state to process sequential data memories and map them from the previous input
history to target vectors. The GRU has fewer gates than the LSTM. Because the GRU merges
the input and forget gates into a single gate named the update gate. Two major gates in
the GRU are the update gate and the reset gate. The update gate regulates the data from
the previous state to the current state. The reset gate governs the ignored past information
from the GRU to the present moment. The equations [114] are as follows

Z(t) = σ(wT
z x(t) + wT

z h(t− 1)) (39)

R(t) = σ(wT
r x(t) + wT

r h(t− 1)) (40)

h(t) = Tanh(wT
h x(t) + wt

h(r(t)
⊙

h(t− 1))) (41)

h(t) = (1− z(t))h(t− 1) + z(t)h̃(t) (42)
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The present GRU algorithm, on the other hand, has two flaws. The first is that
preprocessing data packets for network packets requires a lot of manual work, and the
second is that memory utilization is excessive.

5.5.2. Unsupervised Deep Learning

This algorithm does not require tags to predict the output in training the model.
Without any supervision, these models detect patterns of hidden structures in the input
data to clusters.

An auto encoder (AE) [121] transforms the input latents before feeding them to a
decoder for reconstruction at the output. The significant property of AEs is that they have
the same training goal as the input.

hSP = f (WeSP + be) (43)

SPd = d(WdhSP) + bd (44)

where ‘hSP’ is the encoder operator of the solar power input, and ‘SPd’ is the decoder
operator of AE and hSP. ‘Wd’ and ‘We’ are the weight matrixes with biases ‘bd’ and ‘be’ of
decoder and encoder, respectively.

The output characteristic equation

Oi = f (W0.(hSP
i + SPd,i) + b0) (45)

The function of activation function gives the desired output

Yi = g(Wy.Oi + by) (46)

The restricted Boltzmann machine (RBM) is a generative model that maps the predic-
tions across training datasets using a stochastic distribution. RBMs can be used to speed up
training with bipartite graphs of neural interconnections. The RBMs are stacked together to
build deep Boltzmann machines. The DBMs are often used as feature detectors to generate
representations from data. Supervised learning is further used in fine-tuning network
weights and improving performance on specific learning tasks. The self-organizing map
(SOM) [122] represents a one- or two-dimensional dataset from a higher dimensional
dataset without any change in the topological structure of the dataset. The SOM architec-
ture has an input and an output layer. The neurons in the input layer are connected fully to
the output layer neurons. The neurons in the output layer compete one-to-one to result
in the best matching unit by the smallest Euclidean distance from the input vector. The
Euclidean distance is given by

Ed =

√√√√ K

∑
k=0

(xk − wik)
2 (47)

The SOM groups the nodes based on the similarity concerning the best matching unit.
The ordering phase of SOM decides the BMU, and the adjustment phase adjusts the radius
of the BMU to achieve the optimum solution. The weight adjustment is given by

wik(n) = wik(n− 1) + δ(xx(n)− wik(n− 1)) (48)

For all, i = 1, 2, . . . , T, k = 1, 2, . . .
where ‘xk’ is the kth component of the input vector ‘x’, J is the dimension of the input
vector ‘x’, ‘T’ is the total number of neurons in the output layer, and ‘δ’ is the learning rate
parameter. Following Kohonen’s rule, the weights given to the BMU and its neighbors
are driven to migrate toward the input vector supplied to the network, resulting in a
reduced Euclidean distance and assisting them to group similar vectors. The computational
summary of the deep learning models are presented in Table 7.
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Table 7. Summary of deep learning models.

Reference Year Model Location Forecast horizon Data Conclusion

Voyant et al. [73] 2014 MLP Mediterranean, France 24 h ahead 10 years data nRMSE ranges from 28.6
to 31.9%

F. Wang,
et al. [115] 2020 BPNN Nevada. Day-ahead 2011 to 2016 RMSE of 10.31%

C. Fang
et al. [123] 2020 CNN Golden, Colorado, USA 10 min ahead

Ten years data
1 January 2008 to 31

December 2017
RMSE of 80.14 W/m2

Yuchi Sun
et al. [124] 2019 CNN USA 15 min ahead 1 year (March 1st 2017

to March 1st 2018) RMSE: 2.1 kW/25 kW

S. Mishra
et al. [125] 2018 RNN

Boulder, Desert Rock,
Fort Peck, Sioux Falls,
Bondville, Goodwin

Creek, and Penn State

1, 2, 3 and 4 h
ahead

2009, 2010, 2011, 2015,
2016 and 2017 year

data

Mean RMSE of 9.713 to
39.812%

Yu et al. [126] 2019 LSTM Atlanta, New York, and
Hawaii in USA. 1 h ahead 2013 to 2017

RMSE in a range of
45.84 W/m2 and

41.37 W/m2 in two
different locations.

Qing et al. [127] 2018 LSTM Santiago, Cape Verde. 1 h ahead

2.5 years (March 2011
to August 2012 and

January 2013 to
December 2013)

RMSE value of
76.245 W/m2

Chandola
et al. [128] 2020 LSTM Arid zones of India 3, 6, 24 h ahead Five years dataset

(2010 to 2014)
MAPE values ranging

6.79% to 10.47%.

Jeon and
Kim [129] 2020 LSTM Korea Meteorological

Administration. 24 h ahead 1825 days RMSE of 30 W/m2

Obiora et al. [130] 2020 LSTM Johannesburg city 1 h ahead Ten years data 2009
and 2019

Improvement of 3.2%
NRMSE over the SVR

model

Mukherjee
et al. [131] 2018 LSTM Kharagpur, India 1 h ahead

Fifteen years of
recorded data from

2000 to 2014

RMSE value of
57.249 W/m2

Justin et al. [132] 2020 LSTM Weather station, Rizal Any time
Six months data

(September 2019 to
February 2020)

R2 value 0.953 and MAE
value 41.738 W/m2

A. Rai et al. [133] 2021 GRU New Delhi, India 24 h, 48 h, and
360 h

31-December–2015 to
31–December–2016

MAE of 0.0321, 0.0332 and
0.0377

5.6. Probabilistic Models

This paper discusses basic probabilistic models [134] such as Gaussian distribution,
quantile regression, etc. Gaussian distribution [135] depends on training and testing
datasets to forecast solar power with allowable variance. In this case, the probability
integral transform evaluates the probability distribution. The quantile regression [136]
is a popular regression model for solar power estimation. The QR model individually
minimizes the cost function of each quantile. These models use historical data to estimate
the output. The literature survey on probabilistic models are analyzed and summarized in
Table 8.
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Table 8. Summary of special artificial intelligence models.

Reference Year Model Location Forecast Horizon Data Conclusion

M. Russo et al.
[68] 2014 Genetic

Algorithm
ENEL Catania

site, Italy 15 min 1 whole year 2010 RMSE: 67.6 W/1000 W

S.Garg et al. [137] 2020 Markov Chains Bhadla, Jodhpur,
Rajasthan, India Day ahead 5 years

(2010–2014)

MAPE value of 5.04 to 26.56
varies from month to

month.

V. Gunasekaran
et al. [91] 2021 Genetic

Algorithm

Bondville IL,
Pennstate, PA and
Desertrock, NV.

1 min. ahead GHI 2018 to 2020 MAE of 4.64, 3.08 and 4.58
respectively

Yona et al. [138] 2013 Fuzzy Logic Okinawa, Japan 24 h ahead 1 year of data Average MAE of 0.22

5.7. Special AI Models

Y.WANG et al. [139] Theoretically, BPNN can estimate any nonlinear function with
high precision. The most significant drawback of BPNN is that it may reach a local optimum
owing to recurrent calculations. The genetic algorithm (GA) [140] solves these challenges
and brings the result to a global optimum. The GA is a stochastic searching strategy that
can find the best value rapidly and precisely, Yuqi Tao [141]. The authors considered
the operating parameters such as the population number ‘N’, the generation of evolution
‘gen’, the crossover operator ‘PC’, and the mutation operator ‘PM’. The coding starts with
initiating the population with weight lengths and thresholds through coding. The initialized
weights and thresholds in BP are encoded to read and normalize them. The absolute error
between the predicted output and the desired output of the BP network serves as the fitness
value. Finally, the operations such as selection, crossover, and mutation provide the optimal
weights and thresholds of the model to yield its best optimal solution.

B Gururaj et al. [142] proposed fuzzy logic that had been examined as infinite-valued
logic in the 1920s by Tarski et al. Lotfi Zadeh introduced the term fuzzy logic in 1965. Fuzzy
sets are mathematical representations of ambiguity and inaccuracy. These models are capable
of identifying, expressing, manipulating, and interpreting. Probability provides only either
true or false as two conclusions, but fuzzy logic provides the degree of truth. Fuzzification,
inference, and de-fuzzification are the three parts of fuzzy logic. The authors investigated
many applications of fuzzy logic. In one approach, the fuzzy technique was used for three
locations in India to estimate monthly averages of daily irradiances. It is also recommended
to add other meteorological variables to the conditional statements in the fuzzy implications
employed in this approach to improve the precision of solar irradiation estimation in that
approach. A Markov chain [143] technique that models the transition probabilities between
discrete power levels generates probabilistic forecasts without assuming a distributional
geometry. These models are reviewed analytically and mathematically in Table 9.

Table 9. Summary of probabilistic models.

Reference Year Model Location Forecast
Horizon Data Conclusion

Mitrentsis et al.
[144] 2021 Natural Gradient

Boosting Germany day-ahead February 2018 to October
2019

RMSE of 5.77 to 6.17% from
reduced to full features

S. Alessandrini
et al. [145] 2015 Quantile Regression

Milano,
Catania, and
Calabria in

Italy

0–72-h ahead

January 2010 to December
2011 (Catania), July 2010 to

December 2011 (Milano),
and April 2011 to March

2013 (Calabria)

CATANIA MRE = 5.92%
CALABRIA MRE = 7.72%
MILANO MRE = 8.03%

DOUBLEDAY
et al. [146] 2021 Bayesian Model

Averaging Texas 1, 4, 12, and 24 h
ahead

Two-plus years of data
November 2016 to
December, 2018.

CRPS score of 5.18 to 7.47
varies from site to site.

KHODAYAR
et al. [147] 2020 Convolutional

Graph Auto encoder USA 30-min up to 6 h
ahead GHI 1998 up to 2016 CGAE obtains 2.53% better

CRPS than ST-QR-Lasso



Energies 2022, 15, 6267 30 of 39

5.8. Hybrid & Ensemble Machine Learning Models

X. Huang et al. [148] examined hybrid models that have received much interest since
they can combine the benefits of many approaches. Model combination in forecasting
depends on using each model’s distinct feature to catch different patterns in the data. The
ensemble machine learning model boosts various weak learners to strong models with an
acceptable level of variance and bias. The drawback of overfitting the decision tree model
occurs because of the repetition process in the concluding leaf node. There are many methods
such as pruning, random forest, extra trees, etc. to overcome this limitation. The hybrid and
the ensemble models are mathematically summarized in Tables 10 and 11, respectively.

Table 10. Summary of hybrid models.

Reference Year Model Location Forecast Horizon Data Conclusion

SANJARI et al.
[99] 2017

Markov Chain,
Gaussian mixture

and Genetic
algorithm

Australia 15-min ahead Two year (2014 and
2015) CRPS 2.16

Yona et al. [138] 2013 Fuzzy theory,
RNN Okinawa, Japan 24 h head 1 year of data Average MAE of 0.1327

Voyant et al. [53] 2012 ANN and ARMA Mediterranean,
France 1 h ahead 6 years data average nRMSE is 14.9%

Marzouq
et al. [54] 2013 GA-MLP Fez in Morocco Daily 7 years (2009 to

2015 R2 = 0.975

Perveen
et al. [149] 2019 ANFIS India 10 min ahead 15 years (2002 to

2016)
Average MAPE =

0.00000021%

Chen et al [150] 2013 Fuzzy logic, MLP Singapore Hourly One month MAPE = 6.03–9.65%

Yeom et al. [151] 2020 CNN- LSTM
network

Korean
Peninsula. 1 h ahead 1 April 2011 to 31

December 2015

RMSE value of
71.334 W/m2 and R2 value

of 0.895.

D. Yang
et al. [152] 2021 AnEn+LPQR

Oahu Solar
Measurement
Grid, Hawaii.

4 s to 1 min ahead 2010 March to 2011
October

CRPS score of 24.7 to 64.5
and Average skill score is

27.80%

A. Rai et al. [133] 2021 AE-GRU New Delhi, India 24 h, 48 h, and
360 h ahead

1 year
(31-December–2015

to 31–December–
2016)

R2 Coefficient of 0.8976247
to 0.937336

F. Wang,
et al. [115] 2020 LSTM-RNN Nevada. Day-ahead 6 years (2011 to

2016) RMSE value of 8.83%

ZHANG
et al. [153] 2021 Federated

BayesLSTM-NN Ningxia, China
Intra hour,

Intraday and day
ahead

July 2006 to
November 2018

MAE of 49.1, 53.1 and
71.6 W/m2

Ratshilengo
et al. [38] 2019 GA-SVM Victoria,

Australia 1 h ahead 278 days RMSE of 11.226 W and
MAPE of 1.70%

Jing Bi et. Al [154] 2021
Wavelet

Transformation—
LSTM

US Virgin Islands 5 min. 19 October 2013 to
19 November 2013 R2= 0.98

Jing Bi et. Al [154] 2021
Wavelet

Transformation—
BPNN

US Virgin Islands 5 min. 19 October 2013 to
19 November 2013 R2 = 0.99

Jing Bi et. Al [155] 2022 ST-LSTM Spanish
Wikipedia 1 h 1 July 2015 to 1 July

2016. R2 = 0.99

M.
Ghayekhloo [156] 2015 Game Theory

(GT)-SOM
Ames, Iowa,
United States

1 h, 2 h, 3 h and 1
day ahead 2011 and 2013

RMSE value of 67.921,
82.506, 113.4 and

119.75 W/m2 respectively

Monjoly et.
Al [79] 2017 WD–AR Le Raizet, France 1 h January 2012 to

December 2013 RMSE value of 19.57%

Monjoly et.
Al [79] 2017 WD–AR–ANN Le Raizet, France 1 h January 2012 to

December 2013 RMSE value of 7.90%
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Table 11. Summary of ensemble learning models.

Reference Year Model Location Forecast Horizon Data Training/Test Split Ratio Conclusion

Yongqi Liu et al. [5] 2019 CNN and GRU United States 3 h-ahead GHI 2 years (1 January 2013 to 31
December 2014) 8760 h / 8760 h Mean RMSE of 69.5 W/m2

Davide Cannizzaro
et al. [157] 2021

Convolutional Neural
Networks (CNN) and
Random Forest (RF)

University Campus in
Turin, Italy,

Next 15 min up to
next 24 h GHI

December 2009 to November
2015

(6 years) December 2009 to
November 2014/December

2014 to November 2015
R2 coefficient of 0.936 to 0.908

Davide Cannizzaro
et al. [157] 2021

Convolutional Neural
Networks (CNN) and Long
Short Term Memory (LSTM)

University Campus in
Turin, Italy

Next 15 min up to
next 24 h GHI

December 2009 to November
2015 with a time- resolution of

15 min (6 years)

December 2009 to
November 2014/December

2014 to November 2015
R2 coefficient of 0.937 to 0.908

Pratima Kumari
et al. [158] 2020

Extreme gradient boosting
forest and Deep neural
networks (XGBF-DNN)

New Delhi, Jaipur and
Gangtok in India 1 h GHI ahead Ten years (from 2005 to 2014) First eight years of

data/Two years of data.

RMSE of 56.68 W/m2 ,
53.78 W/m2 and 91.86 W/m2

of Jaipur, New Delhi, and
Gangtok respectively.

Nonita Sharma
et al. [159] 2021

Long Short Term Memory
(LSTM) Layer and Maximal

Overlap Discrete Wavelet
Transform (MODWT)

Yulara Solar System,
Australia

1 day, 10 days, and 1
month ahead GHI

January 2016 (12:00:00 a.m.) to
10 June 2020 (4:50:00 a.m.) 2016–2019/2020

RMSE of 0.1109, 0.1231, and
0.1231 kW for 1 day, 10 days,

and 1 month, respectively

Fermín Rodríguez
et al. [160] 2021

Feed forward neural
network and a

Spatio-temporal approach
Vitoria–Gasteiz, Spain 10 min ahead GHI 2015–2017 (3 years) 2015–2016/2017 RMSE of 50.80 W/m2

Waqas Khan
et al. [161] 2021 DSE-XG (ANN, LSTM and

XGBoost) Bunnik, Netherlands 15 min and 1 h ahead
GHI

2016 to 2019 years data by solar
gis Four folds/One fold RMSE of 0.35, and 0.26 kW for

15 min. and 1 h respectively

Liping Liu
et al. [104] 2019 SVM, MLP and MARS Australia Solar Centre

(DKASC), Australia 1 day ahead GHI 15 August 2013 up to 17 June
2018

4 months of each year (from
2014 to 2018), with a total of

600/4 days in 2018
RMSE of 0.1248 to 0.53 kW
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The results of various forecast models are compared and the paper is summarized
by the conclusion as shown in Figure 16. Table 12 makes the clear view to understand the
pictorial conclusion.

Figure 16. Pictorial conclusion of solar energy forecasting models.

Table 12. Colour code representation of represented mapping’s in Figure 16.

Horizon Mostly Used—Model Source—Model

Very short term—Blue—1,4,6,8 Geographical & Meteorological data—Blue—1,3,8

Short term—Brown—2,3,4,5,6,7,8 Cloud & Satellite Imagery data—Brown—2,8

Medium term—Black—3,4,6,8 NWP data—Black—2,3,4,6,7,8

Long term—Green—2,3,8 Historical data—Green—3,4,5,6,7,8

Error evaluation—Violet Real time monitoring data—2,8
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6. Conclusions

This paper explains more than 100 models by their characteristics and metric perfor-
mance with additionally adding merits and drawbacks of each. The solar irradiance and
power forecast model classifications made in this paper allow the researcher to analyse each
model in an effective perspective. It also helps find the best model suited for a particular
location with a preferred time horizon. The huge amount of nonlinear and non-stationary
data influenced the artificial intelligence models to use in predicting the best results. The
AI models are broadly classified into three separate groups, namely machine learning,
deep learning, and special AI models in the review to enhance a clear view of solar energy
forecasting. Some important metrics are briefly explained in our paper to understand each
model explained. The deep learning models provide the information to the researcher to
use images from satellites and the sky to estimate solar energy more efficiently. Nearly
70 models are compared with the time interval, spatial area, and the metrics, and nearly
30 models are surveyed theoretically. This helps the researcher understand the forecast
models from the beginning to recent years. The latest research developments mentioned
clearly show the priority of ensemble and hybrid models over other models. Comparing
all the models, the ensemble and hybrid models provide better prediction with required
time horizon from minutes to several days.
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forecasting: A review and case study in Eskişehir. Renew. Sustain. Energy Rev. 2018, 91, 639–653. [CrossRef]

18. Singh, B.; Pozo, D. A Guide to Solar Power Forecasting using ARMA Models. In Proceedings of the 2019 IEEE PES Innovative
Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019; pp. 1–4. [CrossRef]

19. Mbaye, A.; Ndiaye, M.; Ndione, D.; Diaw, M.; Traore, V.; Amadou, N.; Sylla, M.; Aidara, M.; Diaw, V.; Traoré, A.; et al. ARMA
model for short-term forecasting of solar potential ARMA model for short-term forecasting of solar potential: Application to a
horizontal surface on Dakar site A. Mbaye et al, ARMA model for short-term forecasting of solar. OAJ. Mat. Dev. 2019, 4, 1–8.

20. Asad, M. Finding the Best ARIMA Model to Forecast Daily Peak Electricity Demand. In Proceedings of the Fifth Annual ASEARC
Conference-Looking to the Future-Programme and Proceedings, Hong Kong, 2–3 February 2012; p. 12.

21. Colak, I.; Yesilbudak, M.; Genc, N.; Bayindir, R. Multi-period Prediction of Solar Radiation Using ARMA and ARIMA Models. In
Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA,
9–11 December 2015; pp. 1045–1049. [CrossRef]

22. Li, Y.; Su, Y.; Shu, L. An ARMAX model for forecasting the power output of a grid connected photovoltaic system. Renew. Energy
2014, 66, 78–89. [CrossRef]

23. Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN Model-Based Approach in Classification. Lect. Notes Comput. Sci. 2003, 2888,
986–996. [CrossRef]

24. Leva, S.; Dolara, A.; Grimaccia, F.; Mussetta, M.; Ogliari, E. Analysis and validation of 24 hours ahead neural network forecasting
of photovoltaic output power. Math. Comput. Simul. 2015, 131, 88–100. [CrossRef]

25. Ahmad, M.; Mourshed, M.; Rezgui, Y. Tree-based ensemble methods for predicting PV power generation and their comparison
with support vector regression. Energy 2018, 164, 465–474. [CrossRef]

26. Feng, C.; Cui, M.; Hodge, B.M.; Lu, S.; Hamann, H.F.; Zhang, J. Unsupervised Clustering-Based Short-Term Solar Forecasting.
IEEE Trans. Sustain. Energy 2019, 10, 2174–2185. [CrossRef]

27. Hashemi, B.; Cretu, A.M.; Taheri, S. Snow Loss Prediction for Photovoltaic Farms Using Computational Intelligence Techniques.
IEEE J. Photovolt. 2020, 10, 1044–1052. [CrossRef]

28. Pan, C.; Tan, J. Day-Ahead Hourly Forecasting of Solar Generation Based on Cluster Analysis and Ensemble Model. IEEE Access
2019, 7, 112921–112930. [CrossRef]

29. Zhang, J.; Zhang, Y. Forecast of photovoltaic power generation based on DBSCAN. E3S Web Conf. 2021, 236, 02016. [CrossRef]
30. Chahboun, S.; Maaroufi, M. Principal Component Analysis and Machine Learning Approaches for Photovoltaic Power Prediction:

A Comparative Study. Appl. Sci. 2021, 11, 7943. [CrossRef]
31. Xiu, J.; Zhu, C.; Yang, Z. Prediction of solar power generation based on the principal components analysis and the BP neural

network. In Proceedings of the 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems, Shenzhen,
China, 27–29 November 2014; pp. 366–369. [CrossRef]

32. Shojaeighadikolaei, A.; Ghasemi, A.; Bardas, A.G.; Ahmadi, R.; Hashemi, M. Weather-Aware Data-Driven Microgrid Energy
Management Using Deep Reinforcement Learning. In Proceedings of the 2021 North American Power Symposium (NAPS),
College Station, TX, USA, 14–16 November 2021; pp. 1–6. [CrossRef]

33. Huang, C.J.; Kuo, P.H. Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting.
IEEE Access 2019, 7, 74822–74834. [CrossRef]

34. Alzahrani, A.; Shamsi, P.; Dagli, C.; Ferdowsi, M. Solar Irradiance Forecasting Using Deep Neural Networks. Procedia Comput.
Sci. 2017, 114, 304–313. [CrossRef]

35. Liu, J.; Fang, W.; Zhang, X.; Yang, C. An Improved Photovoltaic Power Forecasting Model with the Assistance of Aerosol Index
Data. IEEE Trans. Sustain. Energy 2015, 6, 1–9. [CrossRef]

36. Wen, S.; Zhang, C.; Lan, H.; Xu, Y.; Tang, Y.; Huang, Y. A Hybrid Ensemble Model for Interval Prediction of Solar Power Output
in Ship Onboard Power Systems. IEEE Trans. Sustain. Energy 2021, 12, 14–24. [CrossRef]

37. Lu, H.; Chang, G. A Hybrid Approach for Day-Ahead Forecast of PV Power Generation. IFAC-PapersOnLine 2018, 51, 634–638.
[CrossRef]

http://dx.doi.org/10.1109/ICIRCA.2018.8597288
http://dx.doi.org/10.1016/j.solener.2016.06.069
http://dx.doi.org/10.1109/SmartGridComm.2012.6486039
http://dx.doi.org/10.1109/ACCESS.2021.3051839
http://dx.doi.org/10.1016/j.apenergy.2020.116239
http://dx.doi.org/10.1016/j.rser.2018.03.084
http://dx.doi.org/10.1109/ISGTEurope.2019.8905430
http://dx.doi.org/10.1109/ICMLA.2015.33
http://dx.doi.org/10.1016/j.renene.2013.11.067
http://dx.doi.org/10.1007/978-3-540-39964-3_62
http://dx.doi.org/10.1016/j.matcom.2015.05.010
http://dx.doi.org/10.1016/j.energy.2018.08.207
http://dx.doi.org/10.1109/TSTE.2018.2881531
http://dx.doi.org/10.1109/JPHOTOV.2020.2987158
http://dx.doi.org/10.1109/ACCESS.2019.2935273
http://dx.doi.org/10.1051/e3sconf/202123602016
http://dx.doi.org/10.3390/app11177943
http://dx.doi.org/10.1109/CCIS.2014.7175761
http://dx.doi.org/10.1109/NAPS52732.2021.9654550
http://dx.doi.org/10.1109/ACCESS.2019.2921238
http://dx.doi.org/10.1016/j.procs.2017.09.045
http://dx.doi.org/10.1109/TSTE.2014.2381224
http://dx.doi.org/10.1109/TSTE.2019.2963270
http://dx.doi.org/10.1016/j.ifacol.2018.11.774


Energies 2022, 15, 6267 35 of 39

38. Ratshilengo, M.; Sigauke, C.; Bere, A. Short-Term Solar Power Forecasting Using Genetic Algorithms: An Application Using
South African Data. Appl. Sci. 2021, 11, 4214. [CrossRef]

39. Ospina, J.; Newaz, A.; Faruque, M.O. Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure model.
IET Renew. Power Gener. 2019, 13, 1087–1095. [CrossRef]

40. Li, G.; Xie, S.; Wang, B.; Xin, J.; Li, Y.; Du, S. Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach. IEEE
Access 2020, 8, 175871–175880. [CrossRef]

41. Jalali, S.M.J.; Khodayar, M.; Ahmadian, S.; Shafie-khah, M.; Khosravi, A.; Islam, S.M.S.; Nahavandi, S.; Catalão, J.P.S. A New
Ensemble Reinforcement Learning Strategy for Solar Irradiance Forecasting using Deep Optimized Convolutional Neural
Network Models. In Proceedings of the 2021 International Conference on Smart Energy Systems and Technologies (SEST), Vaasa,
Finland, 6–8 September 2021; pp. 1–6. [CrossRef]

42. Bendali, W.; Saber, I.; Bourachdi, B.; Boussetta, M.; Mourad, Y. Deep Learning Using Genetic Algorithm Optimization for Short
Term Solar Irradiance Forecasting. In Proceedings of the 2020 Fourth International Conference on Intelligent Computing in Data
Sciences (ICDS), Fez, Morocco, 21–23 October 2020; pp. 1–8. [CrossRef]

43. Carneiro, T.; Rocha, P.; Carvalho, P.; Fernández-Ramírez, L. Ridge regression ensemble of machine learning models applied to
solar and wind forecasting in Brazil and Spain. Appl. Energy 2022, 314, 118936. [CrossRef]

44. Ahmad, T.; Manzoor, S.; Zhang, D. Forecasting high penetration of solar and wind power in the smart grid environment using
robust ensemble learning approach for large-dimensional data. Sustain. Cities Soc. 2021, 75, 103269. [CrossRef]

45. Bi, J.; Yuan, H.; Zhang, L.; Zhang, J. SGW-SCN: An integrated machine learning approach for workload forecasting in geo-
distributed cloud data centers. Inf. Sci. 2019, 481, 57–68.

46. Jensen; Fowler, T.; Brown, B.; Lazo, J.; Haupt, S. Metrics for Evaluation of Solar Energy Forecasts; Technical Report; National Center
for Atmospheric Research: Boulder, CO, USA, 2016.

47. Carriere, T.; Kariniotakis, G. An Integrated Approach for Value-Oriented Energy Forecasting and Data-Driven Decision-Making
Application to Renewable Energy Trading. IEEE Trans. Smart Grid 2019, 10, 6933–6944. [CrossRef]

48. Antonanzas, J.; Pozo-Vazquez, D.; Fernandez-Jimenez, L.; Ascacibar, F.J. The value of day-ahead forecasting for photovoltaics in
the Spanish electricity market. Sol. Energy 2017, 158, 140–146. [CrossRef]

49. Markoulidakis, I.; Rallis, I.; Georgoulas, I.; Kopsiaftis, G.; Doulamis, A.; Doulamis, N. Multiclass Confusion Matrix Reduction
Method and Its Application on Net Promoter Score Classification Problem. Technologies 2021, 9, 81. [CrossRef]

50. Yang, D.; Kleissl, J.; Gueymard, C.; Pedro, H.; Coimbra, C. History and trends in solar irradiance and PV power forecasting: A
preliminary assessment and review using text mining. Sol. Energy 2018, 168, 60–101. [CrossRef]

51. Prema, V.; Bhaskar, M.S.; Almakhles, D.; Gowtham, N.; Rao, K.U. Critical Review of Data, Models and Performance Metrics for
Wind and Solar Power Forecast. IEEE Access 2022, 10, 667–688. [CrossRef]

52. Yang, D.; Jirutitijaroen, P.; Walsh, W. Hourly solar irradiance time series forecasting using cloud cover index. Sol. Energy 2012, 86,
3531–3543. [CrossRef]

53. Voyant, C.; Muselli, M.; Paoli, C.; Nivet, M.L. Numerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict
global radiation. Energy 2012, 39, 341–355. [CrossRef]

54. Marquez, R.; Pedro, H.; Coimbra, C. Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to
ANNs. Sol. Energy 2013, 92, 176–188. [CrossRef]

55. Inman, R.; Pedro, H.; Coimbra, C. Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci. 2013,
39, 535–576. [CrossRef]

56. Nespoli, A.; Niccolai, A.; Ogliari, E.; Perego, G.; Collino, E.; Ronzio, D. Machine Learning techniques for solar irradiation
nowcasting: Cloud type classification forecast through satellite data and imagery. Appl. Energy 2022, 305, 117834. [CrossRef]

57. Ardiansyah Ramadhan, R.A.; Heatubun, Y.; Tan, S.; Lee, H.J. Comparison of physical and machine learning models for estimating
solar irradiance and photovoltaic power. Renew. Energy 2021, 178, 1006–1019. [CrossRef]

58. Feng, C.; Liu, Y. A taxonomical review on recent artificial intelligence applications to PV integration into power grids. Int. J.
Electr. Power Energy Syst. 2021, 132, 107176. [CrossRef]

59. Lin, F.; Zhang, Y.; Wang, J. Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods. Int. J.
Forecast. 2022. [CrossRef]

60. Andrade, J.R.; Bessa, R.J. Improving Renewable Energy Forecasting with a Grid of Numerical Weather Predictions. IEEE Trans.
Sustain. Energy 2017, 8, 1571–1580. [CrossRef]

61. Yeom, J.M.; Park, S.; Chae, T.; Kim, J.Y.; Lee, C.S. Spatial Assessment of Solar Radiation by Machine Learning and Deep Neural
Network Models Using Data Provided by the COMS MI Geostationary Satellite: A Case Study in South Korea. Sensors 2019,
19, 2082. [CrossRef]

62. Putra, P.; Ardiansyah Ramadhan, R.A.; Lee, H.J. Application of Semi-Empirical Models Based on Satellite Images for Estimating
Solar Irradiance in Korea. Appl. Sci. 2021, 11, 3445. [CrossRef]

63. Pereira, S.; Canhoto, P.; Salgado, R.; Costa, M.J. Development of an ANN based corrective algorithm of the operational ECMWF
global horizontal irradiation forecasts. Sol. Energy 2019, 185, 387–405. [CrossRef]

64. Mathiesen, P.; Collier, C.; Kleissl, J. A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance
forecasting. Sol. Energy 2013, 92, 47–61. [CrossRef]

http://dx.doi.org/10.3390/app11094214
http://dx.doi.org/10.1049/iet-rpg.2018.5779
http://dx.doi.org/10.1109/ACCESS.2020.3025860
http://dx.doi.org/10.1109/SEST50973.2021.9543462
http://dx.doi.org/10.1109/ICDS50568.2020.9268682
http://dx.doi.org/10.1016/j.apenergy.2022.118936
http://dx.doi.org/10.1016/j.scs.2021.103269
http://dx.doi.org/10.1109/TSG.2019.2914379
http://dx.doi.org/10.1016/j.solener.2017.09.043
http://dx.doi.org/10.3390/technologies9040081
http://dx.doi.org/10.1016/j.solener.2017.11.023
http://dx.doi.org/10.1109/ACCESS.2021.3137419
http://dx.doi.org/10.1016/j.solener.2012.07.029
http://dx.doi.org/10.1016/j.energy.2012.01.006
http://dx.doi.org/10.1016/j.solener.2013.02.023
http://dx.doi.org/10.1016/j.pecs.2013.06.002
http://dx.doi.org/10.1016/j.apenergy.2021.117834
http://dx.doi.org/10.1016/j.renene.2021.06.079
http://dx.doi.org/10.1016/j.ijepes.2021.107176
http://dx.doi.org/10.1016/j.ijforecast.2021.11.002
http://dx.doi.org/10.1109/TSTE.2017.2694340
http://dx.doi.org/10.3390/s19092082
http://dx.doi.org/10.3390/app11083445
http://dx.doi.org/10.1016/j.solener.2019.04.070
http://dx.doi.org/10.1016/j.solener.2013.02.018


Energies 2022, 15, 6267 36 of 39

65. Fernandez-Jimenez, L.; Muñoz Jiménez, A.; Falces, A.; Mendoza-Villena, M.; Garcia-Garrido, E.; Lara-Santillan, P.; Zorzano Alba,
E.; Zorzano-Santamaria, P. Short-term power forecasting system for photovoltaic plants. Renew. Energy 2012, 44, 311–317.
[CrossRef]

66. Prema, V.; Rao, U. Development of statistical time series models for solar power prediction. Renew. Energy 2015, 83, 100–109.
[CrossRef]

67. Moreno-Munoz, A.; de la Rosa, J.J.G.; Posadillo, R.; Bellido, F. Very short term forecasting of solar radiation. In Proceedings of
the 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008; pp. 1–5. [CrossRef]

68. Russo, M.; Leotta, G.; Pugliatti, P.; Gigliucci, G. Genetic programming for photovoltaic plant output forecasting. Sol. Energy 2014,
105, 264–273. [CrossRef]

69. Bacher, P.; Madsen, H.; Nielsen, H. Online Short-term Solar Power Forecasting. Sol. Energy 2009, 83, 1772–1783. [CrossRef]
70. Bessa, R.; Trindade, A.; Silva, C.; Miranda, V. Solar power forecasting in smart grids using distributed information. Int. J. Electr.

Power Energy Syst. 2015, 72, 16–23. [CrossRef]
71. Sansa, I.; Najiba, m.b. Solar Radiation Prediction Using NARX Model; INTECH Open Science: London, UK, 2018. [CrossRef]
72. Di Piazza, A.; Di Piazza, M.C.; Vitale, G. Solar and wind forecasting by NARX neural networks. Renew. Energy Environ. Sustain.

2016, 1, 39. [CrossRef]
73. Voyant, C.; Randimbivololona, P.; Nivet, M.L.; Paoli, C.; Muselli, M. 24-hours ahead global irradiation forecasting using

Multi-Layer Perceptron. Meteorl. Appl. 2014, 21, 644–655. [CrossRef]
74. Shah, A.; Ahmed, K.; Han, X.; Saleem, A. A Novel Prediction Error Based Power Forecasting Scheme for Real PV System using

PVUSA Model: A Grey Box Based Neural Network Approach. IEEE Access 2021, 9, 87196–87206. [CrossRef]
75. Cao, J.C.; Cao, S.H. Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet

analysis. Energy 2006, 31, 3435–3445. [CrossRef]
76. Bi, J.; Zhang, L.; Yuan, H.; Zhou, M. Hybrid task prediction based on wavelet decomposition and ARIMA model in cloud data

center. In Proceedings of the 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Zhuhai,
China, 27–29 March 2018; pp. 1–6. [CrossRef]

77. Bi, J.; Li, S.; Yuan, H.; Zhao, Z.; Liu, H. Deep Neural Networks for Predicting Task Time Series in Cloud Computing Systems. In
Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), Banff, AB, Canada,
9–11 May 2019; pp. 86–91. [CrossRef]

78. AlMahamid, F.; Grolinger, K. Reinforcement Learning Algorithms: An Overview and Classification. In Proceedings of the
2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Virtually, 12–17 September 2021; pp. 1–7.
[CrossRef]

79. Lai, J.P.; Chang, Y.M.; Chen, C.H.; Pai, P.F. A Survey of Machine Learning Models in Renewable Energy Predictions. Appl. Sci.
2020, 10, 5975. [CrossRef]

80. Singh, A.; Thakur, N.; Sharma, A. A review of supervised machine learning algorithms. In Proceedings of the 2016 3rd
International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016;
pp. 1310–1315.

81. Caballé, N.; Castillo-Sequera, J.; Gomez-Pulido, J.A.; Gómez, J.; Polo-Luque, M. Machine Learning Applied to Diagnosis of
Human Diseases: A Systematic Review. Appl. Sci. 2020, 10, 5135. [CrossRef]

82. Dineva, K.; Atanasova, T. Systematic Look at Machine Learning Algorithms—Advantages, Disadvantages and Practical
Applications. In Proceedings of the 20th International Multidisciplinary Scientific Geoconference, Albena, Bulgaria, 18–24 August
2020; pp. 317–327. [CrossRef]

83. Uhrig, R. Introduction to artificial neural networks. In Proceedings of the IECON ’95—21st Annual Conference on IEEE Industrial
Electronics, Orlando, FL, USA, 6–10 November 1995; Volume 1, pp. 33–37. [CrossRef]

84. Kaur, J.; Goyal, A.; Handa, P.; Goel, N. Solar power forecasting using ordinary least square based regression algorithms. In
Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; pp. 1–6. [CrossRef]

85. Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification.
In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India,
15–17 May 2019; pp. 1255–1260. [CrossRef]

86. Schmitz, G.; Aldrich, C.; Gouws, F. ANN-DT: An algorithm for extraction of decision trees from artificial neural networks. IEEE
Trans. Neural Netw. 1999, 10, 1392–1401. [CrossRef] [PubMed]

87. McCandless, T.; Jiménez, P.A. Examining the Potential of a Random Forest Derived Cloud Mask from GOES-R Satellites to
Improve Solar Irradiance Forecasting. Energies 2020, 13, 1671. [CrossRef] [PubMed]

88. Yang, H.T.; Huang, C.M.; Huang, Y.C.; Pai, Y.S. A Weather-Based Hybrid Method for 1-Day Ahead Hourly Forecasting of PV
Power Output. IEEE Trans. Sustain. Energy 2014, 5, 917–926. [CrossRef]

89. Wang, Y.; Xia, Q.; Kang, C. Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting. IEEE Trans.
Power Syst. 2011, 26, 500–507. [CrossRef]

90. Park, J.; Moon, J.; Jung, S.; Hwang, E. Multistep-Ahead Solar Radiation Forecasting Scheme Based on the Light Gradient Boosting
Machine: A Case Study of Jeju Island. Remote Sens. 2020, 12, 2271. [CrossRef]

91. Gunasekaran, V.; Kovi, K.; Arja, S.; Chimata, R. Solar Irradiation Forecasting Using Genetic Algorithms. arXiv 2021,
arXiv:2106.13956.

http://dx.doi.org/10.1016/j.renene.2012.01.108
http://dx.doi.org/10.1016/j.renene.2015.03.038
http://dx.doi.org/10.1109/PVSC.2008.4922587
http://dx.doi.org/10.1016/j.solener.2014.02.021
http://dx.doi.org/10.1016/j.solener.2009.05.016
http://dx.doi.org/10.1016/j.ijepes.2015.02.006
http://dx.doi.org/10.5772/intechopen.70570
http://dx.doi.org/10.1051/rees/2016047
http://dx.doi.org/10.1002/met.1387
http://dx.doi.org/10.1109/ACCESS.2021.3088906
http://dx.doi.org/10.1016/j.energy.2006.04.001
http://dx.doi.org/10.1109/ICNSC.2018.8361342
http://dx.doi.org/10.1109/ICNSC.2019.8743188
http://dx.doi.org/10.1109/CCECE53047.2021.9569056
http://dx.doi.org/10.3390/app10175975
http://dx.doi.org/10.3390/app10155135
http://dx.doi.org/10.5593/sgem2020/2.1/s07.041
http://dx.doi.org/10.1109/IECON.1995.483329
http://dx.doi.org/10.1109/DELCON54057.2022.9753619
http://dx.doi.org/10.1109/ICCS45141.2019.9065747
http://dx.doi.org/10.1109/72.809084
http://www.ncbi.nlm.nih.gov/pubmed/18252640
http://dx.doi.org/10.3390/en13071671
http://www.ncbi.nlm.nih.gov/pubmed/34158911
http://dx.doi.org/10.1109/TSTE.2014.2313600
http://dx.doi.org/10.1109/TPWRS.2010.2052638
http://dx.doi.org/10.3390/rs12142271


Energies 2022, 15, 6267 37 of 39

92. Kang, M.C.; Sohn, J.M.; Park, J.; Lee, S.K.; Yoon, Y.T. Development of algorithm for day ahead PV generation forecasting using
data mining method. Midwest Symp. Circuits Syst. 2011, 7, 1–4. [CrossRef]

93. Li, J.; Shao, B.; Li, T.; Ogihara, M. Hierarchical Co-Clustering: A New Way to Organize the Music Data. IEEE Trans. Multimed.
2012, 14, 471–481. [CrossRef]

94. Zhou, S.; Xu, Z.; Liu, F. Method for Determining the Optimal Number of Clusters Based on Agglomerative Hierarchical Clustering.
IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 3007–3017. [CrossRef]

95. Karamizadeh, S.; Abdullah, S.; Manaf, A.; Zamani, M.; Hooman, A. An Overview of Principal Component Analysis. J. Signal Inf.
Process. 2013, 4, 173–175. [CrossRef]

96. Naeem, M.; Rizvi, S.T.H.; Coronato, A. A Gentle Introduction to Reinforcement Learning and its Application in Different Fields.
IEEE Access 2020, 8, 209320–209344. [CrossRef]

97. Muhammad, A.; Lee, J.M.; Kim, H.S.; Lee, S.; Hong, S. Deep Learning Models for Long-Term Solar Radiation Forecasting
Considering Microgrid Installation: A Comparative Study. Energies 2019, 13, 147. [CrossRef]

98. Mohammadi, K.; Shamshirband, S.; Chong, W.T.; Arif, M.; Petkovic, D.; Chintalapati, D.S. A new hybrid Support Vector Machine-
Wavelet Transform approach for estimation of horizontal global solar radiation. Energy Convers. Manag. 2015, 92, 162–171.
[CrossRef]

99. Sanjari, M.J.; Gooi, H.B. Probabilistic Forecast of PV Power Generation Based on Higher Order Markov Chain. IEEE Trans. Power
Syst. 2017, 32, 2942–2952. [CrossRef]

100. Torres-Barrán, A.; Alonso, Á.; Dorronsoro, J. Regression Tree Ensembles for Wind Energy and Solar Radiation Prediction.
Neurocomputing 2017, 326–327, 151–160. [CrossRef]

101. Wang, J.; Li, P.; Ran, R.; Che, Y.; Zhou, Y. A Short-Term Photovoltaic Power Prediction Model Based on the Gradient Boost
Decision Tree. Appl. Sci. 2018, 8, 689. [CrossRef]

102. Yap, K.; Karri, V. Comparative Study in Predicting the Global Solar Radiation for Darwin, Australia. J. Sol. Energy Eng. 2012,
134, 034501. [CrossRef]

103. Lamara, B.; Notton, G.; Fouilloy, A.; Voyant, C.; Rabah, D. Solar Radiation Forecasting using Artificial Neural Network and
Random Forest Methods: Application to Normal Beam, Horizontal Diffuse and Global Components. Renew. Energy 2018, 132,
871–884. [CrossRef]

104. Liu, L.; Zhan, M.; Bai, Y. A recursive ensemble model for forecasting the power output of photovoltaic systems. Sol. Energy 2019,
189, 291–298. [CrossRef]

105. Jiménez-Pérez, P.; López, L. Modeling and forecasting hourly global solar radiation using clustering and classification techniques.
Sol. Energy 2016, 135, 682–691. [CrossRef]

106. Basaran, K.; Ozcift, A.; Kilinç, D. A New Approach for Prediction of Solar Radiation with Using Ensemble Learning Algorithm.
Arab. J. Sci. Eng. 2019, 44, 7759–7771. [CrossRef]

107. Sun, S.; Wang, S.; Zhang, G.; Zheng, J. A decomposition-clustering-ensemble learning approach for solar radiation forecasting.
Sol. Energy 2018, 163, 189–199. [CrossRef]

108. Bae, K.Y.; Jang, H.S.; Sung, D.K. Hourly Solar Irradiance Prediction Based on Support Vector Machine and Its Error Analysis.
IEEE Trans. Power Syst. 2017, 32, 935–945. [CrossRef]

109. Kumari, P.; Toshniwal, D. Deep learning models for solar irradiance forecasting: A comprehensive review. J. Clean. Prod. 2021,
318, 128566. [CrossRef]

110. Kisi, O.; Zounemat-Kermani, M.; Salazar, G.; Zhu, Z.; Gong, W. Solar radiation prediction using different techniques: Model
evaluation and comparison. Renew. Sustain. Energy Rev. 2016, 61, 384–397. [CrossRef]

111. Si, Z.; Yang, M.; Yu, Y. Hybrid Solar Forecasting Method Using Satellite Visible Images and Modified Convolutional Neural
Networks. IEEE Trans. Ind. Appl. 2021, 57, 5–16. [CrossRef]

112. Zang, H.; Liu, L.; Sun, L.; Cheng, L.; Wei, Z.; Sun, G. Short-term global horizontal irradiance forecasting based on a hybrid
CNN-LSTM model with spatiotemporal correlations. Renew. Energy 2020, 160, 26–41. [CrossRef]

113. Wang, F.; Zhang, Z.; Chai, H.; Yu, Y.; Lu, X.; Wang, T.; Lin, Y. Deep Learning Based Irradiance Mapping Model for Solar PV Power
Forecasting Using Sky Image. In Proceedings of the 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD,
USA, 29 September–3 October 2019; pp. 1–9. [CrossRef]

114. Xu, C.; Shen, J.; Du, X.; Zhang, F. An Intrusion Detection System Using a Deep Neural Network With Gated Recurrent Units.
IEEE Access 2018, 6, 48697–48707. [CrossRef]

115. Wang, F.; Xuan, Z.; Zhen, Z.; Li, K.; Wang, T.; Shi, M. A day-ahead PV power forecasting method based on LSTM-RNN model
and time correlation modification under partial daily pattern prediction framework. Energy Convers. Manag. 2020, 212, 112766.
[CrossRef]

116. Liu, C.H.; Gu, J.C.; Yang, M.T. A Simplified LSTM Neural Networks for One Day-ahead Solar Power Forecasting. IEEE Access
2021, 9, 17174–17195. [CrossRef]

117. Sibtain, M.; Li, X.; Saleem, S.; Mansoor, Q.; Saqlain, M.; Tahir, T.; Apaydin, H. A Multistage Hybrid Model ICEEMDAN-SE-VMD-
RDPG for a Multivariate Solar Irradiance Forecasting. IEEE Access 2021, 9, 37334–37363. [CrossRef]

118. Li, S.; Bi, J.; Yuan, H.; Zhou, M.; Zhang, J. Improved LSTM-based Prediction Method for Highly Variable Workload and Resources
in Clouds. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON,
Canada, 11–14 October 2020; pp. 1206–1211. [CrossRef]

http://dx.doi.org/10.1109/MWSCAS.2011.6026333
http://dx.doi.org/10.1109/TMM.2011.2181151
http://dx.doi.org/10.1109/TNNLS.2016.2608001
http://dx.doi.org/10.4236/jsip.2013.43B031
http://dx.doi.org/10.1109/ACCESS.2020.3038605
http://dx.doi.org/10.3390/en13010147
http://dx.doi.org/10.1016/j.enconman.2014.12.050
http://dx.doi.org/10.1109/TPWRS.2016.2616902
http://dx.doi.org/10.1016/j.neucom.2017.05.104
http://dx.doi.org/10.3390/app8050689
http://dx.doi.org/10.1115/1.4006574
http://dx.doi.org/10.1016/j.renene.2018.08.044
http://dx.doi.org/10.1016/j.solener.2019.07.061
http://dx.doi.org/10.1016/j.solener.2016.06.039
http://dx.doi.org/10.1007/s13369-019-03841-7
http://dx.doi.org/10.1016/j.solener.2018.02.006
http://dx.doi.org/10.1109/TPWRS.2016.2569608
http://dx.doi.org/10.1016/j.jclepro.2021.128566
http://dx.doi.org/10.1016/j.rser.2016.04.024
http://dx.doi.org/10.1109/ICPS48389.2020.9176798
http://dx.doi.org/10.1016/j.renene.2020.05.150
http://dx.doi.org/10.1109/IAS.2019.8912348
http://dx.doi.org/10.1109/ACCESS.2018.2867564
http://dx.doi.org/10.1016/j.enconman.2020.112766
http://dx.doi.org/10.1109/ACCESS.2021.3053638
http://dx.doi.org/10.1109/ACCESS.2021.3062764
http://dx.doi.org/10.1109/SMC42975.2020.9283029


Energies 2022, 15, 6267 38 of 39

119. Dabbaghjamanesh, M.; Kavousi-Fard, A.; Zhang, J. Stochastic Modeling and Integration of Plug-In Hybrid Electric Vehicles
in Reconfigurable Microgrids With Deep Learning-Based Forecasting. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4394–4403.
[CrossRef]

120. Huang, Z.; Yang, F.; Xu, F.; Song, X.; Tsui, K.L. Convolutional Gated Recurrent Unit–Recurrent Neural Network for State-of-Charge
Estimation of Lithium-Ion Batteries. IEEE Access 2019, 7, 93139–93149. [CrossRef]

121. Hao, Y.; Sheng, Y.; Wang, J. Variant Gated Recurrent Units With Encoders to Preprocess Packets for Payload-Aware Intrusion
Detection. IEEE Access 2019, 7, 49985–49998. [CrossRef]

122. Gupta, A.; Gupta, K.; Saroha, S. A review and evaluation of solar forecasting technologies. Mater. Today Proc. 2021, 47, 2420–2425.
[CrossRef]

123. Feng, C.; Zhang, J. SolarNet: A Deep Convolutional Neural Network for Solar Forecasting via Sky Images. In Proceedings
of the 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA,
17–20 February 2020; pp. 1–5. [CrossRef]

124. Sun, Y.; Venugopal, V.; Brandt, A. Short-term solar power forecast with deep learning: Exploring optimal input and output
configuration. Sol. Energy 2019, 188, 730–741. [CrossRef]

125. Mishra, S.; Palanisamy, P. Multi-time-horizon Solar Forecasting Using Recurrent Neural Network. In Proceedings of the 2018
IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 18–24. [CrossRef]

126. Yu, Y.; Cao, J.; Zhu, J. An LSTM Short-Term Solar Irradiance Forecasting Under Complicated Weather Conditions. IEEE Access
2019, 7, 145651–145666. [CrossRef]

127. Qing, X.; Niu, Y. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 2018, 148, 461–468.
[CrossRef]

128. Guermoui, M.; Melgani, F.; Danilo, C. Multi-step Ahead Forecasting of Daily Global and Direct Solar Radiation: A Review and
Case Study of Ghardaia Region. J. Clean. Prod. 2018, 201, 716–734. [CrossRef]

129. Jeon, B.K.; Kim, E.J. Next-Day Prediction of Hourly Solar Irradiance Using Local Weather Forecasts and LSTM Trained with
Non-Local Data. Energies 2020, 13, 5258. [CrossRef]

130. Obiora, C.N.; Ali, A.; Hasan, A.N. Estimation of Hourly Global Solar Radiation Using Deep Learning Algorithms. In Proceedings
of the 2020 11th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 29–31 October 2020; pp. 1–6. [CrossRef]

131. Mukherjee, A.; Ain, A.; Dasgupta, P. Solar Irradiance Prediction from Historical Trends Using Deep Neural Networks. In
Proceedings of the 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada,
12–15 August 2018; pp. 356–361. [CrossRef]

132. de Guia, J.D.; Concepcion, R.S.; Calinao, H.A.; Alejandrino, J.; Dadios, E.P.; Sybingco, E. Using Stacked Long Short Term Memory
with Principal Component Analysis for Short Term Prediction of Solar Irradiance based on Weather Patterns. In Proceedings of
the 2020 IEEE Region 10 Conference (TENCON), Osaka, Japan, 16–19 November 2020; pp. 946–951. [CrossRef]

133. Rai, A.; Shrivastava, A.; Jana, K. A Robust Auto Encoder-Gated Recurrent Unit (AE-GRU) Based Deep Learning Approach for
Short Term Solar Power Forecasting. Optik 2021, 252, 168515. [CrossRef]

134. Li, B. A review on the integration of probabilistic solar forecasting in power systems. Sol. Energy 2020, 207, 777–795. [CrossRef]
135. Panamtash, H.; Mahdavi, S.; Zhou, Q. Probabilistic Solar Power Forecasting: A Review and Comparison. In Proceedings of the

52nd North American Power Symposium, Virtual, 11–14 April 2021; pp. 1–6. [CrossRef]
136. Wang, H.Z.; Yi, H.; Peng, J.; Wang, G.; Liu, Y.; Jiang, H.; Liu, W. Deterministic and probabilistic forecasting of photovoltaic power

based on deep convolutional neural network. Energy Convers. Manag. 2017, 153, 409–422. [CrossRef]
137. Garg, S.; Agrawal, A.; Goyal, S.; Verma, K. Day Ahead Solar Irradiance Forecasting using Markov Chain Model. In Proceedings

of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 11–13 December 2020; pp. 1–5.
[CrossRef]

138. Yona, A.; Senjyu, T.; Funabashi, T.; Kim, C.H. Determination Method of Insolation Prediction with Fuzzy and Applying Neural
Network for Long-Term Ahead PV Power Output Correction. IEEE Trans. Sustain. Energy 2013, 4, 527–533. [CrossRef]

139. Wang, Y.; Shen, Y.; Mao, S.; Cao, G.; Nelms, R.M. Adaptive Learning Hybrid Model for Solar Intensity Forecasting. IEEE Trans.
Ind. Inform. 2018, 14, 1635–1645. [CrossRef]

140. Van Deventer, W.; Jamei, E.; Thirunavukkarasu, G.; Seyedmahmoudian, M.; Tey, K.S.; Horan, B.; Mekhilef, S.; Stojcevski, A.
Short-term PV power forecasting using hybrid GASVM technique. Renew. Energy 2019, 140, 367–379. [CrossRef]

141. Tao, Y.; Chen, Y. Distributed PV Power Forecasting Using Genetic Algorithm Based Neural Network Approach. In Proceedings
of the 2014 International Conference on Advanced Mechatronic Systems, Kumamoto, Japan, 10–12 August 2014; pp. 557–560.
[CrossRef]

142. B Gururaj, M.P.; Amani, A. An Identification and Estimation of Solar Energy in India Using Fuzzy Logic (AI) Technique. Int. J.
Core Eng. Manag. 2017, 72–79.

143. Tawn, R.; Browell, J. A review of very short-term wind and solar power forecasting. Renew. Sustain. Energy Rev. 2022, 153, 111758.
[CrossRef]

144. Mitrentsis, G.; Lens, H. An interpretable probabilistic model for short-term solar power forecasting using natural gradient
boosting. Appl. Energy 2022, 309, 118473. [CrossRef]

145. Alessandrini, S.; Delle Monache, L.; Sperati, S.; Cervone, G. An analog ensemble for short-term probabilistic solar power forecast.
Appl. Energy 2015, 157, 95–110. [CrossRef]

http://dx.doi.org/10.1109/TITS.2020.2973532
http://dx.doi.org/10.1109/ACCESS.2019.2928037
http://dx.doi.org/10.1109/ACCESS.2019.2910860
http://dx.doi.org/10.1016/j.matpr.2021.04.491
http://dx.doi.org/10.1109/ISGT45199.2020.9087703
http://dx.doi.org/10.1016/j.solener.2019.06.041
http://dx.doi.org/10.1109/ECCE.2018.8558187
http://dx.doi.org/10.1109/ACCESS.2019.2946057
http://dx.doi.org/10.1016/j.energy.2018.01.177
http://dx.doi.org/10.1016/j.jclepro.2018.08.006
http://dx.doi.org/10.3390/en13205258
http://dx.doi.org/10.1109/IREC48820.2020.9310381
http://dx.doi.org/10.1109/SEGE.2018.8499394
http://dx.doi.org/10.1109/TENCON50793.2020.9293719
http://dx.doi.org/10.1016/j.ijleo.2021.168515
http://dx.doi.org/10.1016/j.solener.2020.06.083
http://dx.doi.org/10.1109/NAPS50074.2021.9449746
http://dx.doi.org/10.1016/j.enconman.2017.10.008
http://dx.doi.org/10.1109/INDICON49873.2020.9342446
http://dx.doi.org/10.1109/TSTE.2013.2246591
http://dx.doi.org/10.1109/TII.2017.2789289
http://dx.doi.org/10.1016/j.renene.2019.02.087
http://dx.doi.org/10.1109/ICAMechS.2014.6911608
http://dx.doi.org/10.1016/j.rser.2021.111758
http://dx.doi.org/10.1016/j.apenergy.2021.118473
http://dx.doi.org/10.1016/j.apenergy.2015.08.011


Energies 2022, 15, 6267 39 of 39

146. Doubleday, K.; Jascourt, S.; Kleiber, W.; Hodge, B.M. Probabilistic Solar Power Forecasting Using Bayesian Model Averaging.
IEEE Trans. Sustain. Energy 2021, 12, 325–337. [CrossRef]

147. Khodayar, M.; Mohammadi, S.; Khodayar, M.E.; Wang, J.; Liu, G. Convolutional Graph Autoencoder: A Generative Deep Neural
Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting. IEEE Trans. Sustain. Energy 2020, 11, 571–583. [CrossRef]

148. Huang, X.; Shi, J.; Gao, B.; Tai, Y.; Chen, Z.; Zhang, J. Forecasting Hourly Solar Irradiance Using Hybrid Wavelet Transformation
and Elman Model in Smart Grid. IEEE Access 2019, 7, 139909–139923. [CrossRef]

149. Perveen, G.; Rizwan, M.; Goel, N. An ANFIS-based model for solar energy forecasting and its smart grid application. Eng. Rep.
2019, 1, e12070. doi: 10.1002/eng2.12070. [CrossRef]

150. Shuaixun, C.; Gooi, H.; Wang, M. Solar radiation forecast based on fuzzy logic and neural networks. Renew. Energy 2013,
60, 195–201. [CrossRef]

151. Yeom, J.M.; Deo, R.; Adamowski, J.; Park, S.; Lee, C.S. Spatial mapping of short-term solar radiation prediction incorporating
geostationary satellite images coupled with deep convolutional LSTM networks for South Korea. Environ. Res. Lett. 2020,
15, 094025. [CrossRef]

152. Yang, D.; Yagli, G.; Srinivasan, D. Sub-minute probabilistic solar forecasting for real-time stochastic simulations. Renew. Sustain.
Energy Rev. 2022, 153, 111736. [CrossRef]

153. Zhang, X.; Fang, F.; Wang, J. Probabilistic Solar Irradiation Forecasting Based on Variational Bayesian Inference with Secure
Federated Learning. IEEE Trans. Ind. Inform. 2021, 17, 7849–7859. doi: 10.1109/TII.2020.3035807. [CrossRef]

154. Bi, J.; Zhang, K.; Yuan, H. Workload and Renewable Energy Prediction in Cloud Data Centers with Multi-scale Wavelet
Transformation. In Proceedings of the 2021 29th Mediterranean Conference on Control and Automation (MED), virtually,
22–25 June 2021; pp. 506–511. [CrossRef]

155. Bi, J.; Zhang, X.; Yuan, H.; Zhang, J.; Zhou, M. A Hybrid Prediction Method for Realistic Network Traffic With Temporal
Convolutional Network and LSTM. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1869–1879. [CrossRef]

156. A novel clustering approach for short-term solar radiation forecasting. Sol. Energy 2015, 122, 1371–1383. [CrossRef]
157. Cannizzaro, D.; Aliberti, A.; Bottaccioli, L.; Macii, E.; Acquaviva, A.; Patti, E. Solar radiation forecasting based on convolutional

neural network and ensemble learning. Expert Syst. Appl. 2021, 181, 115167. [CrossRef]
158. Kumari, P.; Toshniwal, D. Extreme gradient boosting and deep neural network based ensemble learning approach to forecast

hourly solar irradiance. J. Clean. Prod. 2020, 279, 123285. [CrossRef]
159. Sharma, N.; Mangla, M.; Yadav, S.; Goyal, N.; Singh, A.; Verma, S.; Saber, T. A sequential ensemble model for photovoltaic power

forecasting. Comput. Electr. Eng. 2021, 96, 107484. [CrossRef]
160. Rodríguez, F.; Martín, F.; Fontan, L.; Galarza, A. Ensemble of machine learning and spatiotemporal parameters to forecast very

short-term solar irradiation to compute photovoltaic generators’ output power. Energy 2021, 229, 120647. [CrossRef]
161. Khan, W.; Walker, S.; Zeiler, W. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble

stacking approach. Energy 2022, 240, 122812. [CrossRef]

http://dx.doi.org/10.1109/TSTE.2020.2993524
http://dx.doi.org/10.1109/TSTE.2019.2897688
http://dx.doi.org/10.1109/ACCESS.2019.2943886
http://dx.doi.org/10.1002/eng2.12070
http://dx.doi.org/10.1016/j.renene.2013.05.011
http://dx.doi.org/10.1088/1748-9326/ab9467
http://dx.doi.org/10.1016/j.rser.2021.111736
http://dx.doi.org/10.1109/TII.2020.3035807
http://dx.doi.org/10.1109/MED51440.2021.9480336
http://dx.doi.org/10.1109/TASE.2021.3077537
http://dx.doi.org/10.1016/j.solener.2015.10.053
http://dx.doi.org/10.1016/j.eswa.2021.115167
http://dx.doi.org/10.1016/j.jclepro.2020.123285
http://dx.doi.org/10.1016/j.compeleceng.2021.107484
http://dx.doi.org/10.1016/j.energy.2021.120647
http://dx.doi.org/10.1016/j.energy.2021.122812

	Introduction
	Classification of Forecasting Methods
	Time Horizon
	Spatial Resolution
	Forecast Theme
	Weather Factors

	Survey on Solar Irradiance and Power Forecasting Models
	Survey on Persistence Models
	Survey on Physical Models
	Survey on Time Series Models
	Survey on Machine Learning Models
	Survey on Deep Learning Models
	Survey on Special Artificial Intelligence Models
	Survey on Hybrid and Ensemble Models

	Statistical Metrics for Solar Power Forecasting
	Pearson's Correlation Coefficient (R2)
	Root Mean Squared Error (RMSE)
	Normalized Root Mean Squared Error (NRMSE)
	Maximum Absolute Error (MaxAE)
	Mean Absolute Error (MAE)
	Mean Absolute Percentage Error (MAPE)
	Mean Bias Error (MBE)
	Kolmogorov–Smirnov Test Integral (KSI)
	Confusion Matrix (CM)
	Accuracy
	Precision
	Recall
	Forecast Score
	F Score
	F1 Score


	Solar Irradiance and Power Forecasting Methodologies
	Persistence Model
	Persistence Model 1
	Persistence Model 2
	Smart Persistence Model 

	Physical Model
	Time-Series-Based Forecast Models 
	Machine Learning Models
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Semi-Supervised Learning

	Deep Learning Models
	Supervised Deep Learning
	Unsupervised Deep Learning

	Probabilistic Models
	Special AI Models
	Hybrid & Ensemble Machine Learning Models

	Conclusions
	References

