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Abstract 

Gait disorders can reduce the quality of life for people with neuromuscular impairments. Therefore, walking recovery 
is one of the main priorities for counteracting sedentary lifestyle, reducing secondary health conditions and restoring 
legged mobility. At present, wearable powered lower-limb exoskeletons are emerging as a revolutionary technology 
for robotic gait rehabilitation. This systematic review provides a comprehensive overview on wearable lower-limb 
exoskeletons for people with neuromuscular impairments, addressing the following three questions: (1) what is the 
current technological status of wearable lower-limb exoskeletons for gait rehabilitation?, (2) what is the methodol-
ogy used in the clinical validations of wearable lower-limb exoskeletons?, and (3) what are the benefits and current 
evidence on clinical efficacy of wearable lower-limb exoskeletons? We analyzed 87 clinical studies focusing on both 
device technology (e.g., actuators, sensors, structure) and clinical aspects (e.g., training protocol, outcome measures, 
patient impairments), and make available the database with all the compiled information. The results of the literature 
survey reveal that wearable exoskeletons have potential for a number of applications including early rehabilitation, 
promoting physical exercise, and carrying out daily living activities both at home and the community. Likewise, wear-
able exoskeletons may improve mobility and independence in non-ambulatory people, and may reduce secondary 
health conditions related to sedentariness, with all the advantages that this entails. However, the use of this technol-
ogy is still limited by heavy and bulky devices, which require supervision and the use of walking aids. In addition, 
evidence supporting their benefits is still limited to short-intervention trials with few participants and diversity among 
their clinical protocols. Wearable lower-limb exoskeletons for gait rehabilitation are still in their early stages of devel-
opment and randomized control trials are needed to demonstrate their clinical efficacy.
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Background
Gait disorders affect approximately 60% of patients with 

neuromuscular disorders [1] and generally have a high 

impact on their quality of life [2]. Moreover, immobility 

and loss of independence for performing basic activities 

of daily living results in patients being restricted to a sed-

entary lifestyle. �is lack of physical activity increases the 

risk of developing secondary health conditions  (SHCs), 

such as respiratory and cardiovascular complications, 

bowel/bladder dysfunction, obesity, osteoporosis and 

pressure ulcers [3–7]; which can further reduce the 

patients’ life expectancy [3, 4]. �erefore, walking recov-

ery is one of the main rehabilitation goals for patients 

with neuromuscular impairments [8, 9].
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Robotic gait rehabilitation appeared 25 years ago as an 

alternative to conventional manual gait training. Com-

pared with conventional therapy, robotic gait rehabilita-

tion can deliver highly controlled, repetitive and intensive 

training in an engaging environment [10], reduce the 

physical burden for the therapist, and provide objective 

and quantitative assessments of the patients’ progression 

[11]. �e use of gait rehabilitation robots began in 1994 

[12] with the development of Lokomat [13]. Since then, 

different rehabilitation robots have been developed and 

can be classified into grounded exoskeletons (e.g., Loko-

mat [14], LOPES [15], ALEX [16]), end-effector devices 

(e.g., Gait Trainer [17], Haptic Walker [18]), and wearable 

exoskeletons (e.g., ReWalk [19], Ekso [20], Indego [21]) 

[12]. In addition, there have been recent developments 

towards “soft exoskeletons” or “exosuits” which use soft 

actuation systems and/or structures to assist the walking 

function [22–25]. Despite these developments, to date 

the optimal type of rehabilitation robot for a specific user 

and neuromuscular impairment still remains unclear 

[26].

Wearable exoskeletons are emerging as revolutionary 

devices for gait rehabilitation due to both the active par-

ticipation required from the user, which promotes physi-

cal activity [27], and the possibility of being used as an 

assistive device in the community. �e number of stud-

ies on wearable exoskeletons during the past 10 years 

has seen a rapid increase, following the general tendency 

now towards rehabilitation robots [28]. Some of these 

devices already have FDA approval and/or CE mark, and 

are commercially available, whereas many others are still 

under development.

�ere have been several reviews surveying the field of 

wearable exoskeletons for gait rehabilitation. Some of 

these reviews have focused on reviewing the technologi-

cal aspects of exoskeletons from a general perspective 

[29, 30], while others have focused on specific aspects 

such as the control strategies [31] or the design of spe-

cific joints [32]. A selection of reviews have focused on 

surveying the evidence on effectiveness and usability of 

exoskeletons for clinical neurorehabilitation in general 

[33, 34], or for a specific pathology such as spinal cord 

injury (SCI) [30, 34] or stroke [11].

�is review provides a comprehensive overview on 

wearable  lower-limb powered exoskeletons for over 

ground training, without body weight support, that 

are intended for use with people who have gait disor-

ders due to neuromuscular impairments. In comparison 

with other reviews, we analyse a wide range of aspects 

of wearable exoskeletons, from their technology to their 

clinical evidence, for different types of pathologies. �is 

systematic review was carried out to address the follow-

ing questions: (1) what is the current technological status 

of wearable lower-limb exoskeletons for gait rehabilita-

tion?, (2) what are the benefits and risks for exoskeleton 

users?, and (3) what is the current evidence on clinical 

efficacy for wearable exoskeletons?

Methods
Search strategy

We searched for scientific publications in four online 

databases from 2000 until 18th March 2019 using the 

following search terms: (exoskeleton OR orthos* OR exo-

skeletal) AND (robot* OR power* OR active) AND (walk* 

OR gait) AND ((leg OR lower) AND (limb OR extrem-

ity)) AND (rehabilitation* OR clinical* OR pilot) NOT 

(“body weight support” OR BWS OR treadmill OR upper 

OR hand OR arm). �is literature search resulted in 855 

publications, 57 of which were added in a second search 

for commercially available exoskeletons: 175 in PubMed, 

348 in Web of Science, 296 in Scopus, 36 in IEEE Xplore. 

Additionally,  29 studies from exoskeleton websites were 

added.

After removing duplicates, 777 publications were 

screened first by their title and secondly by their abstract. 

127 publications were full-text assessed for eligibility. �e 

identification, screening and eligibility check of the stud-

ies were all done by the same author (i.e., A. Rodríguez-

Fernández). In case of uncertainty during the screening 

or the classification process, a decision was reached in 

agreement with the three authors of the manuscript. 

Finally, 87 studies were included in this review (Fig.  1), 

of which 71 were identified as clinical trials according 

to the Clinical Trial definition proposed by the National 

Institutes of Health (NIH) [35] (see Additional file 1 for 

a detailed view on the clinical trial identification assess-

ment). Selected studies were published between 2009 and 

2019, focusing this literature study on the last 11 years.

Inclusion and exclusion criteria

We only included studies written in English, which pro-

vided relevant clinical information aimed at studying 

the effects of exoskeleton devices on gait rehabilitation. 

To be included in the analysis, each article had to meet 

the following three conditions: (1) studies had to use a 

wearable and powered lower-limb exoskeleton, (2) report 

overground outcome measures, and (3) participants 

had to have a neuromuscular impairment. �ere were 

no limitations regarding the participants’ age or gender. 

Note that we considered as wearable exoskeletons those 

that present a rigid external structure and therefore, soft 

exoskeletons or exosuits were not included in the present 

survey. Studies that used body weight support or a tread-

mill were excluded with the purpose of focusing only 

on studies that solely investigated the effect of wearable 
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exoskeleton technology. Note that for the analysis, only 

data from patients who used the robotic devices were 

included, i.e., patients in the intervention group.

Approach

�e information of each study was classified according to 

technical aspects of the exoskeleton and clinical aspects. 

�e technical aspects included: (1) exoskeleton design 

and structure, (2) control methods, and (3) type of actua-

tors. �e clinical aspects included: (4) patient demo-

graphics, (5) patient impairments, (6) training protocol, 

(7) outcome measures, (8) the walking aids used during 

training, and (9) the training environment.

�e neuromuscular impairments of the patients were 

classified into three groups: spinal cord injury (SCI), 

stroke, and other pathologies. �is classification was used 

to analyse the technical and clinical aspects of the 87 

studies. Due to the large number of studies involving SCI 

patients, we carried out a specific analysis on the level of 

injury (LOI) building upon the previous analysis carried 

out by Contreras-Vidal et al. [30].

Fig. 1 Four-phase flow diagram of the literature selection process according to PRISMA guidelines. From 884, finally 87 studies were selected, 
of which 71 were identified as clinical trials according to the Clinical Trial definition proposed by the National Institutes of Health (NIH) [35] (see 
Additional file 1). The 87 studies were grouped in three categories according to the pathology treated in the study: Spinal Cord injury ( n = 54 ), 
stroke ( n = 22 ) and other pathologies ( n = 11 ; poliomyelitis: 3, cerebral palsy: 3, multiple sclerosis: 2, brain tumor surgery: 1, spinocerebellar 
degeneration: 1, and traumatic brain injury: 1)
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�e classification of primary and secondary outcome 

measures were grouped using the five categories pro-

posed by Contreras-Vidal et al. [30] and a sixth additional 

category: (1) Ambulation assessments, which includes 

measures to assess locomotor ability based on time or 

distance measures; (2) balance and level of assistance/

independence, which evaluates the stability and the 

dependency on walking aids; (3) physiological improve-

ments, which considers effects related to pain, skin, 

bowel/bladder function and spasticity; (4) energy expend-

iture, which quantifies the effort and metabolic energy 

consumption needed when using the device; (5) usabil-

ity and comfort, which evaluates the ergonomics and the 

subjective feedback of the user; and (6) biomechanics, 

which contains the kinematic and kinetic metrics.

Selected studies were grouped in four categories 

according to their study design: experimental validation 

(preliminary evaluation of the device), pilot study, obser-

vational study (descriptive study, cohort study, longitu-

dinal study, cross-sectional study, pre-post study) and 

experimental study (randomized control trial).

Review
Wearable exoskeleton technology

�is review identified 25 exoskeletons (Fig.  2), from 

which only six have FDA approval and/or CE mark and 

are commercially available (i.e. Ekso, HAL, Indego, REX, 

ReWalk and SMA). We found that 16 out of the 25 exo-

skeletons (64%) actively assist two or more joints (13: 

hip-knee, 3: hip-knee-ankle), while the rest (36%) actively 

assist a single joint (1: hip, 6: knee, 2: ankle). In addi-

tion, out of the 25 exoskeletons only one is intended for 

the paediatric population [36]. Table  1 summarizes the 

main technical aspects of the 25 exoskeletons. For further 

details on the exoskeleton characteristics see Additional 

file 2.

From our literature review, we identified that the first 

clinical study using a wearable exoskeleton was published 

in 2009 reporting the results of a clinical test with the 

HAL exoskeleton [37]. �e second study did not appear 

until 2011 with the clinical evaluation of the Vanderbilt 

Exoskeleton (nowadays commercialized as Indego) [38]. 

Moreover, we found that Ekso, HAL and ReWalk are the 

exoskeletons with a considerably higher number of clini-

cal studies (Fig.  3d), and together with the Indego exo-

skeleton they have been the most tested exoskeletons in 

terms of number of patients (Fig. 3e).

Design and structure

We found that the number of degrees of freedom (DOF) 

in wearable exoskeletons ranges from one to three per leg 

in the sagittal plane (except for REX which also enables 

movement in the transverse and frontal planes) and the 

most frequent number of DOF is two (Fig. 2). Joints can 

be passive, active or, as in the case of the ankle joint, they 

may also be fixed. From the 25 exoskeletons selected in 

this review, 22 present an active knee joint (see Table 1), 

nine present passive joints (8: ankle, 1: hip), 7 present 

a fixed ankle joint (Indego, ARKE, Arazpour2013a, 

Arazpour2013b, Kim2013, Chang2017 and AlterG Bionic 

Leg) and 5 do not present any ankle joint (Vanderbilt 

Exoskeleton, Curara, SMA, Keoogo and Kawasaki2017).

Exoskeletons with two active joints were tested by 

76.4% of the total number of patients reported in the 

included studies, and focused mostly on SCI patients 

(Fig. 3a). In contrast, exoskeletons with three active joints 

were tested by only 4.9% of the patients and also focused 

on SCI. Finally, exoskeletons with one active joint were 

tested by 18.7% of the patients and mostly focused on 

stroke and patients with other pathologies.

In agreement with the trend previously detected by 

Young and Ferris [51] and Veale and Xie [52], we found 

Fig. 2 Exoskeletons included in the literature review. From left to right and top to bottom: A diagram showing the locations of the active joints of 
the exoskeletons included in the literature review, HAL (Image courtesy of Cyberdine, Inc.), WPAL (Reproduced from [39]), H2 (Reproduced from 
[40]), REX (Reproduced from [41]), Ekso (Image courtesy of Paolo Milia, Prosperius Institute, Neurorehabilitation and Robotic Area, University of 
Perugia, Umbertide, Italy), ReWalk (Image courtesy of ReWalk Robotics), Robin (Image courtesy of Hyunsub Park, Applied Robot Technology R&D 
Group, Korea Institute of Industrial Technology, Korea), CUHK-EXO (Reproduced from [42]), ITRI (Reproduced from [43]), Vanderbilt Exoskeleton 
(Image courtesy of Michael Goldfarb, Vanderbilt University, Nashville), Indego (Reproduced from [44]), ARKE (Image courtesy of Edward Lemaire, 
Ottawa Hospital Research Institute, Centre for Rehabilitation Research and Development, Ottawa, Canada), Curara (Reproduced from [45]), 
Arazpour2103a (Image courtesy of Mokhtar Arazpour, Department of orthotics and prosthetics, University of Social Welfare and Rehabilitation 
Sciences, Tehran, Islamic Republic of Iran), Kim2013 (Image courtesy of Kim Gyoosuk, Korea Workers Compensat & Welf Serv, Rehabil Engn Res 
Inst, Incheon, South Korea), Chang2017 (Reproduced from [46]), SMA (Reproduced from [47]), Keoogo (Reproduced from [48]), Kinesis (Image 
courtesy of Antonio J. del Ama, Electronic Technology Deparment, Rey Juan Carlos University, Spain), Lerner2017 (Image courtesy of Thomas 
Bulea, Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, USA), Alter G Bionic Leg (Image courtesy of 
Luna Solution, S.L.), Arazpour2013b (Image courtesy of Monireh A. Bani, Department of Orthotics and Prosthetics, University of Social Welfare and 
Rehabilitation Sciences, Tehran, Islamic Republic of Iran), Kawasaki2017 (Image courtesy of Ohata Koji, Department of Human Health Sciences, Kyoto 
University Graduate School of Medicine, Japan), Yeung2017 (Reproduced from [49]), and Boes2017 (Reproduced from [50]). Note that Vanderbilt 
Exoskeleton and Kinesis are the former prototypes from the current commercial version of Indego and H2, respectively

(See figure on next page.)
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HAL WPAL H2 REX

Ekso ReWalk Robin ITRICUHK-EXO Vanderbilt

Indego ARKE Curara Arazpour2013a Kim2013 Chang2017

SMA Keoogo Kinesis Lerner2017 Bionic Leg Arazpour2013b

Kawasaki2017 Yeung2017 Boes2017
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that the most frequent actuators are electric motors (22 

out of the 25 exoskeletons). Only three of the reviewed 

exoskeletons use hydraulic [46] or pneumatic actuators 

[50, 53] (see Table  1). Regarding the power supply, we 

found that batteries are able to reach up to 6 hours of use 

in the case of the H2 exoskeleton, but generally they are 

a b

d e

c

Fig. 3 Overview of wearable exoskeletons regarding studied pathologies and number of studies, patients and active joints. a Barplot showing 
the number of patients that have used exoskeletons with 1, 2 or 3 active joints. b Barplot showing the weight of wearable exoskeletons for each 
pathology: spinal cord injury, stroke or other pathologies. c Barplot showing the weight of wearable exoskeletons that use 1, 2 or 3 active joints. d 
Number of studies included in this review for each exoskeleton grouped by triennium. e Number of patients studied by each exoskeleton grouped 
by pathology. Error bars indicate one standard deviation
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Table 1 Main technical aspects of the exoskeletons

Exoskeleton Actuated 
joints

Actuator Sensor Control 
method

Gait 
initiation 
mode

Device 
weight 
(kg)

User 
height (cm) 
and weight 
(kg)

Operation 
time (h)

Unique 
features

WPAL [39] HKA Electric JA, JT Trajectory
Interaction

Button 13 145–180
80

> 1 Alternating use 
of robot and 
wheelchair

H2 [40] HKA Elecric JA, JT, IT, FF Trajectory
Interaction

Button 12 145–195
100

6 –

REX [41] HKA Electric – Trajectory Joystick 38 146–195
100

1 Joystick and 
three-button 
keypad

HAL [37] HKa∗ Electric EMG, JA, FF, 
Acc

Trajectory
Interaction 

EMG-
control

EMG Weight 
shifts

14 150–190
100

1.5 Independent 
leg

Ekso [77] HKa Electric JA, FF, Acc 
AJA, ACF

Trajectory
Interaction

Weight shifts
Button

23 158–188
100

1 FDA for stroke

ReWalk [19] HKa Electric JA, FF, Ori Trajectory Weight shifts
CoM (body 

tilt)

23.3 160–190
100

2 FDA for home 
use

Robin [78] HKa Electric FF, Acc, CAcc – Weight shifts 11 –
–

– –

CUHK-EXO [42] HKa Electric JA, FF, Acc Ori, 
CF, CAcc

Trajectory Phone App
Crutch but-

tons 
Upper body 

movements

18 155–185
–

3 –

ITRI [43] HKa Electric – Trajectory Button 20 –
–

– –

Vanderbilt Exo-
skeleton [79]

HK Electric JA, Acc, Ori Trajectory
Interaction

CoP (body 
tilt)

12 –
–

– –

Indego [21] HK† Electric JA, Acc, Ori Trajectory
Interaction

CoP (body 
tilt)

12 155–191
113

1.5 FDA for stroke

ARKE [80] HK† Electric JA, FF, Acc, Ori Trajectory Weight shifts – –
–

– –

Curara [45] HK Electric JA, JT, IT Trajectory 
Interaction

Motion intent 5.8 –
–

– –

Arazpour2013a 
[81]

HK† Electric JA Trajectory Orthotist via 
joystick

10.1 –
–

– –

Kim2013 [53] HK† Pneumatic EMG (arms), 
FF

– – – –
–

3 Air muscles for 
hip

Chang2017 [46] HK† Hydraulic JA, FF, Acc, Ori Trajectory Button 7.9 152–193
100

2 Functional 
Neuro-
muscular 
Stimulation

SMA [47] H Electric JA, JT Trajectory
Interaction

Motion intent 2.7 140–200
–

1 –

Keeogo [48] hK Electric – Trajectory
Interaction

Motion intent 5.4 Above 155
–

2.5 Squatting 
lunging

Kinesis [82] Ka Electric JA, FF, IT, Ori Trajectory
Interaction

Button 9.2 < 185

90
– Hybrid (FES)

Lerner2017 [83] Ka Electric JA, JT, FF – – 3.2 Children 1 –

AlterG Bionic 
Leg [84]

K† Electric JA, JT, FF, Acc Trajectory
Interaction

Motion intent 3.5 153–182
136

2–3 Unilateral

Arazpour2013b 
[85, 86]

K† Electric FF Trajectory Weight shifts 3.6 –
–

– Unilateral
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only capable of sustaining 2 to 4 hours of continuous use 

(Table 1).

Wearable exoskeletons are still heavy and bulky devices 

due to their rigid structures, actuators and batteries. For 

example, the average weight of hip-knee exoskeletons is 

14.28 kg (7.14 kg/leg), which approximately corresponds 

to more than half the weight of an average adult human 

leg (i.e., 10.88 kg [54]). Note that added loads in the legs 

result in an increase of the net metabolic cost, and the 

effect is larger when the load is located more distally [55].

Exoskeletons for SCI patients have the highest mean 

weight ( 15.15 ± 9.01 kg ), independently of the num-

ber of active joints (Fig. 3a), mainly due to the fact that 

the two heaviest exoskeletons were used only in SCI 

(ReWalk: 23.3 kg, and REX: 38 kg). �e mean weight 

of exoskeletons used in stroke ( 8.90 ± 7.48 kg ) and in 

patients with other pathologies (8.87   ±   7.35 kg) are in 

the same range. Independently of the pathology, exoskel-

etons with the same number of active joints have similar 

weights (Fig.  3c). As expected, we found that there is a 

relationship between number of active joints and the exo-

skeleton’s weight: an increase of active joints results in a 

weight increase.

Studies found that misalignment due to suboptimal 

fitting can increase the metabolic cost and discomfort 

of the wearer producing pain, injuries [56, 57] and aug-

ment the risk of bone fractures [58, 59]. �erefore, the 

structure of the exoskeleton has to be able to adapt to 

the anthropometry of the users [60]. Exoskeletons can 

adapt to the user’s height with a range of approximately 

1.45 to 1.95 m (see Table 1), which covers the majority 

of the population [61]. However, the maximum allowed 

weight of 100 kg could be a limiting factor due to the 

fact that people with neuromuscular impairments 

present a higher rate of obesity [62, 63]. On the other 

hand, wearable exoskeletons need to be easy to don/

doff in order to prevent users from carrying out haz-

ardous transitions and requiring assistance from car-

egivers. Doffing time takes around 10 minutes [40, 64, 

65] and usually tends to be shorter than donning time, 

which can reach up to 30 minutes in some cases [66]. In 

general, patients are unable to don/doff the exoskeleton 

by themselves [65], often needing to carry out compli-

cated wheelchair-exoskeleton transitions, thus requir-

ing the assistance of caregivers.

Supervision from clinical staff is nearly always 

required during wearable exoskeletons use. In addition, 

in order to avoid falls and provide balance, individuals 

need supportive devices such as crutches, walkers and 

canes (Fig.  5b), which can limit the independence and 

mobility of the user, and may lead to shoulder pain [67]. 

In the study by Manns et al. [68], which evaluated the 

perspective of the participants after training with the 

ReWalk exoskeleton, several participants emphasized 

the effort exerted with the arms while using the exo-

skeleton. From this review, we found that patients with 

SCI commonly ended up using a walker or crutches 

whereas post-stroke patients, due to their hemipare-

sis, used a cane on the unaffected side. In the group of 

other pathologies, the walker was the most commonly 

used aid, and in 4 of these studies no aid was needed.

Soft exoskeletons (or exosuits) have recently arisen 

to mitigate some of the limitations of conventional, 

rigid wearable exoskeletons mentioned above. Soft exo-

skeletons stand out for doing away with rigid frames 

Sensors: Acc: Acceleration; ACF: Arm crutches force; AJA: Arm crutches force; Cacc: crutches acceleration; CF: crutches force/pressure; EMG: electromyography; FF: foot 

contacting force/pressure; IT: interaction torque; JA: joint angle; JT: joint torque; Ori: orientation; CoM: center of mass; CoP: center of pressure; FES: functional electrical 

stimulation; KAFO: knee-ankle-foot orthosis

∗Lowercase letters indicate passive joints

†Indicates �xed ankle joint

Table 1 (continued)

Exoskeleton Actuated 
joints

Actuator Sensor Control 
method

Gait 
initiation 
mode

Device 
weight 
(kg)

User 
height (cm) 
and weight 
(kg)

Operation 
time (h)

Unique 
features

Kawasaki2017 
[87]

K Electric Acc Trajectory Motion intent 3 –
–

– Actuator 
attached to a 
KAFO

Batteries on a 
belt

Yeung2017 [49] A Electric FF, Acc, Ori – Foot lift off 1 –
–

5 Battery carried 
at the waist

Unilateral

Boes2017 [50] A Pneumatic JA, FF Trajectory Weight shifts 3.1 –
–

– Unilateral
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presented in wearable exoskeletons. Standard soft exo-

skeletons are characterized for being textile devices 

actuating on user’s joints through Bowden cable-based 

transmissions [69, 70]. �e soft structure translates 

into lighter devices which do not restrict the wearer’s 

mobility, leading to improved comfort, reduced meta-

bolic cost and improved ease to don and doff [69, 71]. 

However, the low actuation torques prevent soft exo-

skeletons from assisting people with severe motor 

impairments, such as non-ambulatory individuals [22, 

72].

Control and sensing

Wearable exoskeletons started implementing rigid con-

trol methods based on predefined trajectories [30]. Nev-

ertheless, exoskeleton technology is opening to patients 

that are not completely paralyzed and thus, in order to 

encourage active participation of the user [73] and pro-

vide more voluntary control, compliant control methods 

based on user-exoskeleton interaction (e.g., impedance 

control) are becoming more frequent (see Table  1). In 

fact, the study by Pérez-Nombela et  al. [74] found that 

patients with incomplete SCI using the H2 exoskeleton 

presented higher metabolic cost when they walked with 

a predefined trajectory than with a control method based 

on user-exoskeleton interaction. We found that approxi-

mately 50% of the included exoskeletons use predefined 

gait trajectories, and the other 50% implement control 

methods based on user-exoskeleton interaction. We also 

found that the HAL exoskeleton is the only device that 

implements an EMG-based control method [75].

Regardless of the type of control, there are two ele-

ments that are crucial for the operation of the exoskel-

eton: the algorithms for gait phase detection and step 

initiation (see Table 1). We found that all the exoskeletons 

included in this review use deterministic threshold-based 

methods (i.e., a given input will always produce the same 

output). Despite the limited information provided in 

studies about this field, we found that the use of ground 

reaction forces is the most frequent method to detect gait 

phases (see Table 1), followed by joint angles and inertial 

measurements. In the cases where the intended users 

preserve locomotor function, exoskeletons also meas-

ure joint torques or EMG signals (see Table 1) generated 

by the user to trigger steps. Finally, we also found that 

several exoskeletons use explicit inputs such as buttons 

or joysticks (see Table 1) to control the exoskeleton.

SCI level of injury distribution

Figure 4 builds upon Figure 1 of Contreras-Vidal et al. 

[30] and shows the LOI distribution across the clini-

cal studies with SCI patients. In general, the range of 

LOIs is widely covered from high cervical levels (C3) 

to low lumbar lesions (L5), yet we did not find stud-

ies including patients with LOI of C1, C2, S1, S2, S3, 

S4 and S5. Patients with thoracic lesions are the most 

representative (80%) with T10 being the most studied 

LOI, followed by T4 and T12. �e low representation 

of cervical (12%) and sacral (8%) lesions is probably due 

to the study inclusion/exclusion criteria, which require 

patients to be able to use walking aids (e.g., crutches or 

walkers) and exclude patients that have a low level of 

walking impairment, i.e., patients with sacral lesions. 

We found that the Ekso and the ReWalk exoskeletons 

present the widest range of injuries with the largest 

number of patients. We also found that exoskeletons 

without active hip joint are restricted to patients with 

incomplete or low thoracic-complete LOI.

Figure  4 also shows that approximately 67% of SCI 

patients have a motor and sensory complete injury 

(Mc/Sc), 28% have a motor and sensory incomplete 

injury (Mi/Si), and finally only 18 patients (5%) have a 

motor-complete sensory-incomplete injury (Mc/Si). 

�is evidence contrasts with data from the National 

Spinal Cord Injury Statistical Center (NSCISC) where 

incomplete paraplegia/tetraplegia affects 67.5% of the 

patients with SCI [76]. �e bias detected in the review 

for complete SCI patients seems to be attributed to the 

inclusion criteria of the studies. We identified a great 

number of studies whose only focus was assessing the 

impact of exoskeletons on motor-complete SCI or non-

ambulatory patients, thus excluding anyone who was 

ambulatory at all. �e reason for this inclusion crite-

rion may be due to assist complete SCI subjects with 

exoskeletons is simpler, especially with control meth-

ods based on predefined trajectories. Conversely, if the 

wearer preserves motor function, the exoskeleton has 

to cooperate with the subject through user-exoskeleton 

interaction-based control, which is more complex.

Fig. 4 Level of injury (LOI) distribution grouped by exoskeleton and study. The number inside each cell indicates the number of patients that were 
tested in each study. Colors indicate studies that used the same exoskeleton and are ordered according to the device weight from lightest (top) to 
heaviest (bottom). Left histogram shows the distribution of patients with lesions that are motor and sensory complete (Mc/Sc), motor and sensory 
incomplete (Mi/Si) and motor-complete and sensory incomplete (Mc/Si). Middle histogram shows the distribution of patients according to LOI, 
and the right histogram shows the distribution of patients according to the AISA Impairment Scale (AIS) [88]. Cells with a grated pattern indicate 
patients that present two different LOI (i.e., patients who have two or more injured vertebrae)

(See figure on next page.)
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Lemaire et al 2017 2 1 1
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Chang et al 2017 3 2 1 1 2

Del-Ama et al 2014 3 1 1 1 1 2

Del-Ama et al 2015 3 1 1 1 1 2

Arazpour et al 2013a 1 2 1 1 1 4

Jun-young et al 2013 1 1

Tsukahara et al 2015 1 1 1 1
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Shimizu et al 2017b 1 1 1 1
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Farris et al 2014 1 1 1

Ekelem et al 2015 1 1 1

Ha et al 2016 2 1 1 1 1 2 1

Tanabe et al 2013a 7 3 1 1 2 6 1

Tanabe et al 2013b 4 1 1 2

Kolakowsky-Hayner et al 2013 7 1 1 1 1 2 1 7
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Yang et al 2015 2 1 2 2 1 1 1 1 1 9 2 1
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Birch et al 2017 11 9 3 2 1 1 1 2 2 1 1 4 2 11
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Clinical validation

�is section analyses the characteristics of the stud-

ies including: the study design, the number of patients 

and their demographics, the training protocol, and the 

outcome measures used to assess the patients’ perfor-

mance. An overview of the characteristics in a table 

format of each of the 87 studies included in this review 

is available in the Additional file 3. Note that the results 

described in this section only consider participants 

who tested the exoskeletons, and not the participants 

that were in the control group.

Study design

Observational studies ( n = 35 ; 40.2%) represented the 

most frequent study design among the selected studies, 

followed by pilot studies ( n = 31 ; 35.6%), experimen-

tal validations ( n = 15 ; 17.2%) and experimental studies 

( n = 6 ; 6.9%). It should also be pointed out that only 10 

out of the 87 studies presented a follow-up evaluation 

after the intervention with the device [19, 47, 65, 89–95]. 

�e average time elapsed between the study and the fol-

low-up evaluation was 2 months, ranging from 1 week 

[65] to 1 year [19].

It is clear that there is a lack of experimental studies, 

since only 6 out of 87 studies included in this review are 

randomized control trials (RCT). From these RCTs, 5 of 

them were studies with post-stroke patients [47, 90, 95–

97] and the other study focused on people with multiple 

sclerosis [48]. It should be noted that none of the stud-

ies with SCI patients included in this review was a RCT, 

despite SCI being the most representative impairment 

(see Fig. 1). Detailed information on study design of the 

selected studies is available in Additional file 3.

Protocol design

We found that the total number of sessions shows a large 

variability (range: 1–120), being the range from 1 to 5 

sessions the most common (33%). Concerning the num-

ber of sessions per week, 3 sessions was the most com-

mon frequency (46%) followed by 5 sessions per week 

(23%; Fig. 5c). Regarding the number of patients, studies 

with 1 to 5 participants were the most common (47%) 

with about half of these being single case studies. �e 

maximum number of patients enrolled in one study was 

52 [91, 92]. �e duration time of each session usually 

ranged between 60 to 90 minutes, including the donning/

doffing time and the rest periods. We found that 4 out of 

the 87 studies exceed 2 hours per session [36, 41, 44, 98]. 

Regarding the gender of patients (see Additional file  3), 

SCI studies show that 79.6% of the patients were males. 

Despite the large asymmetry, this result agrees with those 

from the NSCISC, that shows 78% of new cases are male. 

In post-stroke patients, the percentage of males was also 

higher (69%) coinciding with stroke worldwide incidence, 

which is higher among men [99]. Finally, the group of 

other pathologies presented slightly lower percentage of 

males (45.3%) than females.

Knowledge about usability of the exoskeleton is a rel-

evant aspect to take into account when developing 

protocols, since learning to use an exoskeleton is time 

consuming and variable among users [100]. To date, 

few studies have focused on the learning process when 

using exoskeletons [64, 68]. Learning to use an exoskel-

eton requires not just physical but also mental effort 

[68]. Kozlowski et al. [64] quantified the time and effort 

required by people with SCI to learn to use the ReWalk 

exoskeleton. �ey found that the average number of ses-

sions (2 hours  per session) for walking and developing 

sit-stand transitions with contact guard assistance (i.e., 

helper maintains touch or near-touch contact, but pro-

vides no assistance) and close supervision were 15 and 18 

sessions, respectively. In this regard, there are few stud-

ies that showed that the use of biofeedback could acceler-

ate the learning process and reduce the time and effort 

devoted to learn how to use an exoskeleton [101–104].

As previously concluded by Contreras-Vidal et  al. in 

[30], we found that experimental protocols for clini-

cal validation of exoskeletons present high variabil-

ity across studies. �ere is a need for standard clinical 

guidelines defining protocols for clinical validation of 

exoskeleton technology. �is would also provide the pos-

sibility for benchmarking among devices. In this line, 

the EUROBENCH project aims at establishing stand-

ard benchmarking methods for exoskeletons to facilitate 

comparisons among the available solutions [105, 106].

Training protocol

�e training protocol shows a common methodology 

across the selected studies and, in general, studies fol-

low similar methodologies to the one proposed by van 

Dijsseldonk et al. [107]. In general, after performing the 

baseline assessment, patients start familiarizing with the 

device and develop basic skills to use it properly. In this 

familiarization phase, participants usually practise stand-

ing, sitting, balancing and turning. In case patients were 

not able to do the baseline measurements by themselves 

(i.e., they were unable to stand up or walk), the “baseline” 

measurements were taken wearing the exoskeleton in an 

early stage of the training protocol and the metrics were 

compared at different time points of the training.

Most of the studies finish the training protocol after a 

series of indoor walking sessions, yet there are few stud-

ies that continue with training more advanced activities 

such as outdoor walking, stair climbing, walking on dif-

ferent surfaces (carpet, grass, obstacles or ramps), open 

doors, or elevator use (Fig.  5). We found that, besides 



Page 12 of 21Rodríguez-Fernández et al. J NeuroEngineering Rehabil           (2021) 18:22 

indoor walking (done in all the included studies), sit-to-

stand transition was the most practised activity, followed 

by outdoor walking and stair climbing. In some stud-

ies, patients received additional training (see Additional 

file  3) apart from using the exoskeleton. Some of the 

typical additional training methods used were muscle 

stretching, balancing activities, range of motion improve-

ment, relaxation and meditation.

a

c

d

b

Fig. 5 Overview of the study protocol characteristics. a Number of patients grouped by pathology for each type of training environment. 
b Number of studies that used supportive devices grouped by pathology. c Percentage distribution of number of sessions (left), sessions per week 
(middle) and number of patients (right) across the selected studies. d Percentage distribution of the outcomes measures grouped by categories 
following the classification done by Contreras-Vidal et al. [30]. 1 82 studies considered, 2 52 studies considered, 3 87 studies considered (only patients 
from the exoskeleton intervention)
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Outcome measures

Additional file  3 gives an overview of the outcome 

measures used in the selected studies following the cat-

egories proposed by Contreras-Vidal et  al. [30], with 

an additional category that includes metrics related to 

biomechanics.

We found that outcome measures belonging to the 

ambulation assessments category were the most used 

(44%), followed by biomechanics measures (17%), energy 

expenditure (14%), balance and level of assistance (13%), 

physiological improvements (8%), and metrics related to 

usability and comfort (3%; Fig.  5d). We found that the 

most frequent outcome measures were gait speed (57.5% 

out of the total number of studies), the 10 meter walk test 

(10MWT, 43.7%), the 6-minute walk test (6MWT, 43.7%) 

and the timed up and go test (TUG, 25.3%). Interestingly, 

all of them belong to the ambulation assessments cat-

egory. �e Berg Balance Scale (BBS) was the most com-

mon outcome measure of balance and level of assistance 

category, used mainly for stroke patients, although the 

main outcome measure in stroke studies was the Fugl-

Meyer Assessment (FM). Spasticity and pain were the 

most frequent outcomes in physiological improvement 

category. Moreover, this category, together with energy 

expenditure and usability and comfort categories, was 

mainly focused on people with SCI. In contrast, outcome 

measures related to biomechanics were widely studied 

independently of the pathology, with knee and hip angles 

being the most interesting biomechanical outcome meas-

ures assessed.

As previously mentioned, outcome measures varied 

across studies and were mainly focused on aspects related 

to functional mobility, instead of focusing on analyzing 

physiological and psychological effects. Only a few stud-

ies assessed the improvement related to SHCs. For exam-

ple, Baunsgaard et al. [92] and Juszczak et al. [108] were 

the only reviewed studies that have measured bowel/

bladder function. �ey were, together with the study by 

Jayaraman et al. [97], the only studies that analyzed qual-

ity of life, with the latter being the only one accounting 

for level of depression.

Bene�ts and clinical evidence

�is section analyses the benefits and risks of using wear-

able exoskeletons and summarizes the most relevant clin-

ical evidence of this technology. In this section we show 

the most remarkable information and detailed informa-

tion can be found in Additional files 3 and 4.

Performance assessment

Additional file 3 shows the most common outcome meas-

ures used if the study reported an improvement, worsen-

ing, no change, or if there was no comparison. In the case 

of studies focusing on SCI patients, 21 out of 54 studies 

carried out comparisons of outcome measures. We found 

that in almost all cases, studies reported an improvement 

from the first to the last session, which is probably due 

to the fact that through the training sessions patients 

adapted to the exoskeleton and learned how to use it. 

Specifically, in terms of functional mobility, all the stud-

ies showed improvements except for two: Bishop et  al. 

[84] showed negative changes in TUG and 10MWT, 

although the 6MWT did show an improvement; and 

Chang et al. [109] showed no changes in either gait speed 

or TUG, although did show improvements in 10MWT 

and 6MWT. Moreover, we identified three studies that 

compared the performance of powered exoskeletons with 

passive knee-ankle-foot orthosis (KAFO) in patients with 

SCI, and all three showed better results when using the 

wearable exoskeletons [43, 110, 111].

In contrast to studies with patients with SCI, stud-

ies with post-stroke patients assessed the gait perfor-

mance, without wearing exoskeleton, after training with 

the exoskeleton and compared the results with the base-

line measurements. In general, we found that the degree 

of mobility improvement was not as substantial as with 

the studies focusing on SCI patients: 12 out of 16 studies 

that analyzed gait speed reported an improvement [37, 

47, 87, 93, 95–97, 112–116], and only Hassan et al. [117] 

reported a negative change. �e other 3 studies reported 

no changes. Additionally, 3 out of 9 studies that analyzed 

Fugl-Meyer scores reported an improvement on the level 

of the impairment [95, 97, 116]. Regarding the group of 

studies focusing on other pathologies, 4 out of 7 studies 

that analyzed outcome measures related to gait speed 

reported an improvement [36, 86, 118, 119].

Clinical evidence

To asses the clinical evidence of wearable exoskeletons as 

a therapy for walking rehabilitation in people with neuro-

muscular impairments, we analyzed the results obtained 

in the aforementioned studies that conducted a RCT (see 

"Study design" section).

As we have just seen in the previous section, studies 

focused on people with SCI showed promising results. 

However, these studies were mainly observational and 

pilot studies, which implies a questionable evidence. 

�is finding has already been detected in previous works 

[26, 120]. In the systematic review of Fisahn et al. [120], 

authors searched for RCTs using exoskeletons as assis-

tive and rehabilitation devices in people with SCI. �ey 

identified 11 studies that were RCTs, and 10 of them uti-

lized the robotic exoskeleton Lokomat (grounded exo-

skeleton). �ey found no remarkable differences when 

comparing exoskeleton versus conventional gait therapy. 

Moreover, the evidence of those studies was low or very 
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low according to the Grading of Recommendations, 

Assessment, Development and Evaluation (GRADE) 

System and the risk of bias evaluation conducted by the 

authors. Similar findings were identified by Mehrholz 

et al. [26] in their systematic review. Authors found that 

only 3 out of 9 studies comparing robotic-assisted gait 

training to conventional  overground gait training and 

other forms of physiotherapy provided usable data. �e 

results obtained in these studies were similar for both 

training modalities.

Regarding studies with post-stroke patients, we identi-

fied 5 RCTs that involved a total of 183 patients. Buesing 

et al. [47] and Jayaraman et al. [97] compared the SMA 

exoskeleton versus functional gait training. Significant 

differences were found in gait variables such as improve-

ments in gait speed, step length and spatial symmetry 

when using the SMA exoskeleton. Authors also found 

greater improvements in walking endurance and demon-

strated larger changes in corticomotor excitability of the 

paretic rectus femoris in the SMA group. Watanabe et al. 

[90], in contrast, did not find significant improvements 

in either walking speed or stride length when compar-

ing the HAL exoskeleton with conventional gait therapy. 

However, the HAL group showed a significant improve-

ment in the Functional Ambulation Categories (FAC) test 

that was maintained at the 2-month follow-up evaluation. 

Similar results were obtained by Yeung et  al. [95] when 

comparing a powered and a passive version of an AFO. 

In this case, improvements in FAC test were maintained 

at the 3-month follow-up evaluation, proving a consistent 

improvement in gait independence for the group using 

the powered AFO. Finally, Calabro et  al. [96] compared 

the combination of robotic training with Ekso together 

with conventional gait training, with conventional gait 

training alone. �e robotic group showed several sig-

nificant improvements such as gait speed, cortico-spi-

nal excitability and muscle activation, among others. In 

this line, a Cochrane review [121] concluded that com-

bined treatments (electromechanical-assisted gait train-

ing in combination with physiotherapy) after stroke can 

positively affect gait rehabilitation and are more likely 

to provide independent walking in post-stroke patients 

than conventional gait training alone. �e same conclu-

sion was reported by Bruni et al. [11] in their systematic 

review and meta-analysis.

Lastly, we identified one randomized cross over trial 

in which the authors evaluated the effects of the Kee-

ogo exoskeleton on the physical performance of people 

with multiple sclerosis, both in a clinical setting and in 

a home setting [48]. Note that this was the only study 

from the 87 selected studies that measured the benefits 

of using a wearable exoskeleton at home. Contrary to 

what was expected, wearing the Keoogo did not show 

improvements in physical performance and participants 

were slower both in walking functional tests (6MWT and 

TUG) and climbing stairs (Timed Stair Test).

Safety and risks

From the 87 studies screened in this review, only 36 pro-

vided information on adverse effects derived from the 

use of wearable exoskeletons. We found only one study 

[66] reporting falls, which occurred in three patients: two 

of them when they were starting to ambulate with fore-

arm crutches, and the other patient fell down during a 

sit-to-stand transition (because of mechanical program-

ming errors as mentioned in the original study). A total 

of 18 studies reported mild to moderate adverse events 

such as orthostatic hypertension [122, 123], skin abra-

sions [21, 48, 64–66, 89, 91, 96, 109, 124–128], fatigue of 

the upper extremities [123, 127], low back pain [66, 92], 

and other adverse events such as urinary tract infections 

[126], talus fracture [126], dizziness [91], calcaneus frac-

ture [123] and severe knee hyperextension [123]. Studies 

also described that skin abrasions were reduced using 

padding and size adjustments, and that fatigue of the 

upper extremities improved with practice.

Despite the fact that, in general, studies show that wear-

able exoskeletons are safe devices, these results may not 

be fully representative. According to He et al. [58], stud-

ies tend to omit relevant details when reporting adverse 

events, differ on the inclusion/exclusion criteria, and do 

not report explicitly whether adverse events occurred. In 

the study by van Herpen et al. [59], the authors reported 

the occurrence of two cases of bone fractures during 

training with exoskeleton and provided instructions for 

handling accidental situations such as an unexpected 

shut down of the control system of the exoskeleton.

Limitations

In this review, we did not use delimiters related to study 

design nor assessed the study quality. �e lack of delim-

iters could produce some bias, especially for the con-

clusions related to clinical effectiveness of wearable 

lower-limb exoskeletons. However, we tried to mitigate 

this bias by focusing only on experimental studies (i.e., 

RCT) when discussing the clinical evidence of wearable 

exoskeletons. Nonetheless, the main aim of this review 

was to provide a comprehensive overview of wearable 

lower-limb exoskeletons for clinical applications, so we 

considered that displaying all the literature without limit-

ing by study design would provide a broader view of the 

topic.
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Conclusions
In this paper we reviewed the design and clinical evalu-

ation of wearable lower-limb exoskeletons intended to 

support walking in people with neuromuscular impair-

ments. Since its nascence around 20 years ago, the field of 

wearable exoskeletons has shown significant progress at 

supporting the walking function for individuals with neu-

romuscular impairments. However, it is still challenged 

by its small evidence base, slow acceptability, complex 

technical problems and inordinate costs for purchasing. 

We conclude this review paper by summarizing the main 

conclusions for each of the proposed research questions.

What is the current status of wearable lower-limb powered 

exoskeleton technology for gait rehabilitation?

Wearable exoskeletons are still heavy and bulky devices 

that in general require supervision (usually from clinical 

staff) and the use of walking aids, which hinders mobil-

ity and independence. All the reviewed exoskeletons use 

deterministic gait phase detection algorithms follow-

ing button press or a threshold-based approach. For the 

latter, foot-ground contact force measurement through 

insole sensors is the most common metric used. �e 

most frequent type of measurement in wearable exo-

skeletons is joint angle, since the vast majority of actua-

tors are used together with encoders or potentiometers 

to provide position feedback. Regarding actuation, the 

most frequent actuators are electric motors, probably 

due to the fact that they are easy to control and exhibit 

great precision with high specific power [52]. Control 

methods based on predefined trajectories were the first 

ones to be implemented in wearable exoskeletons [30]. 

Nevertheless, control methods based on user-exoskele-

ton interaction, which require a more active participation 

of the user, are becoming more frequent for rehabilita-

tion purposes. Regarding ergonomic aspects, complex 

mechanical structures increase the exoskeleton donning/

doffing time, which ranges from 10 (doffing) to 30 (don-

ning) minutes. Additionally, joint misalignment is still an 

issue in current exoskeletons, which may increase meta-

bolic cost and discomfort of the wearer, and it could even 

generate skin abrasions, ulcers and an increase risk of 

fractures.

Wearable exoskeletons need to progress towards mod-

ular systems capable of adapting to the user’s motor capa-

bilities and limitations. In the same way, control methods 

should be based on Assist-As-Needed algorithms to con-

veniently adapt actuation to the user needs according to 

the rehabilitation process. Moreover, neuronal technol-

ogy may have an important role for the next generation 

of wearable exoskeletons. Brain machine interfaces (BMI) 

allow direct and voluntary control of the devices irrespec-

tive of the user capabilities [129] which could enhance 

the control of exoskeletons [130]. Wearable exoskeletons 

are intended to be used as assistive devices in daily liv-

ing activities such as climbing stairs, walking on different 

surfaces, entering cars and side stepping [131]; however, 

these functions are poorly covered by current exoskel-

etons. Finally, the cost of wearable exoskeletons for per-

sonal use must be reduced, since their current costs are 

still prohibitive for the general population [132]. In fact, 

in the study by Manns et al. [68] nine out of eleven par-

ticipants said that they would be willing to take the exo-

skeleton home if the cost of the device was not a factor.

What is the methodology used in the clinical validations 

of wearable lower-limb exoskeletons?

Clinical validation studies of wearable exoskeletons are 

currently in their early stages, thus evidence is still lim-

ited to short intervention trials with few participants, as 

it was concluded in a previous study by Mekki et al. [133]. 

Study designs are mainly focused on observational stud-

ies and pilot studies, thus more efforts should be made in 

conducting experimental studies with control groups to 

obtain stronger evidence on clinical effectiveness.

Protocol design and outcome measures vary across 

studies, which hinders their comparison. Outcome 

measures, despite presenting encouraging results, are 

mainly focused on ambulation assessments (i.e., 10MWT, 

6MWT, TUG) rather than being centered on physiologi-

cal and psychological changes to improve or avoid SHCs. 

Since prevention of SHCs is a primary aim, especially 

in SCI [134], studies assessing robotic gait therapy with 

wearable exoskeletons should focus more on outcome 

measures related to SHCs.

What are the bene�ts and the current evidence of clinical 

e�cacy for wearable lower-limb exoskeletons?

Robotic therapy is progressing toward wearable exoskel-

etons since they offer the advantages of grounded exo-

skeletons, as well as providing more active participation 

of the user. Wearable exoskeletons offer the opportunity 

to socialize more easily with the environment, increas-

ing quality of life and decreasing depression rate [19, 92, 

108, 135]. Likewise, standing has plenty of health ben-

efits such as improved blood circulation, reflex activity, 

and bowel and bladder function [136]. In addition, there 

are many psychological and social benefits associated 

with standing, including improved self-image, eye-to-

eye interpersonal contact, and daily living independence 

[137]. All these benefits favour mainly non-ambulatory 

patients. In fact, we found that patients with SCI are cur-

rently the main users of this technology. Nevertheless, 

studies carried out in post-stroke patients are the ones 

that present the most reliable and promising results in 
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terms of rehabilitation efficacy in favour of robotic train-

ing over conventional gait therapy [11, 121].

Despite the previous benefits, the optimal type of reha-

bilitation robot for a specific patient’s needs still remains 

unclear [138–140]. Literature comparing overground 

wearable exoskeletons with other types of gait therapy 

is still scarce, especially in people with SCI. �erefore, 

randomized control trials, comparing overground wear-

able exoskeletons with other types of robotic gait therapy 

or conventional gait therapy, are needed to demonstrate 

both their effectiveness as a rehabilitation device and 

their impact in psychological and physiological SHCs.

In any case, overground wearable exoskeletons stand 

out for providing more movement freedom during gait, 

the opportunity of independent training at home, and the 

possibility to carry out more activities of daily living such 

as sitting, turning and climbing stairs. �ese advantages 

activate mechanisms of neural plasticity and connectiv-

ity re-modulation [96, 141]; which have been proposed 

as the main factors promoting motor function recovery 

in SCI and stroke patients [96, 142]. However, although 

results show that wearable exoskeletons are generally safe 

devices [143], there is always the risk of unforeseen seri-

ous adverse events [59]. �us, more efforts are needed 

to develop adequate standards and regulations to have a 

better understanding of the adverse events and risks of 

using wearable exoskeletons [58].

In conclusion, efforts should be invested in developing 

lightweight and easy-to-use exoskeletons, which should 

be validated through well-defined protocols to provide 

the best patient-specific rehabilitation training and offer 

the possibility of benchmarking.

Recommendations for future research and development

• Size and weight of wearable exoskeletons should be 

reduced, and structures should be simplified to allow 

independent donning/doffing and transportability, 

while increasing user acceptance.

• Balance capabilities of wearable exoskeletons should 

be improved to reduce the use of supportive devices.

• Control methods should focus on Assist-As-Needed 

control algorithms to conveniently adapt assistance 

to the user needs, increase active participation and 

promote neural plasticity.

• Studies need standard clinical guidelines that define 

protocols for clinical validation, and regulations to 

have a better understanding of the adverse events 

and risks of using wearable exoskeletons.

• Research studies should focus more on outcome 

measures related to SHCs, since prevention of sec-

ondary health problems is a primary aim in rehabili-

tation.

• Randomized control trials are needed to demonstrate 

clinical efficacy of wearable exoskeletons when com-

paring with conventional gait therapy and/or other 

types of robotic gait therapy, since most of the litera-

ture is based on observational and pilot studies.
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