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Abstract

There exists an ever-increasing number of systematic reviews, with or without meta-analysis, in the field of nutrition. Concomitant with this

increase is the increased use of such to guide future research aswell as both practice and policy-based decisions. Given this increased production

and consumption, a need exists to educate both producers and consumers of systematic reviews, with or without meta-analysis, on how to

conduct and evaluate high-quality reviews of this nature in nutrition. The purpose of this paper is to try and address this gap. In the present

manuscript, the different types of systematic reviews, with or without meta-analyses, are described as well as the description of the major

elements, including methodology and interpretation, with a focus on nutrition. It is hoped that this non-technical information will be helpful

to producers, reviewers and consumers of systematic reviews, with or without meta-analysis, in the field of nutrition.
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Systematic reviewswith meta-analyses have the potential to play

an important role in quantitatively synthesising evidence

when numerous studies on a similar topic exist, especially when

disagreement persists among those studies. The potential

strengths of meta-analysis include (1) increased statistical power

for primary outcomes, (2) ability to reach agreement when

original studies yield conflicting findings, (3) improving effect

size estimates and (4) answering questions not addressed

in original trials(1). In addition, meta-analyses provide the

opportunity to generate hypotheses that can be tested in

subsequent original trials. Furthermore, systematic reviews, with

or without meta-analysis, often play a major role in guide-

line development(2). In a recent special issue devoted entirely

to P values in the American Statistician, Wasserstein et al.

suggested that since one study is usually not definitive,

meta-analysis is critical to determining the uncertainty in the

evidence(3). Recognising their potential value, the number

of systematic reviews, with or without meta-analysis, has

increased dramatically over approximately the last 40 years.

For example, a simple PubMed search conducted by the authors

on 10 May 2019, using the search phrase “systematic review”OR

meta-analy* yielded four citations in 1978 v. 31 295 in 2018, the

most recent complete year for which data were available. The

number of systematic reviews with meta-analyses in the area

of nutrition has also increased dramatically over the same time

period. A simple PubMed search conducted by the authors on

10 May 2019, using the search phrase (“systematic review” OR

meta-analy*) AND (food OR beverages OR diet OR nutrition)

yielded one citation in 1978 v. 2743 in 2018, the most recent

complete year in which data were available.

Types of systematic reviews

Table 1 lists the different types of systematic reviews with a

description provided hereafter.

Scoping reviews

While no one universal definition exists, a scoping review may

be best defined as a type of research synthesis that aims to ‘map

the literature on a particular topic or research area and provide

an opportunity to identify key concepts; gaps in the research;

and types and sources of evidence to inform practice, policy-

making, and research’(4). Thus, scoping reviews can be benefi-

cial from both a research and practice perspective. To

illustrate its use in the field of nutrition, Amouzandeh et al.

recently conducted a scoping review of the validity, reliability

and conceptual alignment of food literacy measures for adults(5).

The authors concluded that most tools provided a theoretical
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framework, which is valid and reliable(5). In addition, they

believed that their results will assist practitioners in selecting

and developing tools for the measurement of food literacy(5).

Congruent with other types of reviews, the number of scoping

reviews in the field of nutrition is increasing. As an example,

a PubMed search conducted on 11 May 2019, using the search

phrase (“scoping review” OR “systematic scoping review” OR

“scoping report” OR “scope of the evidence” OR “rapid scoping

review” OR “structured literature review” OR “scoping project”

OR “scoping meta review”) AND (food OR beverages OR diet

OR nutrition) demonstrated that the number of citations has

increased from one in 1981 to 161 in 2018, the most recent

complete year for which data were available. The Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

extension for Scoping Reviews (PRISMA-ScR) provides an excel-

lent guide, including a checklist, for conducting and reporting a

scoping review(7). Checklists such as the PRISMA series provide

very helpful information to producers, reviewers and consumers

(clinicians, guideline developers, etc.) for ensuring that high-

quality reviews are conducted. Therefore, the authors advocate

that journals require the appropriate checklist when authors sub-

mit their manuscript for publication consideration.

Systematic reviews of previous systematic reviews

Given the proliferation of systematic reviews, with or without

meta-analysis, on the same topic, there is now a need to assess

these previous reviews. As an example of a systematic review of

previous systematic reviews (SRPSR) in nutrition, Agostoni et al.

recently conducted a SRPSR on the long-term effects of dietary

nutrient intake during the first 2 years of life in healthy infants

from developed countries(8). The overall conclusion of the

authors was that a large degree of uncertainty currently exists

on the health effects of differences in early nutrition among

healthy full-term infants(8).

There are at least two important reasons for conducting a

SRPSR. First, for those desiring to conduct their own systematic

review, with or without meta-analysis, such a review can help

justify the conduct of a new or updated review. If an updated

or new review is deemed warranted, then this information

should be included in the introduction section of the new

or updated review. Ideally, this should include reference to a

previously published SRPSR. If after searching the literature

the authors believe that no previous reviews exist, then

this should be stated. The inclusion of this information may be

especially important given the recent criticism regarding the

publication of redundant reviews on the same topic(9). Fig. 1

depicts a stepwise process suggested by the authors for moving

from a SRPSR to one’s own review, details of which can be found

elsewhere(10). Briefly, a major decision that needs to be

made is whether a new systematic review, with or without

meta-analysis, is needed. The Cochrane Collaboration recom-

mends that another systematic review be based on needs and

priorities, with consideration of strategic importance,

practical aspects as it pertains to organising the review, and

impact of another review(11). The Agency for Healthcare

Research and Quality in the United States approaches this from

a needs-based perspective in which the focus is on stakeholder

impact as well as currency and necessity(12). A determination is

then made to create, archive or continue surveillance(12). The

Panel for Updating Guidance for Systematic Reviews (PUGS)

created a consensus and checklist for when and how to perform

another systematic review(13). This process includes assessing

the currency as well as previous review(s), if any exist, identify-

ing relevant new methods, studies or other information that may

justify another review, and assessing the potential impact of

Table 1. Types of systematic reviews

Type Description

Scoping review Type of research synthesis that aims to ‘map the literature on a particular topic or research area and provide an

opportunity to identify key concepts, gaps in the research, and types and sources of evidence to inform practice,

policymaking, and research’(4). Also known as ‘systematic scoping review’, ‘scoping report’, ‘scope of the
evidence’, ‘rapid scoping review’, ‘structured literature review’, ‘scoping project’, ‘scoping meta review’

Systematic review of previous

systematic reviews

A systematic review of previous systematic reviews on the same topic. Also known as ‘umbrella reviews’,

‘overviews of reviews’, ‘reviews of reviews’, ‘summary of systematic reviews’, ‘synthesis of reviews’,

or ‘meta-reviews’(6)

Systematic review without

meta-analysis

‘A review of a clearly formulated question that uses systematic and explicit methods to identify, select, and

critically appraise relevant research, and to collect and analyse data from the studies that are included in the

review(6)
’. Data are synthesised qualitatively

Systematic review with
meta-analysis

Same as a systematic review without meta-analysis (see above) except that data are synthesised quantitatively,
that is, meta-analysis

− AD meta-analysis A systematic review that includes a meta-analysis based on summary data (sample sizes, means, standard

deviations) extracted from eligible studies

− IPD meta-analysis A systematic review that includes a meta-analysis based on individual participant/patient data v. summary data.
This de-identified data almost always has to be requested from the author(s) of the original studies

− Network meta-analysis

(AD or IPD)

A systematic review with a meta-analysis comparing at least three treatments that includes both direct (head to

head) and indirect (comparing two treatments via a comparative control group) evidence. This can be based on

either aggregate or individual participant data
− Non-inferiority meta-analysis

(AD or IPD)

Meta-analysis that attempts to assess whether a new intervention is no worse than a reference intervention

AD, aggregate data; IPD, individual participant/patient data.
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another review(13). The PUGS guidelines and checklist may be

the most suitable method for researchers interested in conducting

another systematic review, with or without meta-analysis. Any

new reviews should also address an important research question,

something that should be explained in the introduction section of

the manuscript.

A second reason for conducting a SRPSR is that given

the large number of reviews of this type on many of the same

topics, a need exists to evaluate these in order to provide

decisionmakers (clinicians, guideline developers, policymakers,

etc.) with the information they need to make informed choices

on the topic of interest. A simple PubMed search conducted by

the authors on 10 May 2019, using the search criteria ‘(“system-

atic review of previous systematic reviews” OR “umbrella

review” OR “overview of reviews” OR “review of reviews” OR

“summary of systematic reviews” OR “meta-reviews”) AND

(food OR beverages OR diet OR nutrition)’ yielded 173 citations

associated with nutrition-related SRPSR in 2018, the most recent

complete year for which data were available. As part of the con-

duct of a SRPSR, an evaluation regarding the quality and/or risk

of bias of each included systematic review, with or without meta-

analysis, should be included. Instruments for assessing such

include, but are not limited to, (1) a MeaSurement Tool to

Assess systematic Reviews 2(14), (2) Risk of Bias in Systematic

Reviews(15) (3) Grading of Recommendations, Assessment,

Development and Evaluations (GRADE)(16) and (4) Quality

Assessment of Diagnostic Accuracy Studies 2(17). The importance

of SRPSR is supported by a recent thematic series devoted to this

topic(18–20). In addition, Ballard & Montgomery also provide

methodological guidance, including a four-item checklist, for

evaluating a SRPSR(21). Finally, for the reasons previously given

as well as to improve efficiencies and avoid research waste(18),

the authors believe that funding agencies should support

high-quality SRPSR. Detailed information regarding SRPSR can

be found elsewhere(18–28).

Systematic review without meta-analysis

The Cochrane Collaboration defines a systematic review as a

‘review of a clearly formulated question that uses systematic

and explicit methods to identify, select, and critically appraise

relevant research, and to collect and analyse data from the

studies that are included in the review(6)
’. The key characteristics

of a systematic review include (1) clearly stated objectives with

predefined eligibility criteria for studies, (2) an explicit, repro-

ducible methodology, (3) a systematic search that attempts to

identify all studies that meet the eligibility criteria, (4) an assess-

ment of the validity of the findings of the included studies (risk of

bias, etc.) and (5) a systematic presentation and synthesis of

the characteristics and findings of the included studies(6).

A systematic review without a meta-analysis is often conducted

because the authors feel that the studies are not combinable

Fig. 1. Suggested stepwise approach for deciding whether a new or updated systematic review, with or without meta-analysis, should be conducted. Adapted from

Kelley & Kelley(10). SRPSR, systematic reviews of previous systematic reviews.
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quantitatively given that they are too different and/or cannot be

combined into some type of common metric. This is usually not

an easy task since no one study is exactly alike, nor should

they be. For example, some people may decide a priori that

the studies will be too different to combine quantitatively (apples

and oranges) while others may decide that the eligible studies

can be combined (fruit salad). If a meta-analysis is not included,

then the reason for not doing so should be stated in the research

synthesis sub-section of the Methods section of the manuscript.

When a meta-analysis is not included, the results are synthesised

qualitatively. As an example, Calder et al. conducted a systematic

review without meta-analysis with respect to increasing arachi-

donic acid intake and PUFA status, metabolism and health-

related outcomes in humans(29). Based on twenty-two articles

from fourteen randomised controlled trials, the authors

concluded that insufficient evidence currently exists to support

any recommendation regarding the specific health effects of

arachidonic acid intake(29). The original PRISMA statement

provides guidance, including a checklist, for conducting and

reporting a systematic review, with or without meta-analysis(30).

Systematic review with meta-analysis

A systematic review with meta-analysis is similar to a systematic

review without a meta-analysis with the exception that the former

includes a quantitative synthesis, that is, meta-analysis of the data.

Generally, systematic reviews with a meta-analysis consist of the

following types: (1) aggregate data (AD) meta-analysis, (2) indi-

vidual participant/patient data (IPD) meta-analysis, (3) network

meta-analysis (NMA), which can be based on either AD or IPD

and (4) non-inferiority (NI) meta-analysis (AD or IPD).

Aggregate data meta-analysis. An AD meta-analysis is a

quantitative approach in which summary data, for example,

sample sizes, means and standard deviations are abstracted

for outcomes of interest (kJ consumed, cholesterol intake,

etc.) from previously published studies and then pooled for

analysis. These are by far the most common types of

meta-analyses conducted today and often focus on pairwise

comparisons, for example, changes in an intervention v. control

group. A simple PubMed search conducted by the authors on

13 May 2019, using the search string (“systematic review” OR

meta-analy*) AND (food OR beverages OR diet OR nutrition)

NOT (“individual participant data” OR “individual patient

data” OR “IPD” OR “systematic review of previous systematic

reviews” OR “umbrella review” OR “overview of reviews”

OR “review of reviews” OR “summary of systematic reviews”

OR “meta-reviews”) yielded a total of one citation in 1978 v.

2557 in 2018, the most recent and complete year in which data

were available. As an example of an AD meta-analysis in nutri-

tion, Zhang et al., conducted a systematic review with meta-

analysis on the efficacy and safety of iron supplementation in

patients with heart failure and iron deficiency(31). Based on nine

randomised controlled trials representing 789 patients who

received iron therapy, significant improvements were observed

for the 6-minwalk test and peakmaximumoxygen consumption

as well as fewer patients being hospitalised for heart failure(31).

No associations were found for total re-hospitalisation or

mortality(31).

As previously mentioned, the original PRISMA statement

provides guidance, including a checklist, for conducting and

reporting a systematic review with AD meta-analysis(30). In

addition, recent guidance for conducting systematic reviews

and meta-analyses of observational studies in aetiology is also

available(32) and the Cochrane Handbook provides extensive

information on the conduct of systematic reviews with AD

meta-analysis(6).

Individual participant/patient data meta-analysis. An IPD

meta-analysis is a systematic review that includes ameta-analysis

based on IPD and often comprises a consortium made up

of a large number of investigators such as the European

Consortium that recently conducted an IPD meta-analysis on

vitamin D and mortality(33). Since de-identified IPD is usually

not available in the original studies, it needs to be requested from

the author(s). Considered the ‘gold standard’ of meta-analyses,

the potential advantages of an IPD meta-analysis, described

in detail elsewhere(34), include, but are not limited to, ‘standard-

izing statistical analyses in each study; deriving desired summary

results directly, independent of study reporting; checking

modelling assumptions; and assessing participant-level effects,

interactions and non-linear trends’(35). However, one of the

major disadvantages of an IPD meta-analysis is the ability to

retrieve original data from study authors, with ranges of

25–100 % reported across different subject areas(36–39). As a

result, this can lead to an increased risk of bias. While at least

one approach has been recommended for integrating both

IPD and AD(40), one is still left with AD from those studies in

which IPD cannot be retrieved. A second disadvantage of an

IPD v. ADmeta-analysis is the increased time and resources asso-

ciated with such analysis. For example, one study estimated the

costs of a previous IPDmeta-analysis(41) to be eight times greater

than an AD meta-analysis(42). Finally, several studies have

shown a lack of statistically and practically important differences

between AD and IPD meta-analyses when an indistin-

guishable, or nearly indistinguishable, number of studies are

included(41,43–45). Despite these disadvantages, the number of

IPD meta-analyses is increasing, including the field of nutrition.

A simple PubMed search conducted by the authors on 13 May

2019, using the search string (“systematic review” OR meta-

analy*) AND (food OR beverages OR diet OR nutrition) AND

(“individual participant data” OR “individual patient data” OR

“IPD”) NOT (“systematic review of previous systematic reviews”

OR “umbrella review” OR “overview of reviews” OR “review of

reviews” OR “summary of systematic reviews” OR “meta-

reviews”) yielded one citation in the year 2002 v. twenty-six in

2018, the most recent year in which complete data were avail-

able. As an example in the field of nutrition, Smelt et al. recently

conducted an IPD meta-analysis of randomised controlled trials

on the effects of vitamin B12 and folic supplementation on

routine haematological parameters in adults 60 years of age

and older(46). The authors concluded that there is currently a lack

of evidence to support the effects of supplementation of low

concentrations of vitamin B12 and folate on haematological

parameters in community-dwelling adults 60 years of age and

older(46). A set of PRISMA guidelines, including a checklist, for

conducting and reporting an IPD meta-analysis (PRISMA-IPD)
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are available(47). Additional details regarding the conduct of an

IPD have been reported elsewhere(6,34,48).

Network meta-analysis. A more recent and increasingly used

approach, including the field of nutrition(49), is the conduct of a

systematic reviewwith NMA, usually in the formof an ADNMA v.

IPD NMA. NMA, also known as ‘multiple treatments meta-analy-

sis’ or ‘mixed treatment comparisons meta-analysis’, is a type of

meta-analysis that compares at least three treatments and

includes both direct (comparing two treatments head to head)

and indirect (comparing two treatments via a comparative con-

trol group) evidence. One of the major reasons for its increased

use is the ability to include multiple treatments in the same

analysis, thereby facilitating treatment recommendations. For

example, Galaviz et al. recently conducted an NMA on the

real-world impact of global diabetes prevention interventions

on diabetes incidence, body weight and glucose(50). The overall

conclusion of the authors’ NMA of sixty-three studies was that

real-world lifestyle modification strategies can reduce diabetes

risk(50). A simple PubMed search conducted by the authors on

14 May 2019, using the search string (“network meta-analysis”

OR “multiple treatments meta-analysis” OR “mixed treatment

comparisons meta-analysis”) AND (food OR beverages OR diet

OR nutrition) NOT (“systematic review of previous systematic

reviews” OR “umbrella review” OR “overview of reviews” OR

“review of reviews” OR “summary of systematic reviews” OR

“meta-reviews”) yielded one initial citation in the year 2007 v.

thirty-three in 2018, the most recent year in which complete data

were available. Not surprisingly, NMA is more time and resource

intensive than a traditional AD meta-analysis given the large

number of treatments that are usually included as well as

the inclusion of both direct and indirect evidence. PRISMA

guidelines, including a checklist, for conducting and reporting

a NMA (PRISMA-NMA) are available(51). Additional details

regarding this emerging and important approach have been

described elsewhere(52–55).

Non-inferiority meta-analysis. The most recent, but

still infrequent type of meta-analysis to emerge is a NI meta-

analysis. A NI meta-analysis attempts to assess whether a new

intervention is no worse than a reference intervention(56). A

major challenge of a NI meta-analysis is the NI margin used(56).

These types of meta-analyses could be based on either AD or

IPD and could also take the form of a NMA (AD or IPD)(57).

While the authors are not aware of any NI meta-analyses in

the field of nutrition, Acuna et al. recently conducted a NI

meta-analysis that examined the quality of surgical outcomes

using laparoscopic v. open resection for rectal cancer(58).

Based on their analysis of fourteen randomised controlled

trials, the authors concluded that laparoscopy was non-

inferior to open surgery for rectal cancer(58,59). More detailed

information regarding NI meta-analyses can be found

elsewhere(56,57,60).

Primary components of systematic reviews with
meta-analysis

Given that traditional AD meta-analyses still dominate the

literature, the emphasis of the rest of this manuscript will centre

on this type of quantitative review but while noting that much

of this information can be applied to many of the other

types of systematic reviews with meta-analyses that have

been previously described. For more detailed information,

readers are referred to the PRISMA Guidelines, including a

twenty-seven-item checklist, for the conduct and reporting of

systematic reviews with AD meta-analysis(30).

Overview

Similar to most research studies, a systematic review with

meta-analysis manuscript (broadly) should consist of an abstract,

introduction, methods, results, discussion and conclusion(s)

section.

Abstract

The structure of the abstract of a systematic review with meta-

analysis generally mirrors that of an original study. The

PRISMA guidelines provide specific information, including a

twelve-item checklist, regarding information to report in the

abstract of a systematic review, with or without meta-analysis(61).

However, adherence to all items in the checklist may be difficult

given the word limitations on abstracts imposed by journals and

conference abstracts. Thus, one may have to prioritise the most

important information to be included, especially since many

readers may not read beyond the abstract. For example, Saint

et al. reported that almost two thirds (63 %) of internists only read

the abstracts of medical journal articles(62). Given the former,

a clear and concise abstract would seem to be important.

Introduction

In the introduction section of the manuscript, the authors should

provide a strong rationale for why the present study is needed.

This should include the importance of the issue to be addressed

as well as a review of prior research on the topic. Based on the

authors’ experiences, producers of systematic reviews with

meta-analysis usually provide an adequate description of the

importance of the topic to be addressed but often lack informa-

tion regarding previous original studies on the topic as well as

previous systematic reviews with meta-analysis, if any, to justify

their own systematic review with meta-analysis. The former is

important because the conflicting findings of previous original

studies are often one of the very reasons for conducting reviews

of this nature. The latter is equally important because of the

increasing concern about redundant systematic reviews, with

or without meta-analysis, that is, value added(9). If the authors

are not aware of any previous systematic reviews with

meta-analysis on the topic, then it should be stated. For example,

in a systematic review with AD meta-analysis of randomised

controlled trials examining the impact of modified dietary

interventions on maternal glucose control and neonatal birth

weight, Yamamoto et al. cited three previous systematic reviews

and meta-analyses related to the topic but none specific to

their proposed work regarding the impact of modified dietary

interventions on detailed maternal glycaemic parameters,

including changes in glucose-related variables(63). As previously

mentioned, one approach to help justify one’s ownwork, though
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more time-consuming and resource intensive, is to conduct and

publish a systematic review of previous systematic reviews with

meta-analysis on the topic and describe this in the introduction

section of the manuscript(10). Finally, the end of the introduction

should clearly delineate the purpose/objective(s)/research

question(s) of the intended systematic review with AD meta-

analysis.

Methods and results

Any systematic review, with or without meta-analysis, should

include an a priori research plan and at a minimum, register

the protocol in a systematic review trials registry such as

PROSPERO(64). At the beginning of the methods section of the

paper, the registration number should be reported. Registering

a systematic review with meta-analysis is important for

(1) promoting transparency, (2) helping to reduce potential bias

and (3) helping to avoid unintended duplication of effort(65).

Registration is beneficial for researchers, commissioning and

funding organisations, journal editors and peer reviewers(65).

Based on these benefits, the authors would advocate that jour-

nals require all manuscript submissions to include a registration

number before being considered for peer review. In addition to

the protocol being registered in PROSPERO, it is suggested that

authors consider publishing their protocol in a peer-reviewed

journal, thereby enhancing reach and possibly improving their

study design. As an example, Asghari et al. recently published

a protocol for a systematic review with AD meta-analysis in

which they plan to examine the effects of vitamin D supplemen-

tation on serum 25-hydroxyvitamin D concentration in children

and adolescents(66). The PRISMA group provides detailed guide-

lines, including a seventeen-item checklist, for developing and

reporting the protocol for a systematic review, with or without

meta-analysis (PRISMA-P)(67). To enhance the field of research,

the authors would also advocate that peer-reviewed journals

consider publishing high-quality protocols, including requiring

a completed PRISMA-P checklist upon submission.

Congruent with PRISMA guidelines,(30) the methods section

of a systematic review with AD meta-analysis should usually

be partitioned into the following sections: (1) study eligibility,

(2) data sources, (3) study selection, (4) data abstraction, (5) risk

of bias assessment and (6) data synthesis.

Study eligibility. This section should describe the studies that

should be included in a systematic review with AD

meta-analysis. To aid in determining eligible studies as well as

searching the literature, one may consider using the PICO

or PICOS framework(30). Where applicable, the PICO/PICOS

structure includes participants/population (P), interventions (I),

comparisons (C), outcomes (O) and study design/setting (S)(30).

For example, in a recent systematic reviewwith ADmeta-analysis

on dietary patterns, bone mineral density and fracture risk,

the PICOS framework included an open population (P), dietary

patterns as the intervention (I), other dietary patterns as the

comparison (C), bone mineral density, bone mineral content or

fracture as the outcomes (O) and observational study

designs (S)(68). For observational studies dealing with aetiology,

the population, exposure, control and outcomes framework has

recently been suggested(32). In addition, the type of study designs

included should also be reported. For example, in a meta-analysis

that examined the effects of Ca intake on breast cancer risk, the

population consisted of females, the exposure was Ca intake

(dietary and/or supplemental), the control/comparator was no

dietary or supplemental Ca intake, the outcomewas breast cancer

risk and the study designs included were prospective cohort,

case–control or case–cohort studies(69).

In addition to providing a description of potential eligible stud-

ies, reasons for excluding studies may also be provided, though it

is perfectly reasonable to assume that any study not meeting one’s

eligibility criteria would be excluded. However, this does not

exclude one from including a supplementary file of excluded cita-

tions, including the reasons for exclusion after each reference. A

systematic review may include studies in any language, especially

given the free online language translators that are currently avail-

able. However, there is no clear consensus regarding increased

bias whether a systematic review is limited to English-language

articles published in peer-reviewed journals(6). In addition, studies

may be derived from both published and unpublished sources

(master’s theses, dissertations, abstracts from conference proceed-

ings, clinical trials registries, etc.). However, van Driel et al.

concluded that (1) the difficulty in retrieving unpublished work

could lead to selection bias, (2) many unpublished trials are even-

tually published, (3) themethodological quality of such studies are

poorer than those that are published and (4) the effort and resour-

ces required to obtain unpublishedworkmaynot bewarranted(70).

Data sources. The data sources subsection of the methods

describes the sources that are to be used to try and locate potential

eligible studies. While there will always be a margin of search

error, the goal is to try and obtain as many studies as possible

that meets one’s eligibility criteria. To achieve this goal, a list of

electronic databases that were searched should be provided

(PubMed, Embase, etc.) as well as the search criteria for

the databases. While there is no clear consensus, it has been

suggested that at least two electronic databases be searched(6)

because no one database indexes all journals. While a minimum

of two databases is one suggestion(6), Bramer et al. recently

suggested that at least Embase, MEDLINE, Web of Science and

Google Scholar be searched to ensure adequate coverage(71).

However, Google Scholar may not be worth the time and effort,

given its lack of sensitivity and specificity(72). For those researchers

who do not have easy access to Embase but can access Scopus,

searching the latter may be acceptable since Scopus has been

reported to provide 100% coverage of both MEDLINE and

Embase(73). It is also relevant to point out that MEDLINE is nested

within the PubMed database. If grey literature is included, sources

such as ProQuest master’s theses and dissertations and the System

for Information on Grey Literature in Europe databases could be

searched. When searching electronic databases, the detailed

search strategy for at least one of them, for example, PubMed,

should be included. Thismay be embedded in the text or included

as a supplementary file. To ensure adequate coverage, it is recom-

mended that nutritionists search a minimum of three databases,

inclusive of the following: (1) PubMed, (2) Embase or Scopus

and (3) Web of Science.

In addition to searching electronic databases, other methods

should be used. These include such things as cross referencing

from retrieved studies, searching clinical trials databases,
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hand-searching selected journals and expert review. The start

and end dates for all searches should be provided, including the

reason(s) for the chosen start date. Finally, the name(s) of

the individual(s) who conducted the searches should also be

provided(30).

Study selection. The study selection section describes the

process that was used to select studies. To avoid study selection

bias, studies should be reviewed by at least two people, inde-

pendent of each other. Those individuals should then meet

and review their selections for agreement. However, prior to

doing so, onemay provide data on the level of agreement before

addressing discrepancies. One common statistic used to address

this is the kappa statistic (κ)(74). If agreement cannot be reached

for one or more studies when the selectors meet, at least one

other person should make a recommendation. For all excluded

studies, the reason(s) for exclusion should be recorded. One

broadway to address exclusions is to follow the PICOS structure:

(1) participants/population, (2) intervention, (3) comparison,

(4) outcomes, (5) study design/setting and (6) other. The names

of all individuals involved in the study selection process, includ-

ing their role, should also be provided.

Data abstraction. The data abstraction/extraction section

describes the process used to code the eligible studies. A first

step is to provide a brief description of how the codebooks

were developed to abstract data, including a list and description

of the information that was coded. Generally, this may include

(1) study characteristics (authors, year of publication, journal,

study design, etc.), (2) participant characteristics (age, gender,

race/ethnicity, morbidities, etc.), (3) intervention characteristics

(length of study, etc.) and (4) outcome characteristics (sample

sizes, means, standard deviations, etc.). Additional information

for abstracting data, including for complex meta-analyses, is

provided elsewhere(75). The same process for selecting studies

should be used for abstracting data. In addition, the authors

should provide information on the process used for obtaining

missing data. If no attempt wasmade to obtainmissing data, then

this should be stated.

Risk of bias assessment. A systematic review, with or without

meta-analysis, should usually include some type of risk of bias

assessment for each included study. It is important

here to distinguish between the risk of bias and study quality,

something that appears to often be overlooked given the

authors’ more than 25 years of experience in reviewing manu-

scripts and grant proposals. The Cochrane Collaboration

recommends that the focus be on the risk of bias, amongst other

factors, given that the ultimate goal should be the degree to

which the results of the concluded studies are to be believed(6).

It also overcomes the uncertainty in differentiating between the

quality in the conduct of a study v. the conduct in the reporting of

a study(6). While this does not negate the use of study quality

scales, the potential limitations should be clearly delineated

in the manuscript. However, the use of quality scales to decide

what studies should be included or excluded is strongly discour-

aged, as previously mentioned, given the difficulty in distin-

guishing between the quality of the reporting of a study and

the quality in the conduct of a study(6). There are at least

eighty-six risk of bias/study quality assessment instruments(76).

Seehra et al. reported that the Cochrane risk of bias was the most

common tool used for assessing randomised controlled trials

(26·1 %), while the Newcastle–Ottawa scale, a study-quality

instrument, was used most commonly for assessing non-

randomised studies (15·3 %), including case–control and cohort

studies(77). However, since the time of this publication, the

Cochrane Collaboration has updated their risk of bias tool for

randomised controlled trials(78) and also created an instrument

for assessing the risk of bias in non-randomised studies in which

the health effects of two or more interventions are compared(79).

For authors, the important point here is to carefully consider

the instrument(s) to be used and provide a rationale for the

choice(s). For example, the authors may choose to use some

type of risk of bias assessment instrument as well as some type

of study quality tool. Finally, the processes for evaluating the

risk of bias and/or the study quality are the same as those

for selecting studies and extracting data. While not without

limitations, the risk of bias and/or study quality results can help

consumers of meta-analyses with decisions regarding the

strengths and potential limitations of included studies.

Data synthesis (effect size calculation). The data synthesis

piece of a systematic review can be either qualitative or quantita-

tive (meta-analysis). The focus here will be on the meta-analytic

approach. The initial step in conducting ameta-analysis is deciding

on the method that will be used to calculate a common effect size

for each outcome from each study so that the findings might

be pooled into an overall result. The calculation of an effect size

traditionally comprises sample sizes as well as measures of central

tendency (e.g. means) and dispersion (e.g. standard deviations). If

feasible, the focus should be on calculating and reporting effect

sizes using the original metric, for example, kJ/d. The primary

reason for this approach is based on the belief that it will be easier

for consumers (nutritionists, clinicians, policymakers, etc.) to

understand. However, inmany situations, the calculation of some-

thing like a standardised mean difference effect size (Hedge’s g,

Cohen’s d, etc.) may be necessary if the outcome of interest is

assessed using different scales, for example, the effects of dietary

improvement on symptoms of depression and anxiety, given

that depression and anxiety outcomes were assessed using differ-

ent scales(80). Another strength of the standardized mean

difference effect size is the ability to calculate this statistic from a

number of different tests (t tests, F ratios, correlations, etc.)(6,81).

Alternatively, one potential weakness of the standardized mean

difference effect size is the inability of consumers to understand

this metric. For example, it is usually much easier for consumers

to understand and interpret a decrease in resting systolic blood

pressure of 8 mmHg v. a mean reduction of 0·50 standardised

deviation units. Given the former, it is recommended that the

original metric be used if all of the studies for the outcome of inter-

est report the results for that outcome using the same metric or if

the results can be converted into a metric that is easier for the

reader to interpret, for example, converting total cholesterol

(TC) from mg/dl to mmol/l by multiplying TC in mg/dl by

0·02586. If the outcomeof interest is assessed using different instru-

ments with various scales that cannot be converted into a more

easily understood metric, then the standardised mean difference

effect size is recommended. If the standardised mean difference
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effect size is used,we recommend that results based on the original

scale, including variance statistics, also be reported in a table or

figure.

Data synthesis (effect size pooling).After deciding on themet-

ric used to pool results, a decision needs to be made on the type

of model that will be used to pool results. However, prior to that

decision, the investigators need to decide which study designs to

include. For intervention studies, we recommend that only

randomised controlled trials be included because they are the

only way to control for confounders that are not known or

measured as well as the observation that non-randomised

controlled trials and single group trials tend to overestimate

the effects of healthcare interventions(82,83). For observational

studies, we recommend that case–control, cross-sectional aswell

as retrospective and prospective study designs be analysed

separately. These separate results can easily be displayed in a

table and/or forest plot.

For pooling, there is currently no clear consensus on the one

best model for combining results, necessitating a clear need for a

large simulation study that tests all the different models under

various conditions. With a focus on frequentist meta-analysis,

historically two basic types of models are used, the traditional

fixed-effect model and the random-effects model. In a traditional

fixed-effect model, the assumption is that all the included studies

share the same common effect size. Thus, any differences in the

observed effects are considered to be the result of within-study

sampling error while between-study variance is not accounted

for. In contrast, random-effects models assume that the true

effect size may differ both within (within-study sampling error)

and between (between-study variance) studies. Thus, random-

effects models attempt to account for both within- and

between-study variance. Multiple random-effects models exist,

all of which use different statistical approaches to estimate the

between-study variance(84–89). Therefore, if a random-effects

model is used, it is important for authors to report and cite that

random-effects model since they can lead to different results(90).

The most commonly used, but not necessarily the best model, is

the original random-effects, method-of-moments approach of

Dersimonian & Laird(85). Its common use is most likely the

consequence of its longevity as well as presence in numerous

statistical packages for meta-analysis. The former notwithstand-

ing, caution may be warranted in the a priori use of the tradi-

tional fixed-effect model and various random-effects models

that are currently available(84–89). For the traditional fixed-effect

model, the issue has to do with not accounting for potential

between-study variance that may exist. For random-effects mod-

els, an attempt is made to account for between-study variance

that usually results in wider CI but also results in an increased

mean squared error, which is a problem. In addition, the pooled

mean effect for random-effects models is not always more

conservative than the traditional fixed-effect model(91).

Alternatively, fixed-effect models with robust error estimation

may currently be the best choice(92–94). In the presence of statis-

tical homogeneity, these models will collapse into the traditional

fixed-effect model. Both the inverse heterogeneity (IVhet) and

quality effects (QE) models are examples of fixed-effect models

with robust error estimation(92,93). Both have been shown to be

more robust than the traditional Dersimonian and Laird

approach, with regard to coverage probabilities(92,93). The

IVhet model uses an estimator under the fixed-effect model

assumption but importantly has a quasi-likelihood-based vari-

ance structure(92), while the QEmodel weights studies by includ-

ing a quality score for each study, derived from a pre-existing or

self-developed scale(93). The relationship between the two mod-

els is that the IVhet model is the QE model with quality set to

equal. Thus, no quality scores need to be imputed when using

the IVhet model(93).

While acknowledging the current and ever-changing state of

the evidence as well as the prioritisation of coverage probabil-

ities over point estimates, we recommend that the IVhet and QE

models be used when conducting an AD meta-analysis(92–94).

However, it’s also important to understand that no statistical

model is perfect. In addition, the choice of which model to

use will often depend on how a meta-analyst poses the question

and what modelling assumptions they make a priori, including

what the parameter of interest is. Both the IVhet and QE models

are currently available in a free, easy-to-use Excel meta-analysis

add-in program (Meta XL)(95). A Stata module (admetan) is also

available to execute the IVhet and QE models.

Irrespective of model choice, and assuming a frequentist

approach is used, pooled results should typically be reported

using point estimates and 95% CI as well as z- or t-based α values.

While not germane to meta-analysis, one should consider when

reporting and interpreting results the recent recommendations

in an editorial byWasserstein et al.(3) aswell as the rest of an entire

issue of The American Statistician devoted to the use and over-

reliance on ‘statistical significance’. Similiar recommendations

were made in a recent commentary by Amrhein et al.(96).

In addition to 95 % CI(96), 95 % prediction intervals (PI) may

also be reported when findings are pooled from those based

on models such as random-effects(97). The concept behind PI

is that they tell one how effects are distributed around a summary

effect(97). This is in contrast to point estimates and CI, which

provide an estimate of the overall effect and precision, respec-

tively(97). From an applied perspective, PI may make more sense

because they help to determine uncertainty about whether

an intervention works or not(97). However, it has been recom-

mended that caution be derived in drawing strong conclusions

from 95 % PI because of coverage problems(98). In addition, it

has been suggested that because PI are calculated based on trials

that are generally homogeneous, that is, patient populations

and comparator treatments are interchangeable, the overall

effect estimates may not be accurate if they do not meet this

criterion(99). As an example of PI use in nutrition, Cariolou

et al. recently conducted an ADmeta-analysis on the association

between 25-hydroxyvitamin D deficiency and mortality in

children with acute or critical conditions(100). Based on a

random-effects model, the pooled OR and 95 % CI of the risk

of mortality in vitamin D deficient v. vitamin D non-deficient

acute and critically ill children was 1·81 (95 % CI 1·24, 2·64).

However, based on 95 % PI (0·71, 4·20), there was much less

certainty, that is, wider intervals that also included 1, regarding

this association(100).

Similar to original studies, it is important to examine and

report data on heterogeneity and inconsistency in meta-analysis.

In meta-analysis, heterogeneity refers to any type of variability
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between studies and may be categorised broadly as clinical

(patient characteristics, etc.), methodological (blinding, alloca-

tion concealment, etc.) and statistical (differences in outcome

assessments, etc.)(6). The Cochran Q statistic is typically used

to examine heterogeneity(101), while the I2 statistic, an extension

of Q, is used to examine inconsistency(102). The Q statistic is a

measure of statistical significance and given power problems,

is typically reported as significant if the alpha (α) value is< 0·10

as opposed to< 0·05(102). I2 is a relative measure that ranges

from 0 to 100 %, with higher values representative of greater

inconsistency(102), while τ
2 is an absolute measure of between-

study heterogeneity. However, like any statistic, Q, I,2 or τ
2

are not perfect with respect to explaining all the potential sources

of heterogeneity(103).

A standard graphical method of reporting results from each

study as well as the overall pooled effect is through the use of

a forest plot. An example of a forest plot using the IVhetmodel(92)

is shown in Fig. 2(104). While not common given the different

ways in which data are reported, sample sizes as well as change

outcome means and standard deviations from each intervention

groupmay also be displayed in a forest plot. However, to reduce

bias, including studies that only report data in exactly the same

way is strongly discouraged if the overall treatment effect and

variance from each study can be calculated from other reported

statistics.

Data synthesis (small-study effects).An assessment for poten-

tial small-study effects (publication bias, etc.) is usually impor-

tant in meta-analysis. Historically, this has most often

been assessed qualitatively using some type of funnel plot

and quantitatively using Egger’s test(105), though other methods

exist for the assessment of both(106,107). Briefly, a funnel plot is

a scatterplot in which the precision of each included study

(standard error, inverse of the standard error, etc.) is plotted

on the vertical (y) axis and the effect size for each included study

(mean difference, standardised mean difference, OR, etc.) is

plotted on the horizontal (x) axis. In the absence of small-study

effects, the values should appear as an inverted funnel, with

smaller sample size studies showing greater dispersion, that is,

larger standard errors, at the bottom of the plot, while studies

with larger sample sizes showing less dispersion towards the

top. Smaller missing studies without statistically significant

effects will lead to an asymmetrical appearance of the funnel plot

with a gap in the bottom corner of the plot. However, the funnel

plot can be difficult to interpret(108). An example of a funnel plot

using the same data as for the forest plot(104) is shown in Fig. 3.

Egger’s regression–intercept test is used for the Y intercept= 0

from a linear regression of a normalised effect estimate, that

is, estimate divided by its standard error, against precision, that

is, the reciprocal of the standard error of the estimate(105).

Unfortunately, the power to detect asymmetry with Egger’s test

is low when the number of studies is small(109). Present recom-

mendations suggest that if there are at least ten studies, a funnel

plot and Egger’s test may be used to examine for the small-study

effects if the outcome of interest is continuous in nature,

for example, changes in TC. However, since the time of the pub-

lication of these recommendations, an alternative qualitative

(Doi plot) and quantitative (Luis Furuya-Kanamori (LFK) index)

approach have been suggested to bemore robust with respect to

ease in visualising asymmetry (Doi plot) as well as greater diag-

nostic accuracy in differentiating between asymmetry and no

asymmetry (LFK index)(107). Rather than use a scatterplot, the

Doi plot uses a normal quantile plot v. effect rather than precision

Study % Weight

–0·06 (–0·41, 0·29)

–0·32 (–0·70, 0·07)

–0·51 (–0·77, –0·25)

–0·24 (–0·45, –0·03)

–0·18 (–0·39, 0·03)

–0·06 (–0·53, 0·40)

–0·30 (–0·58, 0·02)

–0·26 (–0·36, –0·15)

8·8

7·4

15·9

24·3

24·3

5·0

14·3

100·3

–0·6

Favours treatment Favours control

Changes in TC (mmol/l)

–0·3 0 0.3

ES (95 %  CI)

Hellenius et al. (1993)

Nieman et al. (2002)

Wing et al. (1998)

Overall

Q = 6·2, P = 0·41, l2 = 3 %

Vetro (1990)

Stefanick et al. (1998 – women)

Stefanick et al. (1998 – men)

Hopewell (1989)

Fig. 2. Forest plot example of diet-induced changes in total cholesterol (TC) in adults based on the inverse variance heterogeneity (IVhet) model. The black squares

representmean changes in TC from each study while the left and right extremes of the squares represent the corresponding 95%CI, that is, compatibility intervals for the

mean changes. Themiddle of the black diamond represents the pooledmean change in TC, while the left and right extremes of the diamond represent the corresponding

95% CI of the pooled mean change. The vertical dashed line represents the pooled mean change in TC while the solid vertical line represents zero (0) effect. As can be

seen, the pooled 95% CI did not include zero (0), suggesting compatibility regarding the association between diet and reductions in TC. The results for Cochran’s

Q statistic, P value for Q and I 2 suggest a lack heterogeneity and inconsistency. The ES represents effect size changes in TC in mmol/l, while % weight represents

the percentageweight attributed by each study to the overall pooledmean effect. Results were similar when the two results byStefanick et al. were pooled into one overall

ES. Data adapted from Kelley et al.(104).
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v. effect, providing better visualisation than a dot plot(107). The

LFK index, an index based on the Doi plot, assesses asymmetry

quantitatively, with a value of zero (0) representing perfect sym-

metry, and thus, no apparent small-study effects(107). It is based

on the concept in which symmetry would be considered with

respect to a vertical line on the horizontal (x) axis from the effect

size with the lowest absolute z score on theDoi plot, dividing the

plot into two regions with the same areas. The LFK index then

quantifies the difference between these two regions in terms

of the areas below the plot and the difference in the number

of studies included in each armof the plot(107). Values± 1, greater

than ± 1 and within ± 2 and greater than ± 2 are considered to

represent no, minor and major asymmetry, respectively(107).

An example of the Doi plot and LFK index using the same data

as for our previous examples is shown in Fig. 4.

Data synthesis (influence and cumulative meta-analysis).

Many meta-analyses include a small number of trials. For exam-

ple, it has been reported that the typical number of studies

included in a Cochrane systematic review is six(110). Given the

former, it is usually relevant to conduct influence analysis with

each study deleted from the model once in order to examine

the effect that each study has on the overall results. Fig. 5 pro-

vides an example of influence analysis using the same data as

for our other examples(104).

In addition to influence analysis, it is often relevant to conduct

cumulative meta-analysis, traditionally ranked by year of publi-

cation, to examine the accumulation of results over time(111). The

inclusion of findings from a cumulative meta-analysis can aid in

making more educated choices based on past years of research

as well as leading to more timely and increased use of successful

interventions in practice(111). Using this method, findings are

pooled as each additional study is added to the model. An exam-

ple of cumulative meta-analysis using the same data as for our

previous examples is shown in Fig. 6.

Data synthesis (subgroup and/or meta-regression analysis).

Given an adequate number of studies, subgroup and/or meta-

regression may be conducted to explore the effect of selected

covariates, for example, age, on the outcome(s)

of interest, for example, changes in fat mass as a result of a

weight-loss intervention. Traditionally, these are based on

weights derived from fixed and random-effects models,

and more recently, approaches such as the IVhet and QE

models, details for all of which have been described

elsewhere(6,81,92,93,112,113). While there may be a propensity for

investigators to only conduct analyses when statistically signifi-

cant and/or a large amount of inconsistency is found, this is

generally not advised, given the current limitations of measures

for heterogeneity and inconsistency(114). With respect to

the number of studies needed to conduct analyses such as

meta-regression, currently no firm consensus exists regarding

this. However, as a broad recommendation, and while under-

standing the potential arbitrariness of any definitive number

given the numerous factors to consider, we support the recom-

mendation of Fu et al., in which there should be at least six

studies per covariate for a continuous variable, for example,

age, and at least four studies per group for a categorical variable,

for example, sex (female, male)(115). Exclusive of dose–response

analyses, the four studies per group for a categorical variable is

also recommended for any subgroup analyses conducted. If

multiple meta-regression analysis is conducted, one should also

consider conducting and reporting results for all simple meta-

regression analyses performed. This may be especially relevant,

given that such analyses in meta-analysis are considered to be

exploratory. As a result, such findings would need to be tested

in original studies because studies are not randomly allocated

to covariates in meta-analysis. Consequently, they are regarded

as observational. For categorical variables such as sex, theremay

be a lack of studies in one ormore categories to conduct any type

of meta-regression or subgroup comparisons. If this is the case,

there are more than two categories, and it is scientifically plau-

sible, one may collapse one or more categories, so that at least

two exist. One can then conduct their meta-regression and/or

subgroup analyses. If this is not possible, one may then consider

additional forms of sensitivity analyses by omitting the results

Fig. 3. Example of funnel plot based on diet-induced changes in total cholesterol (TC) following a dietary intervention. The solid vertical line represents the overall pooled

mean change in TC in mmol/l after a dietary intervention. The x-axis represents changes in TC in mmol/l from each study while the y-axis represents the inverse of the

standard error for changes in TC from each study. Each dot represents changes in TC plotted against its precision. In the absence of small-study effects, the plot

should resemble a pyramid or inverted funnel, with scatter due to sampling variation. In the presence of potential small-study effects, the results from smaller studies

with smaller/null findingswill bemissing in that region of the plot.While difficult to interpret, especially given the small number of effect estimates, there do not appear to be

any small-study effects. Results were similar when the two results by Stefanick et al. were pooled into one overall effect size. Data adapted from Kelley et al.(104).
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from the category with the smaller number of studies to see how

it effects one’s overall results. As an example, if there are results

from ten studies, eight in males and two in females, one may

choose to run their analyses with only the results from the males

to see how it compares with the overall pooled results.

One aspect of meta-analysis in nutrition as well as other fields

is that some studies conduct and report on highest v. lowest

tertile comparisons. However, these are almost always difficult

to interpret in terms of what nutritionists should recommend,

given that there is overlap between studies with respect to what

is considered high and low. Indeed, some low categories could

be minimal and well below current recommended daily

allowances while others could be considered close to pharma-

cological. Since nutritionists tend to prefer a recommended

intake that can be applied to various populations and groups

with confidence, it is recommended that any such comparisons

be conducted using a dose–response approach. This consists of

modelling the association between the exposure and outcome

to estimate the increase or decrease associated with one

unit, or some other appropriate unit change, in exposure(32).

For example, using linear dose–response meta-analysis, Morze

et al. found no significant associations between a 10-g/d increase

in chocolate intake and heart failure (relative risk= 0·99, 95 % CI

0·94, 1·04) as well as type 2 diabetes (relative risk= 0·94, 95 % CI

0·88, 1·01)(116). However, a small inverse association was

observed for CHD (relative risk= 0·96, 95 % CI 0·93, 0·99), and

stroke (relative risk= 0·90, 95 % CI 0·82, 0·98)(116). Greenland &

Longnecker(117), Hartemink et al.(118) and Xu et al.(112) provide

detailed information regarding dose–response methods for

meta-analysis.

Data synthesis (practically relevant information). An aspect

that is sometimes overlooked when conducting a meta-analysis

is the need to provide practically relevant information to readers.

In addition to reporting both absolute and relative results when-

ever possible, the use of metrics such as the number needed to

treat (NNT)(6,119) and percentile improvement based on values

such as Cohen’s U3 index
(120), when appropriate, could be con-

sidered. For example, using the diet and TC data from our pre-

vious examples(104), the method of Hasselblad and Hedges for

estimating the NNT from continuous data(121), and a control

group risk of 30 %, the NNT for diet-associated reductions in

TC was 5, meaning that one in five (20 %) people would reduce

their TC if they dieted. Using the same data, Cohen’s U3 index for

percentile improvement was 16·9, meaning an improvement

from the 50th to 66·9th percentile. In addition, one should also

consider both the clinical and population health importance of

any findings from a meta-analysis. For example, a 2-mmHg

reduction in resting systolic blood pressure as a result of lower

sodium intake may not be very important at the patient level but

may have significant implications at the population level, given

that lower sodium intake has been associated with a 4 % reduc-

tion in CHD and a 6 % reduction in stroke(122).

Data synthesis (strength of evidence). An assessment for the

strength of the evidence for the outcome(s) of interest should

usually be conducted and reported. One of the most common

instruments used is the GRADE instrument, details of which are

provided elsewhere(123). In brief, GRADE is a subjective tool that

assesses the strength of evidence for a specific outcome

across five areas: (1) risk of bias, (2) imprecision, (3) inconsis-

tency, (4) indirectness and (5) publication bias(123). For each

of these items, the evidence can be rated down by one to two

levels. There can also be an increase of one or two levels if there

is a large effect and/or an increase of one level if either a dose–

response relationship is observed or all plausible confounding

would reduce the effect or increase the effect if no effect was

identified(123). For the GRADE instrument, risk of bias focuses

on study limitations that include lack of allocation concealment

and blinding, incomplete accounting of participants and out-

come events, selective outcome reporting as well as any other

limitations that reviewers believe may impact the outcome(123).

Imprecision is the degree of uncertainty about the findings

and includes such things as a wide CI around the estimate of

effect, while inconsistency signifies unexplained heterogeneity

in results(123). Indirectness is the evaluation of findings based

Fig. 4. Example of Doi plot based on diet-induced changes in total cholesterol (TC)

following adietary intervention. The vertical line on the horizontal (x) axis represents

the effect size (ES) with the lowest absolute z score, dividing the plot into two

regions with the same areas. Visualisation of the plot suggests no asymmetry

and thus no small-study effects such as publication bias. The obtained Luis

Furuya-Kanamori index of 0·30 also suggests no asymmetry. Results were similar

when the two results by Stefanick et al. were pooled into one overall ES. Data

adapted from Kelley et al.(104).
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on whether the included studies directly compare the interven-

tions and populations in which one is interested in as well as

measuring outcomes believed to be important by participants,

for example, self-reported health-related quality of life as a result

of weight loss in obese participants. Lastly, publication bias is the

selective publication of studies in which improvements are

embellished and harms are underestimated(123). The overall cer-

tainty of the evidence is then rated by the authors as either (1)

very low, (2) low, (3) moderate or (4) high(123). As an example

of the use of the GRADE instrument in nutrition, Baranski et al.

rated the overall strength of evidence as moderate or high for the

majority of parameters for which significant differences were

detected in a systematic review with meta-analysis on

differences in composition between organic and non-organic

crops and crop-based foods(124).

Discussion and conclusions

Where appropriate, the discussion and conclusions sections of a

systematic review with meta-analysis should include (1) a sum-

mary of the overall findings, (2) a discussion of how the findings

compare with previous research on the topic, (3) the potential

clinical, public health and policy implications of the findings,

(4) directions for future research with respect to both the report-

ing of future studies on the topic and additional studies thatmight

be needed, for example, the dose–response effects of

vitamin D on bone mineral density and (5) the strengths and

potential limitations of one’s systematic review with meta-

analysis. With respect to the latter, one of the inherent limitations

of any AD systematic review with meta-analysis is the potential

for ecological fallacy(125). The PRISMA guidelines provide

Study

–0·21 (–0·32, –0·10)

–0·25 (–0·38, –0·12)

–0·25 (–0·37, –0·13)

–0·26 (–0·40, –0·13)

–0·27 (–0·38, –0·15)

–0·28 (–0·39, –0·17)

–0·28 (–0·41, –0·16)

–0·4

Changes in TC (mmol/l)

–0·3 –0·2 –0·1

ES (95 %  CI)

Hellenius et al. (1993)

Nieman et al. (2002)

Wing et al. (1998)

Vetro (1990)

Stefanick et al. (1998 – women)

Stefanick et al. (1998 – men)

Hopewell (1989)

Fig. 5. Influence analysis based on the inverse variance heterogeneity model with each result deleted from the overall analysis once. The black squares represent mean

changes in total cholesterol (TC) with the corresponding study deleted from the model, while the left and right extremes of the squares represent the corresponding 95%

CI for themean changes. As can be seen, changes ranged from –0·21 to –0·28mmol/l with non-overlapping 95%CI for all. These findings suggest that no one result had

a significant impact on the overall findings. Results were similar when the two results by Stefanick et al. were pooled into one overall effect size (ES). Data adapted from

Kelley et al.(104).

Study

–0·32 (–0·70, 0·07)

–0·22 (–0·51, 0·08)

–0·15 (–0·38, 0·08)

–0·20 (–0·35, –0·04)

–0·19 (–0·32, –0·07)

–0·21 (–0·32, –0·10)

–0·26 (–0·36, –0·15)

–0·4–0·6

Changes in TC (mmol/l)

–0·2 0

ES (95 %  CI)

Hellenius et al. (1993)

Nieman et al. (2002)

Wing et al. (1998)

Vetro (1990)

Stefanick et al. (1998 – women)

Stefanick et al. (1998 – men)

Hopewell (1989)

Fig. 6. Cumulativemeta-analysis ranked by year and based on the inverse variance heterogeneity model. The black circles represent mean changes in total cholesterol

(TC) with the corresponding study, and all earlier studies pooled while the left and right extremes of the circles represent the corresponding 95% CI for the mean pooled

changes. As can be seen, non-overlapping 95% CI have been observed since 1998. Results were similar when the two results by Stefanick et al. were pooled into one

overall effect size (ES). Data adapted from Kelley et al.(104).
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greater details regarding items to include in the discussion and

conclusion sections of a systematic reviewwithmeta-analysis(30).

With respect to interpretation on the part of the consumer, the

results of a systematic review with meta-analysis should be con-

sidered, broadly, with respect to several potential factors. First

and foremost, were any significant findings also foundpractically

important? Second, were the included studies representative of

the population, exposures and outcomes that one is interested in

and deemed to be important? Third, do any potential benefits

outweigh the risks involved? Fourth, is the evidence considered

to be strong?

Finally, meta-analysis, like many fields today, is progressing at

a rapid pace. As a result, it is very difficult for generic statisticians,

biostatisticians and other relevant professionals to stay current

unless they have a specific and current focus in this burgeoning

field. Given the former, we strongly recommend that not only a

content expert but also a meta-analytic expert be included in

any meta-analysis that is conducted.

Conclusion

The number of systematic reviews, with or without meta-analysis,

is increasing in the field of nutrition. Thepurpose of this articlewas

to provide a non-technical introduction to producers, reviewers

and consumers of these important reviews, with a focus on

nutrition. It is the hope that this information will be helpful to

producers, reviewers, and consumers in the field of nutrition.
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