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Abstract

This paper presents an analytical and empirical analysis of a parsimonious model

framework that accounts for a dependence of bond and bank loan recoveries on sys-

tematic risk. We extend the single risk factor model by assuming that the recovery

rates also depend on this risk factor and follow a logit–normal distribution. The re-

sults are compared with those of two related models, suggested in Frye (2000) and

Pykhtin (2003), which pose the assumption of a normal and a log–normal distribu-

tion of recovery rates.

We provide estimators of the parameters of the asset value process and their

standard errors in closed form. For the parameters of the recovery rate distribution

we also provide closed–form solutions of a feasible maximum–likelihood estimator

for the three models.

The model parameters are estimated from default frequencies and recovery rates

that were extracted from a bond and loan database of Standard&Poor’s. We estimate

the correlation between recovery rates and the systematic risk factor and determine

the impact on economic capital.

Furthermore, the impact of measuring recovery rates from market prices at de-

fault and from prices at emergence from default is analysed. As a robustness check

for the empirical results of the maximum–likelihood estimation method we also em-

ploy a method–of–moments.

Our empirical results indicate that systematic risk is a major factor influencing

recovery rates. The calculation of a default–weighted recovery rate without further

consideration of this factor may lead to downward–biased estimates of economic

capital.

Recovery rates measured from market prices at default are generally lower and

more sensitive to changes of the systematic risk factor than are recovery rates de-

termined at emergence from default. The choice between these two measurement

methods has a stronger impact on the expected recovery rates and the economic cap-

ital than introducing a dependency of recovery rates on systematic risk in the single

risk factor model.

Keywords: asset correlation, New Basel Accord, recovery rate, LGD, recovery correla-

tion, single risk factor model

JEL Classification: G 21, G 33, C 13



Non–technical Summary

This paper analyses three credit risk models that account for systematic risk in

recovery rates of bonds or loans. The systematic risk is driven by a single unobserv-

able factor, similar to the single risk factor model that was used to derive the risk

weight function of the internal ratings based approach in Basel II. The three models

differ in the distributional assumption for the recovery rates. The model parameters

are estimated from default rates and recovery rates that were extracted from a bond

and loan database of Standard&Poor’s.

The following main conclusions can be drawn.

• The empirical analyses indicate that systematic risk is a major factor influenc-

ing recovery rates of bonds and loans. Ignoring it may lead to downward–

biased estimates of economic capital.

• Measuring recovery rates just after default or at emergence from default seems

to have a stronger impact on recovery rates and the economic capital than does

extending the single risk factor model to capture systematic risk in recovery

rates. Recovery rates measured at default are generally lower and more sen-

sitive to changes of the systematic risk factor than are recovery rates at emer-

gence from default.



Nichttechnische Zusammenfassung

Diese Arbeit untersucht drei Kreditrisikomodelle, die ein systematisches Risiko

in den Erlösquoten von Anleihen oder Buchkrediten berücksichtigen. Das systemati-

sche Risiko wird von einem einzelnen, unbeobachtbaren Faktor getrieben. Die

drei Modelle stellen Erweiterungen des Ein–Faktor–Modelles dar, welches für

die Risikogewichtsfunktionen des auf internen Ratings basierenden Ansatzes von

Basel II verwendet wurde. Sie unterscheiden sich in ihren Verteilungsannahmen

für die Erlösquoten. Die Modellparameter werden aus Ausfallraten und Erlösquoten

geschätzt, die einer Buchkredit- und Anleihedatenbank von Standard&Poor’s ent-

nommen wurden.

Die Untersuchungen liefern die folgenden wesentlichen Ergebnisse:

• Die empirischen Analysen geben Hinweise, dass das systematische Risiko ein

wichtiger Einflussfaktor für die Erlösquoten ist. Die Vernachlässigung dieser

Risikokomponente kann zu einer Unterschätzung des benötigten Eigenkapitals

führen.

• Die Berechnungsmethode für die Erlösquoten, d.h. Marktpreise bei Ausfall

oder Erlösquoten am Ende der Abwicklungsphase mittels Diskontierung der

erhaltenen Zahlungen, hat einen größeren Einfluss auf die Schätzergebnisse

als die Erweiterung des Ein–Faktor–Modelles durch Berücksichtigung des sys-

tematischen Risikos. Erlösquoten, die unmittelbar nach dem Ausfallereignis

bestimmt werden, sind im Allgemeinen niedriger und reagieren sensitiver auf

Änderungen des systematischen Faktors als Erlösquoten, die am Ende der Ab-

wicklungsphase bestimmt werden.
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1. Introduction

The purpose of this paper is to analyse analytically and empirically the dependence of

bank loan recoveries on systematic risk that is driven by the business cycle. Furthermore,

it explores the impact on the economic capital calculation if systematic risk is ignored.

The new model that is put forward in this paper and two other models which serve as

benchmarks build on the assumption of a single systematic risk factor. This assumption

has already been widely applied in earlier studies.1 It also forms the foundation of the

risk weight function in the internal ratings based (IRB) approach of the revised Frame-

work (Basel II) that sets out the future minimum capital requirements for banks.2 The

model for the IRB risk weights focuses only on systematic risk in the default rate. It im-

plicitly assumes that default rate and recovery rate are independent. We refer to it as the

classic one–factor model. The three extended models which are analysed in this paper

incorporate a non–zero correlation between default rates and recovery rates that is driven

by systematic risk. Note that the loss given default (LGD) can be directly transformed

into a recovery rate R by the relation R = 1−LGD. For convenience, we prefer the term

’recovery rate’ and we use LGD instead only for the calculation of economic capital,

following common terminology.

An infinitely granular loan portfolio is a critical assumption for applying the one–factor

model to determine economic capital. This assumption will, in principle, be fulfilled

for large, internationally well–diversified banks for which the single risk factor can be

interpreted as a proxy for the “world business cycle”.3 This justifies the use of Stan-

dard&Poor’s Credit Pro database, which is geared towards large international firms.

This paper makes the following four contributions: first, it considers different extensions

of the classic one–factor model which account additionally for systematic risk in recovery

rates.

Second, closed form solutions are provided for the maximum–likelihood estimators of the

asset correlation and the probability of default and their standard errors as well as for the

parameters of the recovery rate distribution.

1See, for example, Schönbucher (2000) and Belkin and Suchower (1998).
2See Basel Committee on Banking Supervision (2004).
3New empirical evidence of the existence of an international business cycle is provided in Kose et al.

(2003).
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Third, as an empirical contribution, the correlations of default rates and recovery rates

with the systematic risk factor are estimated based on Standard&Poor’s Credit Pro database.

Fourth, we explore the consequences for economic capital if the classic one–factor model

is applied instead of the extended models that also incorporate systematic risk in recovery

rates.

The results in this paper are submitted to several robustness checks. We explore the effect

of replacing the assumption of logit–normally distributed recovery rates by a normal and

a log–normal distribution. In addition to maximum likelihood, a method–of–moments

estimation is also carried out. The estimation results are compared for recovery rates

based on market prices shortly after default and recovery rates that are determined at

emergence from default or bankruptcy.

This paper builds on the work by Frye (2000) and Pykhtin (2003) who have applied mod-

els with systematic risk in recovery rates which are also based on the one–factor assump-

tion. We extend their work by proposing a new model that additionally incorporates the

restriction that recovery rates are bounded between 0% and 100%.

The assumption of the extended models that default rates and recovery rates are influ-

enced by the same systematic risk factor has been questioned by Altman et al. (2003).

The authors argue that GDP is not significant as a regressor in a multivariate model for

recovery rates. In addition to this empirical argument, other factors like collateralisation

and seniority are also expected to have an impact on recovery rates, although not nec-

essarily on their correlation with the systematic risk factor. However, our assumption of

a single systematic risk factor that drives default rates and recovery rates is motivated

primarily by the desire to have a tractable model that incorporates systematic risk in re-

covery rates. Even this parsimonious model represents an important extension of credit

risk models used in practice, for example, CreditMetrics and CreditRisk+,4 that do not

account for this source of risk.

This paper is structured as follows. Section 2 reviews a selection of related literature. In

section 3 we set up the model framework and describe the estimation methods. Section 4

is devoted to a description of the database and a descriptive analysis of the data. The em-

pirical results are presented in section 5. This includes estimates of the model parameters,

a comparison of different measurement methods for the recovery rates and an analysis of

4See Credit Suisse Financial Products (1997) and Gupton et al. (1997).
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the expected recovery rates and the sensitivity of the recovery rate to the systematic risk

factor. In section 6, implications of considering systematic risk in the determination of

economic capital are analysed. Section 7 provides a summary and conclusions.

2. Empirical literature on systematic risk in recovery rates

Recovery rates and their dependence on business cycle effects have been the object of var-

ious empirical studies. A selection of recent studies is provided in the following section.

Asarnow and Edwards (1995) carried out a long–term empirical study on recovery rates

which covers a time period of 24 years from 1970 to 1993. They analysed 830 com-

mercial and industrial loans and 89 structured loans from Citibank’s US borrowers that

were classified as doubtful or non–accrual. Loss in the event of default is measured as

the shortfall of the contractual cash–flow and subsequently discounted at the contractual

lending rate. Asarnow and Edwards find a time–stable non–linear uptrend of this variable

that seems to be independent of macroeconomic factors with average values of 34.79%

for commercial and industrial loans and 12.75% for structured loans. The relatively small

loss for the latter is explained by a closer monitoring of this loan type.

Altman and Brady (2002) and Altman et al. (2003) explore the impact of supply and de-

mand for securities of defaulted companies on recovery rates. Their studies cover the

years from 1982 to 2001 with recoveries measured as the first market price after default

has occurred. The analysis is performed with an aggregate annual recovery rate as the de-

pendent variable, which is defined as the market–value weighted average recovery of all

corporate bond defaults, computed from approximately 1,000 bonds. The authors claim

that the performance of the macroeconomy is of secondary importance if another mea-

sure of supply such as the aggregate bond default rate is used. For the univariate model

incorporating bond default rates as explanatory variables, they find that they can explain

about 60% of the variation in average annual recovery rates. However, the inclusion of

supply–side indicators, such as the total amount of high yield bonds outstanding for a par-

ticular year or the Altman–NYU Salomon Center Index of Defaulted Bonds, increases the

explanatory power to nearly 90% of the variation. An open issue is why macroeconomic

variables such as GDP growth which have been found to influence aggregate default rates

seem to have a much lower explanatory power for recovery rates than the supply–side

variables.
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A study by Gupton et al. (2000) explores the recovery rates of 181 bank loans to 121 large

US borrowers which defaulted in the time interval between 1989 and 2000. Secondary

market price quotes of bank loans one month after default are used as a proxy for actual

recoveries on defaulted loans. The authors find evidence of a positive correlation between

LGD for defaulted senior secured bank loans and senior secured public debt which exists

even for different market instruments and non–overlapping sets of defaulters. They infer

that economic factors that might influence recoveries have an impact on both kinds of

securities. Compared with the results by Asarnow and Edwards (1995), they find that the

mean LGD is higher, between 30.5% and 47.9%, depending on the type of debt. They also

observe that LGD is determined by several factors other than systematic risk, such as the

availability of collateral, the length of the workout period, and the number of outstanding

loans to a defaulted borrower.

In Frye (2003), 960 securities are analysed that defaulted between 1983 and 2001. They

are separated into 49 debt types according to seniority and other contract characteristics

and the LGD is a contemporaneous estimate of the loss to the lender. Frye finds that the

LGD is generally higher in high–default years, which indicates the presence of a system-

atic effect. Separating the time interval into the subsets “bad years” and “good years”, he

claims that LGD, both on a granular and on an aggregate level, reacts sensitively to the

state of the economy. The effect, however, is stronger on the granular level. In addition,

bad years seem to have a stronger impact on instruments with lower LGD than on those

with higher LGD.

Hu and Perraudin (2002) present evidence for a negative correlation between recovery

rates and default rates. Their regression analysis of 958 defaulted bonds between 1971 and

2000 reveals a negative correlation between quarterly recovery rates and default rates over

the entire sample period. This negative correlation increases after 1982. After their initial

regression analysis, Hu and Perraudin standardise the observed recovery rates, measured

as the ratio of the market value of the bonds and the unpaid principal one month after

default, to account for the time–variation in the sample of recoveries and obtain a filtered

set of recoveries. The comparison of the unfiltered and the filtered recovery rates indicates

that the actual correlation on the granular level is downward–biased by the additional

volatility that results from the fact that the sample evolves over time.

Acharya et al. (2003) study the empirical determinants of the variability of recovery rates.

Their analyses are based on Standard&Poor’s Credit Pro database with LGD measured in

two ways, from prices at default and from prices at emergence. The authors identify the

4



condition of the industry sector of the defaulted firm as an important driver of the recovery

rate. Poor industry liquidity affects the recovery at emergence but not the recovery rates

measured at default.

Summarising the results of previous studies, there is broad agreement that default rates

and the business cycle are correlated. The results for a potential correlation between

business cycle indicators and recovery rates are mixed. Whereas Asarnow and Edwards

(1995) and Altman and Brady (2002) observe only a weak dependence of recovery rates

on macroeconomic variables, the work by Gupton et al. (2000) and Frye (2003) suggests

that recovery rates are more closely linked to the business cycle. Apart from a potential

influence by the macroeconomy, several contract–specific factors, for example, seniority

and collateral, also seem to affect recovery rates. However, the explanatory power of

some of the analysed factors, for example, the business sector, is highly controversial.

3. Model and estimation procedure

3.1. Model setup

Two different sets of assumptions have been posed in the literature in order to justify the

use of a one–factor model to capture systematic risk in default rates and recovery rates.

One framework is based on the assumption of a homogenous loan portfolio. A loan port-

folio is usually considered as homogenous if the distribution of its loss vector that collects

losses of the individual facilities is exchangeable, that is invariant under permutations of

its components.5 A more general framework has been suggested by Gordy (2001). He

has shown that an economic capital charge for a loan portfolio can still be determined as

the sum of the capital charges for single loans if there is only one systematic risk factor

and if the portfolio is “infinitely granular”.

Following Frye (2000) and for ease of presentation, we assume in the following homo-

geneity of the portfolios under consideration. However, the results can be extended to the

more general framework of an infinitely granular portfolio which allows a more general

interpretation of our results.

5See, for example, Frey and McNeil (2003).
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The classic one–factor model that is the basis of the following analyses is well described

in the literature.6 The innovation of this paper is the extension of the model by additionally

accounting for systematic risk in recovery rates. We analyse three possible extensions of

which two build on the work by Frye (2000) and Pykhtin (2003).

For completeness we summarise the key characteristics of the classic one–factor model.

Let Aj denote the innovation in the asset value index of firm j. According to (1) it depends

on changes of a systematic risk factor, denoted by X , and a firm–specific (idiosyncratic)

risk factor Z̆j:

Aj =
√

ρ X +
√

1 − ρ Z̆j. (1)

As X and Z̆j are assumed to be independently standard normally distributed, Aj is also

standard normally distributed. By assumption, the Z̆j are pairwise uncorrelated.

The parameter ρ measures the asset correlation between the innovations in the asset val-

ues of any pair of firms which equals the square of the correlation with the single system-

atic risk factor. It is restricted to the interval [0, 1] and assumed to be constant for all firms

and across all time periods. Conditional on X , the innovations in the asset values of two

firms are uncorrelated. The higher ρ is, the stronger is the firm’s asset value exposed to

fluctuations in the business cycle.

Firm j defaults if and only if its asset value Aj falls below an exogenous threshold. Let

PD denote the unconditional probability of default in a certain time horizon of usually

one year.7 Then the default threshold is given by Φ−1 (PD), where Φ−1 denotes the

inverse of the cumulative distribution function of the standard normal distribution.

The classic one–factor model is extended below by accounting for systematic risk in re-

covery rates under three different assumptions for the distribution of default rates. All

three models have a parsimonious structure which facilitates their implementation. Only

the reference model meets the requirement that recovery rates are usually bounded be-

tween 0% and 100%.8

Following a proposal by Schönbucher9, the recovery rate is modelled in the first (refer-

ence) model as a logit transformation of a normally distributed random variable Yj . The

6See, for example, Gordy (2001), Schönbucher (2000) or Belkin and Suchower (1998).
7We can drop the firm–specific index j for the probability of default PD because of the homogeneity

assumption for the portfolio.
8In practice these bounds can be violated to some extent, for example, if recoveries exceed the outstand-

ing exposure.
9See Schönbucher (2003), pp 147–150.
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recovery rate R (Yj(X)) follows a logit–normal distribution defined as follows

Yj(X) = µ + σ
√

ω X + σ
√

1 − ω Zj

R (Yj(X)) =
exp (Yj(X))

1 + exp (Yj(X))
, (2)

where X and Zj are independent standard normally distributed. The parameter ω is re-

stricted to the interval [0, 1]. We demand that PD, µ, σ and ω, like ρ, are constant for all

firms and across all time periods. We further assume that the Zj are pairwise uncorrelated

cross–sectionally.

The second and the third extended model are taken from the literature and used for bench-

marking purposes. The second model follows Frye (2000) who suggests a normal distri-

bution of the unconditional recovery rates. The recovery rate Řj (X) of obligor j, condi-

tional on X , is given by

Řj (X) = µ̌ + σ̌
√

ω̌ X + σ̌
√

1 − ω̌ Žj, (3)

where Žj denotes the idiosyncratic risk that follows a standard normal distribution. We

pose the same assumptions for Žj and ω̌ as for Zj and ω in (2). A presentational advantage

of the normal distribution assumption is that the parameters µ̌ and ω̌ have a straightfor-

ward interpretation as mean recovery and recovery correlation. A drawback is that in this

model, recovery rates are neither bounded from below nor from above.

In the third model the recovery rate is log–normally distributed. Following Pykhtin (2003)

the recovery rate R̃j (X) is defined as follows

R̃j (X) = exp
(
µ̃ + σ̃

√
ω̃ X + σ̃

√
1 − ω̃ Z̃j

)
. (4)

We pose the same assumptions for Z̃j and ω̃ as for Zj and ω in (2). The log–normal

distribution may be more realistic than the normal distribution because recovery rates are

strictly non–negative and because it has a thicker tail.10

10See, for example, Van de Castle and Keisman (1999).
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3.2. Estimation procedure

In all three extended models parameter estimation is carried out in two steps: in the first

step, we estimate the parameters of the asset value process, ρ and PD, and in the second

step the three parameters of the recovery rate distribution. The model parameters are

estimated by maximum likelihood and also by a method–of–moments as a robustness

check.

In the first step we estimate the parameters PD and ρ. From (1) follows for the conditional

default probability p(x), given X = x

p(x) = Φ

[
Φ−1 (PD) −√

ρ x√
1 − ρ

]
. (5)

The parameter estimation is based on observed default rates in periods 1, . . . , T , in our

case on a yearly basis. We assume that there is neither autocorrelation in the systematic

risk factor Xt nor in the idiosyncratic risk factors Zj,t, Z̆j,t, Žj,t and Z̃j,t.
11

The default rate of a loan portfolio containing Nt borrowers in time period t converges for

Nt → ∞ to the conditional default probability p (xt), given Xt = xt.
12 The probability

density of the default frequency DFt is given by

f (DFt; PD, ρ) =

√
1 − ρ

ρ
exp

[
−γ2 + (1 − 2ρ) δ2

t − 2
√

1 − ρ γ δt

2ρ

]
, (6)

where γ = Φ−1 (PD) and δt = Φ−1 (DFt).

The maximum of the log–likelihood function

LL (PD, ρ; DF1, . . . , DFT ) =
T∑

t=1

ln (f (PD, ρ; DFt)) (7)

can be determined analytically13

11The assumption of no autocorrelation in Xt is justified if the PD is a point–in–time estimate and Xt

pure random noise. However, assuming that PD is constant over time, we expect that Xt will be subject

to autocorrelation in the real world. Nevertheless, we demand a constant PD to ensure that the parameter

estimation is feasible.
12Assuming that the portfolio is large and well diversified, this is implied by the law of large numbers,

see for example, Bluhm et al. (2003), pp 70–71.
13We thank Dirk Tasche for suggesting this closed form solution.
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ρ̂ml =
V ar [δ]

1 + V ar [δ]
, (8)

P̂D
ml

= Φ

(
δ√

1 + V ar [δ]

)
, (9)

where δ = 1
T

T∑
t=1

δt and V ar [δ] = 1
T

T∑
t=1

δ2
t −

(
δ
)2

.

A closed–form solution of the asymptotic Cramér-Rao lower bound for the standard de-

viation of the estimators is derived in the appendix.

To compare our estimates with Frye (2000), the PD is alternatively estimated in the

first step by the mean default frequency DF and ρ is estimated separately by maximum

likelihood conditional on DF .

In the second step, the parameters of the recovery rate distribution are estimated. We

exploit the fact that the inferred systematic risk factor x̂1, . . . , x̂T for the time intervals

1, . . . , T can be inferred from the estimates P̂D
ml

and ρ̂ml, and the observed default fre-

quencies DF1, . . . , DFT . Three different models are analysed, in which the distribution

of the recovery rates is defined by (2), (3), and (4).

In the first model that serves as reference, recovery rates follow a logit–normal distri-

bution as in (2). Let Dt denote the number of defaults in period t. Given observations

r1, . . . , rT of the recovery rates, the maximum–likelihood (ML−)estimation of the model

parameters µ, σ and ω involves maximising the log–likelihood function

LL (µ, σ, ω; r1, . . . , rT , D1, . . . , DT ) = (10)

T∑

t=1

ln



√

Dt

2πσ2 (1 − ω) r2
t (1 − rt)

2 exp


−

Dt

(
ln
(

rt

1−rt

)
− µ −√

ωσx̂t

)2

2σ2 (1 − ω)





 .

An analytical solution for the maximum of (10) cannot be determined because the poly-

nomials resulting from the first–order–conditions are of fifth and higher order. Searching

numerically for the maximum may provide spurious results because the underlying model

Y (x̂t) = µ + σ
√

ωx̂t + σ
√

1 − ω Zt

9



is poorly identified.14

The problem is solved by a feasible ML−estimation that involves two steps. In the first

step σ is estimated by the historical volatility σhist of the transformed default rates Yj =

ln
(

rj

1−rj

)
. The parameters µ and ω are estimated in the second step conditional on σhist.

15

The first–order conditions of (10) with regard to µ and ω can be solved analytically

µml =

∑
t Dt

(
ln
(

rt

1−rt

)
− σhist

√
ωx̂t

)

∑
t Dt

. (11)

µml can be interpreted as the default–weighted average difference between the standard-

ized observed recoveries and the share of these recoveries that is explained by systematic

risk.

ωml is given as the second power of the solution to the following third-order polynomial

and can be computed using Cardano’s formula

z3 − sx,r · z2 − (1 − s2
x − s2

r) · z = sx,r, (12)

where sx,r = 1
T

∑
t Dtx̂t

(
ln

(

rt
1−rt

)

−µml

σhist

)
, s2

x = 1
T

∑
t Dtx̂

2
t and

s2
r = 1

T

∑
t Dt

(
ln

(

rt
1−rt

)

−µml

σhist

)2

.16

The second model assumes that unconditional recovery rates are normally distributed

according to (3). Maximum likelihood estimates µ̌ml, σ̌ml and ω̌ml for µ̌, σ̌ and ω̌ are

determined from observed recovery rates and conditional on x̂1, . . . , x̂T .

14A model is defined as “poorly identified” if its Hessian matrix is nearly singular for certain com-

binations of parameter values (see Davidson and MacKinnon (1993), pp 181–185). In such a case

ML−estimates for µ, σ and ω are highly unstable, which is confirmed by Monte–Carlo simulations.
15Even though σhist is an estimate of the standard deviation of recoveries given a certain value of X

for each time period, one can easily show that for the true parameters σ and ω, the equation σ2
hist =

σ2
[
1 − ω

(
1 − σ2

Xhist

)]
holds. Considering that the true value of ω lies in the interval [0, 1], we can

determine a confidence interval for σ. The parameter estimates of µ and ω in section 5 are not affected by

letting σ vary within this confidence interval.
16Substituting µml in (12) by (11), we obtain a third–order polynomial that only depends on

√
ωml but

which we do not show here for ease of presentation.
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From (3) follows for the distribution of the conditional recovery rate in period t

Ř (x̂t) ∼ N
(
µ̌ + σ̌

√
ω̌x̂t, σ̌

2 (1 − ω̌)
)

.

Because Ř (x̂t) is normally distributed, the log–likelihood function is given by

LL (µ̌, σ̌, ω̌; r1, . . . , rT , D1, . . . , DT ) =
T∑

t=1

ln

(√
Dt

2πσ̌2 (1 − ω̌)
· exp

(
−Dt

(
rt − µ̌ − σ̌

√
ω̌x̂t

)2

2σ̌2 (1 − ω̌)

))
, (13)

where r1, . . . , rT denote the observed recovery rates. Because the model is poorly identi-

fied, we determine σ̌hist as a proxy for the actual volatility and then determine the max-

imum of (13). The analytical solutions for µ̌ and ω̌ are given by (11) and (12) with

ln
(

rt

1−rt

)
substituted by rt.

In the third model, the assumption of normally distributed recoveries is replaced by the

assumption of Pykhtin (2003) that the recovery rate R̃ (x̂t) is log–normally distributed

R̃ (x̂t) ∼ Λ
(
µ̃ + σ̃

√
ω̃x̂t, σ̃

2 (1 − ω̃)
)

,

where Λ denotes the cumulative distribution function of the log–normal distribution.

The joint log–likelihood function equals

LL (µ̃, σ̃, ω̃; r1, . . . , rT , D1, . . . , DT ) =

T∑

t=1

ln



√

Dt

2πr2
t σ̃

2 (1 − ω̃)
exp


−

Dt

(
ln (rt) − µ̃ − σ̃

√
ω̃x̂t

)2

2σ̃2 (1 − ω̃)





 . (14)

Because the model is poorly identified, the two–step approach with σ̃hist as a proxy for σ̃

is used again to determine the maximum of (14). The analytical solution is given by (11)

and (12) with ln
(

rt

1−rt

)
substituted by ln (rt).

As a robustness check, the parameters of the analysed models are also determined by a

method–of–moments (MM−) estimator. For the parameters of the asset value process,

the default probability PD is estimated by the average default frequency DF . The pa-

rameter ρ can be determined numerically from the following equation for the variance of

the default rates in which Φ2 denotes the cumulative distribution function of the bivariate
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normal distribution

V ar [DF ] = Φ2

(
Φ−1

(
DF

)
, Φ−1

(
DF

)
, ρ
)
. (15)

The parameters of the distribution of the recovery rates are also estimated by a method–

of–moments. For the normal distribution, µ̌ and σ̌hist

√
ω̌ are estimated by the average

recovery rate and the sample correlation between the recovery rates and the systematic

risk factor. For the logit–normal and the log–normal distribution, we employ the same

methodology after transforming recoveries to normally distributed values.

4. Data

4.1. Database

The data source for default frequencies and recovery rates is Standard&Poor’s Credit Pro

database. Information on recovery rates is quoted from Acharya et al. (2003) who use

the same data source. Our study considers recovery rate and default rate observations for

18 years, from January 1982 to December 1999. The original data set contains recovery

information up to 2001 but the last two years typically constitute the workout period.

Therefore, including them in our sample would yield biased results for the recovery rates

at emergence.

The data source consists of two parts, the S&P bond database and the Portfolio Manage-

ment Data (PMD) database, which are described briefly below.17

The extract from the S&P bond database contains information on 379 defaulted compa-

nies. At the issuer level, the database provides company names and industry codes; at

the issue level, bond names, coupons, seniority rankings, issue sizes in dollars, prices at

default and default dates. The price at default is defined as the last recorded trading price

at the end of the month in which the default event occurred. The S&P database contains

only information about bonds and no collateral information. Recoveries are measured in

two ways: first, by market prices at the end of the month in which the default occurred

and, second, by prices at emergence. The total number of 645 default instances exceeds

17This description is based on Acharya et al. (2003) and Standard&Poor’s (2003).
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the number of firm defaults because firms generally have more than one type of bond

outstanding at the time of default.18

The PMD database includes aggregate recovery information about 1,540 bank loans, high

yield bonds and other debt instruments with a total of over US$ 100 billion from 300 non-

financial, public and private US companies that have defaulted since 1987. The overlap of

the S&P and the PMD database consists of approximately 400 facilities. In addition to the

information from the S&P database, the PMD database specifically identifies collateral

for each secured instrument, including all assets, inventory and/or receivables, real estate,

equipment, non–current assets and other. The data was obtained by S&P from bankruptcy

documents, reorganisation and disclosure statements, Securities and Exchange Commis-

sion filings, press articles, press releases and their internal rating studies on the issuers.

Recoveries are measured as the price at emergence from default discounted by the high

yield index for the period between default and emergence.

To explore the impact of the measurement method of the recovery rate, we perform the

estimation procedure based on market prices shortly after default and also based on recov-

ery rates at emergence. To this purpose we exclude from the merged PMD loan and S&P

bond data set those instruments for which no prices at emergence could be observed, the

total of borrower defaults equals 465 and the total of defaulted instruments equals 1511.

This sample, in which bank loans constitute approximately 24% of all defaults, is the ba-

sis for all analyses with recovery rates based on prices at emergence. For the S&P bond

database only market prices are available .

We emphasise that two conceptual problems occur in practice for recovery rates measured

from prices at emergence from default. First, prices at emergence sometimes exceed 100%

which should be the upper limit for recovery rates.19 It is not clear how these recoveries

should be treated in practice. In our case, however, we observe only average annual

recoveries which are always between 0% and 100%. Second, the rate at which prices at

emergence should be discounted is not unique. While discounting at the initial coupon

rate will clearly offer arbitrage opportunities,20 the appropriate selection of the discount

rate also depends on the question of the extent to which recovery rates are subject to

18The standard default definition automatically classifies all outstanding bonds as defaulted if default

occurs for one bond.
19The main reason for this inconsistency is that legal settlements involve price and valuation uncertainties

for both parties.
20Take two bonds A and B with equal price at emergence P and time between default and emergence but

different coupon rates i, say iA > iB . Then the discounted price of bond A is lower than that of bond B.

Short-selling one bond B and buying one bond A will yield a risk–less profit.
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systematic risk during the workout period. In the presence of systematic risk in this

period, discounting at a risk–free interest rate is not justified. A solution could be to

use instead a high–yield bond index as discount rate, following Acharya et al. (2003).

Default rate information, including annual default frequencies and the total number of

defaults, was taken from Standard&Poor’s (2003). They report this information from

1981 to 2002 for corporate defaults both across industry sectors and across countries,

only excluding public–sector and sovereign issuers.

Because of the structure of the available data set it is not possible to test for effects within

different industry sectors or rating classes. The results in Acharya et al. (2003) indicate

that this would be a promising extension of our work. They find that industry sector,

pre–default rating and capital structure have a significant impact on recovery rates.

4.2. Descriptive analysis

Figure 1 presents the time series of default rates and recovery rates. The latter are mea-

sured from market prices shortly after default and at emergence. The graphs indicate a

possible negative correlation between default rate and recovery rate. Also apparent are

notable differences that arise from the two measurement methods of recovery rates.

We find that in the entire time interval from 1982 to 1999, default rates were more volatile

than recovery rates in terms of a higher relative standard deviation, determined as the ratio

of the standard deviation of the time series and its mean. This ratio is 75% for default

rates, and 16% or 20% for recovery rates, dependent on their measurement method.

A descriptive analysis of the default and recovery rates yields that from 1982 to 1999,

the mean default rate equals 1.24% with a standard deviation of 0.7% while the mean

recovery rate, measured from market prices, amounts to 45.6% with a standard deviation

of 8.5%.

A stylised fact from previous empirical studies21 is a negative correlation between de-

fault rates and recovery rates. In Table 1, we show the test results for three different tests

regarding the correlation between default rates and recovery rates, measured from mar-

ket prices at default and at emergence from default. Our results imply that for recovery

21See, for example, Altman et al. (2003), Frye (2003) or Acharya et al. (2003).
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Figure 1. Recovery and Default Rates
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Table 1

Significance Tests of Correlation between Default Rates and Recovery Rates

The table gives the estimated correlation between default frequencies and re-

covery rates and p–values of the t–tests for significance. Recovery rates are

determined at default (Rpd) and at emergence (Rpe). The fourth column shows

results for a one–period lag of default rates. All values are given as a percent-

age.

Test Rpd Rpe Rpelead

Pearson correlation -61.36 -25.73 -41.25

p–value 0.68 30.26 9.99

Spearman p–value 0.41 11.77 1.97

Kendall p–value 0.39 13.11 4.22

rates determined from market prices at default, correlation with default rates is negative

and significant at the 99% level. If, however, we measure recovery rates from prices at

emergence from default, the correlation is less significant and its absolute value is smaller.

Altman and Brady (2002) observe that recovery rates are influenced by the supply and

demand for defaulted securities. Following this argument we would expect a negative
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correlation between current default rates and recovery rates in later periods. This agrees

with the lower p–values in the t–tests of the correlation, that are based on default rates

with a one–period time lag and observed recovery rates. We will explore this issue further

in section 5.1.

According to Table 1, we find a statistically significant negative correlation between ag-

gregate annual default rates and recovery rates measured from prices at default. These

results are in line with most empirical studies including Gupton et al. (2000), Hu and

Perraudin (2002), Altman et al. (2003) and Acharya et al. (2003).

Next, two tests of model specification are carried out to determine which distributional

assumptions are adequate for recovery rates. The test results are presented in Table 2.

The first is the Shapiro–Wilk test for normality.22 This test is carried out for recovery

rates defined as price at default (Rpd) and as price at emergence (Rpe). For prices at

default, p–values of 20.5% and 27.2% compared with 5.5% indicate that the logit–normal

and the normal distribution may be more adequate assumptions than the log–normal. For

prices at emergence, the p–values are more than 50% lower, but still the normal and the

logit–normal distribution seem to be more adequate than the log–normal.

The second test regarding the distribution of recoveries is a Jarque–Bera test for normal-

ity.23 As expected, the p–values for all three distributional assumptions are higher than

for the Shapiro–Wilk test. For log recoveries, the p–values are much smaller than in the

other two cases which confirms the results of the Shapiro–Wilk test.

The results of these specification tests slightly favour the normal distribution assump-

tion over the logit–normal distribution. However, the logit–normal model may still be

preferable on the grounds that it has the desirable property to restrict recovery rates to the

interval between 0% and 100%. This additional structural element may make parameter

estimation more efficient. Nevertheless, in section 5 we estimate and analyse expected

recoveries and recovery correlations under all three distributional assumptions.

22Shapiro–Wilk tests give highly precise results for small data samples. High p–values imply that the

hypothesis of an underlying normal distribution cannot be rejected, see for example, Davidson and MacK-

innon (1993), pp 80–81.
23Jarque–Bera type tests use skewness and kurtosis coefficients, see for example, Cromwell et al. (1994).
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Table 2

Tests of a Normal Distribution of Recovery Rates

Normality tests are performed on recovery rates measured as market prices at default

and as prices at emergence. For the logit–normal distribution, recovery rates R are trans-

formed by ln
(

R
1−R

)
. For the log–normal distribution, recovery rates are transformed

by ln (R).

measurement method recoveries from market prices recoveries from emergence prices

distribution logit– normal log– logit– normal log–

normal normal normal normal

Shapiro-test p–value 0.2046 0.2719 0.0549 0.0531 0.0980 0.0026

Jarque-Bera-test p–value 0.4092 0.4861 0.1897 0.2364 0.3493 0.0289

5. Empirical results

5.1. Maximum likelihood estimation of asset correlation and PD

In the first step, the parameters of the asset value process, ρ and PD, are estimated.

For the entire time period between 1982 and 1999, we estimate an asset correlation ρ of

approximately 4% and a (probability of default) PD of 1%. The estimate of the asset

correlation is broadly in line with findings by Dietsch and Petey (2004) and Duellmann

and Scheule (2003) for small and medium–sized corporate borrowers. Whereas the es-

timates of PD are very similar for both estimation methods, the MM−estimate of ρ is

10% higher than the ML−estimate. The parameters of the recovery rate distribution are

estimated conditional on the ML−estimates of ρ and PD. The conclusions from the later

analyses are robust against this decision.

Next, we infer the changes of the systematic risk factor Xt from the estimates of ρ and

PD and the observed default rates. Figure 2 relates the inferred changes of the systematic

risk factor, x̂t, to the annual changes in the US gross domestic product (GDP)24 which

we use as a proxy for the world business cycle. Altman et al. (2003) and Acharya et al.

(2003) find that the GDP is a superior proxy for systematic risk compared with, for ex-

ample, changes in the S&P 500 stock index or other market–based indicators. Figure 2

shows a co–movement between the inferred changes of the systematic risk factor and the

24The data comes from the International Monetary Fund’s World Economic Outlook Database.
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Table 3

ML−Estimates of Asset Correlation and Default Probability

The estimates are determined by maximum likelihood and using an average

default frequency as an estimate of PD. Estimates by a method of moments are

also given. All estimates are given as a percentage.

parameter ML−estimate for PD = DF MM–estimate

ρ 4.06 4.07 4.47

(standard error) (1.30) (1.30) (0.2)

PD 1.23 1.24 1.24

(standard error) (0.16) (| · | < 10−6) (| · | < 10−6)

annual changes in the US GDP. Changes in the systematic risk factor reflect the 1990/1991

recession and the less volatile movements of the business cycle since 1993.25

Figure 2. Changes in US GDP and in the Systematic Risk Factor between 1982 and

1999
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In order to investigate systematic risk in recovery rates, we test for correlation between

the inferred changes of the systematic risk factor and the observed recovery rates. The test

25For an extensive description of the business cycle mechanism, see Filardo (1997) and Christiano and

Fitzgerald (1998).
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Table 4

Tests of Correlation between Recovery Rates and the Systematic Risk Factor

The table gives the p–values for the correlation tests given as a percentage.

Small p–values imply that we can reject the hypothesis that correlation equals

zero. The fourth column shows results for a one–period time lag of the system-

atic risk factor.

Test Rpd Rpe Rpelead

Pearson 0.38 17.42 6.96

Kendall 0.39 13.11 4.2

Spearman 0.4 11.8 1.9

results are presented in Table 4. We can reject the hypothesis that the recovery rates based

on prices at default are uncorrelated with the systematic risk factor on a 99.5% confidence

level. The results are less clear–cut for recovery rates measured from prices at emergence.

If we test for correlation between recovery rates and the systematic risk factor of the same

time period, the p–values are much higher than for prices at default. If, however, we

use lead values of the systematic risk factor, the p–values decrease significantly. This

could be explained by the fact that prices at emergence are usually determined between

12 and 18 months after default. Recovery rates will therefore be influenced by the level

of systematic risk over the whole workout period.

The next section focuses on the estimation of the recovery rate distribution under different

distributional assumptions. These estimations are carried out conditional on the estimates

of ρ and PD in Table 3 and the inferred changes x̂t of the systematic risk factor.

5.2. Estimation results for recovery rates for a logit–normal, a normal

and a log–normal distribution

The following section compares ML−parameter estimates under three different distri-

butional assumptions. It also includes results from an MM−estimation as a robustness

check. Whereas the model parameter µ cannot be directly compared across the three ex-

tended models, the expected recovery rate is a variable that allows such a comparison

for the recovery level. The parameter ω is also not directly comparable across the mod-

els. In order to analyse differences in recovery correlation, we focus on the sensitivity of
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recovery rates to systematic risk that is analysed in detail in section 5.4.

For logit–normally distributed recovery rates, the ML−estimates of µ and ω are given in

the second column of Table 5. The expected recovery rate equals 45.57% which is 0.05

percentage points lower than the average recovery rate for the entire time interval. The

ML−estimate of ω equals 13.48%.

Table 5

Parameter Estimates Under Logit–normally Distributed Recovery Rates

The estimates are determined for logit–normally distributed recovery rates by

maximum likelihood (ML) and a method of moments (MM ). Volatility is

fixed at σhist = 35.37%. Recovery rates are measured by market prices at

default. All estimates are given as a percentage.

parameter ML−estimate MM−estimate

µ -18.32 -18.32

(standard error) (| · | < 10−9) (1.97)

ω 13.48 n.a.

(standard error) (| · | < 10−9) n.a.

σ
√

ω 13.03 22.25

E [R] 45.57 45.57

One of the most intuitive estimation procedures (and therefore most widely used in prac-

tice) is the method of moments. We compare the ML−estimates of µ and σ to those

implied by matching the first and second moment of the default rate to their sample val-

ues.26 While the MM−estimate of µ is close to the ML−estimate, we find that σ
√

ω is

71% higher.

For normally distributed recovery rates in the spirit of Frye (2000) the ML−estimates of

expected recovery and recovery correlation are given in the second column of Table 6.

The expected recovery rate µ̌ml equals 43.81% while the ML−estimate of ω̌ml equals

9.98%. Frye (2000) finds similar levels of asset correlation and expected recovery rate

for the time period from 1983 to 1997, but his estimate of 3% for ω̌ml differs from our

estimate of 10%. There are two potential explanations for this difference.

First, owing to the use of different data sets the recovery rates are more volatile than ours.

A higher value of σ̌ will imply a lower ω̌ for a fixed total recovery correlation which has

a similar value as in Frye (2000).

26See, for example, Bluhm et al. (2003).
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Table 6

Parameter Estimates Under Normally Distributed Recovery Rates

The estimates are determined for normally distributed recovery rates by max-

imum likelihood (ML), a method of moments (MM ) and also by ML but

conditional on the average default frequency DF as a proxy for PD. Volatility

is fixed at σ̌hist = 8.45%. Recovery rates are measured by market prices at

default. All estimates are given as a percentage.

parameter ML−estimate ML−estimate with PD = DF MM−estimate

µ̌ (= E
[
Ř
]
) 43.81 43.78 45.62

(standard error) (0.34) (0.34) (0.47)

ω̌ 9.98 9.99 n.a.

(standard error) (1.66) (1.66) n.a.

σ̌
√

ω̌ 2.67 2.67 5.31

The second potential explanation is that Frye proposes a long–term average of default

rates, DF , as a proxy for the true probability of default while we compute a ML−estimate

for PD. Replicating his approach yields nearly the same results as the original ML−esti-

mation. This can be seen by comparing the second and the third column of Table 6. We

conclude that the observed differences in the correlation estimates cannot be explained by

this methodological difference.

Although the preliminary tests that we performed with the recovery data in section 4.2

do not support the hypothesis of an underlying log–normal distribution, we compare the

associated estimates as a robustness check to those obtained from a logit–normal and a

normal distribution assumption. The ML−estimates for log–normally distributed recov-

ery rates are given in Table 7.

Comparing the expected recovery rates in Tables 5, 6 and 7, we find that for logit–normal

recovery rates, the expected recovery rate of 45.57% is higher than for the other two

distributional assumptions which lead to similar estimates (43.81% and 43.68%). The

estimates of ω are close to each other in Tables 6 and 7 but differ from the case of the

logit–normal distribution in Table 5. Because we cannot compare the estimates of ω

directly for the different distributions, we focus instead in section 5.4 on the recovery

sensitivity as a measure of recovery correlation for all three extended models.
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Table 7

Parameter Estimates under Log–normally Distributed Recovery Rates

The estimates are determined by maximum likelihood (ML) and a method of

moments (MM ). Volatility is fixed at σ̃hist = 20.45%. Recovery rates are

measured by market prices at default. All estimates are given as a percentage.

parameter ML−estimate MM–estimate

µ̃ -84.90 -80.33

(standard error) (0.82) (1.14)

ω̃ 9.51 n.a.

(standard error) (1.59) n.a.

σ̌
√

ω̌ 6.31 12.82

E
[
R̃
]

43.68 45.73

5.3. Impact of the recovery definition

In the following section estimates from recovery rates based on market prices at default

are compared with those from recovery rates determined at emergence. With these new

recovery rates the analyses from section 5.2 are repeated. The estimates of ρ and PD

are taken from section 5.1 because they are independent of the measurement of recovery.

Therefore, we only report changes in µ, σ and ω.

The parameter estimates for the three extended models are given in Table 8. We compare

first the estimates for the logit–normal model. The expected recovery rate increases from

45.57% to 49.72%, which is a relative increase of 9.11%, compared with the case of re-

covery rates inferred from market prices at default in Table 5. An intuitive explanation

for this result is that bank loans, which are only included in this second set of recov-

ery rates, generally yield higher recoveries than bonds, which has also been observed

by Van de Castle and Keisman (1999). Historical volatility of the transformed recovery

rates ln
(

Rj

1−Rj

)
is higher at 58.49%, which signifies a relative increase of 65%, and ω

consecutively falls to 2.75%.

Assuming a normal distribution, we find that the expected recovery rate increases to

53.05% which is a relative increase of 21% compared with Table 6. The volatility of

the recovery rates increases to 13.50%, a relative increase of 60%, and the recovery cor-

relation falls by about 39% to 6.04%. These two effects roughly cancel each other out in

22



Table 8

Parameter Estimates for Recovery Rates Based on Prices at Emergence

The estimates are determined by maximum likelihood for logit–normally, nor-

mally and log–normally distributed recovery rates using the sample estimates

σhist, σ̌hist and σ̃hist as proxies for the volatility parameters. The recovery

rate is measured at emergence from default. ML–estimates are given as a per-

centage.

parameter logit–normal normal log–normal

σ, σ̌, σ̃ 58.49 13.50 33.45

µ, µ̌, µ̃ -1.21 53.05 -65.58

(standard error) (| · | < 10−10) (0.37) (0.92)

ω, ω̌, ω̃ 2.75 6.04 3.75

(standard error) (| · | < 10−11) (0.89) 0.72

E [R],E
[
Ř
]
,E
[
R̃
]

49.72 53.05 54.89

their impact on the square root of the total recovery correlation, σ̌hist

√
ω̌. The square root

of the total recovery correlation, 3.32%, is close to the value of 2.67% in Table 6.

For completeness we also analyse the parameter estimates of a log–normal distribution

of recoveries.27 In this case, the expected recovery rate in Table 8 is slightly higher than

for the normal distribution. The higher total recovery correlation, however, can quickly

neutralise this effect on the default loss when systematic risk increases.

Overall, the estimates of the expected recovery rates are 9% - 26% higher for prices at

emergence than for market prices at default. This finding is broadly consistent with

Acharya et al. (2003) who observe that recovery rates at emergence are 20 percentage

points higher than at default. This result could be explained by a risk premium in market

prices at default that accounts for systematic risk in recovery payments during the work-

out period. This effect would decrease market prices at default relative to recoveries at

emergence that build on observed cash flows. However, the prices at emergence have been

derived by discounting at a high–yield bond rate that may already incorporate a risk pre-

mium. The increase in the expected recovery rate is smallest for the logit–normal model,

which appears not to be as sensitive to the choice of the measurement method as the other

27After taking logarithms, a Shapiro-Wilk test yields a p–value of 0.26% and a Jarque-Bera test results in

a p–value of 2.89%. The hypothesis of a log–normal distribution can thus be rejected at the 97% confidence

level.

23



two models.

Nevertheless, drawing inference from results for two different measurement methods

of recovery rates is a delicate issue because the estimates are based on two different

databases. The overlap between both databases is rather small because only 399 out of

1,540 facilities from the PMD database are also included in the S&P database. As a con-

sequence, the observed differences may partly derive from differences in samples. The

observation of lower recovery rates based on market prices at default is consistent with

the argument in Altman et al. (2003) that investors in distressed assets cannot absorb an

increased supply of defaulted bonds in high–default years. Therefore, liquidity dries up

and market prices can be too low compared with actual recoveries in later periods.

In summary, we observe quite similar estimates for the mean recovery rate under all three

distributional assumptions for recovery rates at emergence. They differ, however, between

9% and 26% from the expected recovery rates that are estimated from market prices at

default. How far differences in the recovery correlation transfer to differences in economic

capital is explored in section 6. In the next section, the sensitivity of the recovery rates to

the systematic risk factor is analysed for the three models defined by (2), (3), and (4).

5.4. Sensitivity of recovery rates to systematic risk

From a risk management perspective it is interesting to compare the three extended mod-

els in terms of the sensitivity of the recovery rate to changes in the systematic risk factor.

This sensitivity is defined here as the first derivative of the recovery rate with regard to

the single risk factor. Table 9 lists the sensitivities for the three models, which are derived

from (2), (3), and (4).

In the reference model that assumes a logit–normal distribution of recovery rates, the

sensitivity depends not only on the product σ
√

ω but also in a non–linear way on the

recovery rate. For normally distributed recovery rates, the sensitivity is fully described

by the total recovery correlation σ̌
√

ω̌. Only in this model, the sensitivity is independent

of the level of systematic risk, and relative changes in recovery rates are a linear function

of changes in X . For log–normally distributed recovery rates, the sensitivity linearly

depends on the level of the recovery rate.

The sensitivities in Table 9 depend on the level of the systematic risk factor X . Therefore,

we compare the sensitivities of the three models for a range of realistic values of X , based

24



Table 9

Sensitivity of the Recovery Rate to the Systematic Risk Factor

This table lists the sensitivity, defined as the first derivative of the recovery rate

with regard to the single risk factor, for the logit–normal, the normal and the

log–normal model.

distribution of recovery rates sensitivity ∂R
∂X

logit–normal σ
√

ω
R(Y )

1+exp(Y )

normal σ̌
√

ω̌

log–normal σ̃
√

ω̃ R̃ (X)

on the parameter estimates from sections 5.2 and 5.3. Given the estimates in Tables 5, 6,

and 7, the sensitivity is plotted in Figure 3 as a function of the systematic risk factor X .

Especially relevant from a risk management perspective are high absolute values of X in

the negative domain. For reference we have marked the 99.9% percentile that is also used

in the risk weight functions of the IRB approach of Basel II.

Figure 3. Sensitivity of Recovery Rates to the Systematic Risk Factor, Estimated

from Market Prices at Default

This figure shows the sensitivity to the systematic risk factor for logit–

normally, normally, and log–normally distributed recovery rates.
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In the case of normally distributed recovery rates, sensitivity is always equal to 0.0267.

For the logit–normal distribution, the sensitivity is larger for values of X between −5.6

and 8.4 which covers the 99.9% percentile of X . Therefore, the logit–normal distribution

is more risk–sensitive in terms of systematic risk for the range of X that is relevant from

a risk management perspective.

The log–normal distribution yields the least systematic risk–sensitive estimate of the

three models if X is smaller than −0.8 which is the most relevant range from a risk–

management perspective. Between −0.8 and 2.3, it produces sensitivity values between

the other two models, and for values of X greater than 2.3, it yields the most risk–sensitive

estimates.

Figure 4 shows the sensitivity to the systematic risk factor if the parameters are estimated

from prices at emergence, instead of market prices at default as in Figure 3.

Figure 4. Sensitivity of Recovery Rates to the Systematic Risk Factor, Estimated

from Prices at Emergence

This figure shows the sensitivity to the systematic risk factor for logit–

normally, normally, and log–normally distributed recovery rates.
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In this case the ordering between the three models in terms of their risk sensitivity changes

from the case in Figure 3. For the adverse percentile of 99.9% the logit–normal model has
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a lower risk sensitivity than the other two models. The value of the sensitivity, 0.0237, is

closer to the previous one in Figure 3 than for the other two models. In the neighbourhood

of the 99.9% percentile the logit–normal model appears to be more stable than the other

two models if recovery rates are measured from prices at emergence instead of market

prices at default.

6. Implications for economic capital

Bank loans are subject to two different sources of credit risk: borrower–specific risk that

can be controlled or even neutralised by diversification and systematic risk. As in the

model underlying the IRB risk weights of Basel II, economic capital is determined below

assuming that the bank loan portfolio is fully diversified and that economic capital is only

held for systematic credit risk.28 Whereas the effect of systematic risk on default rates

has been widely explored, literature on the effects of systematic risk on recovery rates

is scarce.29 The presence of systematic risk increases losses from two directions: firstly,

through a higher default frequency and, secondly, through a higher loss rate in default.

Both effects have to be taken into account when computing economic capital.

Below, we use the variable LGD (= 1 − R) instead of the recovery rate R, following

common terminology in the literature on economic capital. Figure 5 shows the probability

density function of the LGD for a logit–normal, a normal, and a log–normal distribution

of the recovery rates and given the parameter estimates in Tables 5, 6 and 7 for market

prices at default.

For the logit–normal distribution, the maximum likelihood is reached at an LGD of 54.5%

which agrees with the ML–estimate for µ in Table 5. The maximum likelihood for nor-

mally distributed LGD is reached at an LGD of 56.2% which is consistent with our

estimate for µ̌ml in Table 6. Based on the assumption of log–normally distributed recov-

ery rates, the LGD−density function is slightly skewed towards the right and shows the

typical fat–tailed behaviour; the maximum likelihood is reached at an LGD of 56.5%,

which is approximately what we found for normally distributed LGD.

28An explicit treatment of idiosyncratic risk has been removed from the minimum capital requirements of

Basel II when the granularity adjustment, put forward in the second Consultative Paper of the Basel Com-

mittee, was abandoned. Nevertheless, this second source of risk also warrants attention from supervisors.
29See section 2.
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Figure 5. Density of LGD for Average Systematic Risk
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Figure 6 shows the LGD densities conditional on a 99.9% percentile of the systematic risk

factor. The differences between the three models emerge more clearly than in Figure 5

in which X was close to zero. In the adverse tail of the distribution, that means for

percentiles of 80% and beyond, the values of the density function of the log–normal model

are closer to those of the logit–normal model than to those of the normal model. This is

due to the fact that the logit–normal and the log–normal have fatter tails than the normal

distribution. However, the values of the density function for extreme percentiles like

99.9% are close to zero in all three models, so in these cases the differences may have

only a negligible impact on the economic capital. This issue is explored in the following

analysis.

After having determined the LGD−density function, we can compute economic capital

(EC), which is defined here as the 99.9% percentile of the portfolio loss distribution. For

the entire section, we assume that the loan exposure at default equals 100 so that all results

for the economic capital can be interpreted in percentage terms.

Since the conditional LGD distribution of the portfolio is known and, conditional on a

realization of X , the probability of default and the loss given default are independent,

we can infer the economic capital at the 99.9% level for the normal and the log–normal
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Figure 6. Density of LGD for the 99.9% Percentile of the Systematic Risk factor
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distribution:30

EC99.9% = 100 · E
[
PD|X = Φ−1 (0.001)

]
· E
[
LGD|X = Φ−1 (0.001)

]
(16)

E
[
PD|X = Φ−1 (0.001)

]
= p(−3.09)

E
[
LGD|X = Φ−1 (0.001)

]
=





(
1 − µ̌ + σ̌

√
ω̌ · 3.09

)

if normal distribution(
1 − exp

(
µ̃ − σ̃

√
ω̃ · 3.09 + σ̃2(1−ω̃)

2

))

if log–normal distribution.

If, however, economic capital is calculated as in the classic model, we neglect the sys-

tematic risk term in E [LGD|X = −3.09] and economic capital is simply the product of

the conditional default probability and the unconditional expected LGD. The estimates

for the logit–normal, the normal and the log–normal distribution are given in Tables 10

and 11. The conditional default probability is determined from equation (5) with the

ML−estimates of PD and ρ taken from Table 3.

30The expected value of a logit–normally distributed variable with parameters µ and σ2 generally has no

closed–form solution and we apply instead numerical integration.
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In order to compare estimates of economic capital with and without systematic risk in

LGD, expected LGD in the classic model is calculated by maximum likelihood with the

recovery correlation set to zero. The results for LGD based on the price at default are

given in Table 10. Another procedure that can be found in applications of the classic

model is the use of an equally weighted or a default–weighted average LGD. In both

cases, LGD is treated as a parameter in the calculation of economic capital. The IRB ap-

proach of Basel II requires that banks’ LGD−estimates cannot be less than the long–run

default–weighted average loss rates given default.31 Default–weighted LGD−estimates

are provided in the last column of Table 10. Here, they are calculated as average LGDs

weighted by the ratio of the number of defaults in each period and the total number of

defaults over all periods.32

Table 10

Economic Capital without Systematic Risk in LGD, Based on Market Prices at

Default

Expected values of LGD are inferred from ML−estimates. LGD is measured

as 1−Rpd where Rpd equals the market price at default. All estimates are given

as a percentage.

parameter logit–normal normal log–normal default–weighted

conditional PD 4.76

mean LGD 54.43 56.19 56.32 57.65

economic capital 2.59 2.67 2.68 2.74

Table 11 provides estimates of economic capital that incorporate systematic risk in LGD.

The differences in economic capital that arise from different distributional assumptions

of the LGD are small (close to 1%). Allowing for correlation between the LGD and the

systematic risk factor in the extended model, however, leads to estimates of economic

capital which are between 14% and 17% higher than in Table 10.

In the classic model, the calculation of default–weighted LGDs yields an expected loss

of 57.65% and an economic capital of 2.74%, given in Table 10. As a consequence, the

economic capital increases between 2% and 6% compared with the use of an equally

weighted mean LGD. Even though this calculation produces a more conservative esti-

31See paragraph 468 of the revised Framework, Basel Committee on Banking Supervision (2004).
32We employ this weighting method instead of pooling observed LGDs over time and calculating the

average LGD because single–obligor LGDs are not available to us.
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Table 11

Economic Capital with Systematic Risk in LGD, Based on Market Prices at Default

All quantiles are computed at the 99.9% level. LGD is measured as 1 − Rpd

where Rpd equals the market price at default. All estimates are given as a

percentage.

parameter logit–normal normal log–normal

conditional PD 4.76

stress LGD 63.87 64.44 64.12

economic capital 3.04 3.07 3.05

mate, we see that the extended models still result in by 12% higher estimates of economic

capital than in the case of a default–weighted LGD.

For our second data set where recoveries are measured at emergence, the results are pre-

sented in Tables 12 and 13. Otherwise the structure of the two tables follows Tables 10

and 11. The estimates of ρ and PD are necessarily the same because they are unaffected

by the LGD−modelling.

Table 12 shows that in the absence of systematic risk in LGD, the mean LGD and the eco-

nomic capital vary approximately by 10% between the three extended models. However,

in Table 13, which incorporates an adverse systematic risk scenario, the three approaches

lead to estimates of economic capital that differ by less than 4%. Therefore, for a 99.9%

level of the systematic risk factor, the differences between the models are smaller than for

unstressed LGDs.

Table 12

Economic Capital without Systematic Risk in LGD, Based on Recoveries at

Emergence

Expected values of LGD are inferred from ML−estimates. LGD is measured

as 1 − Rem where Rem denotes the recovery rate at emergence. All estimates

are given as a percentage.

parameter logit–normal normal log–normal default–weighted

conditional PD 4.76

mean LGD 50.28 46.95 45.11 48.89

economic capital 2.39 2.23 2.15 2.33
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Table 13

Economic Capital with Systematic Risk in LGD, Based on Recoveries at Emergence

All quantiles are computed at the 99.9% level. LGD is measured as 1 − Rem

where Rem denotes the recovery rate at emergence. All estimates are given as

a percentage.

parameter logit–normal normal log–normal

conditional PD 4.76

stress LGD 57.19 57.21 55.16

economic capital 2.72 2.72 2.63

Comparing the results in Tables 12 and 13 reveals that under the assumptions of a logit–

normal, a normal and a log–normal distribution of the recovery rates, economic capital

is between 14% and 22% higher in the extended models, in which LGD depends on the

systematic risk factor.

Finally, we compare the results for economic capital based on recovery rates inferred

from market prices at default (Tables 10 and 11) and from prices at emergence (Tables 12

and 13). In all three models, economic capital is lower for recovery rates measured at

emergence than for market prices at default. The differences are between 8% and 25%

without systematic risk in LGD and between 12% and 16% for an adverse 99.9% per-

centile of the systematic risk factor. In both cases the LGD estimates at emergence from

default are used as the reference basis.

7. Summary and conclusions

This paper extends the classic one–factor credit risk model of Gordy (2001) by also con-

sidering systematic risk in recovery rates. We put forward an extended, but still parsimo-

nious model and compare it with the two models of Frye (2000) and Pykhtin (2003). The

three extended models have the same structure but differ in the distributional assumption

for the recovery rate: a logit–normal, a normal and a log–normal distribution.

As a theoretical contribution we provide closed form solutions for ML−estimators of the

parameters default probability PD and asset correlation ρ in the classic one–factor model,
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their standard errors, and also for the parameters of the recovery rate distribution in the

three extended models.

Our empirical contribution comprises a comparison of the three extended models, based

on time series of default rates and recovery rates from Standard&Poor’s Credit Pro database.

The data set includes bond and loan default information of US corporate obligors in the

time period between 1982 and 1999.

The estimate of the asset correlation between two borrowers is 4% and in line with pre-

vious results in the literature where this parameter was also estimated from default rates.

The inferred changes of the systematic risk factor show a high degree of co–movement

with US GDP changes.

Three distributional assumptions are tested for the recovery rates: a logit–normal distribu-

tion, a normal distribution and a log–normal distribution. In standard specification tests,

the logit–normal distribution and the normal distribution are found to explain the observed

recovery rates better.

Estimates of the expected recovery rate, based on market prices at default, are between

44% and 46%, independent of the distributional assumption for the recovery rate and

independent of the estimation method. However, if estimated from recovery rates at

emergence, the expected recovery rate increases between 9% and 26%, depending on

the distributional assumption.

We analyse the correlation effect in the three extended models by comparing the sensitiv-

ity of the recovery rate to the systematic risk factor. This sensitivity is defined as the first

derivative. Its level and also the ranking of the three models depend on the systematic risk

factor.33 However, depending on the measurement of recovery rates from market prices or

at emergence, the ordering of the three models in terms of their sensitivity to the system-

atic risk factor changes. For an adverse 99.9% percentile of the systematic risk factor, the

logit–normal model is more stable in the sense that the sensitivity to the systematic risk

factor depends less on the question of whether market prices at default or at emergence are

used. This result together with the implicit bounding of the recovery rates to the interval

from 0% to 100% advocates, in our view, the application of the logit–normal model.

From the perspective of a credit risk manager, the following three results are considered

33It is only in the special case of normally distributed recovery rates that the sensitivity is independent of

the systematic risk factor.
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to be most important.

1. Incorporating systematic risk in recovery rates leads to a significantly higher eco-

nomic capital charge. For an adverse 99.9% percentile of the systematic risk factor,

economic capital would increase between 11% and 12% relative to an unstressed,

default–weighted average LGD, based on market prices at default. This result could

be interpreted that the treatment of LGD in the Third Consultative Document34 may

not fully capture systematic risk in LGD. However, for several reasons this result

should be treated more as an indicative finding than as a conclusion based on em-

pirical evidence. One reason is that it was derived for a particular corporate bond

and loan data set that may substantially differ from an actual credit portfolio of

an investor or a bank. Another reason is that the dependence on systematic risk

of mortgages and other retail loans may be quite different from that of corporate

exposures.

2. We observe notable differences between an LGD that is based on market prices

after default and an LGD that is determined at emergence. In our example, these

differences lead to deviations in economic capital in the range of 12%–16%, de-

pending on the distributional assumption for recovery rates in the extended model.

This may have implications for the level playing field if competing institutes mea-

sure LGD differently. Furthermore, it complicates the validation of LGD estimates

because a comparison across institutes may provide distorted results. At this point

it is important to emphasise that this result should be taken only as an initial indica-

tion because the datasets that are used for comparing the two measurement methods

of LGD only partially overlap. This may explain the observed differences to an

unknown extent.

3. The estimates of economic capital when systematic risk is accounted for are rela-

tively stable with respect to the distributional assumptions of LGD because they

vary by less than 4%. This result is reassuring if systematic risk has to be modelled

and the most appropriate distribution cannot be identified from empirical data.

The following two aspects call for further research and can provide useful extensions

of our analyses. In our model, systematic risk in recovery rates is captured by a single

unobservable stochastic variable. A step forward would be a breakdown of this factor

by identifying individual economic factors that influence recovery rates. For this purpose

borrowers with similar characteristics, for example, contract specifics (Neto de Carvalho

34See Basel Committee on Banking Supervision (2003).
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and Dermine (2003)), firm specifics (Acharya et al. (2003)), and industry specifics, should

be separated and the recovery correlations could then be estimated independently.

Analysing what causes recovery rates derived from market prices at default to be so dif-

ferent from recovery rates derived from prices at emergence from default is a second

interesting aspect requiring further research, especially as these differences have a strong

impact on the economic capital.
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Appendix

Asymptotic standard errors of the ML–estimates of asset correlation

ρ and PD

Below, we derive the Cramér-Rao lower bounds for the standard deviation of the ML–

estimators of ρ and PD.

For this purpose, the Hessian matrix of the log–likelihood function of the default rates,

LL =
T∑

t=1

ln (f (PD, ρ; DFt))

=
T

2
ln

(
1 − ρ

ρ

)
− Tγ2

2ρ
+

√
1 − ρ

ρ
γ

T∑

t=1

δt

︸ ︷︷ ︸
=s1

+
2ρ − 1

2ρ

T∑

t=1

δ2
t

︸ ︷︷ ︸
=s2

,

has to be determined.

From the closed–form solutions for ρ̂ml and γ̂ml in (8) and (9) follows for the second

derivatives of LL with regard to ρ and PD

∂2LL

∂ρ2
=

T

2

(
1

(ρ̂ml)2 − 1

(1 − ρ̂ml)2

)
− T

(
γ̂ml
)2

+ s2

(ρ̂ml)3 + γ̂ml s1

3
(
ρ̂ml
)2 − 12ρ̂ml + 8

4 (ρ̂ml)3 (1 − ρ̂ml)
3

2

= −

=s3︷ ︸︸ ︷
s4
1 + 2T 2 (s2 + T )2 − s2

1T (3s2 + 4T )

4T 3

(1 + V ar [δ])2

V ar [δ]2

∂2LL

∂ρ ∂PD
=

∂2LL

∂PD ∂ρ
=

1

(ρ̂ml)2

1

φ (Φ−1 (PD))

(
TΦ−1 (PD) + s1

ρ̂ml − 2

2
√

1 − ρ̂ml

)

= −T

2

δ

φ (γ̂ml)

(1 + V ar [δ])3/2

V ar [δ]

∂2LL

∂PD2
= − T

(ρ̂ml)2
φ (Φ−1 (PD))

(
1 + Φ−1 (PD)2 + δ

√
1 − ρ̂mlΦ−1 (PD)

)

= − T

φ (γ̂ml)2

1 + V ar [δ]

V ar [δ]
.
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The inverse of the negative Hessian matrix of the log–likelihood function LL in
(
ρ̂ml, γ̂ml

)

produces the Fisher matrix F , which is defined as the inverse of the information matrix I

at this point35

HLL =

(
∂2LL
∂ρ2

∂2LL
∂ρ ∂γ

∂2LL
∂γ ∂ρ

∂2LL
∂γ2

)
, FLL =

(
f11 f12

f21 f22

)
.

The entries of FLL are as follows

f11 = − h22

−h2
12 + h11h22

=
2V ar [δ]2

T (1 + V ar [δ])4

f12 = f21 =
h12

−h2
12 + h11h22

= −s1 φ
(
γml
)

V ar [δ]2

T 2 (1 + V ar [δ])7/2

f22 = − h11

−h2
12 + h11h22

=
s3 φ

(
γml
)2

V ar [δ]

2T 5 (1 + V ar [δ])3 .

The asymptotic Cramér-Rao lower bound for the standard deviation of the estimates can

be determined as the square root of the diagonal elements of FLL

ηρ̂ml =

√
2

T

V ar [δ]

(1 + V ar [δ])2

ηP̂Dml =

√
s3 V ar [δ]

2T 5

φ
(
γml
)

(1 + V ar [δ])3/2
.

35Because the estimates are asymptotically consistent, the Cramér-Rao theorem ensures that the asymp-

totic covariance matrix will always exceed the inverse of I . We use the estimator I(ρ̂ml,γ̂ml) as an approxi-

mation for I .
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