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Abstract

The use of generative design grammars for computational design synthesis has been shown to be successful in many ap-

plication areas. The development of advanced search and optimization strategies to guide the computational synthesis pro-

cess is an active research area with great improvements in the last decades. The development of the grammar rules, however,

often resembles an art rather than a science. Poor grammars drive the need for problem specific and sophisticated search and

optimization algorithms that guide the synthesis process toward valid and optimized designs in a reasonable amount of time.

Instead of tuning search algorithms for inferior grammars, this research focuses on designing better grammars to not un-

necessarily burden the search process. It presents a grammar rule analysis method to provide amore systematic development

process for grammar rules. The goal of the grammar rule analysis method is to improve the quality of the rules and in turn

have a major impact on the quality of the designs generated. Four different grammars for automated gearbox synthesis are

used as a case study to validate the developed method and show its potential.

Keywords: Computational Design Synthesis; Generative Design Grammars; Graph Grammars; Rule Analysis

1. INTRODUCTION

The use of generative design grammars for design synthesis has

been shown successful in many application areas (Chakrabarti

et al., 2011). For example, recent work has been done in the

synthesis of hybrid power trains (Helms & Shea, 2012) and

the synthesis of gearboxes (Lin et al., 2010). Although design

grammars are often developed to formalize and structure the

design of products and processes, the process of designing

grammars themselves is often rather unsystematic and “treated,

to a large extent, in an ad hoc manner with regard to design,

implementation, transformation, recovery, testing, etc.” (Klint

et al., 2005). Zheng and Chen (2009) state that “sound and sys-

tematic methods and techniques are needed for grammarware

to move from hacking to engineering.” Both of these observa-

tions come from computer science, where formal grammars for

compiler design and other applications are widely used and the

research area of grammar engineering and testing has been de-

veloped. In design, Knight (1998) stated that “it is the design-

ing of a grammar that resembles what a designer does. The de-

velopment of rules for designs requires the same kind of

intelligence, imagination, and guesswork as the development

of designs in a conventional way.” Although various methods

have been developed for the conventional design process, little

attention is given to design grammar rule development so far.

In a few publications in the mechanical engineering domain

(Chase, 2002; Li et al., 2004; Chakrabarti et al., 2011; McKay

et al., 2012), the issue of systematically developing and testing

grammars is suggested, and researchers see the “need to con-

centrate on grammar design while designing with grammars”

(Li et al., 2004). The lack of support for grammar design was

discussedmore than a decade ago (Gips, 1999; Knight & Stiny,

2001), and it remains one of the major drawbacks of grammat-

ical design approaches (Chakrabarti et al., 2011). McKay et al.

(2012) note that “there is a need for more methodological sup-

port for guiding a user in the design of a grammar.”

The goal of this paper is to take a step in this direction and

provide a grammar rule analysis method (GRAM) for compu-

tational design synthesis (CDS) to systematically assist the

rule development process. It is meant to support designers

of grammars by giving feedback on the performance of their

developed rules through a set of visualizations, produced

from systematic rule testing, that the designer can interpret

and then adjust the grammar rules accordingly. Throughout

this paper, the term performance is used to describe how rules

impact designs, for example, how they change design charac-

teristics and objectives. Testing the rules during or after the

development process and before they are embedded in a

more complicated design synthesis process enables designers

to obtain an increased understanding of rule performance and

to validate them. In 1956, Chomsky stated that a grammar
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“gives a certain insight into the use and understanding of a

language.” GRAM focuses on enabling these insights to al-

low the human engineer to design better grammar rules.

The paper is organized as follows. Section 2 reviews differ-

ent approaches on the development and analysis of grammars

in engineering design and motivates the need for a more sys-

tematic way to develop and analyze grammar rules. In Section

3 GRAM is presented. Section 4 presents the case study used

in this paper. Four different graph grammars for automated

gearbox design are analyzed and compared using GRAM.

The results are presented in Section 5 and discussed in Sec-

tion 6 along with general issues of GRAM. Section 7 con-

cludes the paper and gives an outlook on future directions.

2. BACKGROUND AND RELATED WORK

In this paper, the terminology for the CDS process is used as

defined in Cagan et al. (2005). In the first step, the designer

formalizes the design problem at the required level of detail

to allow for the synthesis of meaningful designs. After the

representation is formalized, the CDS process consists of

three repeated phases: generate, evaluate, and guide. In the

design generation phase, a grammar rule is selected and ap-

plied to the current design, transforming it into a new design

alternative that is then evaluated considering defined objec-

tives and constraints. A decision is then made in the search

on how to proceed in the synthesis process, to either accept

or reject the new alternative. The synthesis process is contin-

ued until either no further rule applications are possible or it is

stopped by a stopping criteria in the search method.

In grammatical approaches to CDS, designers develop a

grammar to represent a desired design language. It consists

of a vocabulary, usually describing design components or

subsystems, as well as a set of grammar rules. These rules

describe design transformations, LHS ! RHS, that are de-

fined by a left-hand side (LHS), that is, where the rule can

be applied in a design, and a right-hand side (RHS), defining

the design transformation. Two common formalisms for engi-

neering design grammars are spatial and graph grammars. In

spatial grammars, the rules are based on the shape of a design,

that is, its geometry (Gips & Stiny, 1980). In graph grammars,

rules apply to graph elements, which can be single nodes,

arcs, and subgraphs (Gips & Stiny, 1980).

2.1. Related work

Several approaches in CDS using grammars have shown suc-

cess in easing the process for the human designer. Examples

are relieving the designer from tuning search algorithms

through machine learning methods (Vale & Shea, 2003), pre-

scriptive methods to build a knowledge model representing

expert knowledge in rules (Schotborgh, 2009), or intelligent

reduction of the number of design concepts that are presented

to a human designer (Poppa et al., 2010). Although improv-

ing the CDS process in general, these methods lack support

for the early phase of rule development. Thus, much effort

is spent on deciding how to apply rules to generate beneficial

designs rather than rethinking the implemented rules.

In the mechanical engineering domain, most publications on

CDS methods using grammars describe the grammar rules but

give little to no hints on how these rules were developed. De-

signing a grammar is usually an iterative process, “a distillation

of practice and experience in a particular domain” (Brown,

1997). The iterative nature of rule development is a common-

ality among most publications covering the development pro-

cess of grammars and is described in Knight and Stiny (2001),

Chakrabarti et al. (2011), and Ibrahim et al. (2012). Chakra-

barti et al. (2011) mention an iterative process for the develop-

ment and application of generative grammars including an

iterative loop back to the modification of vocabulary and rules

after designs have been generated. Chase (2002) defines differ-

ent stages for grammar development and application where

grammar development consists of defining the representation,

the control mechanism (guidance), and the grammar rules. The

grammar application is divided into determination of a rule, de-

termination of the object to which the rule is applied, and de-

termination of the matching conditions. Five scenarios are de-

fined for possible user control of these four steps. Ibrahim et al.

(2012) extend the shape grammar development and application

process defined by Chase (2002) for a workshop in a first-year

architectural design studio. In all of these works, the improve-

ment of the grammar is considered; however, no systematic

method is given to support the analysis of the developed gram-

mars. Recent approaches to support rule development either

give advice to a human designer on how to develop (Knight,

1998; Cagan, 2001; Rudolph, 2006) and manually test a gram-

mar (Shea&Cagan, 1999) or generate grammar rules automat-

ically (Orsborn et al., 2008a, 2008b). For the latter, extensive

research is also done in other fields, for example, grammar in-

duction and improvement (Klein&Manning, 2002) for natural

language processing. For engineering design grammars, how-

ever, no research is known to the authors that supports rule de-

velopment through systematic and automated rule analysis.

The research presented in this paper focuses on supporting

the rule development process. The authors expect that

through a systematic analysis of the rules during the rule de-

sign, “better” grammars can be developed that lead to a more

successful synthesis process. The better understanding

gained in the analysis using GRAM can also deliver impor-

tant insights about the search space that can be considered

in tuning sophisticated search approaches. In contrast to the

work by Vale and Shea (2003), where statistics are collected

and rule sequences are defined during the CDS process,

GRAM enables designers not only to reuse insights gained

before the CDS process but also to analyze the grammar itself

and to improve it based on the results.

3. METHOD

GRAMispresented inFigure 1.Dark grayboxes showsteps that

are carried out automatically in the current implementation, and

light gray boxes show steps that will be automated in the future.
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GRAM analyzes a developed grammar in a systematic way

to give feedback on how rules perform. Individual rule perfor-

mances (Q-1) as well as the performance of the whole rule set

(Q-2–Q-6) are assessed such that the rule designer is able to

answer the following questions when interpreting the results:

Q-1. What impact does the rule have on which objective?

Q-2. How probable are the applications of each rule?

Q-3. What solution space do the rules define?

Q-4. Does the rule set favor certain designs?

Q-5. How many valid designs are generated?

Q-6. How many different designs are generated?

GRAM has a defined way to generate and analyze data. Infor-

mation from the data analysis is visualized and interpreted by

the designer to gain a better understanding of the grammar it-

self. The different steps in GRAM are described in more

detail in the following and a schematic representation of

GRAM steps 1–3 is shown in Figure 2 to accompany these

descriptions. GRAM is best illustrated using an example, so

a grammar for gearbox synthesis is used here that will be

further introduced in Section 4.3. GRAM allows analysis

for any number of objectives, design characteristics, and rules

but, for the sake of clarity, it is shown here for this reduced

example.

3.1. Data generation

To analyze grammar rules, a variety of data (i.e., objectives

and design characteristics) is acquired. In most engineering

applications, there are multiple objectives, and it is recom-

mended to store the metric for each objective individually.

Here, constraints formulated as soft constraints (i.e., penalty

functions) are included. Design characteristics can be individ-

ual variables in the rules, but they are more commonly system

characteristics (e.g., number of components and component

types). The data is generated using a simple generate-and-

test process. It starts with an initial design. A rule is selected

randomly from all implemented rules. It is applied, the gener-

ated design is evaluated, and the data is stored. The generated

design resulting from this rule application is taken as the basis

for the next iteration. It is not a generate-and-test search pro-

cess because the design resulting from the rule application is

always used as the starting point for the next rule application

regardless of the impact on design objectives.

3.2. Data analysis

For all data, the change in the objectives is calculated to ana-

lyze the performance of each individual rule. The generated

designs are analyzed to identify topologically equivalent de-

signs to be able to represent the design space and to identify if

the rules favor certain topologies (i.e., generate them multiple

times). In addition, some basic statistical models are built to

prepare the visualization and support the interpretation.

3.3. Visualization and interpretation of analysis

results

Five different diagram types are presented in Figure 2 to vi-

sualize the data obtained in the analysis. For a rule set of nr rules

and an analysis of no objectives using nd design characteristics,

the following diagrams are generated: Q-1: no boxplots with nr
boxes each; Q-2: one bar plot with nr bars; Q-3/Q-4: one nd-

dimensional design space plot, additional boxplots if required;

Q-4: one ratio for valid designs; and Q-5: one ratio for different

designs. The diagrams are explained below, and important is-

sues for their interpretation are given.

3.3.1. Q-1. General performance analysis using boxplots

for each objective

A diagram is generated for each objective showing how it is

influenced by each rule (given on the y axis). The user defines

the desired direction of change derived from the problem for-

mulation, and a color coding gives a quick overview if the rule

changed the objective in the desired direction or not. The red

(medium grey) color indicates a change against the desired di-

rection and the green (light grey) color a change in the desired

direction. Blue (dark grey) boxes show that changes in both

directions are possible, and black (black) is used to represent

rules that have no influence on an objective. The whiskers

(defined by the thin line) represent the maximum and mini-

mum value of the data set excluding outliers, that is, data

points more than 3/2 away from the lower or upper quartile.

The box spans from the lower quartile to the upper quartile

showing also the median. Using this diagram, the engineer

can visualize the performance of each rule considering each

objective separately. In interpreting these diagrams, the de-

signer has to consider that changes against the desired direc-

tion, for example, increasing an objective rather than decreas-

ing it, are often valuable for design synthesis. This means that

Fig. 1. The grammar rule analysis method (GRAM) to analyze grammar rules for computational design synthesis based on the extended

shape grammar process shown in (McKay et al., 2012).
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changes against the desired direction do not automatically

identify inferior rules that should be removed. In contrast, it

encourages the rule designer to also think about the sequences

in which rules can be applied and to consider combining these

sequences to create more specific rules to facilitate the genera-

tion of meaningful designs.

3.3.2. Q-2. Bar plots to represent matching ratio

for each rule

For more detailed information on a rule’s applicability,

matching ratios are calculated and visualized. Throughout

this paper, the matching ratio of a rule is defined as the num-

ber of LHS matches of a rule divided by the number of at-

tempts to apply this rule. This ratio defines how likely it is

for a rule to be applied with a matching ratio of 100% mean-

ing a rule can always be applied, whereas a matching ratio of

0% represents a not reachable rule. From the matching ratios

the rule designer can reason about the LHSs of the rules. This

often helps to explain the design space that is generated with

the rule set. Rules that have a very low application probability

are only rarely applied. In grammars with unbalanced rule ap-

plication probabilities (i.e., some rules are applied very often,

others very rarely), the rule designer can, for example, con-

sider formulating the LHSs of rarely applied rules differently

to allow their application more often. In addition, the use of

guidance strategies or predefined sequences for the CDS pro-

cess can be helpful to improve the rule’s application. The in-

terpretation of matching ratios is dependent on the rule design

as well as the search and optimization algorithm used later for

design synthesis. When using intelligent search methods, it

may not be required to ensure higher matching ratios for all

rules; when using simple generate-and-test type algorithms,

this may be more helpful to explore the design space.

3.3.3. Q-3/Q-4. Visualization of the design space

To show the size of the design space, a matrix with the di-

mensions of the design characteristics 1 and 2 is presented.

Each point in the space indicates that a design with, for exam-

ple, x elements of design characteristic 1 and y elements of

design characteristic 2 exists. The color indicates how often

Fig. 2. Schematic overview of grammar rule analysis method (GRAM) steps 1–3.
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a design with the respective characteristics is generated. This

plot gives an indication about how the rules are used to gen-

erate the design space. The color can be used to identify solu-

tions in the design space that are favored by the rules (“hot

spots”). When continuous design characteristics are required

or when the user is interested in additional information on ob-

jectives, the x and y axes can be made continuous or boxplots

for each objective and design characteristic can be made in

addition to the design space representation. The visualized

space is generated using random generation without feed-

back. The rule engineer has to consider this when interpreting

the results. It can happen that the space is larger than in-

tended, for example, when the design engineer allows invalid

designs and plans to use penalty functions and an optimiza-

tion algorithm for the CDS process and these penalized de-

signs are not removed from the design space yet. In contrast,

it can also happen that the generated design space is small be-

cause certain rules undo what previous rules did. To derive

useful measures to improve a rule set, the rule designer has

to consider not only the space explored and the favored de-

signs during the data generation process in GRAM but also

the search and optimization process that will be used.

3.3.4. Q-5. Validity ratio

The validity ratio is defined here as the number of valid de-

signs divided by the number of total designs generated. The

validity of a design is defined by the designer and can be,

for example, the necessity to have a connection between two

components (e.g., a connection between the input and the out-

put shaft in the gearbox example). The validity ratio gives

feedback on the probability that the analyzed grammar gener-

ates valid designs with simple generate-and-test type algo-

rithms. The lower the validity ratio, the more intelligent the

guidance has to be to lead the grammar rule application to pro-

duce feasible designs. However, a low validity ratio does not

mean that a grammar necessarily produces inferior results

compared to a grammar with a validity ratio of 1, that is, gen-

erating only valid designs. In some cases, it is required to gen-

erate invalid intermediate designs to be able to eventually

transform an invalid design into a valid one. It is the designer’s

choice to decide whether or not invalid designs should be

allowed during design generation for a specific problem for-

mulation and to interpret the validity ratio accordingly.

3.3.5. Q-6. Diversity ratio

The diversity ratio is defined as the number of valid and

topologically different designs generated during the data gen-

eration phase divided by the number of all valid designs gen-

erated during the data generation phase. A high diversity ratio

means that the grammar generates topologically different de-

signs with a high likelihood (i.e., the design space is more

easily explored than when having a lower diversity ratio and

generating the same designs repeatedly). The rule designer

has to be aware that the diversity ratio reflects only the design

space explored during the data generation process. In most

cases, the entire design space is unknown and when using

parametric rules can be infinite.

Using these diagrams, designers can check if the gram-

mar represents the intended design language and interpret

the relative ease of generating known, intended designs,

and they can further improve the grammar considering the

analysis.

4. CASE STUDY: AUTOMATED GEARBOX

SYNTHESIS

To show the applicability of the proposed method, GRAM is

applied to four different grammars for automated gearbox

synthesis. Gearbox design using generative grammars is an

established CDS problem, and research has been carried out

by several researchers (Pomrehn & Papalambros, 1995;

Schmidt et al., 2000; Li & Schmidt, 2004; Starling, 2004;

Starling & Shea, 2005; Lin et al., 2010; Swantner & Camp-

bell, 2012). In this case study, all grammars are formulated

and implemented as graph grammars consisting of a meta-

model and a rule set (A–D). The rule sets contain both topo-

logic and parametric rules.

4.1. Application of GRAM to gearbox rule sets A–D

The data generation is conducted with 50 times 1000 rule ap-

plications for each rule set. Data generation is carried out

using a gearbox synthesis system developed by the authors

based on GrGen, an open source graph rewriting tool (Geiß

et al., 2006; http://www.grgen.net). The objectives defined

in this case study are the total mass of the components and

the amount of collision, a metric calculated based on axial

and radial overlap of all components (for the exact formula,

see Lin et al., 2010). The number of forward speeds and the

number of reverse speeds are defined as design characteris-

tics. The initial design is a bounding box with the input and

output shaft. Data analysis and visualization are carried out

using Matlab, and the graph isomorphism check to identify

topologically identical designs is carried out using GrGen.

4.2. Metamodel

A metamodel describes all elements that can be used as build-

ing blockswithin a generative grammar (Helms&Shea, 2012),

also known as vocabulary. For this case study, the metamodel

consists of three different node types for gears, shafts, and the

bounding box, and one directed edge type to connect nodes.

All nodes have parameters to specify the components they

represent (e.g., diameter, gear width, and position for gears).

4.3. Implementation of the rule sets

All four rule sets are implemented as graph grammar rules in

GrGen. An overview is given in Figure 3. The schematic

images for the rules are for visualization purposes only.

The schematic graph representations for rules C2, C4, C6,
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Fig. 3. Overview of all rule sets organized by their type (topologic or parametric); rule number (consisting of rule set label and rule

number), name, and a pictorial description are given as well as the main differences between the grammars.
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D2, D4, and D6 represent the basic idea of the rule but not the

exact LHS matches. Nodes of the LHS are, however, marked

in red (medium gray) in the example graphs. The first two rule

sets are based on the work by Starling and Shea (Starling,

2004; Starling & Shea, 2005) and consist of four (rule set

A) and 21 (rule set B) rules, respectively. Rule set B is an ex-

tension of rule set A, adding several rules to change the di-

mensions and position of gears and shafts and two

additional rules that add and remove components. Rule sets

A and B were originally developed to generate watches and

a winding mechanism in a camera (i.e., requiring only one

speed). The third rule set (rule set C) is based on the work

by Lin et al. (2010) for automotive gearboxes. It considers

only parallel shafts that extend the width of the whole bound-

Fig. 4. Influence of rules on the objectives mass and collisions for rule sets A–D (top to bottom).
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ing box and consists of nine rules that are more sophisticated

than those of rule set B in both their LHS and their RHS. Rule

set D is an extension of rule set C presented for the first time

in this paper. It adds two rules to change the length of shafts

and is different from rule set C in that the LHSs of several

rules account for changed lengths of shafts. Rule sets C and

D were originally developed for automated gearbox

synthesis (i.e., considering multiple speeds). They were de-

veloped to generate valid designs with every rule application

as long as the initial design is valid. This decision was made

by the rule designers to ensure design evaluation after each

rule application. For this case study, a valid design must

have at least one speed. In other words, there must be at least

one path in the graph connecting the input and output shafts.

5. RESULTS

The results from the case study are presented below. Interpret-

ing the analysis results, the questions Q-1 to Q-6 can now be

answered.

5.1. Q-1. Which impact does the rule have on which

objectives?

The influence of each of the rules in rule sets A–D is shown in

Figure 4. Adding components (rules A1 and A3) always in-

creases [red (medium gray) color in boxplot] mass and colli-

sions, deleting them (rules A2 and A4) reduces [green (light

gray) color in boxplot] both objectives.

This performance can also be clearly seen for the first four

rules in rule set B; however, there are also rules that have no in-

fluence on an objective (black color in boxplot) or can either in-

crease or decrease an objective value [blue (dark gray) color in

boxplot]. Looking at the influence of each rule on collisions, it

can be seen that although some rules do not influence the mass

of a design, as for rules B9 and B10, where gears are moved in

the z direction, the collisions are influenced by each of them.

Rules C1–C4 in rule set C show a do-undo behavior, where

rules C1 and C3 add mass and collisions by adding compo-

nents, and rules C2 and C4 reduce both objectives. The simi-

larity between rule C5 and rule B19 can also be seen in the

boxplots. Comparing rules A1–A4 and B1–B4, respectively,

to rules C1–C4, a difference in the magnitude of the change in

both objectives can be seen. This stems from the different im-

plementation in rule set C. Rule A1, for example, only adds a

single shaft, whereas rule C1 adds a shaft and connects it to

the existing design with a gear pair (i.e., more components

are added within the rule, which results in bigger changes

in both mass and collisions).

Results from rule sets C and D look very similar, except for

the additional rules D10 and D11, which shorten and lengthen

shafts to reduce mass and collisions (D10) or to give the pos-

sibility to connect two shafts with a gear pair (D11). However,

there is an additional difference between rules C6 and D6, be-

cause rule D6 has no influence on either mass or collisions. If

the rules are implemented correctly, this should not occur. In

this case, it stems from a careful implementation of rule set D

ensuring that after every rule application no dangling nodes re-

main in the design, so this rule from rule set C, intending to

repair designs, is not necessary anymore.

5.2. Q-2. How probable are the applications of each

rule?

For all rules in rule sets A–D, matching ratios are represented

as horizontal bars in Figure 5. Rules with simple LHSs are ap-

plied more frequently than those with more restrictive LHSs

caused by constraints, for example, on parameters of the

node, or component relations (i.e., more complex subgraphs).

This can be seen, for example, in rule set A, where the rule to

Fig. 5. Percentages of successful rule matches for rule sets A–D.
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add a shaft (A1) and connect two shafts via a gear pair (A3)

can always be applied, whereas rule A4, which removes a

gear pair between two shafts, is rarely matched because there

are more rules that add and delete shafts than there are to cre-

ate gear pairs (rule A3). Therefore, randomly applying rules,

the probability to apply rule A4 is lowered just because there

are more rules that prohibit its application than there are to en-

able it. Having more rules that influence the LHS of this rule

allows more matches. This can be seen in the plot for rule set

B, where the exact same rule (B4) is applied with an almost

three times higher matching ratio, due to one more rule in

the rule set that generates a LHS match (B19).

5.3. Q-3. What solution space do the rules define?

Figure 6 shows the design space generated by each of the

rule sets in 50 runs applying 1000 rules selected randomly.

The two design characteristics, that is, the number of forward

and reverse speeds in a design, are plotted against each other.

The design spaces of rule sets A and B are very small. This

can be explained by the simple grammar rules that are more

dependent on an anticipated intelligent guidance and often

do not produce good designs when applied randomly. Rule

set B generates more speeds in general, which can be ex-

plained by the additional rule to connect shafts (i.e., rule

B19). Rule sets C and D, with their rules developed to per-

turb, but not destroy, existing solutions, generate designs

with higher numbers of speeds. Comparing the two, rule set

C generates more designs with a higher number of speeds.

This can be explained by the higher fraction of topological

rules in rule set C that leads to more changes in topology

when rules are applied randomly and thus allows to explore

the design space more in this respect. In addition, rule set D

has more restricted LHSs of its topological rules allowing,

for example, only shafts that have an axial overlap to be con-

nected via a gear pair. To compare not only topological but

also parametric aspects of the design space, the average

mass and collision metrics for all designs generated by the

Fig. 6. Plots of the design spaces generated by rule sets A–D. The color indicates how often a design with this speed configuration was

generated in 50,000 rule applications.
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four rule sets are visualized in Figure 7. These representations

support the points discussed. Rule set A generates many de-

signs with a high number of components, thus leading to high

mass and collisions. Rule set B has lower values for both due

to rules that allow also parametric changes. The same effect

can be observed with rule sets C and D, where the addition

of more parametric rules in rule set D (i.e., rule D10 to shorten

shafts) leads to lighter designs with less collision.

5.4. Q-4. Does the rule set favor certain designs?

From the coloring of generated designs in Figure 6 it can be

seen that all four rule sets favor designs with few forward and

reverse speeds. Rule sets A and B generate designs with a

high number of reverse speeds, for example, by directly con-

necting input and output shaft via a gear pair (rule A3, B3).

Rule sets C and D do not favor reverse speeds, but they gen-

erate designs with high numbers of forward speeds due to

rules that easily introduce forward speeds when applied to in-

put and output shaft (rule C1, D1) or change the direction of

an existing speed (rule C5, D5).

5.5. Q-5. How many valid designs are generated?

On the top of Figure 8, the validity ratio is given. It can be seen

that this ratio increases from rule set A to B to C as the number

of rules to connect shafts grows. Rule set D produces fewer

topologically valid designs than does rule set C,which is caused

by a slightly lower probability to change a topologically invalid

design into a valid design. This is due to its smaller portion of

topological rules and their reduced chance of application due to

their more restrictive LHSs. Rule sets C andD are developed to

generate valid designs only when applied to a valid design. For

this case study, however, the initial design for all rule sets is in-

valid, because it contains only the input and the output shaft,

causing the generation of invalid designs for rule sets C and D.

5.6. Q-6. How many different designs are generated?

On the right of Figure 8 the diversity ratio is shown. Comparing

the rule sets underlineswhat has been found in the design space

diagrams. Rule sets A andB producemany designs of the same

topology. Rule set C has the most topologically different solu-

tions, and rule set D produces fewer different solutions.

6. DISCUSSION

The case study shows that GRAM is capable of supporting de-

sign engineers to analyze their developed rule set, and compar-

ing rule performance to intended performance allows designers

to test the design language described against the intended lan-

guage. The finding that rule sets A and B generate designs

with fewer speeds and rule sets C and D generate designs

with more speeds, for example, reflects the purpose for which

Fig. 7. Average mass and collisions of all generated designs for rule sets

A–D.

Fig. 8. Validity ratio (top) and diversity ratio (bottom) for rule sets A–D.
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the rule sets were originally developed (i.e., generating single

speed gear trains for rule sets A andB and generating gearboxes

with multiple speeds for rule sets C and D, respectively). Non-

influential rules can be detected to allow the reduction of the

rule set, for example, rule D6. No unintended performance

was discovered in this case, which might be explained by the

long history of improving and further developing the grammars

for this case study. That rule D6 (delete unused gears and

shafts) can be removed from the rule set is a result of a careful

implementation of the gearbox rules in this rule set such that no

unattached shafts and gears are generated. This was a useful dis-

covery due toGRAMand shows a secondary use of themethod

for rule set debugging. The design space representation with the

data from the experiment allows statements to be made about

the ambiguity of the design grammar regarding the defined de-

sign characteristics. The case study shows, for example, that the

grammar is ambiguous because designs with the same design

characteristics are achieved several times. This is also reflected

in the diversity ratio, which, taking the point of view that rule

sets with few rules are superior, could be calculated differently

as the number of topologically different designs divided by

the number of rules. For the case study, this would give similar

results (rule set A: 0.014, rule set B: 0.008, rule set C: 0.042,

and rule set D: 0.028) as the diversity ratio defined in GRAM.

Further, GRAMprovides support for rule debugging. If, for

example, an error occurred in the implementation of rule A1

(add shaft) such that a shaft is removed, GRAM would

show this unintended performance of the rule in the boxplots.

Similarly, GRAMhelps to identify rules that are never applied

(e.g., through the matching ratios) or that have no influence on

any of the objectives (e.g., through the boxplots). This visual

feedback on the rules enables the rule designer to find errors in

the implementation and identify starting points for improving

the quality of the developed rule sets.

Although the case study uses graph grammars, any type of

generative design grammar can be analyzed using GRAM.

Further, the method is independent of rule type and definition

(i.e., simple vs. knowledge-intensive and topologic as well as

parametric grammar rules). Because feedback is given based

on each rule’s performancewith respect to defined objectives,

it is necessary that intermediate as well as final designs can be

evaluated.

Issues to be tackled are related to the visualization for

large-scale problems as well as automating the interpretation.

The visualization of the design space becomes difficult when

more than two design criteria are defined. This is a known is-

sue and research topic also in other domains, and new visu-

alization techniques have to be investigated. Considering all

objectives separately allows a thorough analysis of the gram-

mar rules. However, for problems with multiple rules and ob-

jectives, the number of diagrams to interpret rises. An auto-

mated interpretation of the data instead of a visualization

for the rule designer is one approach to tackle this issue. In

addition, analyzing not only the performance of individual

rules but also rule sequences will enable better understanding

of rule sets and how sequences of rules impact design criteria.

Future work is planned to develop automated interpretation

of the statistics generated using GRAM to overcome both the

drawbacks in visualization for multiobjective problems and

many rules as well as decreasing the interpretation effort by

a human designer. Letting the human designer formulate hy-

potheses to define the intended performance of each rule and

checking it against the rules’ actual performance within de-

fined confidence intervals is one possible way to support

this last step of GRAM automatically in the future. Further re-

search will focus on exploiting the knowledge gained in the

rule analysis and reusing these findings to automatically gen-

erate strategies for more intelligent, self-tuning search algo-

rithms. One approach is analyzing the performances of se-

quences of rules and learning favorable ones that can be

reused. Another is to investigate the location where rules

are applied to gain a better understanding of which is the

best match of a LHS to select when a rule can be applied in

several locations in a design. All future directions aim to in-

crease the understanding of the developed grammar and fur-

ther extend the idea to minimize the effort of tuning the search

algorithm to the design problem while increasing the quality

of the synthesis results.

7. CONCLUSION

The research presented describes a method, GRAM, to sup-

port the human designer in the development of generative

grammar rules for CDS. This is the first approach known to

the authors that focuses on systematic analysis of the rules

in the development phase rather than during their application

within a search algorithm after the rules are developed.

GRAM facilitates gaining in-depth knowledge of the rules’

performance, their relations to objectives, constraints, and

characteristics, and their interaction. Further, it is possible

to find errors in the implementation of the rules through easily

readable feedback. Superior synthesis results as well as less

effort to adapt search algorithms due to better understanding

of the solution space defined by the grammar rules are ex-

pected. Using a systematic data generation process, data for

the analysis is generated, analyzed, and visualized in defined

diagrams. The interpretation of these diagrams using prede-

fined questions helps to identify if, and which parts of, the

rule set need improvement. With GRAM, future design gram-

mar rule developers are given a means to reason about their

specific grammar rule implementations in a systematic way.
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