
Systematic search for lambda expressions

Susumu Katayama

University of Miyazaki

Abstract

This paper presents a system for searching for desired small functional programs by
just generating a sequence of type-correct programs in a systematic and exhaustive
manner and evaluating them. The main goal of this line of research is to ease func-
tional programming, along with the subgoal to provide an axis to evaluate heuristic
approaches to program synthesis such as genetic programming by telling the best
performance possible by exhaustive search algorithms. While our previous approach
to that goal used combinatory expressions in order to simplify the synthesis process,
which led to redundant combinator expressions with complex types, this time we use
de Bruijn lambda expressions and enjoy improved results.

1 INTRODUCTION

Type systems are by nature tools for sound programming that constrain programs to
help identifying errors. On the other hand, by exploiting strong typing, functional
programming can be done in a way like solving a jigsaw puzzle, by repetition of
combining unifying functions and their arguments until the programmer eventually
obtains the intended program. Search-based approach to inductive program synthe-
sis, or program synthesis from incomplete specification, can be viewed as automation
of this process.
This research proposes an algorithm that searches for the type-consistent small func-
tional programs from an incomplete specification rather in a systematic and exhaus-
tive way, that is, by generating all the programs from small to infinitely large that
match the given type and checking if they satisfy the specification. Note that due to
the incompleteness in the specification the synthesized programs may not conform
the users’ intentions, like other inductive programming methods. The correctness of
the synthesized programs could be assured through tests during or after the synthe-
sis. Also, for the above reason it is desirable that synthesized programs are easy to
understand and pretty printed.
The proposed algorithm improves the efficiency of the previous algorithm[3] by do-
ing the following:

• it searches for de Bruijn lambda expressions, while the old one obtains combi-
natory expressions which is more redundant;

• the function taking the set of available atom expressions and a typet and re-
turning prioritized set of synthesized expressions1 whose type andt unify is
now memoized;

1More exactly it returns prioritized set of tuples of the synthesized expressions and the unifier
substitution.

• more equivalent expressions which cause redundancy in the search space and
multiple counting are excluded, i.e., while the old algorithm excludes from the
search space reducible expressions only in the sense of combinator reduction,
the new one knows some fusion rules.

Perspective applicationsOne obvious effect of this research is to programming.
Readers may have more concrete image from Subsection 2.1, though further rear-
rangement of the obtained expressions may be desired.
Another application can be auto-completion in functional shells (e.g. Esther[9]).

Related work Genetic Programming (GP) also searches for functional programs
under likewise conditions, which is a kind of heuristic approach to search for pro-
grams by maintaining a set of “promising programs” and by exchanging and varying
their subexpressions, based on the assumption thatpromising programs should in-
clude useful subexpressions. Although GP is heuristic, however, researchers of GP
tends not to compare their algorithms with non-heuristic approaches, leaving it un-
clear whether the heuristic works or not, and how much it improves the efficiency.
This paper focuses on efficient implementation of exhaustive enumeration of expres-
sions, and provides a basis on which to build heuristic approaches in future.

2 IMPLEMENTED SYSTEM

2.1 Overview

User interface The implemented system has a user interface that looks like Haskell
interpreters. Figure 1 shows a sample interaction with the implemented system,
where each> represents a command line prompt.
When the user types in a boolean typed function in Haskell as theconstraint, the sys-
tem tries to synthesize an expression which satisfies it, i.e., which makes the function
returnTrue. Then it prints the expression converted into usual lambda expression
acceptable by Haskell interpreters and compilers. The line beginning with:load
loads thelibrary file written in Haskell subset with the Hindley-Milner type system,
and during the synthesis, functions and constants in the library file are used as subex-
pressions of the resulting expression. Here is an example library file.

module Library where

zero :: Int

zero = 0

inc :: Int→Int

inc = λx → x+1

nat_para :: Int → a → (Int → a → a) → a

nat_para = λi x f → if i then x else f (i−1) (nat_para (i−1) x f)

nil :: [a]

nil = []

cons :: a → [a] → [a]

cons = (:)

list_para :: [b] → a → (b → [b] → a → a) → a

list_para = λl x f → case l of [] → x

a:m → f a m (list_para m x f)

Although the above specification may look natural, it is not common among GP
systems solving the same kind of problems. Each time synthesizing a function, they
require a file written, which describes:

• which primitive functions/terminals to use,

• what constraints to satisfy,

• what fitness function to use as heuristic, and

• what values of the parameters to use.

This usually means that synthesizing a function requires more skills and labors than
those for implementing the function by hand. Unlike those systems, we make only
realistic requirements aiming to obtain a useful system.

2.2 The old algorithm

This section describes the implementation used in the previous work[3], whose de-
tails have been unpublished. Section 2.2.1 and 2.2.2 are devoted to definition of the
monad for doing breadth-first search and type inference at the same time. Section
2.2.3 overviews the whole algorithm

2.2.1 Monad for breadth-first search

Spivey [8] devised a monad that abstracts and thus eases implementation of breadth-
first search algorithms. Its ideas are:

• the monad is defined as a stream of bags, representing a prioritized bag of
alternatives, where then-th element of the stream represents the alternatives
that reside at the depthn of the search tree and have then-th priority,

• the depthn of the direct product of two of such monads can be defined using
thei-th bag of the first monad and thej-th of the second monad for all thei and
j combinations such thati + j = n, and

• the direct sum of such monads can be defined as concatenation of bags at the
same depth.

Once such monad is defined, one can easily define breadth-first algorithms using the
direct sum and product, or just by replacing the monad for depth-first search in the
source code of algorithms with the above one.
Preliminary experiments showed that using the Spivey’s monad without change for
our algorithm causes huge consumption of the heap space. Changing the definition
of the monad to recompute everything as the focus goes deeper in the search tree
solved the problem:

newtype Recomp a = Rc {unRc :: Int → Bag a}

instance Monad Recomp where

return x = Rc f where f 0 = [x]

f _ = []

Rc f >>= g = Rc (λn → [y | i ← [0..n]

, x ← f i

, y ← unRc (g x) (n−i)])

instance MonadPlus Recomp where

mzero = Rc (const [])

Rc f ‘mplus‘ Rc g = Rc (λi → f i ++ g i)

2.2.2 Type inference monad

When implementing type inference, it is usually convenient to define a monad to
hide states such as the current substitution and fresh variable ID and to represent
error states (e.g. [2]). One of such implementations in Haskell can be as follows:

newtype TI a = TI (Subst → Int → Maybe (a, Subst, Int))

whereSubsts represent the current substitution andInts represent the ID of the next
fresh variable.
In order to infer consistent types during search, we have to extend the type infer-
ence monad to represent possibilities along with their current substitutions, because
the substitution differs depending on each possible node of the search tree. Such
extension of the type inference monad can be defined as

newtype (Monad m) => TI m a = TI (Subst → Int → m (a, Subst, Int))

wherem represents the monad for representing the possibilities. This monad is usu-
ally used in the form ofTI Recomp a in our algorithm, butTI [] a is sometimes
more efficient under uniform priorities. The conventional type inference monad can
be represented asTI Maybe a.

2.2.3 The expression construction

The old algorithm enumerates type-correct combinator expressions that match the
requested type, and for representing lambda abstractions it heavily depends on prim-
itive SKIBCcombinators. It works as follows: let us assume expressions that have
the same type as or a more general type than, say,∀ a b. [a] → b→ Int are requested.
Firstly, type variables, which are assumed to be universally quantified under the
Hindley-Milner type system, are replaced with non-existent type constructor names,
say,G0 andG1 for the above cases. Then a function namedunifyableExprs is
invoked to obtain the prioritized bags of expressions whose types and the requested
type[G0] → G1→ Int unify.
Given [G0] → G1→ Int as an argument, internallyunifyableExprs makes a pri-
oritized bag of pairs of the primitive expressions that return[G0] → G1→ Int (cor-
responding the head) and their argument types (corresponding the spine) along with
their substitution information wrapped inRecomp; then for each argument type of
each pair it recursively callsunifyableExprs with that argument type to obtain re-
sulting argument expressions,exprss in the above code; finally it combines the head
expression withexprss to return.

2.3 Improvements

2.3.1 de Bruijn lambda calculus

The old primitive combinatory approach is inefficient because the polymorphism
loosens the restrictions over the search domain, that is,

• expressions become redundant: polymorphic primitive combinators permit com-
binatory expressions such asB C C which can also be implemented byI, and
such polymorphic combinators can appear everywhere including places that
have nothing to do with the program structure;

• undecided type variables make the shallow nodes in the search tree branch
many times: because type variables are replaced too late after being passed
through computations, branching is not restricted enough while computing the
program candidates, even in the cases where eventually at the leaf of the search
tree the algorithm finds out that there is no type-consistent expression below
that node;

• the complexity of the request type bloats rapidly as the program size increases.

A solution to the above problems could be use of director strings[4]. In this paper
we go further to search over the de Bruijn lambda expressions equivalent to the ex-
pressions using director strings. One of the simplest forms of this algorithm is the
following variedunifyableExprs function:

• the variedunifyableExprs takes an additional argumentavails::[Type]
which represents the types of usable de Bruijn variables, where then-th of the
avails represents the type of the de Bruijn variablexn;

• if the requested type is a function type,

– its argument types are piled at the beginning ofavails in the reverse
order,

– with the resultingavails and the return type of the requested type as
arguments, a function namedunifyableExprs’which has the same type
asunifyableExprs is invoked, and

– for each of the expressionsunifyableExprs’ returns, lambda abstrac-
tion is mapped as many times as the arity of the requested type;

otherwise,unifyableExprs’ is invoked with the same arguments;

• unifyableExprs’ makes a set of the expressions from the primitive set and
avails whose return types and the requested typereqtype unify, and as-
suming the set of the expressions as the head, it forms the spine invoking
unifyableExprs recursively using each argument type as the request type;
then it returns the combination of the head with the results of the recursive
calls.

Thus, as long as the return type of the head is not a type variable,unifyableExprs’

returnsη-reducible expressions, where partial application is not permitted. For ex-
ample,λxs → take 4 xs is elected overtake 4. This is not a problem, because we
are only interested in generating only one expression from one equivalent class in or-
der to avoid redundant search space, and the elected program need not be optimized
— optimizing the resulting program could be done by compilers and is not the scope
of this line of research.

The actual implementation ofunifyableExprs’ has to be more complicated than
one would imagine from the above description, because the return type of the head
can be a type variable, in which case the number of its arguments can be any large.
Our current approach to this problem is rather naive, trying the infinite number of
alternative substitutions[X/a], [b → X/a], [b → c → X/a], [b → c → d → X/a], ...
whereX is the requested return type,a is the return type of the head, andb,c, ... are
fresh variables.
Note that the above approach is quite inefficient in some ways, preventing the algo-
rithm from being applied to synthesis of larger programs. For example, when the
type variablea is replaced with ann-ary function type, by permuting the arguments
there aren! equivalent expressions. Currently we are fixing this problem.
Also note that the arguments newly introduced by the substitutions have to be used.
Because this can easily be tested by seeing if all the fresh variables are replaced, the
idea is already implemented in the proposed algorithm.

2.3.2 Memoization

The proposed algorithm often tries to synthesize the prioritized set of subexpressions
on requests of the same type. In such cases memoization often works.
Although lazy memoization that hashes the pointers of objects is quite commonly
known in functional programming, this time it is not a good option, because pointer
equality makes little sense here, and there is no need of lazy memoization. We im-
plemented a trie-based memoization by

• defining the data type of lazy infinite trie indexed by the arguments of the memo
function,

• putting the return value of the memo function at each leaf node of the trie, and

• looking up the trie instead of computing the function value whenever the return
value for any argument is required.

How to implement the generalized trie indexed by any data type is detailed in [1].2

When memoizingunifyableExprs’, the trie is indexed byavails andreqtype,
and has a Spivey’s monad instead ofRecomp at each leaf node. The type variables in
avails andreqtype should be normalized before the look up, or e.g.∀ a. [a] and
∀ b. [b] would be regarded as different types.
One problem is that although the same types are often requested, the set of available
functions change from time to time. Especially because the set of available functions
increases monotonically as the position of the spine in question goes deeper, it is
quite likely that the memoization whose argument is the simple combination of the
requested return type and the set of the available expressions rarely hits.
A hint on this problem is: “when constructing a type-consistent expression we are
only interested in the types of the available functions, not those functions them-
selves”, or in other words, “available expressions of the same type are alternative
in the sense of type-consistency.” Thus, instead of just looking up the memo trie one

2Note that a lazy infinite trie instead of a resizable finite trie has to be used here, and thus unlike
the implementation in [1] Patricia tree implementation is not fitted for the integer-indexed tries.
However, because the only integers used as indexes are the identification numbers for type variables
and type constructors, which are usually small below ten, usual lazy lists can be used instead of
Patricia tree without outstanding loss of efficiency.

should do the following to make memo trie hit more often and to save the heap space
for memoization:

• reorganize the set of available expressions by sorting them and dividing them
into the equivalence class having the same type, and assign new variable num-
ber for each class,

• look up the return value from the trie using the reorganized list, and

• replace all the variable numbers introduced above in the obtained expressions
with the available expressions.

Because memoization costs the heap space, the values that are rarely looked up
should rather be recomputed than memoized. In the case of memoizingunifyableExprs’,
it is effective to look up from the memo only small expressions because they are re-
quested many times.

2.3.3 Excluding unoptimized expressions

Every known optimization rule suggests when equivalent programs can be synthe-
sized, and helps to avoid such redundant synthesis. Taking a case of function fusion
as an example, from thefoldr/nil rule we know that foldr op x[] = x , and thus
we should always avoid synthesis of expressions includingfoldr ? ?[] pattern as a
subexpression. Failure to exploit such rules can cause a tremendous loss to our algo-
rithm because without doing sofoldr ? ?[] pattern can appear everywhere even when
the requested type has nothing to do with lists at all. Though such fusion points can
be identified by a general rule[7], currently we use the following heuristic to capture
them:

• identify the library functions that consume some data type beforehand; whether
a function is a consumer or not is currently just guessed from its type;

• prohibit use of constructors when invokingunifyableExprs for the parame-
ter of consumed data type.

2.3.4 Interpreter

The improved system uses an interpreter based on categorical combinatory logic
(CCL) [5], while that used by the old system used the Turner’s algorithm. This is
a natural change because CCL has a strong tie with the de Bruijn style lambda ex-
pressions.

3 EFFICIENCY EVALUATION

Honestly speaking, the current system requires further improvements in efficiency
to become very useful. Although synthesis of simple functions consisted of several
primitive expressions requires only a few seconds, synthesis of functions consisted of
more than twelve primitive expressions usually requires more than a minute, and may
not finish the synthesis within an hour. Still, there is large room for improvements by
suppressing redundant expressions before trying heuristic approaches.
In addition to the old system, this research is related to GP algorithms such as
PolyGP[11],[10] that is GP under polymorphic higher-order type system, and ADATE[6]
that uses monomorphic first-order type system. Although it is usually desirable to

compare the proposed method with such algorithms, here we do not compare effi-
ciency with them for the reasons below.
Comparison with PolyGP would be unnecessary, because the comparison between
PolyGP and the old system is done in [3], where the latter showed better results on
all problems there, and thus if the current system shows improvements from the old
system on those problems, that would be enough.
The ADATE system has two releases: version 0.3 and 0.41, but unfortunately in our
modern environment both of them could not reproduce the interesting results from
the literature. The version 0.3 is released only in the binary form, compiled in an
outdated, specific environment, and thus is not runnable in our recent Linux systems.
Although the version 0.41 seems runnable, it does not show the reported efficiency
even from the sample specifications that come with the release — for example, the
list sorting problem, which can reportedly be solved in 1529 seconds on 200MHz
Pentium III, cannot be solved in five days on our 3GHz Pentium 4 machine.3

One possible reason of the above discouraging result might be as follows: although
in usual GP some descendants of parent individuals who are stuck at local minima
are dropped to minima at some interpolating positions by the crossover operator,
since ADATE lacks in any crossover it is likely that without good luck in the random
number seed it is difficult for any individual program to get out of local minima.
It is unknown how often ADATE fails, when it should be restarted if it seems to have
failed, and how long it takes in average to obtain a desired result finally after the
failures.

Improvements from the old algorithm Table 1 shows the execution time of
synthesizing the same functions in the same environment as in [3], i.e. on Pentium4
2.00GHz machine with the Glasgow Haskell Compiler ver. 6.2 on Linux 2.4.22, with
the-O optimization flag.
For the new algorithm an adapted version of the original library file excludingSKIBC
combinators and specialized variants of paramorphisms that are no longer necessary
is used, i.e.:

module Library where

zero :: Int

zero = 0

inc :: Int→Int

inc = λx → x+1

nat_para :: Int → a → (Int → a → a) → a

nat_para = λi x f → if i then x else f (i−1) (nat_para (i−1) x f)

dec :: Int → Int

dec = λx → if x ≡ 0 then 0 else x−1

nil :: [a]

nil = []

cons :: a → [a] → [a]

cons = (:)

list_para :: [b] → a → (b → [b] → a → a) → a

3In addition, when given other problems than the samples, it aborts because of lack in error
handling.

TABLE 1. Computation time (sec.) of the old and the new algorithms.

nth map length
computation time for the old system (real) 5.3 2.2 0.03

(user) 5.1 2.2 0.02
nth map length

computation time for the new system (real) 0.8 1.9 0.03
(user) 0.6 1.2 0.02

list_para = λl x f → case l of [] → x

a:m → f a m (list_para m x f)

hd :: [a] → a

hd = head

tl :: [a] → [a]

tl = tail

In all the experiments performance improvements are observed.

4 CONCLUSIONS

An algorithm that searches for the type-consistent functional programs from an in-
complete set of constraints in a systematic and exhaustive way is proposed. It im-
proves the efficiency of the previous algorithm by using de Bruijn lambda calculus at
the back end, memoization, and some known fusion rules to avoid multiple counting
of the equivalent expressions.

REFERENCES

[1] R. Hinze. Generalizing generalized tries.Journal of Functional Programming,
10(4):327–351, 2000.

[2] M. P. Jones. Typing Haskell in Haskell. InHaskell Workshop, September 1999.
[3] S. Katayama. Power of brute-force search in strongly-typed inductive func-

tional programming automation. InPRICAI 2004: Trends in Artificial Intelli-
gence, 8th Pacific Rim International Conference on Artificial Intelligence, LNAI
3157, pages 75–84, August 2004.

[4] R. Kennaway and R. Sleep. Director strings as combinators.ACM Transactions
on Programming Languages and Systems, 10(4):602–626, 1988.

[5] R. D. Lins. A new formula for the execution of categorical combinators. In
Proceedings of 8th International Conference on Automated Deduction, LNCS
230, pages 89–98, 1986.

[6] R. Olsson. Inductive functional programming using incremental program trans-
formation., 1994.

[7] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion system
HYLO. In Algorithmic Languages and Calculi, pages 76–106, 1997.

[8] M. Spivey. Combinators for breadth-first search.Journal of Functional Pro-
gramming, 10(4):397–408, 2000.

[9] A. van Weelden and R. Plasmeijer. A functional shell that dynamically com-
bines compiled code. InProceedings on 15th international workshop on the
implementation of functional languages, Scotland, September 2003. Springer
Verlag.

[10] T. Yu. Polymorphism and genetic programming. InProceedings of Fourth
European Conference on Genetic Programming, 2001.

[11] T. Yu and C. Clack. PolyGP: A polymorphic genetic programming system in
Haskell. InGenetic Programming 1998: Proc. of the Third Annual Conference,
pages 416–421, 1998.

> :set --quiet
> \f -> f ["sldkfj", "", "324oj", "wekljr3","43sld"] == "s3w4"
The inferred type is: (([] ([] Char)) -> ([] Char)).
Looking for the correct expression.
current program size = 1
current program size = 2
current program size = 3
current program size = 4
current program size = 5
current program size = 6
current program size = 7
current program size = 8
current program size = 9
Found!
(\ a -> list_para a nil (\ b c d -> list_para b d (\ e f g -> cons e d)))
1 sec in real,
0.83 seconds in CPU time spent.
> :load LibList
> \f -> f "sldkjf" == "fjkdls"
The inferred type is: (([] Char) -> ([] Char)).
Looking for the correct expression.
current program size = 1
current program size = 2
current program size = 3
current program size = 4
current program size = 5
current program size = 6
current program size = 7
current program size = 8
Found!
(\ a -> list_para a (\ b -> b) (\ b c d e -> d (cons b e)) nil)
1 sec in real,
0.35 seconds in CPU time spent.
>

FIGURE 1. Sample user interaction.

