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We study the linear and nonlinear structure formation in the dilaton and symmetron models of modified

gravity using a generic parameterisation which describes a large class of scenarios using only a few parameters,

such as the coupling between the scalar field and the matter, and the range of the scalar force on very large scales.

For this we have modified the N -body simulation code ECOSMOG, which is a variant of RAMSES working in

modified gravity scenarios, to perform a set of 110 simulations for different models and parameter values,

including the default ΛCDM. These simulations enable us to explore a large portion of the parameter space. We

have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich

and interesting phenomenology where the difference with the ΛCDM template cannot be reproduced by a linear

analysis even on scales as large as k ∼ 0.05 hMpc−1. Our results show the full effect of screening on nonlinear

structure formation and the associated deviation from ΛCDM. We also investigate how differences in the force

mediated by the scalar field in modified gravity models lead to qualitatively different features for the nonlinear

power spectrum and the halo mass function, and how varying the individual model parameters changes these

observables. The differences are particularly large in the nonlinear power spectra whose shapes for f(R), dilaton

and symmetron models vary greatly, and where the characteristic bump around 1 hMpc−1 of f(R) models is

preserved for symmetrons, whereas an increase on much smaller scales is particular to symmetrons. No bump is

present for dilatons where a flattening of the power spectrum takes place on small scales. These deviations from

ΛCDM and the differences between modified gravity models, such as dilatons and symmetrons, could be tested

with future surveys.

I. INTRODUCTION

The apparent acceleration of the Universe could be due to at

least four different reasons: a cosmological constant, dark en-

ergy [1], modified gravity [2] or large spatial inhomogeneities

[3]. The last of these violates the Copernican principle and re-

quires a theory for the initial conditions of the Universe while

the first three invoke a change of the dynamics of the Universe

itself.

The cosmological constant solution is rather peculiar as no

real dynamics is attached to it until the vacuum energy starts

dominating the energy content of the Universe. This seems to

have happened in the quite recent past, a fact which is prob-

lematic and related to the astoundingly small value of the crit-

ical density of the Universe compared to particle physics ex-

pectations, which scale as the fourth power of the mass of any

heavy particle present in the early Universe.

To alleviate this problem, two other possibilities are com-

monly invoked. The first one is dark energy [1], in which the

dynamics of a field (e.g., a scalar field in the simplest case) de-

termines the fate of the Universe. So far no real solution to the

cosmological constant problem has been found within this set-

ting although phenomenological works abound. Setting aside
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the problem of the actual value of the dark energy density

now, these models suffer from another serious problem: dark

energy evolves on cosmological time scales only when the

scalar field leads to a long range interaction. Of course, one

can decree that dark energy does not couple to baryons as in

coupled quintessence models1, and therefore alleviate gravita-

tional problems linked to the existence of a scalar fifth force.

If this is not the case, then a solution which has been put for-

ward in the last decade is screened modified gravity mediated

by a scalar field.

Many models of screened modified gravity have been con-

structed so far, which fall within two broad categories. Fol-

lowing the initial works on massive gravity, models involv-

ing nonlinear kinetic terms, such as the Galileon [4–6], make

use of the Vainshtein mechanism [7] whereby large nonlin-

earities in the vicinity of dense objects effectively reduce the

scalar coupling to matter to be below the experimental bounds.

Another class of models originating from the chameleon the-

ory [8, 9] use a screening of the fifth force in dense environ-

ments due to the nonlinearities of either the scalar potential

or its coupling to matter (or both). Chameleon models such

as f(R) gravity [10–12] are such that the mass of the scalar

field becomes large in dense bodies, effectively suppressing

the magnitude of the scalar force; other models such as the

1 We regard the coupled quintessence model as an example of dark energy

rather than modified gravity, for which we require a universal coupling to

all matter species.
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dilatons [13] and symmetrons [14, 15] are such that the effec-

tive coupling to matter becomes vanishingly small in dense

environments. All cases in the second class of screened mod-

ified gravity can be described by the same formalism which

has been recently unified [16, 17]. In this paper, we will con-

centrate on the second class.

It has been shown in [17] that the background cosmology

of these models is extremely constrained. Indeed, the fact that

particle masses (in the Einstein frame) and the gravitational

constant (in the Jordan frame) cannot vary substantially be-

tween the era of the Big Bang Nucleosynthesis (BBN) and

now implies that the scalar field must stay very close to the

minimum of the effective potential since before BBN. This is

guaranteed when the mass of the scalar field on the cosmolog-

ical background is much heavier than the Hubble expansion

rate, securing the stability of the minimum to ‘kicks’ occur-

ring when particles such as the electrons decouple [18]. A

consequence of this is that the effective equation of state of

the scalar field in the late-time Universe becomes extremely

close to −1, hardly distinguishable from the pure Λ-cold dark

matter (ΛCDM) scenario. In practice, models of f(R) gravity,

chameleon, dilaton and symmetron types usually behave like

ΛCDM in the background cosmology since before BBN.

Fortunately, this does not imply that their cosmology is to-

tally degenerate with that of the ΛCDM model: the effects

of modified gravity appear in the structure formation. Indeed,

within the Compton wavelength of the scalar field2, gravity is

modified and the growth rate of structures is altered [17, 18].

At the linear level, this results in a modification of the growth

equation which depends on the scalar field massm(a) and the

coupling to matter β(a) expressed as functions of the scale

factor. It turns out that all screened modified gravity models

with no higher derivative terms in their Lagrangian, including

their field-dependent potential V (ϕ) and the coupling to mat-

ter β(ϕ), can be fully reconstructed from the sole knowledge

of the functions m(a) and β(a). This allows one to engineer

models directly from their linear perturbation properties, i.e.,

given m(a) and β(a) one can build a fully consistent model

of modified gravity defined by β(ϕ) and V (ϕ) [16, 17], which

implies that one could study the nonlinear evolution of cos-

mic structures in the late Universe simply from the knowl-

edge of m(a) and β(a). This provides a systematic approach

to screened modified gravity which can be applied to gener-

alised chameleon, dilaton and symmetron models. For other

schemes to parameterise modified gravity see [19–24].

Studying the nonlinear regime of structure formation is of

particular importance for screened modified gravity models,

as local gravity tests often imply that deviations from gen-

eral relativity are strongest on megaparsec (Mpc) scales [17],

where nonlinearities cannot be neglected. Two competing ef-

fects influence the dynamics of modified gravity here. On the

one hand, the gravitational interaction is enhanced by the pres-

ence of a long-range fifth force which implies an increase of

2 The Compton wavelength of a scalar field is defined as λ ≡ m−1

eff
, and

meff is the effective mass of the scalar field (see below).

the growth of structure. On the other hand, where local mat-

ter densities are high enough, screening effects develop and

structure formation converges to its GR behaviour. These two

competing effects have been confirmed in already-available

N -body simulations of f(R) gravity [25–34], chameleon [35–

38], dilaton [39] and symmetron [41, 42] models.

In this work, we apply the (m(a), β(a)) parameterisation

to generalise dilaton and symmetron models and study their

large-scale structure formation. We use modified versions of

the ECOSMOG code [43] to run N -body simulations in these

models. This code is based on the publicly-available adaptive

mesh refinement (AMR) code RAMSES [44], which is effi-

ciently parallelised and suitable to run simulations systemati-

cally. The AMR nature of the code means that a higher reso-

lution can be achieved, without sacrificing the overall perfor-

mance of the code, in dense regions where the field equations

are most nonlinear, ensuring the accuracy of the fifth force cal-

culation there. As a result, our simulations are able to probe

the structure formation in these modified gravity models down

to scales well below the typical dark matter halo sizes.

The results of our simulations indicate that large deviations

from ΛCDM in the power spectrum can be found on scales of

order 1 Mpc for both symmetron and dilaton models for val-

ues of the parameters which comply with the local constraints

(the gravitational tests in the Solar system and a mild sup-

pression of the fifth force on galactic scales typically impose

that the range of the fifth force should be less than a few Mpc

in the cosmological background). Large differences are also

present in the number density of intermediate-sized dark mat-

ter halos with masses of order 1013−1014h−1M⊙ (represent-

ing objects from groups of galaxies to small galaxy clusters).

For models with a fifth force whose range in the cosmological

background is of order Mpc and a coupling strength to matter

of order unity, the deviation from ΛCDM can reach ∼ 40%

in the symmetron case and ∼ 30% in the dilatonic one. Such

large differences are testable using future galaxy surveys.

Moreover, symmetron and dilaton models are distinguish-

able thanks to the very different time dependence of their cou-

plings to matter. For symmetrons, the coupling has a slow de-

pendence on the scale factor a in the recent past of the Uni-

verse and vanishes before a transition redshift z∗ (its defini-

tion will be given later). Dilaton models have a much sharper

dependence on the scale factor and generically decrease ex-

ponentially fast going back in time. As will be discussed in

detail in § II B, the time dependence of the coupling strength

can be roughly translated into a density dependence, and the

steep density dependence in the recent past of the Universe (or

equivalently in regions of low matter density) for dilaton mod-

els suggests that the dilaton screening is more efficient. These

properties make the matter power spectra and halo mass func-

tions behave qualitatively differently in these models. We will

give a more detailed summary of the results in the concluding

section.

The layout of this paper is as follows: in § II we review

scalar-tensor theories and show how such theories of modified

gravity can be analysed using a simple parametrisation which

encapsulates all the dynamics; in § III we briefly describe the

generalised symmetron (§ III A) and dilaton (§ III B) mod-
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els and the possible effects of varying each model parameter;

the equations that will be used in the N -body simulations are

summarised in § IV, while the details are given in § IV B; we

next carry out tests of our codes in § V, and the cosmologi-

cal simulations of this work are then discussed in § VI for the

symmetron (§ VI A) and dilaton (§ VI B) cases respectively;

finally we summarise and conclude in § VII.

In the paper we use the units ~ = c = 1 except where c ap-

pears explicitly. Overbar (subscript 0) denotes the background

(present-day) value of a quantity and subscript ϕ means

d/dϕ. κ = 8πGN =M−2
Pl , where MPl is the reduced Planck

mass and GN is Newton’s constant, are used interchangeably.

II. MODIFYING GRAVITY WITH A SCALAR FIELD

A. Screened modified gravity

The action governing the dynamics of a scalar field ϕ in a

scalar-tensor theory is of the general form

S =

∫

d4x
√−g

[

M2
Pl

2
R− 1

2
(∇ϕ)2 − V (ϕ)

]

+

∫

d4x
√

−g̃Lm(ψ(i)
m , g̃µν), (1)

where g is the determinant of the metric gµν , R is the Ricci

scalar and ψ
(i)
m are various matter fields labelled by i. A key

ingredient of the model is the conformal coupling of ϕ with

matter particles. More precisely, the excitations of each mat-

ter field ψ
(i)
m couple to a metric g̃µν which is related to the

Einstein-frame metric gµν by the conformal rescaling

g̃µν = A2(ϕ)gµν . (2)

The metric g̃µν is the Jordan-frame metric. The fact that the

scalar field couples to matter implies that the scalar field equa-

tion becomes density-dependent. More specifically, the scalar

field equation of motion (EOM) is modified due to the cou-

pling of the scalar field ϕ to matter:

�ϕ = −βT +
dV

dϕ
, (3)

where T is the trace of the energy momentum tensor T µν ,

� ≡ ∇µ∇µ and the coupling of ϕ to matter is defined by

β(ϕ) ≡MPl
d lnA

dϕ
. (4)

This is equivalent to the usual scalar field EOM with the ef-

fective potential

Veff(ϕ) = V (ϕ)− [A(ϕ) − 1]T. (5)

We will always require that the effective potential possesses a

unique density-dependent minimum in the presence of pres-

sureless matter for which T = −ρm, i.e., that the potential

Veff(ϕ) = V (ϕ) + [A(ϕ)− 1]ρm (6)

has a minimum ϕmin(ρm). The mass of the scalar field at the

minimum,

m2 =
d2Veff
dϕ2

∣

∣

ϕmin
, (7)

must be positive. In a cosmological setting we will also im-

pose that m2 ≫ H2 with H being the Hubble expansion rate.

This guarantees the stability of the minimum to perturbations.

When matter is described by a pressure-less fluid with

T µν = ρmu
µuν , (8)

where uµ ≡ dxµ/dτ is the 4-velocity field of the fluid and τ
is the proper time, the matter density ρm is conserved

ρ̇m + θρm = 0, (9)

where θ ≡ ∇µu
µ = 3H is the expansion scalar and the tra-

jectories are determined by the modified geodesics

u̇µ + β
ϕ̇

MPl
uµ = −β∇

µϕ

MPl
. (10)

In the weak-field limit with a line element

ds2 = −(1 + 2φ)dt2 + (1 − 2φ)dxidxi, (11)

and in the non-relativistic case, this reduces to the modified

geodesic equation for matter particles

d2xi

dt2
= −∇i [φ+ lnA(ϕ)] . (12)

This can be interpreted as the motion of a particle in the effec-

tive gravitational potential defined as

Ψ ≡ φ+ lnA(ϕ), (13)

and is a manifestation of the dynamics of modified gravity.

One may also call the deviation from the Newtonian gravity a

fifth force. In this paper we will use these terminologies inter-

changeably.

When a particle of mass M in a homogeneous background

matter density is the source of gravity, the scalar field satisfies

(

∇2 +m2
)

ϕ = β
M

MPl
δ(3)(r), (14)

in which δ(3)(r) is the 3-dimensional Dirac δ-function and m
the scalar field mass in the background. This implies that

Ψ = −
(

1 + 2β2e−mr
) GNM

r
. (15)

When β ∼ O(1) and mr . 1, this implies a substantial devi-

ation from Newton’s law. For bodies much bigger than a point

particle, nonlinear effects imply that the effective coupling felt

by a test mass near the source can be much smaller than 1 or

the scalar field mass becomes much larger than the inverse of

the typical size of the source (m−1 ≪ r). The dilaton and
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symmetron models satisfy the first criterion which guarantees

that solar system and laboratory tests of gravity are evaded.

In addition to the self-screening described above, the mod-

ification of gravity depends on the environment of the bodies

as well. For example, in a high-density background, the scalar

field mass m in Eq. (14) can be very large, which suppresses

the deviation from Newtonian gravity according to Eq. (15).

This environmental dependence is at the heart of the screen-

ing mechanisms in chameleon, dilaton and symmetron cases.

Indeed, as shown in [17], the screening is effective when the

Newtonian potential ΦN generated at the surface of a dense

body satisfies

|ϕ∞ − ϕc| ≪ 2β∞MPlΦN , (16)

where ϕc,∞ are respectively the minimum of the effective po-

tential inside and far away from the dense body; ΦN is the

Newton potential at the surface of the body and β∞ = β(ϕ∞)
is the coupling to matter outside. Note that the self and envi-

ronmental screenings are encoded in ΦN and ϕ∞, β∞ respec-

tively

In cosmological simulations, ϕ∞ = ϕ̄ is the background

value of ϕ, while ϕc is the value inside clustered structures,

which can be very small. In general,ϕ could change by several

orders of magnitude from low-density to high-density regions,

and this is why the accurate calculation of ϕ is a challenging

task. The equations of motion which govern the dynamics of

the modified gravity models which we consider here are

∇2φ ≈ 4πG (ρm − ρ̄m) , (17)

c2∇2ϕ ≈ Vϕ(ϕ)− Vϕ(ϕ̄) +Aϕ(ϕ)ρm −Aϕ(ϕ̄)ρ̄m,(18)

d2~r

dt2
= −~∇φ− c2β(ϕ)~∇ϕ− β(ϕ)ϕ̇

d~r

dt
, (19)

where in Eq. (17–18) we have worked in the quasi-static limit

so that terms involving time derivatives have been dropped;

this is a good approximation throughout the course of cosmic

evolution as the time derivatives are generally much smaller

than the spatial ones3. The first of these equations is the Pois-

son equation while the last one is the modified Newtonian dy-

namics due to the presence of the scalar field ϕ, c.f. Eq. (10).

We have reinstated the factors of c because in code units (see

below) c is no longer unity.

B. Tomography

We shall always consider the cosmological evolution of the

scalar field ϕ in modified gravity models with a minimum of

Veff(ϕ) at which the scalar field mass m satisfies m2 ≫ H2.

3 This has been shown explicitly in, e.g., [25], which compares the two di-

rectly. A more rigorous proof of the validity of the quasi-static approxima-

tion would be by solving the full time-dependent scalar field EOM, which

is beyond the scope of the current work. However we find that, in the lin-

ear perturbation calculations of [17], one gets indistinguishable results by

solving the full (linearised) EOM and using the quasi-static approximation,

showing that the latter is actually quite reasonable.

The time evolution of the scalar field is tightly constrained

by BBN physics due to its coupling to matter particles. The

fact that the scalar field evolves along the minimum of Veff(ϕ)
implies that the masses of fundamental particles

mψ = A(ϕ)mbare, (20)

in which mbare is the bare mass appearing in the matter La-

grangian, evolve too. In practice, tight constraints on the time

variation of masses since the time of BBN

∆mψ

mψ
= β

∆ϕ

MPl
, (21)

where ∆ϕ is the total variation of the field since BBN, impose

that ∆mψ/mψ must be less than ∼ 10%. At a redshift of or-

der ze ≈ 109, electrons decouple and give a ‘kick’ [18] to the

scalar field which would lead to a large violation of the BBN

bound. To avoid this, the field must be close to the minimum

of Veff(ϕ) before ze and simply follow the time evolution of

the minimum. Moreover, the total excursion of the scalar field

following the minimum must be small enough. In practice, we

will always assume that |ϕ/MPl| ≪ 1 along the minimum tra-

jectory, implying that the BBN bound for the time dependent

minimum is always satisfied. The models are then valid pro-

vided the electron ‘kick’ does not perturb the minimum too

much. The minimum of the effective potential acts as a slowly

varying cosmological constant. Indeed, when m2 ≫ H2 the

minimum is stable for all the models we will consider. In this

case, the dynamics are completely determined by the mini-

mum equation

dV

dϕ

∣

∣

∣

ϕmin

= −βA ρm
MPl

. (22)

In fact, the knowledge of the time evolution of the mass m
and the coupling β is enough to determine the time evolution

of the field. Using the minimum equation, we can deduce that

the field evolves according to

dϕ

dt
=

3H

m2
βA

ρm
MPl

. (23)

This is the time evolution of the scalar field at the background

level since the instant when the field starts being at the min-

imum of the effective potential. The knowledge of the time

evolution of the massm and the coupling β is enough to deter-

mine the bare potential V (ϕ) and the coupling functionA(ϕ)
completely. To see this, integrating Eq. (23) once, we find

ϕ(a) =
3

MPl

∫ a

aini

β(a)

am2(a)
ρm(a)da+ ϕc, (24)

where ϕc is the initial value of the scalar field at aini < aBBN

and we have takenA(ϕ) ≈ 1 given that the temporal variation

of fermion masses must be very weak. If the coupling strength

β is expressed in terms of the field ϕ and not the scale factor

a, this is also equivalent to

∫ ϕ

ϕc

dϕ

β(ϕ)
=

3

MPl

∫ a

aini

1

am2(a)
ρm(a)da. (25)
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Similarly the minimum equation implies that the potential can

be reconstructed as a function of time

V = V0 −
3

M2
Pl

∫ a

aini

β2(a)

am2(a)
ρ2m(a)da, (26)

where V0 is the value of the potential at a = aini. This de-

fines the bare scalar field potential V (ϕ) parametrically when

β(a) and m(a) are given. Hence we have found that the full
nonlinear dynamics of the theory can be recovered from the

knowledge of the time evolutions of the mass and the coupling

to matter since before BBN.

The reconstruction mapping gives a one-to-one correspon-

dence between the scale factor a and the value of the field

ϕ(a) in the cosmic background. As the scale factor is in a one-

to-one correspondence with the matter energy density ρ̄m(a),
we have obtained a mapping ρm → ϕ(ρm) defined using the

time evolution ofm(a) and β(a) only. Given these evolutions,

one can reconstruct4 the dynamics of the scalar field for den-

sities ranging from cosmological to solar system values using

Eq. (24) and Eq. (26). By the same token, V (ϕ) can be recon-

structed for all values of ϕ (and ρm) of interest, from the solar

system and Earth to the cosmological background today.

In particular, we can now state the screening condition of

modified gravity models [c.f. Eq. (16)] as
∫ aout

ain

β(a)

am2(a)
ρm(a)da≪ βoutM

2
PlΦN , (27)

with constant matter densities ρin,out = ρm(a = ain,out) in-

side and outside the dense body respectively, and where we

have defined βout ≡ β(a = aout). Note that the gravitational

properties of the screened modified gravity models can be cap-

tured by the cosmological evolutions of the scalar field mass

and coupling function only.

The loosest screening condition follows from the fact the

Milky Way should be screened as otherwise large deviations

from Newtonian gravity would have been detected in the solar

system. For the Milky Way, the density is around six orders of

magnitude larger than the cosmological background implying

that ain ∼ 10−2; its Newtonian potential is ΦG ∼ 10−6. Tak-

ing the outside environment to be close to the cosmological

background we have aout ∼ 1. Writing

m(a) = m0f(a), β(a) = β0g(a), (28)

where f and g are smooth functions of a with slow variations

we find

3Ωm0H
2
0

m2
0

∫ 1

ain

g(a)

a4f2(a)
da ≤M2

PlΦG, (29)

in which Ωm is the fractional matter density. Defining I ≡
∫ 1

ain

g(a)
a4f2(a)da, we find that

m2
0

H2
0

≥ 3Ωm0I

ΦG
. (30)

4 This is done by assuming that the scalar field always minimises its effective

potential Veff , and thus the results below are more of qualitative estimates

than quantitatively accurate predictions.

Typically this implies that m0/H0 & 103. Hence we find that

screened models of modified gravity can only act on scales

below the order of a few Mpc. In fact we will make use of the

ratio

ξ ≡ H0

m0
, (31)

which is related to the range of the fifth force as

λ = 2998ξ h−1Mpc. (32)

These scales, in the Mpc range, are beyond the linear pertur-

bation regime and can only be accurately analysed using nu-

merical simulations. This is the aim of the present article. In

the next subsection, we will describe the models we will study

in detail numerically.

C. The dilaton and symmetron models

1. Dilatons

The environment-dependent dilaton model was originally

described in [13]. The essential features of the dilaton model

include a runaway potential and a coupling function A(ϕ)
which has a minimum. The potential is derived in the strong

coupling limit of string theory and the form of the coupling

function ensures the field does not runaway to infinity, which

would imply decompactification. In [13] the coupling function

and bare potential of the scalar field were specified as follows:

A(ϕ) = 1 +
1

2

A2

M2
Pl

(ϕ− ϕ∗)
2
, (33)

V (ϕ) = V0e
−γϕ/MPl . (34)

Here A2 ≫ 1, γ > 0 are dimensionless model parameters, V0
is a model parameter with mass dimension 4 and ϕ∗ an arbi-

trary constant. The screening mechanism of the dilaton model

is shown in Fig. 1. Again, denoting the value of ϕ which min-

imises Veff(ϕ) by ϕmin, when matter density is high ϕmin is

very close to ϕ∗ so that β(ϕmin) ≈ β(ϕ∗) = 0 and the fifth

force essentially vanishes, while when matter density is low

ϕmin can evolve away from ϕ∗ so that β(ϕmin) 6= β(ϕ∗) = 0,

giving rise to a non-negligible fifth force.

To study the cosmology of the dilaton model we need only

consider the dynamics in the vicinity of the field ϕ∗, where

β(ϕ) ≈ A2

MPl
(ϕ − ϕ∗), (35)

from which we deduce that

ln

∣

∣

∣

∣

ϕ− ϕ∗

ϕc − ϕ∗

∣

∣

∣

∣

= 9A2Ωm0H
2
0

∫ a

aini

da

a4m2(a)
, (36)

and therefore

|β(ϕ)| = |β(ϕc)| exp
[

9A2Ωm0H
2
0

∫ a

aini

da

a4m2(a)

]

. (37)
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V(
)

V(
)

FIG. 1. An illustration of how the dilaton mechanism works. The dashed, dotted and solid curves are respectively the bare potential V (ϕ) of the

dilaton field, the coupling function and the total effective potential Veff(ϕ). Left Panel: in high matter-density regions the minimum of Veff(ϕ)
is where the coupling strength vanishes and so the fifth force is suppressed. Right Panel: in low matter-density regions the coupling strength

does not vanish at the minima of Veff(ϕ), where the dilaton field resides, and so a nonzero fifth force takes effect in structure formation.
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FIG. 2. An illustration of how the symmetron mechanism works. The dashed, dotted and solid curves are respectively the bare potential V (ϕ)
of the symmetron field, the coupling function and the total effective potential Veff(ϕ). Left Panel: in high matter-density regions the minimum

of Veff(ϕ) is where the coupling strength vanishes and so the fifth force is suppressed. Right Panel: in low matter-density regions the coupling

strength does not vanish at the minima of Veff(ϕ), where the symmetron field resides, so a nonzero fifth force takes effect in the structure

formation.

This is the relation between the coupling at the initial time and

other cosmological times.

The initial coupling (taken at aini < aBBN) is the same as

in dense matter on Earth and is related to the cosmological

value of β today, β(ϕ0), by

|β(ϕ0)| = |β(ϕc)| exp
[

9A2Ωm0H
2
0

∫ 1

aini

da

a4m2(a)

]

. (38)

It is possible to have a very small coupling in dense matter

(|β(ϕc)| ≪ 1) for any value of the coupling on cosmological

scales (|β(ϕ0)|) provided that A2 > 0 and that the time varia-
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tion of m(a) is slow and does not compensate the 1/a4 diver-

gence in the integrand. In this situation, the coupling function

β converges exponentially towards zero: this is the Damour-

Polyakov mechanism [40]. The fact that A2 > 0 guarantees

that the minimum of the coupling function A(ϕ) is stable and

becomes the minimum of the effective potential which attracts

the scalar field at late times. If A2 < 0, the effect of the

coupling is destabilising and implies that ϕ diverges exponen-

tially fast away from ϕ∗.

Alternatively, a smooth variation of the coupling function to

matter in the cosmological background and therefore interest-

ing consequences for the large-scale structure can be achieved

when the evolution of the mass of the scalar field compensates

the 1/a4 factor in the radiation era and evolves in the matter

era. This is obtained for models with

m2(a) = 3A2H
2(a)M2

Pl. (39)

Indeed, H(a) ∼ a−2 in the radiation era, which implies that

the time variation of β(ϕ) between BBN and matter-radiation

equality is

β(ϕ) = β(ϕc) exp

[

3
Ωm0

Ωr0
(a− aini)

]

, (40)

in which Ωr is the fractional density for radiation, and in the

matter-dominated era

β(ϕ) = β (ϕeq)

(

a

aeq

)3

, (41)

in which a subscript eq denotes the value of a quantity at the

matter-radiation equality. This is the behaviour of the dilaton

models already analysed in [39].

2. Symmetron

The symmetron model was originally described in [14, 15],

for which the coupling function and bare potential of the

scalar field take the following forms respectively:

A(ϕ) = 1 +
1

2

( ϕ

M

)2

, (42)

V (ϕ) = V0 −
1

2
µ2ϕ2 +

1

4
λϕ4. (43)

Here M . 10−3MPl is a mass scale and µ ∼ H0, λ ≪ 1
are model parameters. The screening mechanism of the sym-

metron model is shown in Fig. 2. When the matter density

is high ϕmin coincides with the minimum of A(ϕ) such that

β(ϕmin) = 0 and the fifth force vanishes, whilst when mat-

ter density is low β(ϕmin) 6= 0, resulting in a cosmologically

interesting fifth force.

A fundamental property of the symmetron models is that

the coupling to matter vanishes identically in dense regions or

at redshifts z > z∗, and an order-unity coupling is obtained

after a transition at a redshift z∗ and in the low matter-density

regions. In the original symmetron model, this is given by

β(a) = β⋆

√

1−
(a∗
a

)3

, (44)

for z < z∗ and β = 0 for z > z∗. Similarly,

m(a) = m⋆

√

1−
(a∗
a

)3

. (45)

Notice that for symmetron models a subscript ⋆ denotes the

value at far future (a→ ∞), and a subscript ∗ means the value

at the symmetry breaking, i.e., when β(a) becomes nonzero in

the cosmological background.

Using the reconstruction mapping, it is straightforward to

find that

ϕ(a) = ϕ⋆

√

1−
(a∗
a

)3

, (46)

for z < z∗ and ϕ = 0 before. Here we have defined

ϕ⋆ ≡
2β⋆ρ∗
m2
⋆MPl

, (47)

and

m⋆ ≡
√
2µ, ρ∗ ≡ ρm0a

−3
∗ . (48)

The potential for z < z∗ as a function of a can then be recon-

structed, using the technique introduced above, as

V (a) = V0 +
β2
⋆ρ

2
∗

2m2
⋆M

2
Pl

[

(a∗
a

)6

− 1

]

. (49)

The potential as a function of ϕ can then be found to take the

form of Eq. (43), with µ given in Eq. (48) and

λ =
µ2

ϕ2
⋆

. (50)

Meanwhile, β as a function of ϕ is reconstructed as

β(ϕ) =
β⋆
ϕ⋆
ϕ. (51)

It could be checked that this agrees with Eq. (42), by taking

β = d lnA/dϕ ≈ dA/dϕ, where the ≈ symbol comes from

the fact that A ≈ 1.

III. GENERALISED SYMMETRON AND DILATON

MODELS

In this section we discuss the generalisations of the dilaton

and symmetron models, and the effects of varying the model

parameters.

A. Generalised symmetron model

1. Model parameterisation

The original symmetron model discussed in the previous

section only includes one specific potential. As a straightfor-

ward generalisation of this idea, let us consider the following



8

m(a) and β(a):

m(a) = m⋆

[

1−
(a∗
a

)3
]m̂

, (52)

β(a) = β⋆

[

1−
(a∗
a

)3
]n̂

, (53)

where m̂, n̂ are two new parameters and not necessarily equal

to each other, and (m⋆, β⋆) are the mass and coupling in vac-

uum as above. As in [16], if the scalar field always follows5

ϕmin, one can obtain the following solution for ϕ(a):

ϕ(a) = ϕ⋆

[

1−
(a∗
a

)3
]n̂−2m̂+1

, (54)

where we have defined ϕ⋆ ≡ 3
n̂−2m̂+1Ωmβ⋆ξ

2a−3
∗ and from

here we will neglect the subscript 0 in Ωm0. Note that Eq. (54)

is only valid if n̂− 2m̂+ 1 6= 0; the case of n̂− 2m̂ = −1
corresponds to a potential that is not bounded below and is

therefore not a viable physical model. Again, Eq. (54) is for

a ≥ a∗ and for a < a∗ we have ϕ(a) = 0.

To study the nonlinear evolution of ϕ, we need to know

Vϕ(ϕ) as it appears in the N -body equations Eq. (18). Noting

that ϕ increases monotonically with a, we find

Vϕ =
d[V (a)]

da

da

dϕ

= −(n̂− 2m̂+ 1)m2
⋆ϕ⋆

[

1−
(a∗
a

)3
]n̂

= −(n̂− 2m̂+ 1)m2
⋆ϕ⋆

(

ϕ

ϕ⋆

)
n̂

n̂−2m̂+1

×
[

1−
(

ϕ

ϕ⋆

)
1

n̂−2m̂+1

]

. (55)

Defining the parameters

M ≡ 2n̂− 2m̂+ 2

n̂− 2m̂+ 1
, N ≡ 2n̂− 2m̂+ 1

n̂− 2m̂+ 1
, (56)

we find that the potential can be written quite simply as

V (ϕ) =
H2

0ϕ
2
⋆

ξ2(M −N)

[

− 1

N

(

ϕ

ϕ⋆

)N

+
1

M

(

ϕ

ϕ⋆

)M
]

.(57)

In a similar manner, for a ≥ a∗ we get

β(ϕ) = β(a(ϕ)) = β⋆

(

ϕ

ϕ⋆

)N−1

. (58)

It is evident that whenN = 2 andM = 4 we recover the orig-

inal symmetron model. In what follows we will only consider

M,N to be even and positive integers with M > N to avoid

having a potential that is unbounded from below.

5 See [50] for a more detailed discussion on the time-evolution of ϕ.

2. Effects of varying model parameters

Let us analyse the effects of varying the five model param-

eters a∗, β⋆, N,M and ξ on structure formation.

As discussed in [17], the modifications of the structure for-

mation at the linear perturbation level is completely deter-

mined by the two temporal functions m(a) and β(a), from

which we can see that:

1. The strength of the fifth force vanishes for a < a∗ and

approaches 2β2
⋆ times that of the Newtonian gravity for

a≫ a∗. Decreasing a∗ increases the time during which

the fifth force is active thus enhances the matter cluster-

ing today.

2. Increasing β⋆ makes β larger at all times, which makes

the fifth force stronger and leads to more clustering.

3. According to Eq. (58), increasing N makes β smaller

because |ϕ| < |ϕ⋆| in general. This can weaken the

effect of the fifth force. It is because of this reason

that the symmetron screening is more efficient than the

chameleon screening with a constant β [17].

4. By increasing M the scalar field will make the transi-

tion from ϕ = 0 to ϕ = ϕ⋆ much quicker, because then

ϕM is smaller for small ϕ and so (1) the symmetry in

Veff(ϕ) is easier to be broken and (2) Veff(ϕ) becomes

steeper from ϕ = 0 to ϕ = ϕ⋆. This leads to a stronger

(and earlier kick-in of the) fifth force and thus matter

becomes more clustered.

5. An increase in ξ is equivalent to an increase in the range

λ⋆ of the fifth force since λ⋆ ≡ 2998ξ Mpc/h in vac-

uum. This extends the modifications of gravity to larger

cosmological scales and decreases the exponential fac-

tor e−mr of suppression of the fifth force.

These properties will be investigated in depth usingN -body

simulations below.

B. Generalised dilaton model

1. Model parameterisation

The environment-dependentdilaton model has already been

presented in the previous section. For the model in [13] it can

be shown that

m(a) = m0a
− 3

2 , (59)

β(a) = β0a
9ΩmA2ξ

2

, (60)

where both m(a) and β(a) are power law functions of a. If

m(a) = m0a
−r, (61)

with r 6= 3/2, then β is no longer a power law function of a,

as we will see below.

As a straightforward generalisation of the dilaton idea, let

us consider a quadratic coupling function A(ϕ) which has a
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minimum at ϕ∗. Near ϕ∗ we have β(ϕ) ≈ A2(ϕ− ϕ∗)/MPl.

Assuming that the dilaton field always follows the minimum

of Veff(ϕ), ϕmin, one can solve for β(a) from an integral [16]:

β(a ≤ 1) = β0 exp

[

9ΩmA2ξ
2

∫ a

1

a2r−4da

]

= β0 exp

[

s

2r − 3
(a2r−3 − 1)

]

, (62)

in which we have used Eq. (61) and defined s ≡ 9ΩmA2ξ
2.

Eq. (62) is only valid when r 6= 3/2, while the case of r =
3/2 corresponds tom(a) and β(a) both being non-power-law,

which will be studied elsewhere.

As in the symmetron case, we need to have the expression

of Vϕ(ϕ) to study the nonlinear evolution of ϕ. For this we

will use the relations

d(κV )

da

= −3
β2(a)

am2(a)

ρ2m(a)

M4
Pl

= −27Ω2
mβ

2
0ξ

2H2
0a

2r−7 exp

[

2s

2r − 3
(a2r−3 − 1)

]

,(63)

where we have used the expressions of m(a) and β(a) given

in Eqs. (61,62), and

d(
√
κϕ)

da

= 3
β(a)

am2(a)

ρm(a)

M2
Pl

= 9Ωmβ
2
0ξ

2a2r−4 exp

[

s

2r − 3
(a2r−3 − 1)

]

. (64)

Using the above two equations, it is straightforward to find

√
κVϕ =

d[κV (a)]/da

d(
√
κϕ)/da

= −3Ωmβ0H
2
0 exp

[

s

2r − 3
(a2r−3 − 1)

]

a−3(65)

= −3ΩmH
2
0

A2(ϕ− ϕ∗)

MPl

×
[

1 +
2r − 3

s
log

A2(ϕ− ϕ∗)

MPlβ0

]− 3
2r−3

, (66)

where Eq. (65) can be used directly when one needs the back-

ground value of Vϕ(ϕ) and Eq. (66) can be used in full nonlin-

ear calculations such as theN -body simulations. As in general

A2(ϕ− ϕ∗)/MPl < β0, the logarithmic here is negative, and

to make sure the last line of Eq. (66) is well defined for any r
we should require r < 3/2. Otherwise the terms in the brack-

ets can be negative when ϕ → ϕ∗, making the power func-

tion ill-defined. Because ϕ appears in both β(ϕ) and Vϕ(ϕ)
through ϕ−ϕ∗, without loss of generality, in what follows we

take ϕ∗ = 0 by a redefinition of ϕ.

2. Effects of varying model parameters

As in the symmetron model, let us first analyse how vary-

ing the four parameters A2, β0, r and ξ affects the structure

formation.

1. Increasing A2 enhances s = 9ΩmA2ξ
2 and so makes

β(a) smaller at a < 1. As β(a) controls the strength of

the fifth force, this weakens its effect.

2. Increase in β0 makes β(a) larger at all times, which

strengthens the fifth force.

3. The effects of r are two-fold. On the one hand, increas-

ing r makes m(a) larger and therefore the fifth force

shorter ranged for a < 1; on the other hand, it makes

β(a) larger for a < 1, provided that 2r − 3 is not very

close to 0, and this strengthens the fifth force. As a re-

sult, we expect that this will decrease the matter clus-

tering on large scales but increase it on small scales.

4. An increase in ξ is equivalent to a decrease in m0 and

an increase in s, which means that bothm(a) and β be-

come smaller for a < 1. This increases the matter clus-

tering on large scales and decreases it on small scales.

Because of the exponential function in β(a), the effect

of changing ξ is most significant at early times.

5. There are degeneracies between the different effects.

For example, increasing r and decreasing ξ are expected

to leave similar imprints on the large-scale structure, as

we see below.

Note that the dependence on ξ is quite different from that in

the chameleon models with constant coupling β [28, 35, 37],

and the symmetron model [17]. In those cases, increasing ξ
decreases m(a) and therefore increases the range of the fifth

force, resulting in more matter clustering.

The above analyses only apply to linear perturbations, the

dependence of the fifth force on the dilaton parameters is more

complex in the nonlinear regime, and this is best seen from the

two functions β(ϕ) and Vϕ(ϕ), which govern the nonlinear

equations (see above):

1. Increasing A2 implies that the parabolic function A(ϕ)
becomes steeper near its minimum at ϕ = ϕ∗, and this

makes it harder for the scalar field to roll away from ϕ∗,

where β(ϕ) = 0. This weakens the fifth force.

2. Increasing β0 makes A2(ϕ−ϕ∗)/MPlβ0 closer to zero

and therefore |Vϕ(ϕ)| larger. This means that V (ϕ) be-

comes steeper, making it easier for the scalar field to roll

away from ϕ∗ where β(ϕ) = 0 and therefore strength-

ening the fifth force.

3. If 2r − 3 is not too close to zero, increasing r towards

3/2 makes |Vϕ(ϕ)| larger according to Eq. (66) and so

makes it easier for the scalar field to roll away from ϕ∗

where β(ϕ) = 0. This strengthens the fifth force.
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4. Similarly, increasing ξ (therefore s) makes V (ϕ) shal-

lower and the fifth force weaker. Meanwhile, the scalar

field becomes less massive and therefore less likely to

follow the local minimum of Veff which is determined

by the matter density field and more likely to take larger

values – this could give rise to a larger value of β and

therefore a stronger fifth force.

IV. THE N -BODY SIMULATIONS

A. Equations in code units

In this section we derive the equations used in the N -body

simulations, namely, the Poisson equation for the gravitational

potential and the EOM governing the dynamics of the scalar

field. For the sake of completeness we first describe the code

units used in these equations. The code units used in our code

are based on (but not exactly the same as) the supercomov-

ing coordinates of [45]. They can be summarised as follows

(tilded quantities are expressed in code units):

x̃ =
x

aB
, ρ̃ =

ρa3

ρcΩm
, ṽ =

av

BH0
,

φ̃ =
a2φ

(BH0)2
, dt̃ = H0

dt

a2
, c̃ =

c

BH0
.

In the above x is the comoving coordinate, ρc is the critical

density today, Ωm the fractional energy density for matter to-

day, v the particle velocity, φ the gravitational potential and

c the speed of light. In addition, B is the size of the simula-

tion box in unit of h−1Mpc andH0 the Hubble expansion rate

today in units of 100h km/s/Mpc. Note that with these con-

ventions the average matter density is ˜̄ρ = 1 at all times. All

the newly defined quantities are dimensionless.

Using the code units defined above, the Poisson equation

Eq. (17) becomes

∇̃2φ̃ ≈ 3

2
Ωma (ρ̃− 1) . (67)

Note that the Poisson equations for both the symmetron and

the dilaton cases are unchanged compared to the case of stan-

dard GR, because we have neglected the contribution from the

scalar field to the source term. In what follows, we introduce

the symmetron and dilaton versions of the scalar field equa-

tion, i.e., Eq (18).

1. The symmetron case

Throughout the cosmic history, the symmetron field has a

small magnitude, i.e., |ϕ|/MPl ≪ 1. To guarantee the numeri-

cal accuracy, instead of solving ϕ itself, we solve for a newly-

defined variable ϕ̃ ≡ ϕ/ϕ⋆. This variable is constrained by

0 ≤ |ϕ̃| ≤ 1 everywhere. The symmetron equation of motion

Eq. (18) becomes

∇̃2ϕ̃ ≈ a2

(M −N)c̃2ξ2
ϕ̃N−1

[

ρ̃
(a∗
a

)3

− 1

]

+
a2

(M −N)c̃2ξ2
ϕ̃M−1. (68)

2. The dilaton case

Similarly, the dilaton field ϕ is generally very small (ϕ ≪
MPl) and should be positive (otherwise the logarithmic in

Eq. (66) is ill-defined). This means that the numerical value of

ϕ can easily go negative in the relaxation procedure, leading to

the failure of convergence. To avoid this problem, we follow

[25, 35] and use a newly-defined variable u = log(ϕ/MPl)
instead of ϕ itself. During the cosmic evolution |u| remains

O(1) ∼ O(10), compared to the several orders-of-magnitude

span of ϕ, making it easier to handle the numerical errors.

After some simplification, the dilaton equation of motion

Eq. (18) becomes

∇̃2eu ≈ 3

c̃2
ΩmA2ρ̃e

ua−1 (69)

− 3

c̃2
ΩmA2e

u

[

a2r−3 +
2r − 3

s
log

eu

ϕ̄

]− 3
2r−3

a2.

B. The discretised equations

Evidently, to put the above equations into the N -body code

one must discretise them. For the Poisson equation we have

1

h2
[

φ̃i+1,j,k + φ̃i−1,j,k + φ̃i,j+1,k + φ̃i,j−1,k + φ̃i,j,k+1

+φ̃i,j,k−1 − 6φ̃i,j,k
]

=
3

2
Ωma (ρ̃i,j,k − 1) ,(70)

where φ̃i,j,k is the value of φ̃ in the grid cell with index

(i, j, k).

1. Symmetron equation of motion

The discrete version of the nonlinear symmetron EOM can

be obtained similarly:

Lh(ϕ̃i,j,k) = 0, (71)

where the operator Lh(ϕ̃i,j,k) is defined as

Lh(ϕ̃i,j,k) ≡
1

h2
[

ϕ̃i+1,j,k + ϕ̃i−1,j,k + ϕ̃i,j+1,k + ϕ̃i,j−1,k

+ϕ̃i,j,k+1 + ϕ̃i,j,k−1 − 6ϕ̃i,j,k
]

− a2

(M −N)c̃2ξ2
ϕ̃N−1
i,j,k

[

ρ̃i,j,k
a3∗
a3

− 1

]

− a2

(M −N)c̃2ξ2
ϕ̃M−1
i,j,k . (72)
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Eq. (71) is solved using the nonlinear Gauss-Seidel relaxation,

which can be summarised as

ϕ̃h,newi,j,k = ϕ̃h,oldi,j,k −
Lh

(

ϕ̃h,oldi,j,k

)

∂Lh(ϕ̃h,old
i,j,k )

∂ϕ̃h,old
i,j,k

, (73)

where

∂Lh
(

ϕ̃hi,j,k

)

∂ϕ̃hi,j,k
= − 6

h2
− (N − 1)a2

(M −N)c̃2ξ2
ϕ̃N−2
i,j,k

[

ρ̃i,j,k
a3∗
a3

− 1

]

− (M − 1)a2

(M −N)c̃2ξ2
ϕ̃M−2
i,j,k . (74)

In practice, Eqs. (72,74) must be modified at the boundaries

of refinements for the multigrid implementation, as is the case

of the Poisson equation. Ref. [43] gives a detailed review of

all the technical details involved in the N -body code imple-

mentation: interested readers are referred to that paper.

2. Dilaton equation of motion

The discrete version of the nonlinear dilaton equation can

be obtained similarly:

Lh(ui,j,k) = 0, (75)

where the operator Lh(ui,j,k) defined as

Lh(ui,j,k) ≡
1

h2

[

bi+ 1
2 ,j,k

ui+1,j,k − ui,j,k

(

bi+ 1
2 ,j,k

+ bi− 1
2 ,j,k

)

+ bi− 1
2 ,j,k

ui−1,j,k

]

+
1

h2

[

bi,j+ 1
2 ,k
ui,j+1,k − ui,j,k

(

bi,j+ 1
2 ,k

+ bi,j− 1
2 ,k

)

+ bi,j− 1
2 ,k
ui,j−1,k

]

+
1

h2

[

bi,j,k+ 1
2
ui,j,k+1 − ui,j,k

(

bi,j,k+ 1
2
+ bi,j,k− 1

2

)

+ bi,j,k− 1
2
ui,j,k−1

]

+
3

c̃2
ΩmA2a

2eui,j,k

[

a2r−3 +
2r − 3

s

ui,j,k
ϕ̄

]− 3
2r−3

− 3

c̃2
ΩmA2ρ̃i,j,ka

−1eui,j,k . (76)

Here b ≡ ∂eu/∂u = eu,

bi+ 1
2 ,j,k

≡ 1

2
(bi+1,j,k + bi,j,k) ,

bi− 1
2 ,j,k

≡ 1

2
(bi,j,k + bi−1,j,k) , · · ·

and h is the length of the cell in the numerical simulation

mesh.

Eq. (75) is solved using the nonlinear Gauss-Seidel relax-

ation as well, which can be summarised as

uh,newi,j,k = uh,oldi,j,k −
Lh

(

uh,oldi,j,k

)

∂Lh(uh,old
i,j,k )

∂uh,old
i,j,k

, (77)

where

∂Lh (ui,j,k)

∂ui,j,k
=

c̃2

2h2
bi,j,k

[

ui+1,j,k + ui−1,j,k + ui,j+1,k + ui−1,j,k + ui,j,k+1 + ui,j,k−1 − 6ui,j,k
]

− c̃2

2h2
[

bi+1,j,k + bi−1,j,k + bi,j+1,k + bi,j−1,k + bi,j,k+1 + bi,j,k−1 + 6bi,j,k
]

+3ΩmA2e
u
i,j,ka

2

[

a2r−3 +
2r − 3

s

ui,j,k
ϕ̄

]− 3
2r−3

− 1

ξ2
eui,j,ka2

[

a2r−3 +
2r − 3

s

ui,j,k
ϕ̄

]− 2r
2r−3

−3ΩmA2ρ̃a
−2eui,j,k . (78)

Again, Eqs. (76) and (78) must be modified at the bound-

aries of refinements for the multigrid implementation, as is the

case of the Poisson equation.

V. CODE TESTS

In this section we present the results of code tests we have

performed to show that our symmetron and dilaton equation

solvers work well. To lighten the notation, throughout this sec-

tion we use the units MPl = 1.

There are five parameters for the generalised symmetron
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TABLE I. The parameter values for the six models used in the sym-

metron code test.

model a∗ β0 (N,M) ξ
a 0.5 0.5 (2, 4) 0.001
b 0.2 0.5 (2, 4) 0.001
c 0.5 1.0 (2, 4) 0.001
d 0.5 0.5 (2, 6) 0.001
e 0.5 0.5 (2, 4) 0.0005
f 0.5 0.5 (2, 4) 0.002

TABLE II. The parameter values for the five models used in the dila-

ton code test.

model A2 β0 r ξ

a 5× 105 0.5 1 0.001
b 1× 106 0.5 1 0.001
c 5× 105 1.0 1 0.001
d 5× 105 0.5 0 0.001
e 5× 105 0.5 1 0.002

model, namely a∗, β0, N,M and ξ, and we setN = 2 and test

the code for 6 models summarised in table I. There are 4 pa-

rameters for the generalised dilaton model, namely A2, β0, r
and ξ (note that s can be calculated when A2 and ξ are given,

and is therefore not an independent model parameter), and we

test the code for 5 models summarised in table II.

A. Homogeneous matter density field

In a universe with a homogeneous density, the symmetron

field ϕ should exactly take its background value ϕ̄, namely

ϕ̄(a) = ϕ⋆

[

1−
(a∗
a

)3
]

1
M−N

, (79)

everywhere. Thus, as the simplest test of the symmetron equa-

tion solver, one can show that in such a homogeneous field,

given some random initial guess of ϕ on the cells of the sim-

ulation mesh, after a reasonable number of Gauss-Seidel re-

laxation sweeps, the solutions all converge to the above back-

ground value. Such simple test have been used previously in

[39, 41, 43] to show that the solver for extra degrees of free-

dom works correctly.

We have performed this test for all the six symmetron mod-

els summarised in Table I. The result is shown in Fig. 3, where

we plot the values of ϕ/MPl in the cells in the x-direction, be-

fore and after the Gauss-Seidel relaxation; for clarity we have

only shown the results for models a and b at a = 1.0 and

model a at a = 0.6. We can see that the final solution agrees

with the analytical result (the horizontal lines) very well (see

figure caption for more details).

We have also tested the code for a model with a∗ = 0.5 at

a = 0.4. In this case the symmetry of Veff(ϕ) has not been

broken yet, and we expect that ϕ vanishes everywhere. This is

confirmed by the tests (which are not shown here).

0.0 0.2 0.4 0.6 0.8 1.0

1E-5

1E-4

 model a, a=1.0, before rel.  model a, a=1.0, after rel.
 model b, a=1.0, before rel.  model b, a=1.0, after rel.
 model a, a=0.6, before rel.  model a, a=0.6, after rel.  

 

x/B

FIG. 3. (Colour online) Test of the solver for the symmetron equation

in a constant matter density field. Only results in the cells along the

x-axis are shown, and the x-coordinate is rescaled by the size of

the simulation box so that x ∈ [0, 1]. Results for three models as

explained in the legend have been shown (the empty symbols), the

final answer corresponding to which are filled symbols of the same

type and colour. The horizontal lines with the same colours are the

exact analytical solution.

For the dilaton model, the field ϕ also takes exactly its back-

ground value ϕ̄, given by

ϕ̄(a) =
β0
A2

e−
s

2r−3 exp

[

s

2r − 3
a2r−3

]

, (80)

everywhere in a homogeneous universe.

We have performed this test for three of the five models

summarised in Table II. The results are shown in Fig. 4, where

we plot the values of log(ϕ/ϕ̄) in the cells in the x-direction,

both before and after the relaxation. For clarity we have only

shown the results at a = 1.0. It can be seen that the final solu-

tion agrees with the analytical result (the horizontal lines) very

well (see figure caption for more details). We have also tested

our code at a 6= 1.0 and found the same good agreement.

B. Point mass

As a second test of our symmetron equation solver, let us

consider the solution of ϕ around a point mass at the origin,

for which case we have an analytical solution which is accu-

rate except for the regions very close to the mass. Such a test

has been used previously in [25, 39, 43].

Following [25], we construct the point-mass density field as

(hereafter δi,j,k ≡ ρ̃i,j,k − 1)

δi,j,k =

{

10−4
(

N3 − 1
)

, i = j = k = 0;

−10−4, otherwise.
(81)
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FIG. 4. (Colour online) Similar to Fig. 3, but for the dilaton model.

For clarity only the results of models a, b, d (as indicated in the leg-

end) are shown: the initial guesses are represented by the empty sym-

bols and the numerical solutions are denoted by filled symbols of the

same type and colour. Note that, instead of log(ϕ), we have shown

log(ϕ/ϕ̄). The horizontal lines with the same colours are the exact

analytical solution, which is zero identically.

in which i, j, k are respectively the cell indices in the x, y, z
direction. In the test we use a cubic box with size 250h−1Mpc

and 256 grid cells in each direction. We have done this test for

all six models of table I at a = 1.

On the other hand, the analytical solution can be obtained

approximately by solving the equation

∇2δϕ ≈ m2δϕ (82)

in which the effective mass of the scalar field δϕ = ϕ − ϕ̄ is

m2 = ξ2H2
0 . The analytical solution is

δϕ ∝ 1

r
exp(−mr), (83)

with r the distance from the point mass.

Fig. 5 shows the comparison between the numerical solu-

tions to δϕ along the x-axis (symbols) and analytical solutions

(solid curves) for the symmetron models, and we can see that

the two agree very well in all cases. The discrepancies at small

x is because the linearisation procedure in deriving Eq. (82) is

not accurate and the discrepancy at big x is because the size of

δϕ has reached the level of the discretisation error [25]. Fig. 6

shows the comparison for the dilaton models, and once again

we find excellent agreements.

C. Sine density field

As our third test, let us consider the sine density field intro-

duced in [25], which (after some modification to account for

1 10
1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

 model a
 model b
 model c
 model d
 model e
 model f

 

 

x (Mpc/h)

FIG. 5. (Colour online) The solution to δϕ ≡ ϕ− ϕ̄ around a point

mass constructed according to Eq. (81), for the six test symmetron

models in Table I (see the legend). The solid curves with the same

colours are the corresponding analytical approximations which are

accurate far from the point mass. Only solutions along the x-axis are

shown.

the code units) in the symmetron case is given by

(a∗
a

)3

ρ̃(x) = 1 +

[

2πc̃ξ

a

]2
(M −N) sin(2πx)

[2− sin(2πx)]N−1

− [2− sin(2πx)]M−N , (84)

where x is rescaled so that x ∈ [0, 1]. We consider only the

x-dependence, which is equivalent to a one-dimensional con-

figuration. The solution to this density field can be analytically

worked out to be6,

ϕ(x) = ϕ⋆[2− sin(2πx)]. (85)

Fig. 7 shows the symmetron test results for the sine density

field given above, at a = 1 and for the six models listed in

Table I. It can be seen that the numerical solutions (symbols)

agree with the analytical solutions (solid curves) very well.

Similarly, for the dilaton field let us consider the following

density field

ρ̃(x) =
c̃2a

ΩmA2

(2π)2

3

sin(2πx)

2− sin(2πx)
(86)

+

[

a2r−3 +
2r − 3

s
log

[

2− sin(2πx)

3

]]− 3
2r−3

a3,

in which x is rescaled such that x ∈ [0, 1]. The solution to this

density field can be analytically worked out to be,

ϕ(x) =
1

3
ϕ̄ [2− sin(2πx)] . (87)

6 More exactly speaking, we specify the solution we want the code to repro-

duce and then use the EOM to calculate the corresponding density field that

gives rise to this solution.
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FIG. 6. (Colour online) The solution to δϕ ≡ ϕ − ϕ̄ around a

point mass constructed according to Eq. (81), for the five test dila-

ton models in Table II (see the legend). The solid curves with the

same colours are the corresponding analytical approximations which

are accurate far from the point mass. Only solutions along the x-axis

are shown.

Fig. 8 shows the dilaton test results for the sine density field

given above, at a = 1.0 for models a, b, c and at a = 0.2
for model a listed in Table II. As in the symmetron case, the

agreement is very good.

D. Gaussian density field

The last test on the regular (i.e., unrefined) grid uses a Gaus-

sian type density configuration. Again, here we only consider

one dimension, and for the symmetron case the density field

is specified as

(a∗
a

)3

ρ̃(x) = 1 +

(

c̃ξ

a

)2
α(M −N)(x− 0.5)2/W 2

(

1− α exp
[

− (x−0.5)2

W 2

])N−1

−
(

1− α exp

[

− (x− 0.5)2

W 2

])M−N

, (88)

where again x has been scaled to code units so that x ∈ [0, 1],
W , α are numerical constants which respectively specify the

width and height of the density field, which obviously peaks

at x = 0.5. Such a density field has been used in the code test

of [43].

Note that such a density field is not exactly periodic at the

edges of the simulation box, but given thatW is small enough,

ρ̃ → 0 at the box edges and periodic boundary conditions are

approximately satisfied.

The solution to ϕ can then be obtained analytically and is

ϕ(x) = ϕ⋆

[

1− α exp

(

− (x− 0.5)2

W 2

)]

, (89)

0.0 0.2 0.4 0.6 0.8 1.0

10-6

10-5
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e

f

d
c

b

 

 

x/B

a

FIG. 7. (Colour online) Solutions of ϕ in a one-dimensional (x-

direction) sine density field constructed using Eq. (84), for the six

test symmetron models (as indicated besides the curves). The solid

curves with same colour are the corresponding analytical results and

the symbols are the numerical solutions. A simulation box with side

length of 250h−1Mpc and 256 grid cells on each side is used in the

computation. x is rescaled so that x/B ∈ [0, 1].
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FIG. 8. (Colour online) Solutions of ϕ in a one-dimensional (x-

direction) sine density field constructed using Eq. (86), for three test

dilaton models (a, b, c) at a = 1.0 and model a at a = 0.2 (as indi-

cated besides the curves). The solid curves are the corresponding an-

alytical results and the symbols are the numerical solutions. A simu-

lation box with side length of 250h−1Mpc and 256 grid cells on each

side is used in the computation. x is rescaled so that x/B ∈ [0, 1].
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FIG. 9. (Colour online) Solutions of ϕ in a one-dimensional (x-

direction) Gaussian-type density field constructed using Eq. (88), for

the six test symmetron models in Table I (see legends). The solid

curves are the analytical results from Eq. (89) and the symbols with

same colours are the corresponding numerical solutions. A simula-

tion box with side length of 250h−1Mpc and 256 grid cells on each

side is used in the computation and the symmetron equation is only

solved on the regular domain grid. x is rescaled so that x/B ∈ [0, 1].

which clearly shows that when α→ 1 |ϕ| could be made very

small at x = 0.5 while at x→ 0 or x→ 1 it goes to ϕ = ϕ⋆.

We have implemented Eq. (88) into our numerical code and

the numerical solutions for ϕ are shown in Fig. 9. We can see

that they agree with the analytical solution Eq. (89) very well.

For the dilaton case we use the following density field

ρ̃(x) =
c̃2a

3ΩmA2

2α

W 2

exp
[

− (x−0.5)2

W 2

] [

1− 2 (x−0.5)2

W 2

]

1− α exp
[

− (x−0.5)2

W 2

] (90)

+

[

a2r−3 +
2r − 3

s
log

[

1− αe−
(x−0.5)2

W2

]]− 3
2r−3

a3

where x, W and α are specified similarly as above.

The test results for the dilaton models are shown in Fig. 10,

where again we find good agreement with the analytical solu-

tion Eq. (89).

E. Equation solver on refinements

The above tests show that our solver of the scalar field EOM

works accurately on regular grids. But in cosmological simu-

lations these equations are also solved on irregularly-shaped

refinements where they can take different forms due to the re-

finement boundaries [43]. It is therefore necessary to test the

scalar field equation solver on refinements as well, which we

will do in this subsection.
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 model a, a=0.3
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FIG. 10. (Colour online) Solutions of ϕ in a one-dimensional (x-

direction) Gaussian-type density field constructed using Eq. (90), for

three test dilaton models (a, b, c) at a = 1.0 and test model a at a =
0.3 (see legends). The solid curves are the analytical predictions from

Eq. (89) and the symbols with same colours are the corresponding

numerical solutions. Other specifications are the same as in Fig. 9.
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FIG. 11. (Colour online) Same as Fig. 9, but for the model a only and

α = 0.999, 0.9999, 0.99999 (from top to bottom: red, green, blue).

The symmetron equation is solved on two levels: level 8 (the regular

domain grid) and level 9 (the first refinement), and their numerical

solutions are represented by empty and filled symbols of the same

shape and colour respectively. The solid curves of the same colours

are the corresponding analytical solutions from Eq. (89). A simula-

tion box with side length of 250h−1Mpc and 256 grid cells on each

side is used in the computation and the symmetron equation is only

solved on the regular domain grid. x is rescaled so that x/B ∈ [0, 1].
For clarity we have multiplied the results for α = 0.9999 and

0.99999 by 0.1 and 0.01 respectively.
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The Gaussian-type density configuration provides a good

way to check the multilevel scalar-equation solver, because

the density peak can be made arbitrarily high by adjusting the

parameter α and the value of the matter density is the crite-

rion we use to refine grid cells in cosmological simulations.

In the vicinity of this peak, the density field ρ̃ changes rapidly

and higher spatial resolution is necessary to compute ϕ (and

differentiate it to get the fifth force) accurately.

Consider the case where the regular domain grid is refined

only once, in regions where the density value exceeds a given

threshold (we call this a ‘two-level problem’, and in the nu-

merical examples below the coarse and fine levels are respec-

tively levels 8 and 9). The density values ρ̃ in both the coarse

and the refined cells are calculated using Eq. (88) for the sym-

metron case and Eq. (90) for the dilaton case, while the values

of ϕ at the fine-level boundaries are computed from interpola-

tion of those in the nearby coarse-level cells [43].

Fig. 11 shows the numerical values of ϕ on both levels in

the region covered by the refinement, for the symmetron case.

We show the results for model a only and for four different

values of α (0.999, 0.9999 and 0.99999 from top to bottom),

and for each α the results from the coarse and fine levels are

denoted respectively by empty and filled symbols. For com-

parison we have also plotted the analytical results Eq. (89) as

solid curves. As we can see, both fine-level and coarse-level

results are virtually indistinguishable from the exact solution.

This does not mean that the refinement is unnecessary how-

ever, because, as shown in Fig. 11, the fine level has more data

points and could probe regions closer to the extreme value of

ϕ, which corresponds to the high density region where high

resolution is needed.

For the dilaton, Fig. 12 shows the numerical values of ϕ on

both levels in the region covered by the refinement. Again, we

show the results for model a only and for four different values

of α (0.999, 0.9999 and 0.99999 from top to bottom), and for

each α the results from the coarse and fine levels are denoted

respectively by empty and filled symbols. For comparison we

have also plotted the analytical results Eq. (89) as solid curves.

Excellent agreement is found again.

F. Other tests

In the above we have focused on various tests of the scalar

field solver of the ECOSMOG code, as this is the only new addi-

tion to the default RAMSESN -body code. These tests checked

the validity of the new subroutines against different density

distributions, and the good agreements with analytical solu-

tions shows the validity of the code and its accuracy.

As the standard gravity solver and particle-updating sub-

routines of RAMSES are not touched, tests carried out for them

(which show that the RAMSES code works very well) need not

be repeated here. The AMR simulation algorithm is often im-

plemented in different ways in different codes; for a detailed

explanation of its implementation in RAMSES and therefore in

ECOSMOG we refer to [44] and [43] respectively. We do not

present the full details here as they are too long and this paper

is mainly concerned with the modified gravity physics.
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FIG. 12. (Colour online) Same as Fig. 10, but for the model a only

and α = 0.999, 0.9999, 0.99999 (from top to bottom: red, green,

blue). The dilaton equation is solved on two levels: level 8 (the regu-

lar domain grid) and level 9 (the first refinement), and their numerical

solutions are represented by empty and filled symbols of the same

shape and colour respectively. The solid curves of the same colours

are the corresponding analytical solutions from Eq. (89). A simula-

tion box with side length of 250h−1Mpc and 256 grid cells on each

side is used in the computation and the dilaton equation is only solved

on the regular domain grid. x is rescaled so that x/B ∈ [0, 1]. For

clarity we have multiplied the results for α = 0.9999 and 0.99999
by 0.5 and 0.25 respectively.

When a new code is written, one needs to test its cosmolog-

ical simulations. This is straightforward for a standard code

of ΛCDM simulations, because there are fitting formulae and

results from other codes to compare to. Unfortunately, up to

now there are no accurate fitting formulae for modified grav-

ity theories such as symmetron, dilaton and f(R) gravity. But

several serial N -body codes simulating f(R) gravity (e.g.,

[25, 28]) and symmetron models (e.g., [41]) do exist in the

literature: in both cases good agreement with ECOSMOG has

been found7. See, for example, [43] for a comparison for f(R)
gravity, and we have also checked explicitly that our sym-

metron simulation result agrees with that of [41].

Finally, for cases where approximate analytical results can

be obtained from other methods, we find good agreement be-

tween ECOSMOG and the approximation solutions. An exam-

ple is the f(R) gravity model of [11] with |df/dR| = 10−4,

the nonlinearity of which is very weak and so the matter power

spectrum can be approximated by linear perturbation theory

down to relatively small scales. This is actually confirmed in

[34], which can serve as another test of the ECOSMOG code.

In short, the ECOSMOG scalar field solver has been tested in

7 Another independent code which is still being developed also agrees with

ECOSMOG very well.
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various ways, and several cosmological simulations of modi-

fied gravity models using ECOSMOG agree with similar sim-

ulations done using other codes, such as the codes developed

independently in [25, 28, 41].

VI. COSMOLOGICAL SIMULATIONS

In this section we describe and analyse the results of cos-

mological simulations of the dilaton and symmetron modified

gravity models. We also performΛCDM simulations for com-

parison. For each model we run 5 realisations with the same

physical parameters and simulation specification, but differ-

ent realisations of initial conditions. The initial conditions are

generated using MPGRAFIC [46] at redshift zi = 49.0 with

different seeds of random numbers. Since at zi = 49.0 the ef-

fect of the fifth force is negligible, the initial conditions should

be the same for all models studied here. For the ease of com-

parison, we use the same random seed to generate initial con-

ditions for the same realisation of all models, including sym-

metron, dilaton and ΛCDM.

The background expansion history in the studied dilaton

and symmetron models is in practice indistinguishable from

that of the fiducial ΛCDM model [17]. In all simulations we

adopt WMAP7 [47] cosmological parameters, with h = 0.71,

Ωm = 0.267, ΩΛ = 0.733, ns = 0.963 and σ8 = 0.801.

The size of the simulation box is chosen to be 128h−1Mpc,

and the domain grid8 has 28 = 256 cells on each side. The grid

cells are refine when the effective number of particles in them

exceeds 9.0, and the finest refinement level equivalently has

214 cells on each side. The number of particles is Np = 2563

in all simulations.

A. The symmetron models

The symmetron models are specified by the four model pa-

rameters a∗, M , N and ξ. We have chosen to fix β⋆ = 1.0
for all our runs in order to see the effect of varying the other

parameters individually. The effect of varying β⋆ is to modu-

late the strength of the fifth force and was investigated for the

symmetron in [41]. In Table (III) we list the parameters for the

nine models we have simulated.

In the rest of this subsection, we will focus on the effects

of changing each model parameter on the major cosmological

observables such as the matter power spectrum and halo mass

function. More specifically, we will analyse the results of our

numerical simulations according to the following:

1. How the symmetry breaking scale factor a∗ affects the

results: Model A1 versus B1, A2 versus B2 and A4 ver-

sus B4.

8 As RAMSES and ECOSMOG are adaptive mesh refinements codes, the do-

main grid is defined as the finest uniform (regular) grid which covers the

whole simulation box.

TABLE III. The parameter values for the nine models used in the

symmetron cosmological simulations. For each model we have 5 re-

alisations of initial conditions, and therefore a total of 45 runs.

model name a∗ β⋆ (N,M) 2998ξ realisations

ΛCDM − − − − 5

A1 0.50 1.0 (2, 4) 1.0 5

A2 0.50 1.0 (2, 6) 1.0 5

A3 0.50 1.0 (2, 6) 2.0 5

A4 0.50 1.0 (4, 6) 2.0 5

B1 0.33 1.0 (2, 4) 1.0 5

B2 0.33 1.0 (2, 6) 1.0 5

B3 0.33 1.0 (2, 4) 2.0 5

B4 0.33 1.0 (4, 6) 2.0 5

2. How the coupling strength parameter N affects the re-

sults: Model A3 versus A4 and B3 versus B4.

3. How the potential parameter M influences the results:

Model A1 versus A2 and B1 versus B2.

4. How the range λ⋆ ≡ 2998ξ Mpc/h of the fifth force in-

fluences the results: Model A2 versus A3 and B1 versus

B3.

1. Nonlinear matter power spectra

The most direct way to see the effect of modified gravity

on the clustering of matter is to look at the matter power spec-

trum P (k). We have measured the nonlinear P (k) in the sym-

metron models and calculated their relative differences from

the ΛCDM prediction. The results are shown in Figs. 13, 14.

The power spectra are measured using the publicly available

code POWMES [48].

1. The symmetry breaking scale factor a∗ controls when

the fifth force starts to kick in. From Fig. 13 we could

see that decreasing a∗ (i.e., moving from A models to

B models) leads to a stronger matter power spectrum as

the fifth force would have more time to participate in

structure formation. Notice that when a ≤ a∗ the mat-

ter power spectra in symmetron models are essentially

unchanged as can be seen in Fig. 149. This is because

on linear scales there is strictly no fifth-force effect be-

fore a = a∗, since the magnitude of the fifth force is

determined by the background matter density, which

is always higher than ρ∗ before a = a∗. However, on

nonlinear scales, the fifth force can kick in even before

a = a∗ in regions where matter density drops below ρ∗,

thus the structure formation is affected even at a∗.

9 In Fig. 14 symmetry breaking has just happened for A models and the fifth-

force effect has not accumulated at a = 0.5.
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FIG. 13. (Colour online) The relative difference between the matter power spectra of the symmetron models and the ΛCDM paradigm. The

symbols are from the N -body simulations, and the curves are linear perturbation theory predictions. Details are illustrated by the legends, and

a = 1.0.

2. The parameterN of the matter coupling β ∝ ϕN−1 de-

termines how the matter coupling evolves. As the field

moves towards ϕ = 0 in high density regions, a larger

N means that the fifth force becomes more suppressed

as shown in [17]. This effect can be seen in Fig. 13 (up-

per right panel). Note that varying N also changes the

evolution of ϕ through the changes of β(ϕ) and V (ϕ);
however the numerical result here shows that this effect

is subdominant.

3. The parameter M of the self-interaction term ϕM ∈
V (ϕ) determines how nonlinearly the model behaves. A

higher-order (largerM ) interaction term means that the

nonlinearities, and therefore the screening mechanism,

are less at play (see § III A 2), which again leads to more

matter clustering as confirmed by the lower-left panel of

Fig. 13. This effect can also be seen by noting that the

nonlinear power spectra for the cases of M = 6 are in

general closer to the corresponding linear power spectra

than for the cases of M = 4.

4. The range λ⋆ = 2998ξMpc/h of the fifth force deter-

mines which scales are influenced by the fifth force. In-

creasing the range moves the modifications of gravity

to larger cosmological scales as can be seen in Fig. 13.

In the linear perturbation regime, the power spectra

for two models with different ranges (λ⋆1,2) are re-

lated by the scaling relation P1(k) = P2(kλ⋆1/λ⋆2).
However, this scaling no longer holds in the nonlin-

ear regime. For example, when λ⋆ decreases, the sym-

metron mass becomes heavier, the screening effect is

enhanced and consequently the power spectrum is sup-

pressed (c.f. Fig. 13 and § III A 2).

5. At late times (Fig. 13) the linear perturbation prediction

is a bad approximation to the full solution, which is be-

cause the symmetron EOM is highly nonlinear. Indeed,

as in the case of f(R) gravity [34], the linear theory be-

comes inaccurate almost as soon as the power spectrum

starts to deviate from the ΛCDM prediction. This shows

the importance of properly taking into account the non-

linear effects (by numerical simulations) in the study of

structure formation in modified gravity models.

6. The agreement between the linear and nonlinear results

becomes better at earlier times (c.f. Fig. 14), when the
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FIG. 14. (Colour online) The same as Fig. 13, but for a = 0.5.

effect of nonlinearity has not accumulated for long.

In f(R) gravity models, it is known [34] that the shape

of ∆P/P follows a fixed evolution path, and at any given

time the position of a model on this path is determined by the

properties of the fifth force and how long it has become non-

negligible. Similar patterns appear here, for example in the A

models a∗ = 0.5 where the fifth force becomes non-negligible

later than in the B models, for which a∗ = 0.3. Correspond-

ingly, in Fig. 13 ∆P/P has a peak at k ∼ 1hMpc−1. On the

other hand, Fig. 13 shows that for symmetron models ∆P/P
goes up again on very small scales (k ≥ a few), while in f(R)
models ∆P/P decreases for these scales [34].

This pattern for the symmetron matter power spectrum can

be understood as follows. At early times the model is well

described by linear perturbation theory and the symmetron

mass (and the coupling strength β(ϕ)) is nearly the same ev-

erywhere; the Yukawa nature necessarily means that the fifth

force decays with distance, and as a result ∆P/P increases

monotonically with k at these times (see Fig. 14). Later when

highly nonlinear and dense structures have formed, the sym-

metron screening mechanism starts to work so that the fifth

force inside these structures are efficiently suppressed (β(ϕ)
becomes small) and GR is locally restored since then, which

makes ∆P/P frozen on small scales (thus remain monoton-

ically increasing) while at the same time still grow on larger

scales (e.g., k & 1hMpc−1) as the fifth force still propagates

among different halos.

To understand this behaviour more properly would require a

detailed study of the density and velocity fields, together with

their time evolutions, and these will be left to future work with

higher-resolution and larger simulations.

As an illustration of the above effects, the difference be-

tween the symmetron models we have simulated and ΛCDM

on scales of order 1 Mpc can be as large as 30 percent today.

This can be seen in Fig.13 for models B1 and B3 where the

range of the force is respectively 1 and 2 Mpc and the highest

power in the potential is 6 and 4 respectively. On these ex-

amples, the characteristic bump of the symmetron models can

also be seen in a clear way.

2. Mass functions

We have measured the mass functions from our simula-

tions using the publicly available code AHF [49], which is ef-

ficiently parallelised using MPI and OpenMP. The mass of a
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FIG. 15. (Colour online) The ratio between the mass functions of the symmetron models and the ΛCDM paradigm at a = 1.0.

halo is defined as the total mass contained in R200, the radius

at which the density contrast∆ drops below 200 times the crit-

ical density. For each model, including ΛCDM, we have cal-

culated the average and standard deviation of the mass func-

tion over the five realisations.

Because we are interested in how the fifth force can change

the matter clustering, we show the ratio of the symmetron and

ΛCDM mass functions, R ≡ nsymmetron/nΛCDM. The stan-

dard deviation σR of R for each mass bin is computed using

the normal rule of propagation of errors, according to which

we have

(σR
R

)2

=

(

σMG

nMG

)2

+

(

σΛ
nΛ

)2

− 2ρ̂
σMG

nMG

σΛ
nΛ

, (91)

The subscripts MG and Λ denote the modified gravity model

(the symmetron here and the dilation in the next section) and

ΛCDM respectively, and ρ̂ is the correlation coefficient be-

tween the mass functions of the two, i.e.,

ρ̂ =

∑

i

(

niMG − n̄MG

) (

niΛ − n̄Λ

)

[

∑

i

(

niMG − n̄MG

)2 ∑

i

(

niΛ − n̄Λ

)2
]1/2

(92)

where the sum is over five realisations and the quantity with

an overbar denotes the average over five realisations.

In Fig. 15 we show the ratios between the symmetron and

ΛCDM mass functions from our simulations at a = 1.0. The

results at a = 0.5 are shown in Fig. 16.

The fifth force leads to an overall enhancement of the for-

mation of dark matter structures. The effect is strongest for

intermedium-sized (M ∼ 1013h−1M⊙) halos and we find a

maximum enhancement in the mass function of around 50%
compared to ΛCDM for the models we have simulated. For

the largest halo masses (M & 1014h−1M⊙) the symmetron

mass function goes towards ΛCDM as the symmetron screen-

ing mechanism makes sure the fifth force is effectively sup-

pressed for such massive objects.

The effects of varying different model parameters on the

mass function are not as clear as in the power spectrum, but

we can see the same trends. More specifically,

1. For models with smaller a∗ (i.e., the B models) we see

from Fig. 15 that a larger fraction of high mass halos is

obtained. As with the matter power spectrum, the mass

function is essentially unmodified for a ≤ a∗ (see A

models in Fig. 16, for which a∗ = 0.5 and the effect of

the fifth force has not accumulated at a = 0.5). These
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FIG. 16. (Colour online) The same as Fig. 15, but for a = 0.5.

are to be expected since the fifth force is not at play on

cosmological scales at such early times, and for smaller

a∗ the fifth force has acted for a longer period. Hence

more large halos form and fewer small halo survive the

mergers.

2. As mentioned in § III A 2, increasing the parameter N
leads to a suppression of the fifth force, especially for

large halos and in high density regions where |ϕ| ≪ ϕ⋆.

This can be seen from the upper-right panel of Fig. 15.

Note that in models B3 and B4 both N and M are dif-

ferent, and the effect is not purely due to varyingN .

3. As discussed in § III A 2, increasing M makes it easier

for the scalar field to roll away from ϕ = 0 where the

coupling strength vanishes. This leads to a stronger fifth

force and consequently more large halos, as can be seen

in Fig. 16 (lower-left panel).

4. Increasing ξ increases the range λ⋆ of the fifth force

and leads to more high-mass halos. This can be seen in

Fig. 15.

As for ∆P/P , the effects of varying different model pa-

rameters on the shape of ∆n/n are similar, which shows that

the four parameters are highly degenerate. This behaviour is

different from what we will see in the dilaton simulations be-

low.

The significant deviations of our symmetron models from

the prediction of the ΛCDM paradigm, as shown in Figs. 15

and 16, should be detectable by future surveys.

B. The dilaton models

In this subsection we analyse cosmological simulations of

the generalised dilaton models. We vary all four model param-

eters A2, β0, r and ξ, so that each of them takes 4 (3 for A2)

different values with the rest remaining the same. This results

in a total of 12 dilaton models, as summarised in Table IV.

The choices of parameter values are such that A2, B2, C2 and

D2 are the same model, to facilitate a cross comparison.

As the dilaton simulations were run on a different machine

from the symmetron ones, we have simulated the same default

ΛCDM models on both machines, and checked that they agree

very well. This enables a direct comparison between dilaton

and symmetron simulations if needed.
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FIG. 17. (Colour online) The relative difference between the matter power spectra of the dilaton models and the ΛCDM paradigm. The symbols

are from the N -body simulations, and the curves are linear perturbation theory predictions. Details are illustrated by the legends, and a = 1.0.

TABLE IV. The parameter values for the 65 cosmological simula-

tions we have performed for this study. Note that ’–’ means that the

parameters are unused for the ΛCDM case, and it means that the

parameters are the same as in A2 in the cases of B2, C2 and D2.

model name A2 β0 r ξ realisations

ΛCDM – – – – 5
A1 2.5 × 105 0.50 1.00 0.001 5
A2 1.0 × 105 0.50 1.00 0.001 5
A3 0.5 × 105 0.50 1.00 0.001 5
B1 1.0 × 105 0.25 1.00 0.001 5
B2 – – – – 5
B3 1.0 × 105 0.75 1.00 0.001 5
B4 1.0 × 105 1.00 1.00 0.001 5
C1 1.0 × 105 0.50 1.33 0.001 5
C2 – – – – 5
C3 1.0 × 105 0.50 0.67 0.001 5
C4 1.0 × 105 0.50 0.40 0.001 5
D1 1.0 × 105 0.50 1.00 0.0005 5
D2 – – – – 5
D3 1.0 × 105 0.50 1.00 0.002 5
D4 1.0 × 105 0.50 1.00 0.003 5

1. Nonlinear matter power spectra

This subsection contains results about the nonlinear matter

power spectra for the simulated dilaton models. Fig. 17 shows

the relative differences between the dilaton and ΛCDM results

at a = 1.0, from which we can see the following properties:

1. DecreasingA2 leads to stronger matter clustering, since

A2 controls the steepness of the coupling functionA(ϕ)
(see Fig. 1). As discussed in § III B 2, the larger A2 be-

comes, the steeper A(ϕ) is and the harder it is for ϕ to

roll away from ϕ∗ where β(ϕ) = 0 – this means that

β is closer to zero and the fifth force is more strongly

suppressed.

2. Increasing β0 leads to stronger matter clustering, as β0
determines the strength of the fifth force.

3. The r-dependence is weak since large changes in β only

take place at early times (see below). We see the feature

discussed in § III B 2, that increasing r decreases the

matter power on larger scales (k < 0.2Mpc/h) and in-

creases it on smaller scales; this happens in both linear

and nonlinear results.
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FIG. 18. (Colour online) The same as Fig. 17, but for a = 0.5.

4. As discussed in § III B 2, decreasing ξ simultaneously

increases the strength and decreases the range of the

fifth force, causing more (less) clustering of matter on

small (large) scales. This can be seen by comparing the

results of D1 and D2. On even smaller scales, however,

the matter power spectrum increases with ξ again.

5. As in the symmetron case, at late times the linear per-

turbation theory is a rather bad approximation to the full

nonlinear dilaton model, and fails to accurately predict

the matter power spectrum even for k ∼ 0.04h/Mpc.

This once again shows the important role N -body sim-

ulations have to play in the studies of modified gravity

theories.

6. Overall, we see that the nonlinearity suppresses the mat-

ter power compared with the linear theory predictions,

which shows that the dilaton mechanism works well for

large scale structures. The suppression of the fifth force

comes from two parts: the smallness of ϕ and therefore

∇ϕ in high density regions, and the smallness of β(ϕ) –

this indicates that with the same configuration of ϕ the

fifth force in the dilaton models here is more strongly

suppressed than in the case of a constant β(ϕ) (e.g., in

f(R) gravity models), for which only the first part con-

tributes to the screening.

At a = 0.5 (cf. Fig. 18), all the above properties remain,

with the following noticeable features:

1. The agreement between linear perturbation theory and

the full simulations gets better as nonlinearities have not

reached their full effect. This is the same as the sym-

metron (see above) and f(R) [34] cases.

2. The difference between the different C models becomes

larger than at a = 1.0 because, as mentioned above, the

effect of changing r is mainly to modify β(a) at early

times.

The linear-nonlinear agreement is even better at a = 0.3
(see Fig. 19). This indicates that the nonlinearity of the model

only becomes important at late times, which is possibly be-

cause the formation of high density structures only then drives

ϕ to deviate from its background value.

Most of our simulation results show less deviation between

the simulated dilaton models and ΛCDM than the case of the

symmetron models. One of the reasons for this lies in the sim-

ulation details. In the symmetron models we have fixed the
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FIG. 19. (Colour online) The same as Fig. 17, but for a = 0.3.

coupling strength β⋆ = 1, while for the dilaton cases, except

for models B3 and B4, the coupling strength is taken to be at

most β0 ≤ 0.5. As the fifth force scales as β2, this makes a

significant difference (c.f. Fig. 17, upper right panel). As an

example, model B4 differs from ΛCDM by nearly as much as

the symmetron models do (and even more).

The shapes of the dilaton matter power spectra are worth

discussing, as they show significant difference from the cases

of symmetron and f(R) gravity models. From Figs. 17, 18

and 19 we can see that:

1. In both linear and nonlinear cases, ∆P/P tends to flat-

ten on small scales. In the linear case, this is very differ-

ent from the behaviour of chameleon models with con-

stant coupling strength β. In that case, the fifth force al-

ways has the same strength but at early times its range is

limited by the very heavy scalar field mass: this means

that on very small scales the fifth force has started en-

hancing clustering of matter ever since very early times,

which is why ∆P/P keeps increasing with k [17]. For

dilaton models, on the other hand, the scalar field mass

evolves more slowly and the coupling strength is sup-

pressed at early times: this means that by the time the

fifth force becomes non-negligible, its range has be-

come large enough and below this range the growth

of matter density perturbations is enhanced in a nearly

scale-independent way (at least in the linear regime).

Such a feature can indeed also be seen in the linear pre-

dictions of ∆P/P for symmetron models (cf. Fig. 13).

2. The flattening effect of ∆P/P on small scales is pre-

served when varying model parameters A2 and β0, but

is weakened by varying r and ξ. This is because, as dis-

cussed in § III B 2, varying A2 and β0 does not change

the scalar field mass m, while varying the other two pa-

rameters does. Taking the parameter r as an example,

increasing r makes m more sensitively dependent on

local matter density (i.e., more like a chameleon model

which has no flattening in ∆P/P ). On the other hand,

decreasing r makes β more sensitively dependent on

local matter density and so suppresses the fifth force

on large scales; on small scales the suppression can be

compensated by the decreases ofm, which makes e−mr

larger, and the combined effect can be a weakened flat-

tening of ∆P/P again.

3. Changes in r (and similarly in ξ) make either m or

β more sensitively dependent on local matter density,
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FIG. 20. (Colour online) The ratio between the mass functions of the dilaton models and the ΛCDM paradigm at a = 1.0.

the deviation from linear perturbation results and the

screening effect get stronger, especially at late times

when structures have developed. This explains why at

late times ∆P/P can decrease with time when varying

r and ξ.

The above results imply that the shape of the nonlinear mat-

ter power spectra can be different in dilaton and other modi-

fied gravity (e.g. chameleon) models. This will be studied in

more details in a forthcoming work.

2. Mass functions

This subsection contains the result of the mass functions

from the dilaton simulations. The method to calculate the av-

erages and standard deviations here is the same as that used in

the symmetron case.

Fig. 20 shows the results at a = 1.0, where we can see that

1. The dilatonic fifth force enhances the formation of dark

matter structures. The effect is strongest for medium-

sized halos and is weaker for very large and very small

halos. As in the symmetron case, this is because for very

large halos the screening effect weakens this enhance-

ment, and many of the small halos have accreted more

matter or merged with other halos to form larger halos.

2. As discussed in § III B 2, decreasingA2 makes the fifth

force less screened, and as a result more large halos are

formed and fewer small halos survive the mergers.

3. Increasing β0 makes the fifth force stronger and pro-

duces more halos of all mass ranges probed by our sim-

ulations. The dependence on β0 is quite sensitive, for

example, for β0 = 1 the deviation from ΛCDM can be

up to 50%, while for β0 = 0.25 this is less than 5%.

4. As in the case of the matter power spectrum, the mass

function becomes larger as r increases, and the depen-

dence on r is quite weak, especially when r ≤ 1 (mod-

els C2, C3 and C4). As mentioned above, this is be-

cause increasing r simultaneously increases the cou-

pling strength and decreases the range of the fifth force,

and the two effects cancel to some extent.

5. The ξ-dependence of the mass function shows a similar

behaviour to that of the matter power spectrum. For ha-

los more massive than ∼ 5× 1013h−1M⊙, we find that
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FIG. 21. (Colour online) The same as Fig. 20, but for a = 0.5.

decreasing ξ results in more halos being produced, sim-

ilarly to the matter clustering power at k ∼ 1hMpc−1.

For smaller halos, model D2 predicts fewest while D3,

D4 gradually catch up D1, which is similar to the matter

power at k > 3− 4hMpc−1. Overall, the ξ-dependence

is quite weak, similar to the r-dependence.

As in the case of the matter power spectra, we are inter-

ested in the shapes of the mass functions. As discussed above,

changing r (or ξ) makes either the scalar field mass or the cou-

pling strength more sensitively depend on local matter density,

and in both cases the screening gets stronger (especially for

large halos), consistent with what is seen in the matter power

spectrum. A change in A2 strengthens or weakens the screen-

ing effect but does not change the coupling strength for un-

screened particles, and as a result the mass function behaves

as in f(R) gravity models [28]. Finally, a change in β0 mainly

affects the coupling strength for unscreened particles, but not

so much the degree of screening, which is why ∆n/n flattens

for large halo masses.

To see how the dilaton effect on the mass function changes

with time, we also show in Fig. 21 the ratio between the mass

functions at a = 0.5. As discussed in the previous subsection,

at this time the linear perturbation theory is a better approxi-

mation to the full theory. This implies that the screening of the

fifth force has not yet been very significant, as is confirmed by

this figure, which shows a weaker suppression of the dilaton-

to-ΛCDM ratio at the high mass end. As in Fig. 20, the mass

function results at a = 0.5 show a good match with the be-

haviour of the matter power. Note also that the effect of vary-

ing r and ξ is larger at early times, which also agrees with the

behaviour of matter power spectra.

The above results indicate that the period between a = 0.5
and a = 1.0 is an important era for the dilaton model, during

which the structure formation is significantly affected by the

nonlinearity of the model. In particular, we see that the shape

of ∆P/P and ∆n/n experiences qualitative changes during

this period.

VII. DISCUSSIONS, SUMMARY AND CONCLUSIONS

A. Symmetron and dilaton screening

Modified gravity models vary according to their screening

mechanisms by which the fifth force is suppressed in local en-

vironments. The Vainshtein mechanism works in theories of
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the Galileon type where a scalar field with non-canonical ki-

netic terms couples to matter in a reduced fashion in dense

environments. Chameleons have an environment-dependent

mass that becomes large enough to Yukawa suppress the fifth

force in dense regions. Finally, the symmetron and the dila-

ton share a similar mechanism whereby the coupling of the

scalar field to matter is field-dependent and can vanish in the

presence of dense matter. What distinguishes these two types

of models is their scalar potentials: a Mexican-hat for sym-

metrons and a monotonic function for dilatons. The coupling

function for both types of models is a quadratic function10.

Following the idea of [16, 17], the generalised dilaton and

symmetron models studied here are completely specified by

two temporal functions m(a) and β(a). These give the most

general models with a quadratic coupling to matter and scalar

field mass that is a power-law function of a in the background

cosmology for the generalised dilatons. For the generalised

symmetron models, the scalar field mass vanishes for a ≤ a∗
and increases to its present cosmological value from then. In

both models, the screening of the fifth force is achieved in high

density regions where the scalar field is trapped near the min-

imum of A(ϕ). Yet the temporal dependences of the coupling

to matter are drastically different: for generalised symmetrons

it varies smoothly from a vanishing value for a ≤ a∗ to its

present value whereas the generalised dilatons it grows expo-

nentially fast in the recent past of the Universe to reach its

present value.

As discussed in [17], the background expansion rate of such

models is practically indistinguishable from that of the stan-

dard ΛCDM paradigm, so that the cosmological effects of the

fifth force could only be seen in the large-scale structures. In

this work, we have performed large-scaleN -body simulations

for the generalised dilatons and symmetrons, investigating in

detail the effects of varying the dilaton and symmetron pa-

rameters on the nonlinear structures of the Universe. Some of

these parameters are associated with the coupling to matter β0
(β⋆ for the symmetron case), and ξ which specifies the range

of the fifth force on the cosmological background. A few ex-

tra parameters are used in the parameterisation to define the

shapes of the potential and coupling function as functions of

the scalar field. For the dilatons, these parameters are A2, r
and for the symmetrons they are a∗, N and M .

Let us first discuss the common features of these models:

1. The coupling to matter β0 (or β⋆) determines the overall

strength of the fifth forces, and increasing them leads to

more structures.

2. Decreasing ξ leads to a shorter range for the fifth force

and therefore a smaller enhancement of matter cluster-

ing11.

In the end, the effects on structure formation are mainly de-

termined by how fast the fifth force evolves and how efficient

10 Of course, other types of coupling functions can be used, as we have done

in the generalised symmetron model.
11 In the dilaton case, changing ξ also affects the coupling strength, making

the dependence on ξ more complicated.

it is screened in dense regions. An intuitive way to see this is

to look at the expressions of β(a) in these two models, as our

discussion on tomography shows that this could be translated

into β(ρm), therefore giving us a sense about the screening, at

least qualitatively. From Eqs. (53, 62) we can see that

1. In symmetron models, the coupling vanishes at a ≤ a∗
(or equivalently for ρ ≥ ρ∗) and after that it grows as

a power-law function. Varying from 0 to β⋆ between

a = a∗ and today, β depends quite sensitively on a or

ρm in the regime with ρm ≤ ρ∗; however, the symmetry

of Veff can be quickly restored for ρm > ρ∗ resulting in

a strong suppression of the fifth force. In other words,

there is a clear cutoff density beyond which the screen-

ing is very effective, and this cutoff is close to ρ∗, which

is fairly low.

2. In dilaton models, the coupling grows exponentially

with time and with decreasing density. As can be seen

in Eq. (62), β decreases and becomes vanishingly small

if one goes back in time or goes to high-density regions,

much more quickly than it does in the symmetron mod-

els [c.f. Eq. (53)]. This implies that the dilaton screen-

ing can become effective for lower densities than the

symmetron mechanism.

It appears that the dilaton screening mechanism is more ef-

ficient than the symmetron mechanism. However, local tests

of gravity are carried out in very dense regions, where the

fifth force can be strongly suppressed in both models. With-

out specifying the exact parameter values for a given model,

being it dilaton or symmetron, it is hard to say which one can

satisfy local constraints more easily12.

B. Summary of numerical results

Let us now summarise the results for each model.

1. Generalised symmetron models

The symmetron models we have simulated are close to what

is allowed by local gravity experiments. Those constraints are

mainly on the combination of the parameters a∗ and ξ with the

coupling strength β⋆ being an (almost) unconstrained param-

eter. This parameter, which controls the magnitude of the fifth

force compared with gravity, can in principle be constrained

by its effect on the cosmic structure formation.

Our simulations show that for a fiducial value of β⋆ = 1.0
the symmetron models predict an enhancement of the nonlin-

ear power spectrum with respect to ΛCDM of up to 40% for

k ∼ 1 hMpc−1 and up to 50% at k ∼ 10 hMpc−1. Likewise

we find an enhancement of up to 50% in the mass function for

halo masses in the range of 1012 − 1014h−1M⊙.

12 It is clear that by varying the parameter values both models can be made

either more or less screened.
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We have shown how the fifth-force effect is changed by

varying the other four model parameters: a∗, N,M and ξ.

1. The parameter a∗ controls when the symmetry in

Veff(ϕ) is broken so the fifth force becomes non-

vanishing. Decreasing a∗ gives it more time to influ-

ence the matter clustering, as a result not only the mat-

ter power spectra and mass functions deviate more from

the ΛCDM results but also their shapes change qualita-

tively (more discussion below).

2. N is the parameter which controls the coupling strength

via β ∝ ϕN . Since |ϕ| is very small, increasing N will

suppress the magnitude of β (or the fifth force), and

therefore causes less clustering of matter.

3. M is the shape parameter of the symmetron field poten-

tial, which determines how easy it is for ϕ to roll away

from ϕ = 0 where β vanishes. Increasing M makes

this easier, leading to a less-screened fifth force and thus

more clustering and structures of matter.

4. ξ controls the scalar field mass and therefore the range

of the fifth force in vacuum, λ⋆ = 2998ξh−1Mpc. In-

creasing ξ makes the scalar field mass (range of the fifth

force) proportionally larger (shorter), and thus leads to

a stronger suppression of the fifth force and limits its

range.

As a rough guidance, increasing the symmetry-breaking

scale factor a∗ from 0.33 to 0.50, decreasing λ⋆ from

2.0h−1Mpc to 1.0h−1Mpc, increasing N from 2 to 4 or re-

ducing M from 6 to 4 are found to lower the enhancement of

the power spectra and mass functions by ∼ 10 − 20%. The

parameters we adopt in the simulations are in the ‘realistic’

range and can be tested by future galaxy surveys.

2. Generalised dilaton models

We have also studied how structure formation in the gen-

eralised dilaton models is affected by varying the four model

parameters A2, β0, r and ξ.

1. The effect of increasing A2 is to make the total effec-

tive dilaton potential Veff(ϕ) steeper and so to keep the

scalar field closer to ϕ∗, where β and the fifth force van-

ishes. The ΛCDM limit is retrieved by lettingA2 → ∞.

According to our simulations, reducing A2 to 5 × 104

produces a ∼ 20% enhancement in the nonlinear mat-

ter power spectrum between z = 1 and z = 0, which is

significantly smaller than the linear perturbation predic-

tions, demonstrating the efficiency of the dilaton screen-

ing mechanism. It also enhances the mass function by

maximally∼ 25% in the same redshifts. These numbers

assume that β0 = 0.5.

2. The effects of increasing β0 are to strengthen the fifth

force overall, and β0 = 0 corresponds to the ΛCDM

paradigm. The simulations show that even increasing

β0 to 1.0 only causes 30 − 35% enhancement in the

matter power for scales smaller than k ∼ 1hMpc−1 be-

tween z = 1 and z = 0. This is at least 50% smaller

than the linear perturbation result, again showing that

the fifth force is efficiently screened in dense regions.

In the mean time, the mass functions are increased by

up to 50% with respect to the ΛCDM prediction. These

numbers assume that A2 = 105.

3. Increasing r to 3/2 simultaneously increases the

strength and decreases the range of the fifth force. The

r-dependence of the matter clustering is rather weak as

a result of the cancellation due to these two opposite

effects. Assuming A2 = 105 and β0 = 0.5, increas-

ing r to 1.333 only enhances the matter power spec-

tra by less than 10% at k ∼ 1hMpc−1 and 15% at

k ∼ 10hMpc−1, which is again significantly smaller

than the predictions of linear perturbation theory. The

mass function increases by up to 25% in this case.

4. The effects of increasing ξ are similar to those of de-

creasing r, and as a result the dependence on ξ is also

fairly weak.

Again, future galaxy surveys can place realistic constraints

on the models studied here.

3. Highlights and comparisons

In both the generalised symmeton and dilaton models, as

in f(R) gravity models [34],we find that at late times the lin-

ear perturbation theory fails to be a good approximation even

for quite large scales (k ∼ 0.05hMpc−1). However, at earlier

times it gives better agreement with the full simulations. This

indicates that the environmental suppression of the fifth force

becomes more important at late times when cosmic structures

(very dense matter clumps) have already formed. This high-

lights the importance of numerical simulations in the study of

(screened) modified gravity models.

The deviations of matter power spectra and mass functions

from ΛCDM in the symmetron and dilaton models are not di-

rectly comparable, because they depend on the exact param-

eter values used in each model. However, we can see that the

shapes of ∆P/P and ∆n/n can be very different in the two

models, which is probably a consequence of the different be-

haviour of the respective fifth forces.

At early times, ∆P/P increases with k in both models (see

e.g., Figs. 14 and 19), similarly to what we see in f(R) gravity

models [28, 34]. Differences appear at late time when the fifth

force has been in effect for long enough:

1. For f(R) gravity models we see that ∆P/P develops a

peak at k ∼ O(1)hMpc−1, and on even smaller scales

it decreases with k. The peak comes from the enhanced

matter clustering due to the fifth force acting between

clusters, and the turnover on small scales is because

(compared with ΛCDM result) on these scales the short-

range fifth force still accelerates particles and prevents
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them from further clustering13.

2. In the symmetron case, we also see the peak of ∆P/P
at k ∼ O(1)hMpc−1, and on even smaller scales it goes

up again. This seems to imply that the particle veloc-

ity inside halos stops being enhanced after the screen-

ing effect has kicked in (recall that the ‘cutoff’ den-

sity for screening is quite low here and that ‘screening’

here means a suppression of the amplitude, rather than

range, of the fifth force), as a result of which the shape

of ∆P/P on small scales is preserved since early times.

3. In the dilaton models, no obvious peak of ∆P/P can

be seen: the power spectrum seems to have flattened

on scales smaller than k ∼ 1hMpc−1. Such a flatten-

ing in ∆P/P is expected in the linear perturbation re-

sults for both the symmetron and dilaton models, as

in the linear regime the time at which the fifth force

becomes non-negligible is scale-independent below the

scale m−1
0,⋆. For symmetrons the flattening is destroyed

by the screening effect, while for dilatons it is not.

As mentioned in § VII A, dilaton screening can apply

to lower matter densities: this indicates that the inter-

cluster fifth force can be strongly suppressed as well,

and thus the peak has not yet developed (notice that in

some cases, such as B4, there is a small bump). Again,

a more definite conclusion could only be drawn after a

more detailed study of the density and velocity fields in

the simulations, which is beyond the scope of this paper.

The shape of ∆n/n at late times is similar in symmetron,

dilaton and f(R) gravity models, and the most important fea-

ture is that it goes down in the high-mass end, demonstrating

efficient screening of the fifth force in these large structures.

At early times, however, ∆n/n for the dilaton models show

very weak mass dependence, which is close to the linear the-

ory prediction, namely the fifth force is scale-independent.

In the symmetron models, varying the parameters a∗, N,M
and ξ changes the shape of ∆P/P (and of ∆n/n) in similar

ways, which results in a degeneracy in these parameters. This

is because all these parameters control the degree of screening

of the fifth force.

This is not the case for the dilaton models, in which only a

variation of A2 changes the screening monotonically. Varying

β0 changes the overall strength of the fifth force more than its

screening, while varying r or ξ changes the screening in more

complicated ways. As a result there is no degeneracy in these

parameters, except between r and ξ (see Fig. 17).

C. Conclusions and outlook

In short, the aim of this paper is threefold:

13 Contrary to intuitive understandings, this is not because ‘the fifth force is

suppressed on small scales’. The chameleon effect only reduces the range

of the fifth force, but not its amplitude within that range.

1. to show the power of the modified gravity parameterisa-

tion proposed in [16, 17] in systematic studies of struc-

ture formation,

2. to acquire a sense about the qualitative behaviour of the

generalised symmetron and dilaton models, and the ef-

fects of varying individual parameters, and

3. to make a preliminary exploration of the 4-dimensional

parameter spaces in these models and find models

which are testable by the near-future observations.

For all the test models in this paper, we find deviations from

ΛCDM with similar magnitudes as those found in the f(R)
gravity model [28, 34], which means that many of the cosmo-

logical tests of f(R) gravity [29, 31–33] could in principle be

carried out here as well.

On the other hand, the predictions of the cosmological ob-

servables can be different from those in other modified grav-

ity models with screening mechanisms, such as the chameleon

models. For example, the shape of the matter power spectrum

can be different in the symmetron, dilaton and f(R) gravity

models, which implies that the respective screening mecha-

nisms indeed work quite differently. It would be interesting

to understand better the origin of such differences and see if

they can be used to distinguish between the different modified

gravity models in cosmology. These studies are under way.

ACKNOWLEDGMENTS

ACD is supported in part by STFC. BL acknowledges sup-

ports by the Royal Astronomical Society and Durham Univer-

sity. HAW thanks the Research Council of Norway FRINAT

grant 197251/V30 for support and Durham University for the

hospitality where part of this work was carried out. GBZ is

supported by STFC grant ST/H002774/1. The dilaton simula-

tions were performed on the ICC Cosmology Machine, which

is part of the DiRAC Facility jointly funded by STFC, the

Large Facilities Capital Fund of BIS, and Durham University.

The symmetron simulations were performed on the NOTUR

Clusters TITAN, HEXAGON and STALLO, the computing

facilities at the University of Oslo, Bergen and Tromsø.



30

[1] E. J. Copeland, M. Sami and S. Tsujikawa,

Int. J. Mod. Phys. D15, 1753 (2006).

[2] T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis (2011),

arXiv:1106.2476 [astro-ph.CO].

[3] T. Biswasand and A. Notari, JCAP 0806 (2008) 021

[4] G. Dvali, G. Gabadadze and M. Porrati, Phys. Lett. B485, 208

(2000).

[5] A. Nicolis, R. Rattazzi and E. Trincherini, Phys. Rev. D79,

064036 (2009).

[6] C. Deffayet, C. Esposito-Farese and A. Vikman,

Phys. Rev. D79, 084003 (2009).

[7] A. I . Vainshtein, Phys. Lett. B39 (1972) 393

[8] J. Khoury and A. Weltman, Phys. Rev. D, 69, 044026 (2004).

[9] D. F. Mota and D. J. Shaw, Phys. Rev. D, 75, 063501 (2007).

[10] B. Li and J. D. Barrow, Phys. Rev. D 75, 084010 (2007).

[11] W. Hu and I. Sawicki, Phys. Rev. D, 76, 064004 (2007).

[12] P. Brax, C. van de Bruck, A. -C. Davis and D. J. Shaw,

Phys. Rev. D78, 104021 (2008).

[13] P. Brax, C. van de Bruck, A. -C. Davis and D. J. Shaw,

Phys. Rev. D82, 063519 (2010).

[14] K. Hinterbichler and J. Khoury, Phys. Rev. Lett., 104, 231301

(2010).

[15] K. A. Olive and M. Pospelov, Phys. Rev. D 77 (2008) 043524

[arXiv:0709.3825 [hep-ph]].

[16] P. Brax, A. -C. Davis and B. Li (2011), Phys. Lett. B, in press;

arXiv:1111.6613 [astro-ph.CO].

[17] P. Brax, A. -C. Davis, B. Li and H. A. Winther (2012),

Phys. Rev. D, in press; arXiv:1203.4812 [astro-ph.CO].

[18] P. Brax, C. van de Bruck, A. -C. Davis, J. Khoury and A. Welt-

man, Phys. Rev. D70, 123518 (2004).

[19] R. Caldwell, C. Cooray and A. Melchiorri, Phys. Rev. D76,

023507 (2007).

[20] L. Amendola, M. Kunz and D. Sapone, J. Cosmo. As-

tropart. Phys., 04, 013 (2008).

[21] B. Jain and P. Zhang, Phys. Rev. D78, 063503 (2008).

[22] C. Skordis, Phys. Rev. D79, 123527 (2009).

[23] P. G. Ferreira and C. Skordis, Phys. Rev. D81, 104020 (2010).

[24] T. Baker, P. G. Ferreira, C. Skordis and J. Zunz, Phys. Rev. D84,

124018 (2011).

[25] H. Oyaizu, Phys. Rev. D78, 123523 (2008).

[26] H. Oyaizu, M. Lima and W. Hu, Phys. Rev. D, 78, 123524

(2008).

[27] F. Schmidt, M. Lima, H. Oyaizu and W. Hu, Phys. Rev. D, 79,

083518 (2009).

[28] G. Zhao, B. Li and K. Koyama, Phys. Rev. D83, 044007 (2011).

[29] G. Zhao, B. Li and K. Koyama, Phys. Rev. Lett., 107, 071303

(2011).

[30] Y. Li and W. Hu, Phys. Rev. D84, 084033 (2011).

[31] B. Li, G. Zhao and K. Koyama, Mon. Not. R. Astron. Soc., 421,

3481 (2012).

[32] J. Lee, G. Zhao, B. Li and K. Koyama (2012), arXiv:1204.6608

[astro-ph.CO].

[33] E. Jennings, C. M. Baugh, B. Li, G. Zhao and K. Koyama

(2012), Mon. Not. R. Astron. Soc., in press; arXiv:1205.2698

[astro-ph.CO].

[34] B. Li, W. A. Hellwing, K. Koyama, G. Zhao, E. Jennings,

C. M. Baugh (2012), arXiv:1206.4317 [astro-ph.CO].

[35] B. Li and H. Zhao, Phys. Rev. D80, 044027 (2009).

[36] H. Zhao, A. V. Maccio, B. Li, H. Hoekstra and M. Feix, Astro-

phys. J., 712L, 179 (2010).

[37] B. Li and H. Zhao, Phys. Rev. D81, 104047 (2010).

[38] B. Li, Mon. Not. R. Astron. Soc., 411, 2615 (2011).

[39] P. Brax, C. van de Bruck, A. -C. Davis, B. Li and D. J. Shaw,

Phys, Rev. D83, 104026 (2011).

[40] T. Damour and A. M. Polyakov, Nucl. Phys. B 423 (1994) 532.

[41] A. -C. Davis, B. Li, D. F. Mota and H. A. Winther (2011), As-

trophys. J., 748, 61 (2012).

[42] H. A. Winther, D. F. Mota and B. Li (2012), Astrophys. J., in

press; arXiv:1110.6438 [astro-ph.CO].

[43] B. Li, G. Zhao, R. Teyssier and K. Koyama, J. Cosmo. As-

tropart. Phys., 01, 051 (2012).

[44] R. Teyssier, Astron. Astrophys. 385 (2002) 337-364.

[45] H. Martel and P. R. Shapiro, Mon. Not. R. Astron. Soc., 297,

467 (1998).

[46] S. Prunet, C. Pichon, D. Aubert, D. Pogosyan, R. Teyssier and

S. Gottloeber, Astrophys. J. Suppl., 178, 179 (2008).

[47] D. Larson et al., Astrophys. J. Suppl. 192, 16 (2011).

[48] S. Colombi, A. H. Jaffe, D. Novikov and C. Pichon,

Mon. Not. R. Astron. Soc., 393, 511 (2009).

[49] S. R. Knollmann and A. Knebe, Astrophys. J. Suppl., 182, 608

(2009).

[50] P. Brax, C. van de Bruck, A. -C. Davis, B. Li, B. Schmauch and

D. J. Shaw, Phys. Rev. D84, 123524 (2011).


