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Abstract.

An improved prescription for choosing a Transformed Harmonic Oscilla-
tor (THO) basis for use in configuration-space Hartree-Fock-Bogoliubov
(HFB) calculations is presented. The new HFB+THO framework that fol-
lows accurately reproduces the results of coordinate-space HFB calcula-
tions for spherical and axially-deformed nuclei, including those that are
weakly bound. Furthermore, itis fully automated, facilitating its use in sys-
tematic investigations of large sets of nuclei throughout the periodic table.
As a first application, we have carried out calculations using the Skyrme
Force SKLY4 and volume pairing for all even-even nuclei from proton drip-
line to neutron drip-line having proton numbefs= 4,6,38, ..., 108. We
focus on those nuclei very near the drip lines and find that there exist nu-
merous particle-bound even-even nuclei (i.e., nuclei with negative Fermi
energies) that have negative two-proton or two-neutron separation energies.
This phenomenon, which was earlier noted for light nuclei only, is now seen
to occur in several diverse regions of the periodic table.



M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, and S. Pittel 177

1 Introduction

The development of experimental facilities that accelerate radioactive ion beams
[1-4] has opened up a window to many nuclei that were heretofore inaccessible.
With these new facilities and the new detector technology that is accompanying
them, it is becoming possible to study the properties of nuclei very far from the
valley of beta stability, all the way out to the particle “drip lines”.

Much work is now in progress to develop appropriate theoretical tools for de-
scribing nuclei in these exotic regimes. A proper theoretical description of such
weakly-bound systems requires a careful treatment of the asymptotic part of the
nucleonic density. An appropriate framework for these calculations is Hartree-
Fock-Bogoliubov (HFB) theory, solved in coordinate representation [5—7]. This
method has been used extensively in the treatment of spherical systems but is
much more difficult to implement for systems with deformed equilibrium shapes
[8-10].

In the absence of reliable coordinate-space solutions to the deformed HFB
equations, it is useful to consider instead the configuration-space approach,
where by the HFB solution is expanded in a single-particle basis. One approach
has been to use a truncated basis composed partly of discrete localized states and
partly of discretized continuum and oscillating states [8, 9, 11]. Because of the
technical difficulties in implementing this method, it has typically been restricted
to include states in the continuum up to at most several MeV. As a consequence,
such an approach should not be able to describe adequately the spatial properties
of nuclear densities at large distances.

An alternative possibility is to expand in a basis of spatially localized states.
Expansion in a harmonic oscillator (HO) basis is particularly attractive because
of the simple properties of oscillator states. There have been many configuration-
space HFB+HO calculations reported, either employing Skyrme forces or the
Gogny effective interaction [12—15], or using a relativistic Lagrangian [16, 17].
This methodology has proven particularly useful when treating nuclei in or near
the valley of stability. For nuclei at the drip lines, however, the HFB+HO expan-
sion converges slowly as a function of the number of oscillator shells [7], pro-
ducing wave functions that decrease too steeply at large distances. The resulting
densities, especially in the pairing channel, are too small in the outer region and
do not reflect correctly the pairing correlations of these weakly-bound nuclei.

A related approach that has recently been proposed is to instead expand the
guasiparticle HFB wave functions in a complete set of transformed harmonic os-
cillator (THO) basis states [18—20], obtained by applying a local-scaling coordi-
nate transformation (LST) [21-23] to the standard HO basis. The THO basis pre-
serves many useful properties of the HO wave functions, including its simplicity
in numerical algorithms, while at the same time permitting us to incorporate the
appropriate asymptotic behavior of nuclear densities.
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Applications of this new HFB+THO methodology have been reported both in
the non-relativistic [18] and relativistic domains [20]. In all of these calculations,
specific global parameterizations were employed for the scalar LST function that
defines the THO basis. There are several limitations in such an approach, how-
ever. On the one hand, any global parameterization of the LST function will of
necessity modify properties throughout the entire nuclear volume, in order to im-
prove the asymptotic density at large distances. This is not desirable, however,
since the HFB+HO results are usually reliable in the nuclear interior, even for
weakly-bound systems. In addition, because of the need to introduce matching
conditions between the interior and exterior regions, a global LST function will
invariably have a very complicated behavior, especially around the classical turn-
ing point, making it difficult to simply parameterize it. Perhaps mostimportantly,
the minimization procedure that is needed in such an approach to optimally define
the basis parameters is computationally very time consuming, especially when a
large number of shells are included, making it very difficult to apply the method
systematically to nuclei across the periodic table.

In the present work, we propose a new prescription for choosing the THO
basis. For a given nucleus, our new prescription requires as input the results from
a relatively simple HFB+HO calculation, with no variational optimization. The
resulting THO basis leads to HFB+THO results that almost exactly reproduce the
coordinate-space HFB results for spherical [6] and axially deformed [11] nuclei
and are of comparable quality to those of the former, more complex, HFB+THO
methodology.

Because the new prescription requires no variational optimization of the LST
function, it can be readily applied in systematic studies of nuclear properties. As
the first such application, we have carried out a detailed study of nuclei at the
two-particle proton and neutron drip lines throughout the periodic table, using
the Skyrme force SkL4 and volume pairing [18].

The structure of the paper is the following. In Section 2, we briefly review
the HFB theory, noting several features particular to its coordinate and configura-
tional representation. In Section 3, we introduce the THO basis and then formu-
late our new prescription for the LST function. The results of systematic calcu-
lations of all chains of even-even nuclei from Ne to Pu are reported in Section 4,
with special emphasis on those nuclei that are at the drip lines and just beyond.
Conclusions and thoughts for the future are presented in Section 5.

2 Overview of Hartree-Fock-Bogoliubov Theory

In this section, we review the basic ingredients of Hartree-Fock-Bogoliubov
(HFB) theory, both in coordinate representation and in configuration space. Since
HFB theory is by now a standard tool in nuclear structure, we keep the presenta-
tion brief and refer the reader to Ref. [24] for more details.
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HFB is a variational theory that treats in a unified fashion mean field and pair-
ing correlations. The HFB equations can be written in matrix form as

(fL—_AA —h*AJrA)(g:):E"(g:)’ @)

wherekF,, are the quasiparticle energieds the chemical potential, = ¢t+I" and

A are the Hartree Fock hamiltonian and the pairing potential, respectively, and
U, andV,, are the upper and lower components of the quasiparticle wave func-
tions. These equations are solved subject to constraints on the average numbers
of neutrons and protons in the system, which determine the two corresponding
chemical potentials),, andA,,.

In coordinate representation, the HFB approach consists in solving (1) as a
set of integro-differential equations with respect to the amplitddgs,,, r) and
V(E,,r), both of which are functions of the position coordinatf he resulting
density matrix and pairing tensor then read

P(r, I‘l) = Z V*(En,I‘)V(EnJ'/) ’

0<E;<FEmax (2)
k(r,r’) = > V*(E,,v)U(E,, 1) .

0<E, <FEmax

Typically, the HFB continuum is discretized in this approach by putting the sys-
tem in a large box with appropriate boundary conditions [7].

In the configurational approach, the HFB equations are solved by matrix di-
agonalization within a chosen set of single-particle basis wave funatipmsth
appropriate symmetry properties. In this sense, the amplitudesdV,, enter-
ing EqQ. (1) may be thought of as expansion coefficients of the quasiparticle states
in the chosen basis. The nuclear characteristics of interest are determined from
the density matrix and pairing tensor

p(r, ) =3 papta(r)s(r’)

af
k‘(I‘, I‘/) = Zé kaﬁwa(r)'(/}ﬁ(r/) ) (3)

which are expressed in terms of the basis statesnd the associated basis matrix
elements

Pag = >, Vi (En)Ven(En),

0<E;<Emax (4)
kaﬁ = Z V(:n(En)Uﬁn(En) .

0<E,<Emax

In configuration-space calculations, all quasiparticle states have discrete energies
E,.
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The results from configuration-space HFB calculations should be identical
to those from the coordinate-space approach when all the states from a complete
single-particle basig,, are taken into account. Of course, this is never possible.

In the presence of truncation, it is essential that the basis produce rapid conver-
gence, so that reliable results can be obtained within the computational limita-
tions on the number of basis states that can be included.

3 The Transformed Harmonic Oscillator Basis

In the present study, we carry out HFB calculations in configuration space, ex-
panding in a transformed harmonic oscillator (THO) basis. This basis was origi-
nally introduced in Refs. [18-20], and we refer the reader to Ref. [18] for details
concerning the use of the deformed THO basis and for a discussion of the cut-
off procedure that is used to perform the summations in Eq. (4). We also refer
the reader to an interesting new application of the THO basis to one-dimensional
problems of interest in molecular physics [25].

As noted earlier, all previous calculations using the THO basis in HFB calcu-
lations employed a global parameterization of the LST function that defined the
basis. In the following subsections, we develop a new and improved form for the
transformation, which we then use in the HFB+THO calculations to be reported
in Section 5.

3.1 Comparison of Coordinate-Space HFB Calculations and
Configuration-Space HFB+HO Calculations

The main differences between the results of coordinate-space HFB calculations
and those from configuration-space HFB+HO calculations can be seen in plots
of the corresponding local density distributions. A typical example is shown in
Figure 1, where the densities and their logarithmic derivatives from coordinate-
space HFB calculations (solid lines) are compared with those from a configu-
rational HFB+HO calculation. Although the calculations were done for a spe-
cific spherical nucleus and Skyrme interaction, the features exhibited are generic.
Note that the coordinate-space HFB calculations were carried out in the box of
30fm, so that the logarithmic derivative of the density obtained in that calcula-
tion shows a sudden drop near the box edge.

Invariably, the logarithmic derivative’/p associated with the coordinate-
space HFB solution shows a well-defined minimum near some phintin the
asymptotic region, after which it smoothly approaches a constant valdve,
where

k= /2m(Emin — \) /12, (5)

is associated with the HFB asymptotic behavior for the lowest quasiparticle state
that has the corresponding quasiparticle endrgy, (see Ref. [6]). This prop-
erty is clearly seen in the upper panel of Figure 1. One can also see that the
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Figure 1. Logarithmic derivative of the density (upper panel), and the density in logarith-
mic scale (lower panel), as functions of the radial distance. The coordinate-space HFB
results (solid line) are compared with those for the HFB+HO method (demtedth
Nsn=8, 12 and 20 HO shells, as well with the approximation (dengieiven by Eq. (11)
(small circles).
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HFB+HO densities and logarithmic derivatives are in almost perfect agreement
with the coordinate-space results up to (or around) the distBpge We con-
clude, therefore, that the HFB+HO densities are numerically reliable up to that
point.

Moreover, the HFB value of the density decay constarfx, when calcu-
lated from Eq. (5), is also correctly reproduced by the HFB+HO results. It is not
possible to distinguish between the valueg tfiat emerge from the coordinate-
space and harmonic-oscillator HFB calculations, both values being shown by the
same line in the upper panel of Figure 1.

Soon beyond the poink.,;,, the HFB+HO density begins to deviate dra-
matically from that obtained in the coordinate-spce calculation. For relatively
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small number of harmonic oscillator shelgy, the logarithmic derivative of the
HFB+HO density goes asymptotically to zero following the gaussian behavior of
the harmonic oscillator basis. The resulting HFB+HO density does not develop
a minimum around the poirR,,;,, as in the case aVy, = 8 results shown in the
upper panel of Figure 1. When the number of harmonic oscillator shgjlss
increased the HFB+HO solution tries to capture the correct density assymptotics.
Due to the gaussian asymptotic of the basis, however, the logarithmic derivative
of the HFB+HO density only develops oscillations around the exact solution, as
can be seen by comparing thg, = 12 and20 results in the upper panel of Fig-
ure 1. As aresult, the logarithmic derivative of the HFB+HO density is very close
to the coordinate-space result around the mid pBint = (Rmax — Rmin)/2,
where R, IS the position of the first maximum of the logarithmic derivative
after Rpyin .

In summary, the following HFB+HO quantities agree with the coordinate-
space HFB resultgi) the value of the density decay constantii) the local den-
sity up to the poinfR,..;,, where the logarithmic derivativg /p shows a clearly-
defined minimum({iii) the actual value of this poink,,;,; (iv) the value of the
logarithmic derivative of the density at the poiRt, defined above. In fact, the
last of the above is not established nearly as firmly as the first three; neverthe-
less, we shall make use of it in developing our new formulation of the HFB+THO
method.

Beyond the point?,,, the HFB+HO solution fails to capture the physics of
the coordinate-space results, especially in the far asymptotic region. It is this in-
correct large= behavior that we now try to cure by introducing the THO basis.

3.2 Approximation to the Coordinate-Space HFB Local Densities

Our goal is to try to find an approximation to te&act(coordinate-space) HFB
density that is based only on information contained in the HFB+HO results. To-
wards that end, we make use of the WKB asymptotic solution of the single-
particle Schddinger equation for a given potentilr), assuming that beyond
the classical turning point only the state with the lowest decay const@atcon-
tributes to the local density. Under this assumption, the logarithmic derivative of
the density can be written as

o' (r) 2 1V

— 2 9./k2 -7
Pl e T CEY ey

(6)

where the first term comes from the three-dimensional volume element, while
the next two correspond to the first- and second-order WKB solutions [26]. The
reduced potentiab,

2m €(€+1)+27mZ762
N " N r2 h2 r’

()
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is the sum of the nuclear, centrifugal, and Coulomb (for protons) contributions,
where/ is the multipolarity of the particular state.

In practical applications, it turns out that neay, the next-to-lowest quasi-
particle states still contribute to the local densityin a way that may be more
important than the second-order WKB term shown in Eqg. (6). Moreover, in de-
formed nuclei the quasiparticle states do not have good total angular momentum
¢, so that several quasiparticles may contribute to the asymptotic density depend-
ing on their/-contents and the value ef Therefore, we need a practical prescrip-
tion to fix a reasonable approximate asymptotic form of the density with minimal
numerical effort but high reliability. This goal can be achieved by using in (6) a
reduced potential of the form

C  2mZe?

V(r>:ﬁ+ﬁ77 (8)
where the nuclear pa¥ty (which is small around and beyor#t,,) is neglected,
and the coefficient’ is allowed to differ from its centrifugal barrier valdg/+1).
The actual value of’ is fixed by the requirement that the logarithmic derivative
(6) coincides at the mid poiR,,, with the /=0 component of the HFB+HO den-

sity, i.e., with

/2
p(r) = /0 p(r,0)Pp—g(cos(0)) sin(6)db. 9)

Next, in order to make a smooth transition from the HFB+HO dengity in
the inner region to the approximate asymptotic expression (6) in the outer region,
we introduce the following approximatighfor the logarithmic density deriva-
tive:

.
p,(T) for r S Rmin
., p(r) ,
Pr) _ ) (Rum—1)
ﬁ(?") - Q=0 +0b for RBrin <7 < Rpax
5 7 R (10)
—— =2 2 a5 9 , 1/ f > max
. K24V TV or r> Ry,

The coefficients andb, and the powes, are determined from the condition that
the logarithmic derivative (10) and its first derivative are smooth functions at the
points R, andR ... Note that the first derivative of (10) &,,;,, is automat-
ically equal to zero, so that there is no need to introduce a fourth parameter to
satisfy this condition.

Having determined the smooth expression for the logarithmic derivative of
p(r), we can derive the approximate local density distribufior) by simply
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integrating Eq. (10). The result is

p(r) for » < Ruin
A" exp [_a (ar?’ _27"2Rmin+ rR?nin>}
() = rs \3—s f2—s 1—s
or ming S max
R r<R (11)
-2 [" VK2 +Vd
BeXp[ s T] for r > Riax
r2ve2 +V

where the integration constartsand B are determined from the matching con-
dition for the density at point&,,,;, and R,,.x, respectively. Finally;(r) should
be normalized to the appropriate particle number.
The approximate density (11) works fairly well for all nuclei that we have
considered. This is illustrated in Figure 1 where the approximate denéiiy-
cles) is seen to be in perfect agreement with the coordinate-space HFB results.
It should be stressed that the above procedure is applicable only for such a
number of shells for which HFB+HO density has a minimum at the p&ijnt, .
This number could not be smaller than on certain valu¥gfwhich depends on
particular deformations or nuclei considered. For the number of sNglls= 20
used in our calculations the above condition is always satisfied.

3.3 LST Function for HFB+THO Calculations

The starting point of our new and improved HFB+THO procedure is thus to carry
out a standard HFB+HO calculation for the nucleus of interest, thereby generat-
ing its local density and its loc&F0 densityp(r) (9), and then to use the method
outlined in the previous subsection to correct that density at large distances, see
Eq. (11), by calculating(r). The next step is to define the LST [18] so that it
transforms the HFB+H@=0 density (9) into the corrected density of Eq. (11).
This requirement leads to the following first-order differential equation,

jry = LIRIR) (7 4wy (12)

R2  oR "
which for the initial conditionf (0) = 0 can always be solved fgf(R).

Once the LST function has been so obtained, we need simply diagonalize the
HFB matrices in the corresponding THO basis. Most importantly, no informa-
tion is required to build the THO basis beyond the results of a standard HFB+HO
calculation. Since no further parameters enter, there is no need to minimize the
HFB+THO total energy. As a consequence, with this new methodology we are
able to systematically treat large sets of nuclei within a single calculation.
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Despite the fact that the new HFB+THO method is simpler to implement than
the earlier version, there are no discernible differences between the results ob-
tained with the two distinct treatments of the LST function. Most importantly,
the current formulation leads to the same excellent reproduction of coordinate-
space results as did the previous one [18, 20].

4 Results

In this section, we present the results of HFB+THO calculations performed for
all particle-bound even-even nuclei with<108 andN<188. The THO basis

was implemented according to the general prescription developed in the previ-
ous section. Thé value used in the procedure was obtained in the following
way. From the starting HFB+HO calculation, we determinealues separately

for neutrons and protons, using Eq. (5). We then associatk tadue for the
transformation with the smaller @, andk,,. In this way, the THO basis is al-
ways adapted to the less-bound type of particle. The calculations were performed
by building THO basis states from spherical HO bases with oscillator frequencies
of hiwg = 1.2 x 41 MeV JA'/3,

In order to meaningfully test predictions of nuclear masses for neutron-rich
nuclei, we used the SLy4 Skyrme force parameterization [27], as this was ad-
justed with special emphasis on the properties of neutron matter. In the pairing
channel, we used a pure volume contact pairing féféer, r') = Vod(r — r')
with strengthV,=-187.1 MeV fn¥(N,;, = 20) and acting within a phase space
limited by a cut-off parameter [18] &f,,.,=60 MeV.

For a given mass numbel, calculations were carried out for increasing (de-
creasing)N —Z up to the nucleus with positive neutron (proton) Fermi energy.
Moreover, three independent sets of calculations were performed, for initial wave
functions corresponding to oblate, spherical, and prolate shapes. The lowest of
the local minima that were found for a given nucleus was then identified with the
ground-state solution.

The results we obtained for ground-state quadrupole deformatiams il-
lustrated in Figure 2 in the case df,;, = 14. As in Ref. [18], the deformations
were estimated from the total quadrupole moments and rms radii through a sim-
ple first-order expression. All even-even nuclei with negative Fermi energies,
An<0 and), <0, are shown. Figure 3 shows similar results for the two-neutron
separation energi€s,,. Table 4 summarizes in more detail our results for even-
even nuclei along the two-particle drip lines with,;, = 20. More specifically,
for each value o, the results for the lightest isotope with <0, and the heav-
iest isotope with\,, <0 are shown.
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Figure 2. Quadrupole deformations of particle-bound even-even nuclei calculated within
the HFB+THO method for the Skyrme SLy4 interaction and volume contact pairing force
within N, = 14 major shells.

Itis interesting to note from Figure 2 that there are fairly large regions of nu-
clei far from stability with oblate shapes in their ground state. Nonetheless, it
remains the case for nuclei far from stability as for nuclei in or near the valley of
stability that there are more prolate ground states than oblate.

From Table 1, we see that there exist numerous particle-bound even-even nu-
clei (i.e., nuclei with negative Fermi energies) that at the same time have nega-
tive two-proton or two-neutron separation energies. What this means is that even
though these nuclei are bound against one-nucleon emission they can neverthe-
less decay spontaneously by two-nucleon emission. Such an effect was already
noticed in light nuclei in Ref. [18]. It is related to the fact that the Fermi ener-
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Figure 3. Same as in Figure 2 but for the two-neutron separation energies.
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as functions of the quadrupole deformatjén

gies pertain to the stability with respect to particle emission of a given configu-
ration or shape, hamely that of the ground state. In all of the cases in which this
phenomenon is seen, (a) the neighboring even-even nucleus (the one to which
it decays by two-nucleon emission) has two distinct shapes with negative Fermi
energies, (b) its ground state shape is different than that of the parent nucleus,
and (c) decay to its excited configuration, the configuration with the same shape
as the parent, is energetically forbidden.

Among the many such cases that appear along the two-neutron drip line, we
focus here on the heaviest isotopes of magnesium and selenium [see Figures 4
and 5, respectively]. The figures show the neutron pairing gapsFermi en-
ergies)\,, and total binding energies obtained in constrained HFB+THO calcu-
lations as a function of the quadrupole deformatibim the last three particle-
bound isotopes of the two isotopic chains. For each, the binding energies of the
last three isotopes are shown on a common energy scaléMag the neutron
Fermi energies,,, have negative values for all deformations, so that the configu-
rations for all deformations are particle-bound. In these nuclei, minima arise for
both oblate and prolate shapes, with the prolate shape being lowest. The same
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Figure 5. Same as in Figure 4 but fd#Se,'**Se, and' '*Se.

is also true for the next nucleddMg but the prolate minimum has a positive

A, vValue and such a minimum must be disregarded since it does not correspond
to a localized HFB state. Therefore, the ground state deformation changes from
prolate*°Mg to oblate in*2Mg. In Mg, neutron pairing disappears and neu-
tron fermi energies have negative values again. The lowest minimum in this case
shows an oblate deformation as well. It is clear from Figure 4 thétNtg the
two-neutron separation energy is negative, however, sitidg and*°Mg have
different shapes in their ground states, the real process of emitting two neutrons
may be hindered, and the lifetime®¥Mg could be larger than expected. A simi-

lar situation occurs ih'%Se when compared td*Se, as can be readily seen from
Figure 5.

5 Concluding Remarks

In this paper, we report the development of an improved version of the
configuration-space HFB method expanded in a Transformed Harmonic Oscil-
lator basis. In its current form, the method can be used reliably in systematic
studies of wide ranges of nuclei, both spherical and axially deformed, extending
all the way out to nucleon drip lines. The key step was the development of a pre-
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scription for choosing a reliable transformation function to define the THO basis
that does not require variational optimization. The current prescription only in-
volves information from a preliminary configuration-space HFB calculation car-
ried out in a harmonic oscillator basis. The transformation function is then tai-
lored to correct the asymptotic properties of the HFB+HO results. The resulting
HFB+THO theory accurately reproduces results of coordinate-space HFB theory,
where available, and also reproduces the results obtained with an earlier version
of the transformation that had to be optimized separately for each nucleus.

As a first application of the new HFB+THO methodology, we carried out a
systematic study of all even-even nuclei haviig 108 andN<184. We fo-
cussed our discussion here on those nuclei that are very near the nucleon drip
lines, finding that in several regions of the periodic table there exist nuclei that
are stable against one-particle emission but unstable against pair emission. We
showed that invariably this is associated with a shape change in the ground state.
Thus, while two-particle emission to the configuration of the daughter with the
same shape as the parent is forbidden in these nuclei, spontaneous decay to the
ground state can nevertheless occur. The change in shape associated with these
spontaneous pair emissions may conceivably lead to sufficient hindrance of the
decays so that the corresponding nuclei that formally live beyond the drip lines
can be observed experimentally. This phenomenon, which had earlier been noted
in calculations of light nuclei, is now seen to be a more common feature of nuclei
near the drip lines.

In the description of very weakly-bound systems, small changes in results can
have important consequences, determining for example the precise location of
the drip lines. Thus, itis important to continue to improve the current HFB+THO
methodology to accommodate effects not presently being included. Particularly
important is the restoration of symmetries, either exact or approximate. Also im-
portant is to develop the new HFB+THO formalism for application to odd-mass
systems, including the effects of Pauli blocking. Work along these various lines
is currently underway.
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