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Abstract

Although both computational and analytical homogenization are well-established today, a thorough and systematic study

to compare them is missing in the literature. This manuscript aims to provide an exhaustive comparison of numerical
computations and analytical estimates, such as Voigt, Reuss, Hashin–Shtrikman, and composite cylinder assemblage. The

numerical computations are associated with canonical boundary conditions imposed on either tetragonal, hexagonal, or

circular representative volume elements using the finite-element method. The circular representative volume element is
employed to capture an effective isotropic material response suitable for comparison with associated analytical estimates.

The analytical results from composite cylinder assemblage are in excellent agreement with the numerical results obtained

from a circular representative volume element. We observe that the circular representative volume element renders
identical responses for both linear displacement and periodic boundary conditions. In addition, the behaviors of periodic

and random microstructures with different inclusion distributions are examined under various boundary conditions.

Strikingly, for some specific microstructures, the effective shear modulus does not lie within the Hashin–Shtrikman
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bounds. Finally, numerical simulations are carried out at finite deformations to compare different representative volume
element types in the nonlinear regime. Unlike other canonical boundary conditions, the uniform traction boundary con-

ditions result in nearly identical effective responses for all types of representative volume element, indicating that they

are less sensitive with respect to the underlying microstructure. The numerical examples furnish adequate information
to serve as benchmarks.

Keywords

Homogenization, hexagonal representative volume element, circular representative volume element, Hashin–Shtrikman

bounds, composite cylinder assemblage, composites

1. Introduction

Heterogeneous materials possess more complex behavior than their associated constituents. Therefore,
composites have been the subject of increasing interest in many engineering applications in past decades.
The mechanical behavior of heterogeneous materials is highly dependent on their microstructural char-
acteristics. Conducting experiments on numerous materials with various phases is not practical. Also,
performing a numerical simulation on the whole macrostructure would involve using a huge number of
variables, which is extremely complicated, if not impossible. As a result, a micromechanically based
determination of the overall response of composites is of great significance.

Multiscale methods have been developed to determine the overall response of heterogeneous media
in terms of the constitutive behavior of their underlying microstructures. Multiscale methods are cate-
gorized into concurrent methods and homogenization methods. In concurrent methods [1–4], the prob-
lems at the microscopic and macroscopic scales are solved simultaneously, requiring a strong coupling
between the two scales. In the homogenization method [5–15], the microproblem and macroproblem
are solved separately. Homogenization, pioneered by Hill [16, 17] and Ogden [18], relies on (i) the
assumption of the separation of the length scale between the micro- and macroproblem and (ii) the
energy equivalence between the two scales, known as the Hill–Mandel condition [16, 19]. Furthermore,
homogenization methods fall into analytical homogenization and computational homogenization.
Pioneering contributions in analytical homogenization include those of Voigt [20], Reuss [21], Eshelby
[22], Hashin and colleagues [23, 24], Hill [25, 26], Walpole [27], Mori and Tanaka [28], and Willis [29];
the theory was later extended [30–38]. See Klusemann et al. [39] for some comparisons of analytical and
computational approaches of micromechanics. Despite providing useful information, the analytical
homogenization approach requires certain simplifications to the microstructure, such as its geometry
and distribution pattern. By contrast, the computational homogenization method is capable of dealing
with such complexities; thus, it has been widely adopted in the past decades [40–55]. For detailed
reviews on computational homogenization, see Saeb et al. [56], Geers et al. [57], and Charalambakis
et al. [58]. Computational homogenization essentially involves calculating macroscopic quantities from
the solution of a boundary value problem at the microscale. Recently, a number of methods have been
developed to reduce the computational cost and increase the accuracy of multiscale analysis [59–63].

The average field theory [64, 65] is employed to bridge microscopic quantities to their macroscopic
counterparts. This theory relates the properties of continua at the macroscale to the volume averages of
their counterparts at the microscale. In doing so, the boundary conditions at the microscale are chosen
such that the Hill–Mandel condition is satisfied. A broader group of admissible boundary conditions to
fill the gap between the homogeneous boundary conditions was derived [66]. The computational imple-
mentation algorithms of displacement boundary conditions (DBCs) and periodic boundary conditions
(PBCs) are discussed by Yuan and Fish [67] and Nguyen et al. [68]. The effects of various boundary con-
ditions on the overall behavior of periodic unidirectional linear composites has been investigated [69].
Furthermore, a mixed-type boundary condition composed of linear DBCs and constant traction bound-
ary conditions (TBCs) has been proposed [70–72] to obtain an elasticity tensor that lies between the elas-
ticity tensors obtained from homogeneous boundary conditions. Further details on the formulation,
implementation and application of appropriate boundary conditions in the context of the computational
homogenization can be found elsewhere [73–79].

2962 Mathematics and Mechanics of Solids 24(9)



To establish a computational homogenization framework, it is essential to identify a representative
volume element (RVE). A proper RVE must be selected such that it contains enough details to suffi-
ciently represent the microstructure of the material and it has to be small enough to be considered as a
microstructure surrounded by copies similar to itself, so as to fulfill the assumption of scale separation.
In most cases, a proper RVE for a random microstructure is regarded as the smallest possible structure
that could sufficiently capture the macroscopic response of the macrostructure. For more details on the
definition of the RVE, see Gitman et al. [80], Khisaeva and Ostoja-Starzewski [81], Temizer and col-
leagues [82, 83], Thomas et al. [84], and Dirrenberger et al. [85], among others. Although small, the
RVE could still be too complex for computational homogenization. Thus, instead of studying a com-
plex RVE, one could construct a simpler but statistically similar RVE [86, 87]. Here, the term RVE indi-
cates a simplified microstructure in the sense of a simpler but statistically similar RVE [86, 87] or
statistical RVE [88]. In this contribution, we present a systematic study of computational and analytical
homogenization by considering three types of RVE; tetragonal, hexagonal, and circular, as shown in
Figure 1. Note that the cutout of a real microstructure with a random distribution of particles can even-
tually result in isotropic effective behavior. While tetragonal and hexagonal packings are space-filling,
only the circular RVE can furnish isotropic effective behavior suitable for comparison with analytical
solutions here and it is the only RVE that could reach the maximum volume fraction of a real cutout of
a material.

The appendix provides a list of definitions for frequently used abbreviations in this manuscript, as
well as symbols and notation used to describe the mathematical aspects of the problem. The rest of the
manuscript is organized as follows. The theory including the governing equations at both scales, brid-
ging between the scales and satisfying the Hill–Mandel condition via appropriate boundary conditions is
presented in Section 2. Material modeling and analytical approaches are detailed in Section 3, followed
by a thorough comparison of the numerical and analytical methods to predict the effective response of
heterogeneous materials. Section 4 extends the computational homogenization framework to finite
deformations; the effects of RVE type and boundary condition are examined. Section 5 summarizes this
work and provides further outlook.

2. Computational homogenization

This section elaborates on the theoretical aspects of computational homogenization and bridging the
scales. The content of this section is fairly standard; however, to set the stage, the important aspects of
computational homogenization are briefly reviewed. A detailed exposition of the formulation of compu-
tational homogenization and the associated numerical implementation can be found elsewhere [9, 56,
89–91]. Central to computational homogenization is the separation of the length scales between the
micro- and the macroscale. The key idea of computational homogenization is to identify the effective
properties at the macroscale through averaging of the microproblem [92–98]. At the microscale, it is

Figure 1. Complex representative volume element (RVE) and its simplified counterparts. The inclusion volume fraction at the

cutout could reach 100%. The cutout (left) shall be understood as the RVE. Three simplified RVEs are suggested as sufficient to

replace the cutout, namely tetragonal RVE, hexagonal RVE, and circular RVE. For a tetragonal RVE, the maximum reachable volume

fraction is 78:53%, for a hexagonal RVE, this value is 90:59%, and for a circular RVE, it could reach its maximum value, which is 100%.

The cutout of the real microstructure can eventually result in isotropic effective behavior. Both tetragonal and hexagonal packings

are space-filling, hence intuitively are suitable candidates for a simplified RVE. However, only the circular RVE can furnish isotropic

effective behavior resembling the real microstructure. Furthermore, the circular RVE is the only simplified RVE that could reach the

maximum volume fraction of a real cutout of the material.
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assumed that the constitutive response of each phase is known. Solving the associated boundary value
problem at the microscale and proper averaging over the RVE renders the overall response at the macro-
scale. The microproblem could be either strain-driven or stress-driven. In strain-driven homogenization,
the macroscopic deformation gradient is prescribed and the macroscopic stress is calculated. By contrast,
the macroscopic stress is prescribed in stress-driven homogenization for an unknown macroscopic defor-
mation gradient. This contribution is based on first-order strain-driven computational homogenization
based on the deformation gradient and the Piola stress. In this section, the macroproblem is formulated
first. This is then followed by the microproblem definition. Finally, the micro-to-macro transition and
the Hill–Mandel condition are addressed.

2.1. Macroproblem definition

Let a macroscopic continuum body take the material configuration MB0 at time t= 0 and the spatial con-

figuration MBt at time t. 0, as shown in Figure 2. The boundaries of the body in the material and the

spatial configuration are denoted ∂
MB0 and ∂

MBt, respectively. Moreover, MN and M
n define the material

and spatial outward unit normal vectors to the boundaries. The material point M
X is mapped to its spa-

tial counterpart M
x via the nonlinear deformation map M

u as M
x=

M
u(

M
X). The infinitesimal line ele-

ment dMX from the material configuration is mapped to dMx in the spatial configuration via the linear

map M
F as dMx=M

F � dMX, where M
F=

MGradMu is the macroscopic deformation gradient. In addition,

the Jacobian determinant MJ = detMF maps the infinitesimal material volume element dMV to its spatial

counterpart dMv via dMv=MJdMV . Finally, the normal map MJMF�t transforms the directional surface

element from the material configuration dMS= dMSM
N to the directional surface element in the spatial

configuration dMs= dMsMn as dMs=MJMF�t � dMS. The governing equations for the macroproblem are
the balances of linear and angular momentum. For a quasistatic case, the balance of linear momentum
reads

MDivMP+M
b
p
0 = 0 in MB0,

M
P�MN=M

t0 on ∂
MB0, with M

t0=
M
t
p
0 on ∂

MB0,N,
M
u0=

M
u
p
0 on ∂

MB0,D, ð1Þ

where M
b
p
0 represents the body force density in the material configuration and M

P defines the macro-

scopic Piola stress. The traction M
t0 acts on the boundary ∂

MB0. The prescribed traction that acts on the

Neumann portion of the boundary ∂
MB0,N � ∂

MB0 is denoted M
t
p
0. The displacement that is applied to

Figure 2. Computational homogenization graphical summary. The material configuration at the macroscale MB0 with the boundary

of ∂MB0 is mapped to its spatial counterpart MBt with the boundary of ∂MBt. The nonlinear map M
u maps points M

X from the material

configuration to M
x in the spatial configuration. Line elements are mapped from the material configuration to the spatial

configuration via M
F. The domain B0 at the microscale corresponds to the representative volume element. In a strain-driven

homogenization framework, the macroscopic deformation gradient is the input of the microproblem and the macroscopic Piola

stress is obtained by solving the boundary value problem at the microscale.
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the boundary ∂
MB0 is

M
u0. The prescribed displacement M

u
p
0 acts on the Dirichlet part of the boundary

∂
MB0,D � ∂

MB0. The balance of the angular momentum at the macroscale reads

M
P�MFt

=
M
F�MPt, ð2Þ

which is equivalent to the symmetry of the Cauchy stress.

2.2. Microproblem definition

As illustrated in Figure 2, the notation for the microproblem mimics that of the macroproblem without
the left superscript ‘‘M’’. The kinematics of the microproblem, such as points, line elements, surface ele-
ments, and volume elements from the material to spatial configuration, read

x=u(X), dx=F � dX, ds= JF�t � dS, dv= JdV : ð3Þ

Owing to the scale separation assumption, the body forces vanish at the microscale. The balance of lin-
ear momentum for the microproblem holds as

DivP= 0 in B0, P �N= t0 on ∂B0, with t0= t
p
0 on ∂B0,N, u0=u

p
0 on ∂B0,D: ð4Þ

Finally, the balance of angular momentum reads

P � F t
=F � Pt: ð5Þ

2.3. Micro-to-macro transition

The micro-to-macro transition is essentially a proper averaging of the quantities at the microscale to link
them to their counterparts at the macroscale. The advantage of the micro-to-macro transition is that no
assumptions are required regarding the constitutive behavior of the material at the macroscale. This
method is capable of incorporating geometrical and physical nonlinearities without additional effort. As
depicted in Figure 2, the macroscopic deformation gradient is applied to the microstructure and the
microproblem is solved as a classical boundary value problem, using the finite-element method. The
macroscopic Piola stress is then computed via proper averaging of the microscopic Piola stress.

The macroscopic deformation gradient and Piola stress are related to their microscopic counterparts
via averages over the volume or the boundary of the RVE, as

M
F= hFi=

1

V 0

Z

B0

FdV =
1

V 0

Z

∂B0

u�NdA and M
P= hPi=

1

V 0

Z

B0

PdV =
1

V 0

Z

∂B0

t0 � XdA: ð6Þ

Moreover, the Hill–Mandel condition necessitates the incremental energy equivalence between the two
scales, which reads

M
P : dMF =

!
1

V 0

Z

B0

P : dFdV , ð7Þ

as the volume average over the RVE. Hill’s lemma transforms equation (7) into a surface integral
according to

1

V 0

Z

B0

P : dFdV�M
P : dMF=

Z

∂B0

du� dMF � X
� �

� t0�
M
P �N

� �

dA: ð8Þ

Inserting Hill’s lemma (equation (8)) into the Hill–Mandel condition (equation (7)) yields
Z

∂B0

du� dMF � X
� �

� t0�
M
P �N

� �

dA =
!
0, ð9Þ
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which shall be understood as the Hill–Mandel condition in terms of a surface integral over the bound-
ary of the RVE. Various boundary conditions can fulfill the Hill–Mandel condition a priori [99, 100].
Among all the boundary conditions that satisfy the Hill–Mandel condition, of practical significance are
the canonical boundary conditions, that is, the (i) linear DBC, (ii) uniform traction boundary condition
(TBC) and (iii) periodic displacement and anti-periodic traction (PBC), imposing

DBC : u=
M
F � X, TBC : t0=

M
P �N, and PBC : ½u�M

F � X� and ½t0�
M
P �N�, ð10Þ

on the boundary of the RVE. For strain-driven computational homogenization, here the condition
M
F= hFi is a priori satisfied for both the DBC and the PBC. However, this is not the case for the TBC

and the condition M
F= hFi shall be regarded as a constraint. It is noteworthy that all these boundary

conditions satisfy the balance of angular momentum at the macroscale. It is commonly accepted that
the DBC and the TBC overestimate and underestimate the PBC, respectively.

3. Numerical versus analytical homogenization

In this section, first the material modeling of the problem is presented. This is then followed by a brief
review of the analytical methods developed to determine the overall response of composites for small-
strain linear elasticity. Finally, a thorough comparison of numerical and analytical results for various
RVE types is provided.

3.1. Material modeling

The constituents of heterogeneous materials at the microscale are assumed to be hyperelastic with
known behavior. The bonding between the matrix and the inclusion is considered perfect. Both matrix
and inclusion behave according to the free energy density

c(F)=
1

2
m F : F� 2� 2 log J½ �+

1

2
l log2 J , ð11Þ

associated with a neo-Hookean response with Lamé parameters l and m, whereby the bulk modulus
associated with the plane-strain condition of interest here relates to the Lamé parameters as k=m+ l.
Using the Coleman–Noll procedure, the Piola stress is derived as

P=
∂c

∂F
=m F� F

�t
� �

+ l log JF�t: ð12Þ

The corresponding fourth-order Piola tangent tensor reads

A=
∂P

∂F
=m I�I+F

�t�F
�1

� �

+ l F
�t � F

�t � log JF�t�F
�1

� �

: ð13Þ

The nonstandard tensor products � and � of two second-order tensors A and B are the forth-order
tensors D=A�B and C=A�B, respectively, with the components Dijkl=AikBjl and Cijkl=AilBjk.

Small-strain linear elasticity relates the stress s to the strain e according to the linear relation s=C : e

in which the strain e and the fourth-order constitutive tensor C can be related to their counterparts at
finite deformations via

e=
1

2
F
t
+F

� �

� I and C=Aj
F= I

=m I�I+ I�I½ �+ l I� I½ �, ð14Þ

and the stress s reads

s=LinP=Pj
F= I

+Aj
F= I

: F� I½ �= 2me+ l e : I½ �I: ð15Þ
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3.2. Analytical estimates at small strains

Analytical methods in homogenization have been established to derive a relation for the overall response
of heterogeneous media. Analytical methods are based on certain simplifying assumptions so as to
achieve an explicit analytical solution. In this section, the most significant and extensively used analyti-
cal estimates are briefly listed. Throughout this manuscript, the matrix and inclusion properties are iden-
tified by the subscripts 1 and 2, respectively.

Voigt bounds correspond to a uniform strain field within the RVE resulting in the upper limit for the
effective overall response of the material as

k= ½1� f �k1+ f k2 and m= ½1� f �m
1
+ fm

2
, ð16Þ

where f is the inclusion volume fraction. Note that the uniform-strain assumption violates the balance
of linear momentum, in general. Thus, Voigt bounds shall only be understood as an upper unreachable
bound. Reuss bounds correspond to a uniform stress field within the RVE, leading to the lower limit for
the effective response of the material as

k=
k1k2

½1� f �k2+ f k1
and m=

m
1
m
2

½1� f �m
2
+ f m

1

: ð17Þ

The uniform-stress assumption violates the compatibility of the strain field; thus, Reuss bounds shall
only be understood as a lower unreachable bound.

Hashin and Rosen [24] proposed a predictive model based on a composite cylinder assemblage (CCA)
to obtain the bulk and shear moduli of transversely isotropic composites having circular inclusions in
hexagonal and random arrays. The effective coefficients in this approach are frequently used. In this
method, the upper and lower bounds on the bulk modulus coincide and read

kU= kL=
k1 m1

+ k2½ �+ f m
1
k2 � k1½ �

m
1
+ k2+ f k1 � k2½ �

, ð18Þ

where the subscripts ‘‘U’’ and ‘‘L’’ denote the upper and the lower bounds, respectively. While the math-
ematical procedure for the determination of bounds for the shear modulus has been addressed precisely
[24], closed-form expressions for the bounds for the shear modulus, for the first time, to our knowledge,
are given here as

mU=m
1

2f k1+m
1

½ �
m
2
� m

1

m
2
k1+m

1
k1+ 2m

1
m
2

� �

f m
2
� m

1
½ � k1+ 2m

1
½ �

m
2
k1+m

1
k1+ 2m

1
m
2

3 1� f½ �2
k1

k1+ 2m
1

� �2

f 3
m
2
k2 k1+ 2m

1
½ � � m

1
k1 k2+ 2m

2
½ �

k1+ 2m
1

½ � k2m2
+m

1
k2+ 2m

2
½ �½ �

� �

� 1

� 1

2

6

6

6

4

3

7

7

7

5

+ 1

+ 1

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

,

mL=m
1

2f k1+m
1

½ �
m
2
� m

1

m
2
k1+m

1
k1+ 2m

1
m
2

� �

f m
2
� m

1
½ � k1+ 2m

1
½ �

m
2
k1+m

1
k1+ 2m

1
m
2

3 1� f½ �2
k1

k1+ 2m
1

� �2

f 3
m2k2 k1+ 2m1

½ � � m1k1 k2+ 2m2
½ �

k1+ 2m
1

½ � k2m2
+m

1
k2+ 2m

2
½ �½ �

� �

+
k1

k1+ 2m
1

� 1

2

6

6

6

4

3

7

7

7

5

+ 1

+ 1

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

ð19Þ
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Shortly afterwards, Hashin [101] used the variational approach of Hashin and Shtrikman [23] to
derive bounds on the overall response of fiber composites with transverse isotropy. The aim of this
approach was to tighten the bounds proposed by Reuss and Voigt. The Hashin–Shtrikman bounds for
the overall bulk and shear moduli read

kU= k1+
f

1

k2 � k1
+

1� f

k1+m1

, kL= k2+
½1� f �

1

k1 � k2
+

f

k2+m2

,

mU=m
1
+

f

1

m
2
� m

1

+
½1� f �½k1+ 2m

1
�

2m
1
½k1+m

1
�

, mL=m
2
+

½1� f �

1

m
1
� m

2

+
f ½k2+ 2m

2
�

2m
2
½k2+m

2
�

,

ð20Þ

for stiffness ratios less than one. The upper and the lower bound switch for stiffness ratios greater than
one.

The Hashin and Shtrikman variational principle [23, 101] is well known to provide the best bounds,
independent of the phase geometry, and are formulated only in terms of the phase properties and inclu-
sion volume fraction. Hill [25] also derived bounds on five different effective properties of composites
with transversely isotropic geometry. Walpole [27, 102] utilized piecewise uniform polarization and
rederived these bounds in a more general fashion. Walpole’s method also includes anisotropic constitu-
ents and disk-shape fiber composites. All aforementioned bounds were independent of phase geometry
and they were only applicable on three types of geometries; laminated, isotropic, and transversely iso-
tropic. Later, Willis [29] manipulated the Hashin–Shtrikman bounds by inserting the two-point correla-
tion function to account for more general cases of phase geometry. If the two-point correlation function
involves radial, cylindrical, or disk symmetry, these bounds could be readily recovered. See Weng [103]
for more details on the derivation of explicit forms for the Willis bounds.

3.3. Numerical examples

This section provides a comprehensive comparison between the analytical estimates and computational
results through a series of numerical examples for tetragonal, hexagonal, and circular RVEs. Figure 3
shows the packing of these RVEs. The area of each RVE is set to 1 so that the inclusion area corre-
sponds to the volume fraction f. Obviously, the volume fraction f could not exceed a certain value for
the tetragonal and hexagonal RVEs, see Figure 4. All the examples are solved using our in-house finite-
element code and discretized using biquadratic Lagrange elements.

To provide a thorough and systematic comparison of the numerical and analytical results, the overall
bulk modulus Mk, shear modulus Mm, and Poisson ratio Mn of transversely isotropic composites are
examined. Figure 5 clearly illustrates all the cases investigated in what follows. Five different stiffness
ratios of 0:01, 0:1, 1, 10, and 100 are considered for each RVE. The stiffness ratio represents the ratio of
the inclusion to matrix (incl./matr.) Lamé parameters. A stiffness ratio less than one corresponds to a
more compliant inclusion within the matrix; in the limit of incl:=matr: ! 0, the inclusion represents a
void. By contrast, a stiffness ratio greater than one corresponds to a stiffer inclusion compared with the

Figure 3. Packing network for each representative volume element (RVE): left, tetragonal RVE packing; center, hexagonal RVE

packing; right, circular RVE packing. The boundaries of the tetragonal and hexagonal RVEs completely match.
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matrix and in the limit of incl:=matr: ! ‘, the inclusion acts as a rigid fiber. Throughout all the exam-
ples, the matrix properties are set to l1= 10, m

1
= 10, while the inclusion parameters vary to generate

the predefined stiffness ratios.
Figure 6 shows the effective bulk modulus Mk with respect to the volume fraction f for all the cases

depicted in Figure 5. For tetragonal and hexagonal RVEs, five individual lines represent the analytical
estimates of Voigt and Reuss, together with the numerical results corresponding to the DBC, PBC, and
TBC. The RVEs in tetragonal and hexagonal packings are space-filling but cannot capture the isotropic
behavior of the effective material. By contrast, the circular RVE renders isotropic behavior; thus, com-
parison with the Hashin–Shtrikman and CCA approaches is justifiable. Voigt and Reuss bounds always
provide reliable bounds. As expected, the PBC is bounded by the TBC from below and the DBC from
above. Moving from the tetragonal RVE toward the circular RVE, we observe that the numerical
results tend to converge until they totally coincide at the circular RVE. Therefore, different boundary
conditions result in the same responses when the RVE is circular. A smaller difference between the
numerical results is observed for small volume fractions. As previously mentioned, for the expansion
case, the CCA upper and lower bounds coincide, while the Hashin–Shtrikman bounds (HSBs) do not.
For incl:=matr:\1, a remarkable agreement is observed between the numerical results, CCA, and upper
HSB, and for incl:=matr:. 1, the numerical results, CCA, and lower HSB coincide. For incl:=matr:= 1,
all the results coincide, since the domain is uniform.

Figure 7 shows the effective shear modulus Mm versus the volume fraction for different RVEs and
stiffness ratios. It is observed that different boundary conditions, in general, provide more

Figure 4. Maximum reachable volume fraction for each representative volume element (RVE). For the circular RVE, the inclusion

can embed the whole, owing to its geometry.

Figure 5. Different stiffness ratios for various representative volume element (RVE) types. Columns correspond to RVE types and

rows correspond to stiffness ratios. Matrix parameters remain the same throughout the examples, while inclusion parameters vary in

order to produce the required stiffness ratios. The stiffness of the inclusion is identified by a color scheme varying from light to dark.
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distinguishable effective values than the previous case. Nevertheless, as we move from the tetragonal
RVE toward the circular RVE, the PBC moves toward the DBC and ultimately coincides with it. Thus,
prescribing PBC and DBC to the circular RVE yield identical responses. The PBC renders the most sen-
sitive numerical result to the RVE type for shear deformation. In contrast with the previous case, there
is no coincidence between the CCA and HSBs. A striking agreement is observed between the CCA lower
bound and the TBC and between the CCA upper bound and the DBC or PBC. A counterintuitive
observation is that for incl:=matr:\1, the DBC and the PBC, together with the CCA upper bound,
overestimate the upper HSB, and for incl:=matr:. 1, the TBC, together with the CCA lower bound,
underestimate the lower HSB. This observation shall be compared with Hashin’s remark [104] that it
has never been shown that his bounds on shear modulus are the best possible bounds. Clearly, we
observe that his bounds on shear modulus do not serve as ‘‘bounds,’’ at least not for CCA in the sense
of the Voigt and Reuss bounds.

Figure 6. Effective bulk modulus versus volume fraction f. The enlargements in the insets provide more clarity when the results are

less distinguishable. The numerical results are shown by lines with points on top of them, whereas the analytical results are shown

using lines solely.
CCA: composite cylinder assemblage; DBC: displacement boundary condition; HSB: Hashin–Shtrikman bound; PBC: periodic boundary condition;

RVE: representative volume element; TBC: traction boundary condition.
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So far, we have studied the effects of the variation of the volume fraction on the overall macroscopic
response. Figure 8 demonstrates the variation of the effective moduli with respect to the stiffness ratio.
Two different volume fractions, f = 25% and f = 75%, are considered, corresponding to the top row
and the bottom row, respectively. As expected, all the results coincide at incl:=matr:= 1. The gap
between the results widens as the stiffness ratio recedes from one. The difference between the numerical
and analytical results is more distinct for the shear modulus Mm than for the bulk modulus Mk. We
observe better agreement between the numerical results for the hexagonal RVE than for the tetragonal
RVE. For the bulk modulus, the transition of the numerical results coinciding with the upper and lower
HSBs for different stiffness ratios is more obvious in this figure. Another shortcoming of the HSBs is
that, like Voigt and Reuss bounds, they cannot distinguish between the matrix and the fiber. Figure 9
sheds light on this issue by providing a comparison of the analytical estimates and the numerical results
obtained using the circular RVE. The first column corresponds to certain properties for the matrix and

Figure 7. Effective shear modulus versus volume fraction f. The enlargements in the insets are included to provide more clarity

when the results are less distinguishable. The numerical results are shown by lines with points on top of them, whereas the analytical

results are shown using lines solely.
CCA: composite cylinder assemblage; DBC: displacement boundary condition; HSB: Hashin–Shtrikman bound; PBC: periodic boundary condition;

RVE: representative volume element; TBC: traction boundary condition.
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fiber. In the second column, the properties are switched and the results are illustrated with respect to
matrix volume fraction (1� f ). The third column shows the subtraction of the results associated with
the first and second columns. We observe that, by contrast with the numerical results and the CCA, the
Voigt bounds, Reuss bounds, and HSBs are incapable of distinguishing between the matrix and the
fiber; hence, the difference between the responses vanishes in the right column. Figure 10 illustrates
the numerical results of various material properties with respect to the volume fraction for the circular
RVE. As observed previously, when the RVE is circular, the DBC and PBC always render identical
responses. For the bulk modulus, the DBC coincides with the TBC, while for the shear modulus, the
TBC underestimates the DBC, as expected. Somewhat strikingly, for the Poisson ratio, the TBC

Figure 8. Overall moduli versus stiffness ratio in a logarithmic scale. Two specific volume fractions are considered and are

represented in each row. A good agreement of the results is observed for the volume fraction f = 25%. Increasing the volume

fraction to f = 75% leads to more distinct results. More accordance between the results is observed for the bulk modulus Mk than

for the shear modulus Mm. The enlargements in the insets provide for further clarity.
CCA: composite cylinder assemblage; DBC: displacement boundary condition; HSB: Hashin–Shtrikman bound; PBC: periodic boundary condition;

RVE: representative volume element; TBC: traction boundary condition.
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Figure 10. Different moduli versus volume fraction for two different stiffness ratios. The numerical results depicted in this figure

correspond to the circular representative volume element. Each column corresponds to a specific material property and each row

stands for a specific stiffness ratio. Only numerical results are included for the Poisson ratio, since analytical estimates do not

provide physically meaningful results.
DBC: displacement boundary condition; PBC: periodic boundary condition; RVE: representative volume element; TBC: traction boundary condition.

Figure 9. Insensitivity of the Hashin–Shtrikman bounds to the microstructure’s constituents. Similarly, Voigt and Reuss bounds do

not distinguish between the fiber and the matrix. The numerical results depicted in this figure correspond to the circular

representative volume element. The composite cylinder solution totally agrees with the numerical results. The first column shows

incl:=matr= 0:1, where the inclusion and the matrix Lamé parameters are set to 1 and 10, respectively, and the fiber’s volume

fraction is f. The second column corresponds to incl:=matr= 10, where the inclusion and the matrix Lamé parameters are set to 10

and 1, respectively, and the x-axis shows (1� f ) instead of f. The third column shows the subtraction of the results in the first and

the second column.
CCA: composite cylinder assemblage; DBC: displacement boundary condition; HSB: Hashin–Shtrikman bound; PBC: periodic boundary condition;

TBC: traction boundary condition.

Firooz et al. 2973



overestimates the DBC. Another counterintuitive observation is that although the Poisson ratio of the
fiber and matrix are identical, the overall Poisson ratio is dependent on the fiber volume fraction and is
not constant.

Heterogeneous materials generally possess a periodic or random composition to some extent. Clearly,
the distribution pattern of the inclusions influences the overall material response [105, 106]. The next set
of numerical studies aims to highlight the effects of different morphologies of the microstructures on the
effective properties. To do this, we consider several RVEs with identical volume fractions of f = 15%
and with random and periodic distribution of inclusions, under the three canonical boundary condi-
tions. The periodic microstructure is modeled such that the inclusions of the same size are uniformly dis-
tributed throughout the RVE, whereas the random microstructures contain inclusions with different
sizes and no specific order. The numerical results corresponding to the circular RVE with the same vol-
ume fraction, as well as the CCA and HSBs are also included, for the sake of completeness. This study
is performed for two stiffness ratios of 0:1 and 10 and the results are depicted in Figures 11 and 12. The

Figures 11. Evolution of the effective properties versus the degree of periodicity and randomness for periodic and random

macrostructures. Three different boundary conditions are imposed to two different microstructures having different distributions of

inclusions for a stiffness ratio of 0:1. The volume fraction is set to 15%. The size of the representative volume element remains

constant as the level of periodicity or randomness is increased. The horizontal axis shows the degree of periodicity and randomness

for the periodic and random microstructure, respectively. The microstructures for some levels are depicted at the bottom of the

figure. Analytical bounds, as well as numerical results for circular representative volume elements, are included, to provide further

information.
CCA: composite cylinder assemblage; CIR: circular; DBC: displacement boundary condition; HSB: Hashin–Shtrikman bound; PBC: periodic boundary

condition; RVE: representative volume element; TBC: traction boundary condition.
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variation of the effective bulk modulus, shear modulus, and Poisson ratio with respect to increasing
numbers of inclusions within the microstructure are examined. The lower HSB in Figure 11 and the
upper HSB in Figure 12 are eliminated, since they do not fit within the given range. We shall highlight
that for each level of the random microstructure, almost 10 samples with different distribution patterns
are investigated. That is, the effective responses shown in Figures 11 and 12 do not correspond only to
the microstructures depicted at the bottom but reflect the average of the effective responses obtained
from 10 samples.

In both types of microstructure and for both stiffness ratios, the results from the DBC, PBC, and
TBC tend to converge to an effective response as the number of inclusions increases sufficiently. This
trend is smoother for the periodic microstructure than for the random microstructure, where some fluc-
tuations are present. We observe that, owing to the periodicity of the periodic microstructure, the PBC
remains constant, and the TBC and DBC tend to approach to it from below and above, respectively.

Figures 12. Evolution of the effective properties versus the degree of periodicity and randomness for periodic and random

macrostructures. Three different boundary conditions are imposed to two different microstructures having different distribution of

inclusions for a stiffness ratio of 10. The volume fraction is set to 15%. The size of the representative volume element remains

constant as the level of periodicity or randomness is increased. The horizontal axis shows the degree of periodicity and randomness

for the periodic and random microstructure, respectively. The microstructures for some levels are depicted at the bottom of the

figure. Analytical bounds, as well as numerical results for circular representative volume elements, are included, to provide further

information.
CCA: composite cylinder assemblage; CIR: circular; DBC: displacement boundary condition; HSB: Hashin–Shtrikman bound; PBC: periodic boundary

condition; RVE: representative volume element; TBC: traction boundary condition.
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Somewhat interestingly, for the bulk modulus, the numerical results indicate that, for random micro-
structures and for both stiffness ratios, the circular RVE provides a closer overall response to the overall
response of the true RVE obtained by the PBC. This is justified by the fact that increasing the number
of inclusions within the random microstructure resembles increasing the level of isotropy. Nonetheless,
for the periodic microstructure, increasing the number of inclusions does not alter the anisotropy of the
material, owing to the uniform distribution of the inclusions. To be more precise, a proper case that
could resemble an isotropic material suitable for comparison with analytical bounds is the random
microstructure with a large number of inclusions and randomness. Looking at the shear modulus, for
the random microstructure with a large number of inclusions, the material response lies within the HSBs
for incl:=matr:= 0:1. However, for incl:=matr:= 10, the lower HSB is violated and fails to provide a
proper bound on the shear modulus. For the Poisson ratio, unlike the shear modulus and the bulk mod-
ulus, the TBC provides the stiffest response, whereas the DBC renders the most compliant response.

The studies carried out so far assumed that the inclusion is located at the center of the RVEs. Here,
we examine the effect of the inclusion eccentricity by comparing the effective response of the three RVE
types due to the canonical boundary conditions for different volume fractions, as well as different stiff-
ness ratios. Figures 13 and 14 provide the deformed shapes of the RVEs, as well as the overall response
of the material due to volumetric expansion and simple shear, respectively, for incl:=matr:= 0:1. The
numerical examples correspond to small-strain linear elasticity but deformations are magnified for the

Figure 13. Stress distribution within the RVE under volumetric expansion for both center and off-center inclusions when the

inclusion is more compliant than the matrix (incl:=matr:= 0:1). The distribution of the stress component ½s11+s22�=2 is shown

throughout the RVE. Two volume fractions, f = 15% and f = 30%, are considered. The CCA bounds on the overall bulk modulus are

given for comparison. The PBC always lies within the TBC and DBC. Three main rows correspond to three boundary conditions

and three main columns correspond to three different RVEs. For each boundary condition, the center and off-center inclusion, as

well as two different volume fractions, are examined.
CCA: composite cylinder assemblage; DBC: displacement boundary condition; PBC: periodic boundary condition; RVE: representative volume

element; TBC: traction boundary condition.
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sake of illustration. Additionally, the distribution of ½s11+s22�=2 for the expansion case and s12 for the
shear case is displayed throughout each RVE. Each block includes four cases, corresponding to center
and off-center inclusions for different volume fractions. The CCA lower and upper bounds are also
included to serve as a comparison.

The difference between the results is more distinguishable for f = 30% than for f = 15%. As expected,
the effective bulk modulus for f = 30% is, in all cases, less than its counterpart for f = 15%. For all the
RVEs, when the DBC is prescribed, the off-center inclusion leads to a stiffer response than does the cen-
ter inclusion. By contrast, if the TBC is imposed, the effective modulus corresponding to the RVE with
the off-center inclusion underestimates that with the center inclusion. When the inclusion is at the center
of the circular RVE, all the results are identical for a given volume fraction. Somewhat interestingly,
when the PBC is employed, the overall response becomes independent of the inclusion position for the
tetragonal and hexagonal RVEs. However, for the circular RVE, the material renders a stiffer response
for the center inclusion than for the off-center one. Figures 15 and 16 are the counterparts of Figures 13
and 14, respectively, corresponding to incl:=matr:= 10. The effective moduli, at f = 30% for all the cases
here, are larger than their counterparts at f = 15%. The remainder of the observations in Figures 15 and
16 are similar to those made from Figures 13 and 14; hence, a discussion on them is omitted for the sake
of brevity.

Figure 14. Stress distribution within the RVE under simple shear for both center and off-center inclusions when the inclusion is

more compliant than the matrix (incl:=matr:= 0:1). The distribution of the stress component s12 is shown throughout the RVE.

Two volume fractions, f = 15% and f = 30%, are considered. The CCA bounds on the overall shear modulus are given for

comparison. The PBC always lies within the TBC and DBC. Three main rows correspond to three boundary conditions and three

main columns correspond to three different RVEs. For each boundary condition, the center and off-center inclusion, as well as two

different volume fractions, are examined.
CCA: composite cylinder assemblage; DBC: displacement boundary condition; PBC: periodic boundary condition; RVE: representative volume

element; TBC: traction boundary condition.
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4. Extension to finite deformations

All the previous examples were only valid for small strains. The main objective of this section is to
extend the numerical studies presented in the last section to a finite-deformation setting. In doing this,
two load cases of volumetric expansion and simple shear are prescribed and the effective material
response is computed via proper averaging. The examples carefully analyze the overall material response
for various boundary conditions and stiffness ratios. Unlike the case in small-strain linear elasticity, for
finite deformations it is not possible to define an effective material parameter, such as bulk modulus or
shear modulus. Therefore, in what follows, the apparent macroscopic quantity of interest is the stress
itself. For instance, for volumetric expansion, the xx-component of the Piola stress and for simple shear,
the xy-component of the Piola stress are the macroscopic properties of interest.

Figure 17 shows the variation of the macroscopic Piola stress with respect to the volume fraction for
various RVEs obtained from different boundary conditions. The first row represents the volumetric
expansion case, while the second row corresponds to the simple shear case, both at 20% deformation.
First consider the first row corresponding to the expansion case. As expected, the PBC is bounded with
the TBC from below and the DBC from above. For the tetragonal RVE, the results from different
boundary conditions mostly deviate from each other as the volume fraction increases. However, as we
move toward the circular RVE, the results get closer to each other and eventually coincide. Next con-
sider the second row corresponding to the shear case. For this case, a greater difference between the
numerical results is observed, in comparison with the expansion case. The results from the PBC are

Figure 15. Stress distribution within the RVE under volumetric expansion for both center and off-center inclusions when the

inclusion is stiffer than the matrix (incl:=matr:= 10). The distribution of the stress component ½s11+s22�=2 is shown throughout

the RVE. Two volume fractions f = 15% and f = 30% are considered. The CCA bounds on the overall bulk modulus are given for

comparison. The PBC always lies within TBC and DBC. Three main rows correspond to three boundary conditions and three main

columns correspond to three different RVEs. For each boundary condition, the center and off-center inclusion, as well as two

different volume fractions, are examined.
CCA: composite cylinder assemblage; DBC: displacement boundary condition; PBC: periodic boundary condition; RVE: representative volume

element; TBC: traction boundary condition.
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closer to the TBC for the tetragonal RVE. For the hexagonal RVE, the PBC renders a closer response
than the DBC; for the circular RVE, they result in identical responses. These observations elucidate the
sensitivity of the PBC to the RVE type.

Figure 18 depicts the variation of the macroscopic Piola stress with respect to the volume fraction for
different boundary conditions. The top row corresponds to the expansion case and the bottom row cor-
responds to the simple shear case. As mentioned before, the circular RVE is able to result in higher vol-
ume fractions than the other RVEs. For the DBC, it is observed that the stress corresponding to the
hexagonal RVE is bounded between the tetragonal RVE from above and the circular RVE from below.
For the PBC, the same observation is made when expansion is applied. However, when shear is applied,
the tetragonal RVE results in the smallest Piola stress, while the hexagonal and circular RVEs render
different relative behavior depending on the volume fraction. For the TBC, there is a remarkable coinci-
dence between all the numerical results for both expansion and the shear case. This means that the TBC
is indifferent to the type of RVE. This observation highlights the importance of the frequently disre-
garded TBC in computational homogenization.

5. Conclusion and outlook

In summary, we have presented a systematic comparison of the overall behavior of heterogeneous mate-
rials as analyzed using both analytical and computational homogenization. It is clearly demonstrated

Figure 16. Stress distribution within the RVE under simple shear for both center and off-center inclusions when the inclusion is

stiffer than the matrix (incl:=matr:= 10). The distribution of the stress component s12 is shown throughout the RVE. Two volume

fractions, f = 15% and f = 30%, are considered. The CCA bounds on the overall shear modulus are given for comparison. The PBC

always lies within the TBC and DBC. Three main rows correspond to three boundary conditions and three main columns

correspond to three different RVEs. For each boundary condition, the center and off-center inclusion, as well as two different

volume fractions, are examined.
CCA: composite cylinder assemblage; DBC: displacement boundary condition; PBC: periodic boundary condition; RVE: representative volume

element; TBC: traction boundary condition.

Firooz et al. 2979



Figure 17. Macroscopic Piola stress with respect to volume fraction f for various types of representative volume element. The top

row is associated with the volumetric expansion; thus, the macroscopic stress component of interest is MPxx . The bottom row

corresponds to the simple shear deformation; thus, the macroscopic stress component of interest is MPxy . Each column corresponds

to a specific representative volume element. In each graph, different boundary conditions for a specific representative volume

element are examined.
DBC: displacement boundary condition; PBC: periodic boundary condition; RVE: representative volume element; TBC: traction boundary condition.

Figure 18. Macroscopic Piola stress with respect to volume fraction f for different boundary conditions. The top row is associated

with the volumetric expansion; thus, the macroscopic stress component of interest is MPxx . The bottom row corresponds to the

simple shear deformation; thus, the macroscopic stress component of interest is MPxy . Each column corresponds to a specific

boundary condition. In each graph, different representative volume element types for a specific boundary condition are examined.
DBC: displacement boundary condition; PBC: periodic boundary condition; TBC: traction boundary condition.
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that, in contrast to the Voigt and Reuss bounds, for some cases the HSBs do not provide reliable
bounds on the shear modulus. Three different material properties, i.e. bulk modulus, shear modulus,
and Poisson ratio were comprehensively studied for various RVEs, boundary conditions, and micro-
structures. Our findings show that of all the simplified RVE types, the circular RVE serves as the most
suitable RVE to predict overall isotropic material behavior, owing to its intrinsic ability to capture iso-
tropy. The influence of inclusion eccentricity on the effective modulus of the material is examined. For
both tetragonal and hexagonal packings, the numerical results based on the PBC are indifferent with
respect to the inclusion position in the RVE. The numerical results are then extended to the finite-
deformation setting; it is observed that the TBC shows less sensitivity with respect to RVE type. This
conclusion is particularly interesting, since the TBC is often disregarded in computational homogeniza-
tion. Our next immediate extension of this contribution deals with a complementary study, accounting
for size effects. Further extensions of this work include three-dimensional analysis, as well as the inclu-
sion of more complex analytical estimates.
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[93] Ladevèze, P, Loiseau, O, and Dureisseix, D. A micro–macro and parallel computational strategy for highly

heterogeneous structures. Int J Numer Methods Eng 2001; 52: 121–138.

[94] Miehe, C, and Dettmar, J. A framework for micro-macro transitions in periodic particle aggregates of granular

materials. Comput Methods Appl Mech Eng 2004; 193: 225–256.

[95] Stolz, C. On micro-macro transition in non-linear mechanics. Materials (Basel) 2010; 3: 296–317.

[96] Liu, Q, Liu, X, Li, X, et al. Micro-macro homogenization of granular materials based on the average-field theory of

Cosserat continuum. Adv Powder Technol 2014; 25: 436–449.

[97] Chatzigeorgiou, G, Chemisky, Y, and Meraghni, F. Computational micro to macro transitions for shape memory alloy

composites using periodic homogenization. Smart Mater Struct 2015; 24: 035009.

[98] Chatzigeorgiou, G, Meraghni, F, and Javili, A. Generalized interfacial energy and size effects in composites. J Mech

Phys Solids 2017; 106: 257–282.

[99] Larsson, F, Runesson, K, Saroukhani, S, et al. Computational homogenization based on a weak format of micro-

periodicity for RVE-problems. Comput Methods Appl Mech Eng 2011; 200: 11–26.

[100] Javili, A, Saeb, S, and Steinmann, P. Aspects of implementing constant traction boundary conditions in computational

homogenization via semi-Dirichlet boundary conditions. Comput Mech 2017; 59: 21–35.

[101] Hashin, Z. On elastic behaviour of fibre reinforced materials of arbitrary phase transverse geometry. J Mech Phys Solids

1965; 13: 119–134.

[102] Walpole, LJ. On bounds for the overall elastic moduli of inhomogeneous systems—I. J Mech Phys Solids 1966; 14:

151–162.

[103] Weng, GJ. Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. Int J Eng Sci 1992; 30: 83–92.

[104] Hashin, Z. Analysis of composite materials—A survey. J Appl Mech 1983; 50: 481–505.

[105] Savvas, D, Stefanou, G, Papadrakakis, M, et al. Homogenization of random heterogeneous media with inclusions of

arbitrary shape modeled by XFEM. Comput Mech 2014; 54: 1221–1235.

[106] Ghosh, S, Lee, K, and Moorthy, S. Multiple scale analysis of heterogeneous elastic structures using homogenization

theory and Voronoi cell finite element method. Int J Solids Struct 1995; 32: 27–62.

2984 Mathematics and Mechanics of Solids 24(9)



Appendix

Notation

A Piola tangent

B Body of the domain

F Deformation gradient

f Volume fraction

N Unit normal vector

P Piola stress

t Traction vector

k Bulk modulus

l First Lamé parameter

m Second Lamé parameter

n Poisson ratio

u Nonlinear deformation map

c Free energy density

∂B Boundary of the domain

Subscripts and superscripts

f�gD Dirichlet part of f�g
Mf�g Macroscopic f�g

f�gN Neumann part of f�g

f�gP Prescribed f�g

f�gt f�g at spatial configuration

f�g
0

f�g at material configuration

Abbreviations

CCA Composite cylinder assemblage

DBC Displacement boundary condition

HSB Hashin–Shtrikman bounds

PBC Periodic boundary condition

RVE Representative volume element

TBC Traction boundary condition
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