Supporting Information

Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires

Yue-Ping Fang,[†] An-Wu Xu,^{*,†} Rui-Qi Song,[†] Hua-Xin Zhang,[†] Li-Ping You,[§] Jimmy C. Yu,[‡] Han-Qin

Liu[†]

Contribution from [†]School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510275, China [‡]Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong

Kong, China

[§]Electron Microscopy Laboratory, Peking University, Beijing, 100084, China

Corresponding author: A. W. Xu, E-mail: cedc17@zsu.edu.cn

Figure S1. XRD patterns of the obtained hexagonal $LnPO_4$ (Ln = La \rightarrow Dy, from bottom to top) nanowires.

Figure S2. XRD patterns of the as-synthesized tetragonal (Ho \rightarrow Lu, Y)PO₄ crystals.

Figure S3. TEM images of the obtained hexagonal $NdPO_4$ (c), and $EuPO_4$ (d) nanowires or nanorods. (e) SEM image of the obtained hexagonal DyPO₄ nanowires.

Figure S4. (a) TEM image of the obtained $GdPO_4$ nanowires. (b) HRTEM image of a single nanowire with the clear lattice fringes of [001] with spacing d = 0.633 nm, and [100] with spacing 0.596 nm. Inset in (b) The corresponding electron diffraction shows a single crystal recorded from the [010] zone axis.

Figure S5. (a) Low-magnification TEM image of the obtained $DyPO_4$ nanowires. (b) TEM image of a single nanowire. (c) HRTEM image of a single nanowire with the clear lattice fringes of [001] with spacing d = 0.627 nm, and [100] with spacing 0.585 nm. Inset in (b) The corresponding electron diffraction shows a single crystal recorded from the [010] zone axis.

Figure S6. EDS spectrum of the obtained $GdPO_4$ nanowires (a) and $DyPO_4$ nanowires (b). Cu peak raised from the TEM grid.

Figure S7. FTIR spectra of hexagonal $LnPO_4$ (Ln = La \rightarrow Dy) nanowires/nanorods (a) and tetragonal (Ho \rightarrow Lu, Y)PO₄ particles (b).

Figure S8. The XPS spectra of the obtained hexagonal LaPO₄ nanowires. (a) Survey XPS spectrum. (b) La 3d. (c) P 2p. (d) O 1s.

Figure S9. XRD patterns of monoclinic $LnPO_4$ (Ln = La \rightarrow Tb) products produced from as-made hexagonal $LnPO_4$ nanowires/nanorods after calcination at 900 °C.

Figure S10. XRD patterns of tetragonal $DyPO_4$, YPO_4 and $HoPO_4$ products obtained from as-prepared hexagonal $DyPO_4$, tetragonal YPO_4 and $HoPO_4$ samples after calcination at 900 °C.

Figure S11. TEM images of monoclinic $LnPO_4$ nanowires/nanorods obtained by calcination of asmade corresponding products at 900 °C. (c) $PrPO_4$, (d) $DyPO_4$.