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ABSTRACT  

E3 ligases regulate key processes, but many of their roles remain unknown. Using Perturb-seq, 

we interrogated the function of 1,130 E3 ligases, partners and substrates in the inflammatory 

response in primary dendritic cells (DCs). Dozens impacted the balance of DC1, DC2, migratory 

DC and macrophage states and a gradient of DC maturation. Family members grouped into co-

functional modules that were enriched for physical interactions and impacted specific programs 

through substrate transcription factors. E3s and their adaptors co-regulated the same processes, 

but partnered with different substrate recognition adaptors to impact distinct aspects of the DC 

life cycle. Genetic interactions were more prevalent within than between modules, and a deep 

learning model, comβVAE, predicts the outcome of new combinations by leveraging modularity. 

The E3 regulatory network was associated with heritable variation and aberrant gene expression 

in immune cells in human inflammatory diseases. Our study provides a general approach to 

dissect gene function. 
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INTRODUCTION 

Despite systematic efforts in genetics and genomics, our knowledge of the function of many 

genes remains limited, especially those from large gene families, where the general molecular 

function may be inferred from sequence features, but the specific mechanism, biological process, 

cellular context and physiological impact of individual genes and their combinations often 

remain partly or completely unknown. Multiple approaches can help decipher individual gene 

function, including Genome-Wide Association Studies (GWAS) to relate causal genetic variants 

to quantitative traits1; forward genetic screens followed by phenotypic assessment, including cell 

viability, images or molecular profiles2; and guilt-by-association approaches, based on similarity 

in molecular patterns between a gene of interest and other genes. Despite their power and utility, 

each of these approaches has some limitations. Genetic association studies are often limited by 

the modest effect sizes associated with common variants in human populations3; correlative 

approaches provide suggestive associations but not causal relations; and forward genetic screens 

have typically had to pre-define the phenotype of interest, such as cell viability4 or a cellular 

marker5,6. Finally, all approaches are challenged at deciphering genetic interactions, due to 

limited statistical power or experimental scale to test exponentially large numbers of 

combinations. 

 

Large protein families, such as E3 ubiquitin ligases (“E3s”), are an important example of this 

challenge. The human genome codes for >600 different E3s responsible for catalyzing the 

ligation of ubiquitin (Ub) to substrates in almost every biochemical pathway7, including many 

immune functions8. GWAS have implicated variants in E3 ligase genes in many diseases, 

including inflammatory and autoimmune diseases9,10, but characterizing their specific cellular 
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roles remains challenging, as is determining their inter-relationships. In particular, dendritic cells 

(DCs) play a key role in initiating immune responses, including multiple inflammatory and 

autoimmune diseases11,12, and heritable variants in multiple genes in DCs contribute to their 

aberrant inflammatory signaling in disease, including several axes that may be targeted 

therapeutically13. While previous studies implicate different E3 ligases in the DC inflammatory 

response to lipopolysaccharide (LPS)5, relatively little is known about the E3 circuit in these or 

other primary immune cells, as many studies focus on transformed cancer cell lines. 

 

Recent advances in combining pooled genetic perturbation screens with rich, single cell readouts, 

especially single cell RNA-seq (scRNA-seq) in Perturb-Seq assays, open opportunities to dissect 

the function of genes and gene combinations from large gene families14–24. In Perturb-Seq 

screens, the perturbed genes can be partitioned into co-functional modules, based on the 

similarity of their effects across many genes, controlling co-regulated programs of genes 

responding similarly across multiple perturbations16,17. Moreover, any diversity in cell subsets or 

processes, such as the cell cycle or differentiation, is naturally captured in the screen16. Most 

Perturb-Seq studies to date, and especially the very few done in primary cells, have analyzed up 

to a few dozen perturbations14–22, with a recent notable screen of thousands of genes but only in a 

transformed cell line23.  

 

Here, we used Perturb-seq at scale to screen the function of each of 1,130 genes spanning E3 

ligases, E3-like proteins and their interacting partners and substrates in the inflammatory 

response to stimulation with LPS in primary mouse bone marrow derived dendritic cells 

(BMDCs). The cells in one experiment spanned DC1, DC2, and migratory DC (mDC) subsets, a 
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gradient of DC maturation, and a range of gene programs, allowing us to decipher the role of E3 

ligases in multiple contexts simultaneously. A regulatory model distinguished six co-functional 

modules impacting eleven different programs of co-regulated genes, showing which E3 ligases, 

adaptors and substrate recognition adaptor proteins regulate each process in DCs, capturing 

known associations and making many new functional annotations. Computational integration of 

the regulatory (genetic) model with physical protein-protein interactions and transcription factor 

(TF)-target genes relations shows that the regulatory model was congruent with physical 

mechanistic interactions. E3s and their physically interacting partners were enriched in the same 

co-functional module, and the programs they regulated were enriched for targets of specific TFs, 

highlighting multiple paths from E3s and complex members through TFs to different DC 

processes they regulate. Moreover, the circuit was modular, such that Cullin-RING ligases (the 

largest subfamily; >200 members) and their known adaptors co-regulated the same processes, 

but combined with different substrate recognition adaptor proteins to control distinct aspects of 

the DC life cycle. The circuit was also congruent with human disease biology, with both co-

functional modules and their regulated programs enriched in heritability for risk immune and 

inflammatory diseases. Leveraging our large screen’s design to also randomly sample 

combinations of perturbations, we found that intra-module (non-additive) genetic interactions are 

more prevalent than inter-module ones and then used the modular architecture to devise 

com�VAE, a new deep learning model that predicts genetic interactions. Our study offers a 

general scalable approach to dissect gene function, including physiological functions for dozens 

of E3s and related genes, congruent physical circuits, principles of modularity in the regulatory 

and molecular architecture, characterization and prediction of genetic interactions, and an overall 
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model of the inflammatory response to help interpret human genetics signal at unprecedented 

resolution.  

 

RESULTS 

A systematic screen of E3 ligases in immune dendritic cells 

To study the role and circuitry of members of the large gene family of E3 ligases in 

inflammatory responses, we curated a comprehensive set of 1,137 genes encoding E3s and 

related proteins to screen them by Perturb-seq (Table S1-2; STAR Methods). These included 

382 genes with ‘E3 activity’ designation in the Integrated Annotations for Ubiquitin and 

Ubiquitin-like Conjugation Database (iUUCD 7), such as proteins from RING, HECT, U-box, 

PHD, RBR, and other families; 509 genes with ‘E3 adaptor’ designation in iUUCD, such as 

those from DWD, BTB, APC, Cullin, BC-box, F-box, DDB1, and other families; 6 genes with an 

annotated ubiquitin binding domain and one with a ubiquitin-like domain (Rbbp6) also from 

iUUCD; and 239 genes based on an NCBI search for ‘E3 activity’, capturing other enzymes in 

the ubiquitylation cascade (E1s, E2s), known E3 substrates (e.g., Tp53, Ikbke, and Cebpb), and 

members of relevant signaling networks regulated by E3 ligases (e.g., TLR and TNF signaling). 

We synthesized and screened guides targeting 1,130 of the genes (we could not confidently 

design gRNAs for 7 putative pseudogenes). 

 

We optimized Perturb-seq for large scale screening and used it to screen the 1,130 genes, 

perturbed by 3,390 targeting guides, profiling 838,201 individual BMDCs, after 3 hours of 

treatment with LPS (Figure 1A). We chose the 3h time point because the DC transcriptional 

response to LPS has a single wave, peaking around 3hr for mature mRNA at both the population 
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and single cell level, and is optimal for observing RNA expression effects5,25–30, whereas protein 

level changes occur later26. We isolated 54 million cells from the bone marrow of Cas9 

transgenic mice31, treated them with GM-CSF to differentiate them towards BMDCs and, on day 

2, transduced them at a planned multiplicity of infection (MOI) of 0.2 with a pooled lentiviral 

library of 3,390 sgRNAs targeting the 1,130 genes (3 guides per gene) and 330 control guides 

(165 targeting intergenic regions and 165 non-targeting). We designed a new Perturb-Seq vector 

(pRDA122; Figure 1A) with a capture sequence appended to the 3’ terminus of the gRNA 

scaffold sequence to enable direct capture of CRISPR gRNAs for scRNA-seq (STAR Methods), 

compatible with feature barcoding for droplet-based 3’ scRNA-seq24. We continued to 

differentiate the transduced cells for another 7 days, when they are predominantly 

BMDCs25,30,32,33, and then treated them with LPS. At 3 hours post-LPS treatment, we sorted 

mKate2+Cas9-2A-EGFP+ cells, loaded 2.32 million onto 46 channels using cell hashing and 

“super-loading”34,35 (Figure S1A-D), and performed scRNA-seq. We obtained profiles from 

1,071,671 non-empty droplets (EmptyDrops 36 FDR < 0.01, STAR Methods), containing 

838,201 single cells and 233,470 multiplets, followed by dedicated PCR to detect the guide RNA 

in each cell (STAR Methods). After QC and guide assignment, we retained 519,535 single cell 

profiles assigned with one or more gRNA (targeting or control; detected MOI of 1.2) for our 

main analyses, followed by analysis of 177,871 cells with multiple perturbations with dedicated 

methods below, as well as applying a compressed sensing approach to all the multiplets in a 

companion study (Yao et al, bioRxiv 2023). As reference, we also profiled a total of 10,347 

unperturbed cells, encompassing both LPS stimulated and unstimulated cells. 

 

An end-to-end computational pipeline for large Perturb-seq screens 
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To analyze large screens, we developed PerturbDecode, for end-to-end, automated analysis in 

four consecutive pillars (Figure 1B and S1E, STAR Methods): (1) data QC and preprocessing; 

(2) identification of the effects of perturbations on genes; (3) learning the regulatory topology of 

perturbed and impacted genes for single and/or combinatorial perturbations; and (4) relating the 

regulatory (genetic) topology to physical interactions and human genetics (STAR Methods). 

Briefly, in pre-processing, PerturbDecode addresses hashing and feature barcoding assignment, 

detects depleted feature barcodes and cells with multiple guides and removes outliers. Next, it 

efficiently identifies impactful guides and impacted cells16, by estimating the effect of each guide 

on each gene with a negative binomial linear regression model, accounting for confounders 

(STAR Methods). It retains impactful guides defined as those with effects that are significantly 

similar to those of at least one other guide targeting the same gene (vs. a background of all 

guides), and iteratively identifies and retains impacted cells16. To determine the impact at the 

level of perturbed genes, PerturbDecode uses a mixed effects negative binomial linear regression 

model, with cell subsets inferred by initial clustering as random effects and the feature barcode 

matrix as the set of fixed effects, correcting for confounders (STAR Methods). It retains 

perturbations affecting a significant (FDR < 0.1) number of genes (STAR Methods), clusters the 

resulting coefficient matrix to generate co-functional modules and co-regulated programs, and 

decomposes the matrix by independent component analysis (ICA) to infer latent independent 

processes that could generate the observed perturbation responses. For combinatorial 

perturbations, it estimates the effect of genetic interactions and predicts the impact of unseen 

combinations. Finally, it includes multiple post-hoc analytics to relate the learned model to 

molecular circuits (protein-protein and TF-target interactions) and to human genetics data.  
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Perturb-Seq screen yields impactful perturbations consistently across guides 

Estimating the impact of each of the 3,204 targeting guides (detected in at least 20 cells) on the 

expression of each of 6,685 genes (expressed in at least 5% of cells) showed that the correlation 

in effect sizes between cells with guides targeting the same gene was significantly higher than 

between guides targeting different genes or between targeting and control guides (P-value < 10-

16, Kolmogorov-Smirnov (KS) test, Figure S1F). Focusing on concordant guides (STAR 

Methods), we retained 2,263 KO guides targeting 1,031 genes for downstream analysis and 

learned a model at the targeted gene (rather than guide) level (STAR Methods). The average 

number of genes significantly affected by each perturbed gene (FDR < 0.1, STAR Methods) 

was significantly higher than for controls (36.91 vs. 0.78 (non-targeting) and 1.04 (intergenic) on 

average, P < 2.2*10-16, one-sided Wilcoxon rank-sum test, Figure S1G, STAR Methods). Of 

the 1,031 targeted genes, 544 were also among the 6,685 analyzed genes: the vast majority had 

491 had a nominal negative effect on their own expression, 137 of them significantly (FDR< 0.1, 

Figure S1H), and only four had a significant positive effect. Expressed (detected) E3s affected 

significantly more genes than undetected ones (P < 10-4, one-sided non-parametric Wilcoxon 

test, Figure S1J) and the mean expression of the targeted (KO) gene in unperturbed cells was 

modestly but positively correlated with the number of genes impacted by their perturbation 

(Spearman’s ρ = 0.22, P < 1.5*10-10, Figure S1I). Overall these results suggest that CRISPR-

induced indels overall caused nonsense mediated decay (NMD) of the respective transcripts, for 

expressed E3s and family members, as well as with prior observations that some CRISPR-

knockout generated indels having poor NMD 5,16 or even (futile) transcriptional compensation37.  

 

DC1-, DC2-, migratory DC-, and macrophage-like cells are screened jointly 
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BMDC populations are heterogeneous, and previous studies29,30,38–40, including our earlier 

Perturb-Seq screen in this system16, all highlighted the presence of different subsets, including 

cells expressing macrophage-like signatures, and “cluster-disrupted” DCs30,41. Because Perturb-

Seq characterizes any cell diversity post hoc, it assesses these multiple phenotypes 

simultaneously16. 

 

The 519,535 perturbed single cell profiles partitioned into ten clusters (Figure 1C-H and S2A, 

Table S3 and S4), which included multiple DC2-like subsets (high expression of Cd9, Il1b, and 

Sirpa (but also Irf4 and Il6); Figure 1C,D, clusters 1-6; Figure S2A,B); migratory DC (mDC)-

like cells (high expression of Ccr7, Fscn1, Il4i, Socs2, and Relb (but not Pdl2); cluster 7, Figure 

1C,E and S2A,C); DC1-like cells (high expression of Clec9a, Xcr1, Batf3, Irf8, Tap1, Flt3, and 

Wdfy4 but also Cd8a and Tlr3, and no expression of pDC marker genes (Tcf4, Tlr7, and Tlr9; 

additionally, Siglec-H was not among detected transcripts) Figure 1C,F and S2A,D,E), and 

macrophage-like cells (high expression of M1 markers Il6, Il1b, and Fpr2 and moderate 

expression of M2 markers Chil3, Fn1, and Mc1; Figure 1C and S2A,F,G). The three main DC 

subsets also followed a gradient of expression from more mature DC-like (most prominent in 

mDCs) to macrophage-like (more prominent in some DC2s) signatures (Figure 1H and S2H,I). 

Each DC2-like cell subset had additional distinguishing markers (Figure S2A). Cycling cells 

(Figure 1C,G, Cluster 9, 13%) expressed signatures of either DC2s or macrophages/monocytes 

(Figure 1D,G,H and S2H,I). These cycling monocyte-derived macrophages are consistent with 

previous reports38,42. A very small subset (460 cells; 0.08%) expressed a neutrophil signature 

(Figure 1C and S2A, cluster 10). DC2-like, DC1-like, mDC-like, and cycling monocyte-derived 

macrophages were also present in genetically unperturbed cells, with and without LPS 
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stimulation (Figure S2J-W), but at different proportions, with the fraction of macrophage-like 

cycling cells lower in genetically unperturbed LPS stimulated cells than in either unperturbed 

unstimulated DCs or perturbed stimulated DCs (Figure S2W, P-value < 2.2*10-16, one-sided 

Fisher’s exact test, STAR Methods), and the fraction of mDCs in unperturbed cells (stimulated 

and unstimulated) higher than in perturbed stimulated DCs (Figure S2W, P-value < 2.2*10-16, 

one-sided Fisher’s exact test). The increase in monocyte-derived macrophages in genetically 

perturbed cells (Figure S2W), suggests that the macrophage-like state is typically repressed by 

LPS stimulation but remains accessible upon perturbation.  

 

Multiple E3 ligases impact specific DC cell subsets or differentiation 

Sixty-five (65) genes were targeted by two or more guides that were significantly depleted from 

BMDCs vs. the input guide library distribution, suggesting that these genes are essential for 

BMDC survival and proliferation5,16 (Table S5, STAR Methods; P-value<0.05, considering a 

background of the corresponding change in control guides). Indeed, these were enriched for 

regulation of cell division (e.g., Aurka, Myc, Plk1, Pou5f1, Prc1, Tle6, Wdr5, Ybx1), including 

Mdm2 (all three guides depleted), an E3 ligase that ubiquitylates p53 as an active heterodimer 

with Mdm4 and is essential for cell cycle regulation43. Some perturbations affected the 

proportions of all cycling cells of a specific type (Figure S2X), such as enrichment in cycling 

macrophages of guides targeting the tumor suppressor and E3 ligase substrate Trp53, and 

enrichment in cycling DC1-like cells of guides targeting the substrate Nf1, a tumor suppressor in 

myeloid cells that affects growth sensitivity to GM-CSF44 and regulates proliferation 

regulators45. Because different subsets were enriched for cycling cells (Figure 1G), some of 

these perturbations also shifted subset proportions. For example, consistent with previous 
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reports46, Trp53 KO were enriched in cycling monocyte-derived macrophages, and depleted in 

non-cycling DC2s; and its negative regulator E3 ligase Mdm4 had the opposite pattern (Figure 

1J and S2X).  

 

Perturbation in 64 genes, including 29 E3s and complex members significantly affected the 

relative proportion of the main cell subsets, especially the balance of DC2s vs. cycling 

macrophage-like cells (Figure 1I,J, STAR Methods, Table S6; FDR < 0.15, one-sided Fisher’s 

exact test). Guides depleted in cycling macrophage-like cells vs. DC2s included the cullin E3 

ligase Cul3 and its substrate adaptor Keap1, which ubiquitylates Nrf2, regulating redox response 

and inflammation47,48; Vhl and Rack1, which togerher complex with Cul249 and ubiquitylate 

Hif1a; and Mdm4, which interacts with Mdm2 to stimulate p53 ubiquitylation50. Vhl, Cul3, 

Keap1 and Mdm4 were not previously described as regulators of DC2 differentiation, but 

deletion of Nrf2 impacts both tissue resident and BMDC functions51 and Rack1 depletion in 

myeloid cells protects against viral infection in mice without affecting the number of 

F4/80+CD11b+ myeloid cells52. Conversely, guides enriched in cycling monocyte-derived 

macrophages vs. DC2s included those targeting Cul5, March6, and Wdr26, E3s not previously 

recognized as regulators of DC differentiation (Figure 1I,J).  

 

Other enrichments and depletions further highlight the roles for E3s and related proteins in 

specific cell subsets. For example, mDCs were enriched for guides targeting the E3 ligase Traf2 

and the TF CEBPB and depleted for guides targeting DIDO. Traf2 plays a role in TNF-mediated 

NF-KB and MAP kinase signaling, and TNF injection can increase DC trafficking to lymph 

nodes53, suggesting a potential role for Traf2 in regulating DC migration. Enrichment of guides 
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targeting CEBPB in mDCs is consistent with our earlier findings and CEBPB’s natively low 

level in those cells (Figure 1I,J)16. Concomitantly, DC2.2s where CEBPB expression is higher, 

are enriched for guides targeting Rfwd2 (COP1), which in turn targets CEBPB for degradation54. 

Conversely, guides targeting Dido1, a gene previously characterized only in embryonic stem cell 

differentiation55,56, were depleted in mDCs, suggesting a novel role in mDC differentiation 

(Figure 1I,J). In another example, guides targeting the E3 ligase Arih2, the E3 ligase substrate 

Nf1, and the E2 enzyme Ube2f were enriched in DC1s and macrophages and depleted in DC2s 

(Figure 1I,J). This is consistent with and expands on their established roles: Arih2 ubiquitylates 

substrates of Ube2f, the Nedd8 E2 that mediates neddylation of Cul5-Rbx257, causing 

degradation of the NF-KB inhibitor Ikbb in DCs58, and inactivating mutations in Nf1 lead to 

uncontrolled cell growth and plasmocytoid DC (pDC) neoplasms59.  

 

Many guides, including those targeting members of the WD-repeat protein subfamily, were 

specifically enriched in different DC2 subsets, including multiple members of a single complex 

in the same subset, suggesting that distinct DC2 subsets are controlled by different pathways 

(FDR < 0.15, one-sided Fisher’s exact test, Figure 1J and S2Y, Table S6). For example, 

perturbations of each of the four members of the KEAP1:NEDD8-CUL3:RBX1 complex were 

specifically enriched in DC2.4s. DC2.3s were enriched for guides targeting E3 ligase substrates 

and members of the mTOR pathway, including mTORC2 (Mtor and Rictor) and mTORC1 (Mtor 

and Rptor), consistent with and refining the role of mTor signaling in regulating differentiation 

and immune functions in DCs60. DC2.2s were enriched for guides targeting Fbox E3 ligase 

component members, including Fbxo42, a regulator of the TAK1 pathway that activates p3861, 

and Fbxw7, a regulator of antiviral immunity in macrophages62. DC2.1s were enriched for guides 
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targeting Eif3f, Naca, Rfwd2 (Cop1), and Pparg. In addition to its role as a TF, Pparg is an E3 

ligase that targets p6563 and regulates lipid metabolism in DCs, leading to ferroptosis and 

impairing maturation64, and DC-T cell interactions in type-2 immunity65. DC2.5s were enriched 

for guides targeting Trim33, an E3 that interacts with Pu.1 (SPI1) and regulates the NLRP3 

inflammasome, LPS response, and macrophage activation66,67, as well as for guides targeting 

Ube2i (Ubc9), an E2 SUMO-conjugating enzyme with a role in lupus, regulating sumoylation-

based suppression of type I IFN and pDCs68. Thus, we identified regulators of six DC2 substates, 

including multiple complex members similarly associated with the same state(s). 

 

Six co-functional modules of E3 ligases regulate eleven gene programs  

To relate these broad changes to regulatory mechanisms, we next learned a regulatory model 

associating 329 impactful perturbed genes (affecting the level of at least 15 genes) to 1,041 

significantly impacted targets (affected by at least four of the 329 perturbations), and clustered 

the perturbed genes and impacted targets (STAR Methods) into six co-functional gene modules 

(M1-6) and eleven co-regulated gene programs (GP1-11), respectively (Figure 2 and Table S7-

8, STAR Methods).  

 

The eleven programs (Figure 2C,D and S3A-K, Table S8) consisted of genes strongly co-

regulated across the perturbations and were enriched for different immune and cellular processes. 

We annotated the programs by their enrichment in functional categories and previously described 

signatures (Table S3,8) as response to oxidative stress (GP1), ER stress response (GP2), 

pyruvate metabolism (GP3), motility and cell maintenance (GP4), protein homeostasis and 

phagocytosis (GP5), translation (high in mDCs and DC1s) (GP6), mDCs (GP7), TNF/LPS 
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response (GP8), autophagy regulation and inflammation (GP9), MHC-I antigen presentation 

(GP10), and DC2 and MHC-II antigen presentation (GP11)39. Some programs are expressed 

broadly across all cell subsets (e.g., GP5, Figure S3E,M) and others are quite specific (e.g., GP6 

in DC1s and mDCs; Figure S3F,M). The programs were not necessarily independent of each 

other: some were regulated in anti-correlated ways (e.g., opposite regulatory effects on GP6 

(DC1/mDC expressed translation) vs. GP9 (autophagy and inflammation) and 11 (DC2 and 

MHC-II presentation)), while others were regulated in similar (though not identical) ways (e.g., 

GP4 (motility and cell maintenance), GP5 (protein homeostasis and phagocytosis), and GP6 

(translation)) (Figure 2C).  

 

The programs refined ones we previously defined in the same system under perturbation of 24 

TFs16 (e.g., P2 genes partition into mDC (GP7) and translation (GP6)) and uncovered new 

functional groupings (e.g., DC2 MHC-II antigen presentation (GP11), response to ER stress 

(GP2), and pyruvate metabolism (GP3)) (Figure S3L), showing that the expanded scope and 

nature of perturbations could reveal additional regulatory processes.   

 

Regulatory patterns and targets reveal the functional roles and co-associations of E3s 

The six co-functional modules of 329 regulators each impacted a different subset of programs 

(Figure 2C,D), such that modules M1 and 2 were generally positively correlated with each other 

and negatively correlated with modules M3, 4, and 5, reflecting opposing functions. 

 

The co-functional modules included 97 E3 ligases, 65 E3 complex members and 3 ubiquitin-like 

domain proteins, 85 of which did not have prior literature evidence in DCs or inflammation, and 
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can be deemed as novel functional annotations (Table S9), based on their co-membership and 

their target programs (Figure 2D). Three of the E3 ligase or complex members in the model are 

“authorities” in the E3 circuit, as their expression is impacted (positively and negatively) by a 

particularly high number of other E3s (Figure 3A and S4A,B): E3s Rack1 (which targets Hif1a 

and BimEL49,52,69) and Rnf128 (Grail; regulates Tbk1 and interferon and antiviral response70–72), 

and E3 complex member Socs3 (regulates Jak2 and gp130 and response to cytokines). All three 

have known roles in DC biology or inflammation: Rack1 suppresses type 1 IFN responses 

rendering mice more susceptible to viral infection52, Rnf128 targets the DC maturation marker 

Cd83 for degradation72, and Socs3 regulates JAK/STAT signaling, inflammation and 

macrophage polarization73. Notably, only 14 of 329 regulators were previously identified in a 

genome-wide CRISPR screen for regulators of TNF protein expression in the same system5, and 

these were further distinguished by our model into different modules, with most (9 of 14) in M6 

(e.g., Ube2f, Rbck1, Rnf31, Spop, Traf6, and Nedd8 (positive regulators), and Rc3h1 (negative 

regulator)). This shows the expanded power of functional discovery based on comprehensive 

expression profiles compared to one highly validated reporter/marker.  

 

M1 regulators strongly activated ER stress (GP2), protein homeostasis and phagocytosis (GP5) 

and translation (GP6) through the action of regulators of ribosome biogenesis (predicted E3s 

Bop1, Wdr36 and Nol10, Cul4 substrate receptor Dcaf11 (VprBP); processome members E3 

adaptors Dcaf13 and Wdr33), including those involved in the stress response (predicted E3s 

Wdr43, Wdr75, and Utp18), and cellular migration (E3 Aamp, predicted E3 Bop1) (Table S9). 

This is consistent with the enrichment of ribosome biogenesis and stress genes in the translation 
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(GP6) and ER stress (GP2) programs. Additionally, M1 regulators repressed the mDC (GP7), 

TNF/LPS response (GP8), and MHC-I antigen presentation (GP10) programs.   

 

M2 regulators had generally similar impacts to those of M1, repressing MHC-I antigen 

presentation (GP10) and the TNF/LPS response (GP8) (albeit more weakly) and activating 

protein homeostasis and phagocytosis (GP5) and DC1/mDC expressed translation (GP6). 

Consistently, they included multiple negative regulators of NFkB and interferon signaling (E3 

complex member Bid, CopA and Copb2, Ikbkg, the SUMO E3 HDAC4 and E3 Mib1 (which 

prevent or signal Ikba degradation, respectively), predicted E3 Nsmaf, E3 Ppp1r11 and the 

substrate Map3k7), and known regulators of cell differentiation in general (Bptf, Dido1, Gemin5, 

E3 and TF Zbtb7a), and of DC differentiation and maturation in particular (Ogt, Vdr (regulated 

by Mdm2), and TFs and predicted E3s Zbtb14 and Zbtb49), as well as the cell cycle and cell 

growth E3s APC (Anapc13, Cdc27, and Fzr1), CCNF, E4f1, Ring1, and Brca1; E3 adaptor 

Ddb1; E3 complex members Mdm4 and Pa2g4; DUB, Wdr48, and Fbxo11. Module members 

included multiple components of one complex and pathway, such as Cul4b and Ddb1 from the 

same cullin E3 complex (below).  

 

M3 regulators had largely opposite effects to M2 and M1: they activated the TNF/LPS response 

(GP8) and autophagy and inflammation (GP9), and repressed translation (GP6) and mDCs 

(GP7). Module members included many known regulators of inflammation (substrate Gnb1, the 

E3 and TF Pparg; E3s Traf3 and Wdr82 (which regulates TRAF3)), mTOR signaling (E3s Rictor 

and Traf2, E3 interacting partner Mlst8; substrates Mtor, Rheb and Rptor)74–77, autophagy (E3 

Rnf216 (Triad3); predicted E3s Pik3r4 and Wdfy3), and ER transport (E3 Syvn1, substrates 
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Sec13 and Sec31a). In particular, the module includes Traf2, Pparg and Cebpb. CEBPB is known 

to activate DC2s and repress mDCs16, and guides targeting Traf2 and CEBPB were consistently 

enriched in mDCs (Figure S1I,J). CEBPB and PPARG physically interact78 and their targeting 

guides were enriched in CD2.2 cells. Other regulators include PAF1, which induced Tnf 

expression and inflammatory signaling (Figure 2D), and regulators of ER transport (Sec13, 

Sec31a, and Syvn1), all previously identified and validated as positive regulators of TNF 

expression in this system5. Our model now further relates them to mTOR pathway and 

autophagy regulators and to repressing mDC-like states.  

 

M4 regulators activated ER stress (GP2), pyruvate metabolism (GP3), protein homeostasis and 

phagocytosis (GP5), TNF/LPS response (GP8), and DC2 MHC-II antigen presentation (GP11) 

and repressed oxidative stress (GP1) and translation (GP6). They included DNA repair and 

splicing regulators, such as the E3s Plrg1 and Prpf1 and the predicted E3 Cdc40 (Prp17), 

suggesting a link between DNA repair and splicing and metabolism/translational control.   

 

M5 regulators activated autophagy and inflammation (GP9), MHC-I antigen presentation 

(GP10), and DC2 MHC-II antigen presentation (GP11), and repressed pyruvate metabolism 

(GP3), motility and cell maintenance (GP4), translation (GP6), and LPS/TNF response (GP8), 

through the action of regulators of antigen presentation or inflammation (SUMO E3 Pias1 and its 

substrate Prdm1 (negative regulators of MHC-II) and the substrates Syk, Nfkb1, and Tnf), 

endocytosis/trafficking (predicted E3s Wdfy2, Wdr81 and Wdr91, E3 March6), and negative 

regulators of CEBPB, the key DC2 TF (Rfwd2 (Cop1) and Det1 of the Cul4-Rfwd2-Det1 

complex)54,79–81. 
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Finally, M6 regulators activated mDCs (GP7) and TNF/LPS response (GP8) and repressed 

phagocytosis and granulation (GP1) and pyruvate metabolism (GP3), through the action of 

multiple cytokines and positive regulators of NF-kb (LUBAC E3s Rbck1 and Rnf31 (whose 

substrate Ikbkg is in “opposing module” M2), the substrate Rela; E3s Spop, Rc3h1, Traf6 and 

Cbl; Tlr4; and E3 complex member Bcl6), positive regulators of cytoskeleton organization and 

migration (RING-like Phf882–84, Ub and SUMO substrate Ptpn185), and E3 Keap1, a negative 

regulator of redox and stress that targets Nrf286–89. M6 members also included multiple cullin 

and RING-like ligases (Cul1, Cul3, Cul5, Keap1, Rnf31, Rbck1, Brap, Arih2, Traf6), and help 

assign putative roles to other E3s, such as Brap, a GWAS gene for psoriasis and carotid 

atherosclerosis, which activated inflammatory responses in human aortic smooth muscle cells90,91 

but did not have a previously known cellular role in immune cells.  

 

The co-functional modules also impacted global shifts in cell state/type distributions, 

consistently with the programs they regulate. For example, cells perturbed for M5 regulators 

were associated with a shift from naive DCs to macrophage-like cells, consistent with the 

module’s role as an activator of the DC2 / MHC-II presentation (GP11) program, while 

perturbation to M1 and M2 regulators had the opposite effect (Figure 3B,E and S4C,E,F, FDR < 

0.1, Fisher’s exact test). The co-functional modules also impacted distributions within one cell 

state/type. For example, different modules had distinct effects on the cells within DC2.1, DC2.2 

and DC2.3 subsets, (Figure 3C,D direction 2), orthogonally to the maturation gradient (Figure 

3C direction 1, Figure S4D). 
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Co-functional modules are enriched for physically interacting E3s  

We next asked if our genetic regulatory network can be aligned and consistent with molecular 

mechanisms, such as co-complex membership, physical interactions and impact of E3s on TFs 

that regulate gene expression directly. First, to relate the co-functionality of E3s and complex 

members to shared molecular mechanisms, we searched for known protein interactions between 

each pair of regulators (from the STRING database92, STAR Methods) and compared those to 

their module membership (Figure S4G). 

 

There was a significant enrichment of physical interactions between module members for four of 

the six co-functional modules (M1, 2, 4, and 6), as well as between one pair of modules (M3 and 

M5) (P<0.05, degree preserving permutation test, STAR Methods), suggesting that co-

functional effects are congruent with joint underlying molecular mechanisms. As expected, 

physical interactions between members of the same (different) module were generally associated 

with positive (negative) correlation in functional effects (Figure 3F and S4G). Such interactions 

include Gbr2, Ptpn11, and Rack1 (M1), Pparg, Crebbp, Ep300, Ankfy1, and Cul2 (M3); or Cul1, 

Skp1a, Rnf7, Fbxw1, Rbx1, Cul3, Nedd8, Arih1, and Keap1 (M6). Within components of the 

NFKB signaling pathway (Figure S4H), multiple known TNF activators (Rela, Rbck1, Rnf31; 

all from M6) both physically interact with TNF and have positively correlated effects, whereas 

several TLR/NFKB signaling inhibitors (Nfkb193, Cyld94, and Tab195; all in M5) have physical 

interactions but negatively correlated effects, showing consistency between the genetic model 

and molecular mechanisms.   
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The analysis highlighted basic “rules” of co-regulation between E3 cullin, adaptor, and substrate 

recognition adaptor proteins, where multiple components of each Cullin complex grouped 

together in the same module (except the common interactor Rbx1), while the Cullin substrate 

recognition adaptor proteins were in other modules, consistent with their specializing or directing 

Cullin E3 complexes to different substrates and pathways (Figure S4I). For example, the SCF 

core complex members Cul1, Skp1 and Rbx1 are members of M6, as is Cul3, but Cul1-Skp1-

Rbx1 substrate-specific adaptors or Cul3-Rbx1 adaptors are partitioned to multiple other 

modules (e.g., Cul1-associated adaptors Fbxl14 and Fbxl5 in M2; Fbxl13 and Fbx03 in M3; 

Fbxw7 in M5; and Fbxo33 and Fbxw11 in M6; Cul3-associated adaptors Klhl3, Klhl24, Klhl6 in 

M2, M3, and M5, respectively, and Cul5-associated adaptor Socs3 in M5; Figure S4I). 

Similarly, Cul4b and its adaptor Ddb1 are part of M2, but Dda1, which recruits and organizes 

substrate receptors with both Cul3 and Cul4 complexes, is in M6. Furthermore, each of the 

interacting pairs of Rbx1 and Arih1 and Cul5 and Arih2 are in M6, consistent with their physical 

interaction and known functional roles in forming highly specific neddylated CRLs57, but their 

expected adaptors were not (e.g., most F-box proteins for Cul1 and Arih1; except Fbxw7 and 

11). This highlights the versatility and modularity of the ubiquitin system, whereby different 

adaptors/receptors target different substrates regulating different aspects of DC lifecycle, and 

how a systematic Perturb-Seq screen and computational analysis can decipher this organization.  

 

E3 perturbation effects on gene programs explained by modulation of TF activities 

Next, we examined how the E3 ligases may propagate to the transcriptional level, by combining 

our genetic model with one associating TFs to their physical targets, to infer TFs whose activity 
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(as inferred from the expression of its known targets96,97) is impacted by each perturbation 

(STAR Methods).  

 

Overall, the 329 knockout (KO) perturbations were significantly associated with inferred 

changes in activity of 123 TFs (Figure S4J), with 32 TFs with the most prominent effects from 

41 E3 ligase and complex members (Figure 3G). Most notably, Cul3 and Keap1 perturbations 

decreased the activity of many TFs, including Nfkb1, Nfkb2, Rela, Relb, Jund, Irf1, Cebpb, 

Nfya, Klf4, Foxo3, and Foxo4  and increased the (inferred) activity of just four of the 32 highly 

regulated TFs: Atf6, Wt1, Srf, and Pax6 (Figure 3G box 1). Importantly, we show Cul3 and 

Keap1 perturbations increased (inferred) activity of the well known CUL3-KEAP1 substrate and 

master regulator of oxidative stress, Nrf2 (Figure S4J). The set of TFs whose activity was 

impacted by Cul3 and Keap1 perturbations was further partitioned to two subsets based on their 

opposing regulation by different adaptors and receptors. For example, Rack1, Dcaf13 and Vprbp 

perturbations increased the (inferred) activity of Foxo3/4, Klf4, Twist1, and Smad1 (Figure 3G, 

box 2), while perturbations of M6 E3s, including Spop, Traf6, Fbxw7, Fbxw11, and Cul1 

decreased the (inferred) activity of Irf1, Nfkb2, Nfkb1, Rela, Relb, Rel, and Jun (Figure 3G, box 

3).  

 

This analysis detects established links between E3s and regulated TFs, supporting its validity. 

For example, Hif1a activity increased following KO of any member of the E3 ligase complex 

VHL-TCEB1-TCEB2, which binds and ubiquitylates Hif1a for degradation98 (Figure S4J). 

Cebpb and Jun’s inferred activity increased in cells with KO of the E3 ligase Rfwd2 (Figure 

3G), a member of the CUL4-DDB1-DET1-RFWD2 complex that targets Cebp family TFs and 
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Jun for ubiquitination and degradation80. Indeed, Rfwd2 represses programs that are activated by 

Cebpb (GP8) or Jun (GP1 and 8) and are enriched for their bound targets (Figure S4K). Because 

Rfwd2 knockout similarly increases the (inferred) activity of Foxl2 and JunD, these could be 

additional Rfwd2 substrates. 

 

By relating joint TF targets, E3 targets and E3 regulated programs, we explain E3s impact on 

different programs through different mediating TFs. For example, by this analysis, Rela mediates 

Cul3 and Keap1 effects on GP7 and GP8, but not on GP1 (Figure 3H), and E3 Fbxw11’s 

impacts on GP7 (but not GP4) (Figure 3I). Notably, Cul3, Keap1, Fxbw11 and Rela itself are all 

members of M6, and the expression of Rela’s targets in GP7 is decreased when any of these 

regulators is perturbed (KO) in our screen (Table S8; Figure 2C,D). However, because KO of 

Cul1, Keap1 and Fbxw11 leads to (inferred) reduction in activity of Rela, it is unlikely that Cul3, 

Keap1 or Fbxw11’s effects is through targeting of Rela for degradation (see Discussion).  

 

Perturbed E3 ligases impact multiple statistically-independent pathways 

The effect of perturbing one gene on another gene’s expression can be due to various pathways 

with direct or indirect dependencies and indeed pairs of programs in our regulatory model are 

dependent, as reflected by their pair-wise positive and negative correlations (Figure 2C). To 

decompose the observed regulatory effects into a set of statistically-independent factors, we 

performed Independent Components Analysis (ICA)99 on the regulatory matrix, recovering 15 

independent latent factors whose weighted sums optimally explained the perturbation effects 

(Figure S5A-E, STAR Methods), and annotated them by enrichment in functional gene sets and 

known marker genes (Table S10). On average, the factors explained 35% of the variance of 
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observed effects of the 329 impactful regulators (27 explained well (>70%); 72 poorly (<20%), 

Figure 4A, bottom, STAR METHODS). The latent factors have little to no correlation 

(maximal Spearman  ρ = 0.14) and little overlap in highly loading genes (Figure S5B,G, 

maximum Jaccard similarity index = 0.09), but perturbed genes can affect multiple independent 

factors (Figure S5A,H, maximum Jaccard similarity index = 0.4).  

 

Each factor simultaneously captures both induced and repressed genes along with diametrically 

opposed regulators. For example, the LPS response factor (#5, Figure 4B-D) includes activation 

of LPS and TNF response genes and repression of genes more highly expressed in DC2s vs. 

mDCs and DC1s (Figure 4C,D). It is positively regulated by well-established activators of TNF 

and the LPS response (e.g., Rnf31, Traf6, Paf1, Ikbkg, Rela, Cebpb) 5, and repressed by known 

negative regulators (e.g.. Rfwd254), as well as by previously-uncharacterized regulators, both 

positively (E3 adaptor Skp1a) and negatively (E2 Ube2n; E3 substrate adaptor Smu1). The DC 

immune control factor (#6, Figure 4E-G) consists of inflammation and cytokine response genes 

in two opposing patterns, capturing the maturation gradient from immunostimulatory monocyte 

derived macrophages and DC2s to immunomodulatory mDCs genes, and its corresponding, 

diametrically-opposed regulation by E3 Traf2 and E3 adapter Ptpn11 vs. March6 and Fbxw7, 

respectively.  

 

Because one regulator can be associated with multiple ICA factors, this decomposition groups 

together different subsets of multi-subunit E3 complex members. For example, all four 

components of the Cul3-Skp1a-Rbx1-Nedd8 complex are associated as negative regulators of the 

response to oxidative stress factor (#2) (Figure 4H-J). Conversely, different combinations of 
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subunits of one complex are associated with different ICA factors, predicting how interactions of 

one core complex with different substrate recognition adaptor proteins can drive a variety of 

gene regulation programs (as also described above). For example, in the 

Rfwd2/Cul4a/Ddb1/Rbx1/Det1 complex, Rfwd2 (Cop1), the E3 substrate recognition adaptor 

protein that forms an active E3 complex, has outlier loadings indicating regulation of ICA 

Factors 3, 5, 9, 10, and 11 (Table S10). Other members of this complex regulate other factors, 

not impacted by Rfwd2 perturbation (e.g., Ddb1 regulates Factor 2, Table S10). Interestingly, 

while Rfwd2 and Det1 knockout are both similarly strongly associated with the same factors (#3, 

9, and 11), other complex members knockouts (Rbx1, Cul4b) have only weak associations in 

those same factors (Figure 4A, right panel). Thus, Rfwd2 or Det1 may interact with other E3 or 

cullin complex members, just as the Cul4 complex interacts with other substrate recognition 

adaptor proteins.  

 

Intra-module genetic interactions and inter-module additivity in combinatorially-

perturbed cells 

In the regulatory network, many of the E3s and other regulators impact the same genes and 

processes when perturbed individually, but, given the possible non-additivity of biological 

interactions, determining their effect if perturbed jointly (combinatorial perturbation) requires an 

additional experiment. In our large screen, 177,871 cells had more than one guide assigned (with 

10,244 cells with guides targeting two or more of the 329 singly-impactful regulators; Figure 

S6A), opening the way to test for such genetic interactions. However, because of random 

sampling from an enormous number of possible combinations, few to no cells were profiled for 

any specific combination, such that we could not determine the joint effect of any individual 
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combination with confidence. Instead, we reasoned that we can leverage the co-functional 

modules to group all cells perturbed by a pair of guides from a given pair of modules (including 

the same module) to gain statistical power to decipher genetic interactions between or within 

modules rather than between their individual constituent genes. We thus analyzed double 

perturbations in a setting where cells are assigned to perturbed modules instead of perturbed 

genes. (The few detected triply perturbed cells were removed prior to analysis, as were module 4 

perturbations given the very small number of cells.)  

 

The proportion of genes whose expression has a significant interaction term due to a 

combinatorial perturbation was much greater in intra- vs. inter-module combinations (Figure 

5A). Thus, when two genes within the same module (intra-module combination) were perturbed 

in the same cell, the combined effects on the expression of genes were often different than the 

sum, with a super-linear relationship in M1, M2, and M6 (Figure 5A,B, STAR METHODS). 

Conversely, when two genes from different modules were perturbed in the same cell (inter-

module combinations), the impact on most genes was additive (Figure 5A).  

 

At the level of expression of the individual affected genes, we found a range of patterns, with 

almost half (490 of 1,041 tested genes) with at least one significant interaction term (either 

positive (synergistic) or negative (antagonistic)) as a result of at least one of the 15 inter-module 

KO pair groups, and 650 with interaction terms in the five intra-module perturbation pairs (FDR 

< 0.1, Figure 5C,D and S6B,D,E, STAR METHODS). In particular, a joint perturbation of an 

M3 and M5 regulator yielded non-additive effects in many genes (Figure 5D), enriched for 

biosynthetic, translation, cytokine production, and inflammatory response genes. These included 
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buffering for translation (GP6) and MHC-I presentation (GP10) program genes; synergy for 

protein homeostasis and phagocytosis (GP5) program genes, and dominance for mDC (GP7) 

program genes (Figure 5D). Notably, the impacts of single perturbations in M3 and M5 

regulators are often correlated (Figure 2C right and 5D). Thus, similarly to the joint perturbation 

of two regulators from the same module, non-additive effects may be more prevalent for 

regulators from different modules but with similar effects on gene programs when individually 

perturbed.  

 

com�VAE predict combinatorial perturbations within and across modules 

We next asked how well the effects of the double knockouts can be predicted from profiles of 

single knockout cells. As a baseline, we first used a simple linear model (STAR METHODS) to 

assess the overall effects of each of the six co-functional modules on the 1,041 response genes, 

and predict the log2 fold changes of these genes in 20 pairwise module combinations by adding 

the individual KO group effects. As expected from our analysis above, additive effects explained 

most of the intra-module interactions quite poorly (Figure 5B), while a substantial fraction of the 

variance in fold changes was explained for some of the inter-module pair combinations (Figure 

S6F-H). Inter-module groups where the additive model performed worse involved pairs of 

perturbations where more target genes show significant interactions, such as M2-M5 and M3-M5 

(Figure 5A and Figure S6C,F-H), or those with fewer double KO cells, like M1-M4 (Figure 

S6A,F-H), which may have affected the estimation of the ground truth values. For genes with 

significant interaction terms, the additive model lost its predictive power in most of the module 

pairs (Figure S6F-H), including a change in effect direction for many genes between prediction 

and observation (Table S11). 
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We hypothesized that we could gain better prediction performance by learning the interaction 

effects based on the latent structure of the gene expression profiles. To test this hypothesis, we 

developed com�VAE, a conditional variational autoencoder (CVAE)100,101, where the latent 

variables of the observed data are distributed conditioned on input data labels (Figure 5E, STAR 

METHODS). We trained our model with 89,463 single KO cells (of 329 impactful KOs, 80,189 

cells for training, 9,274 cells for validation) and a random sample of 70% of control cells, 

conditioning on 7 groups (controls + 6 regulator modules). With the remaining 30% of control 

cells, we used the trained model to generate profiles based on the counterfactual questions “What 

would be the profile of this control cell if it had a single knockout from module x?” and “What 

would be the profile of this control cell if it had a double knockout, one from module x and 

another from module y?” Note that this model only addresses inter-module interactions, as the 

conditioning is done per KO module (STAR Methods). Finally, we calculated the expression 

fold changes between these generated cells and the population of control cells.  

 

While the explained variance in the expression fold changes for generated KO profiles of single 

genes from the groups observed during training (single knockout modules) was quite high 

(0.77<r2<0.95, mean 0.85), estimates for double knockouts varied based on the module pair 

(Figure S7A,B). The profiles of cells with pairs of KOs from M3*M5, the module pair with the 

highest number of significant inter-module interactions (Figure S6C), were estimated far better 

by com�VAE (r2=0.23) than by the additive model (r2=0.02) (Figure S6F, S7A,B). Moreover, 

com�VAE had smaller mean absolute errors than the additive model when predicting the fold 

changes of genes with significant interaction terms (FDR< 0.1), especially in module pairs with 
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the highest number of genes with significant interactions (M3*M5, M3*M6 and M6*M5; Figure 

S6G, S7C). Higher values of Beta, the hyperparameter that changes the weight of the Kullback-

Leibler (KL) loss term (which acts as a regularizer on the latent space distribution of the gene 

expression embeddings as well as the KO embeddings, STAR Methods), increased the 

explained variance in single KOs modules and in double KO module pairs with fewer genes with 

interaction terms, but reduced it for pairs with more genes with interaction terms (Figure 5F and 

S6C, S7D). Thus, greater latent space disentanglement (i.e., larger regularization parameter 

Beta) leads to better conditioning on the individual single KO groups, and better learning of 

additive effects at the cost of non-additive ones.  

 

To evaluate how the predictions change when we include some double KO cells during training, 

we trained our model with the training set of the singly perturbed cells and the double KO cells 

of either M3M5, M5M6, or both. Interestingly, including double KO cells from one pair of 

modules increased the prediction performance of other unseen double KO groups (Figure 5G 

and S7E). Furthermore, when double KO cells were included in the training, higher beta values 

increased the prediction performance of inter-module groups with more interaction terms 

(Figure S7F,G, Table S11). Thus, including some combinatorial perturbations during training 

along with better latent space disentanglement helps the model to learn both the generative 

factors and connections between them, leading to better prediction of unseen combinations. 

 

In vitro perturbation-defined regulators and programs are associated with genetic risk in 

inflammatory diseases  
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To determine if our regulatory network contributes to or is active in human disease, we asked 

whether impactful regulators in the modules or the programs they regulate are also likely to be 

causal in human disease, based on either heritability signals, regulation in vivo during disease 

progression, or both. We thus tested the modules and programs for enrichment in common-

variant driven disease associations using sc-linker102 and MAGMA103 (STAR Methods) with 

GWAS summary statistics from nine immune-related diseases (average N = 79.5K, Figure 6A,B 

and Table S12,S13). We also compared each gene program to cell type specific disease 

progression programs induced in disease vs. healthy tissue by scRNA-Seq102 (Figure 6C,D, 

STAR Methods). We found support for both relationships. 

 

Among the co-functional modules, common and low frequency variants in genes in module M1 

were enriched for heritability across all traits tested (1.62-fold on average, P = 1.52x10-5), and 

especially immune-related traits (1.94 fold; P = 2X10-4), compared to genes constituting all the 

modules (Table S12). In particular, M1 member gene and predicted E3 WDR36 has a significant 

MAGMA score in allergy/eczema and blood traits and E3 adapter PTPN11 in type 1 diabetes 

(T1D) and blood traits (Z-scored per-trait MAGMA scores, Bonferroni correction  α = 0.1). 

Notably, perturbing module M1 activates the mDC (GP7), TNF/LPS response (GP8), and MHC-

I Ag presentation (GP10) programs and represses ER stress (GP2), protein homeostasis and 

phagocytosis (GP5) and translation (GP6) (Figure 2C,D and Table S13), consistent with the 

association of variants in this regulating module with inflammatory disease. Additionally, many 

E3s and E3 complex members in M6 are associated with risk of immune-related traits (Figure 

6A), including Traf6 (eczema and RA), Rbck1 (CD), Bcl6 (eczema), Keap1 (eczema, IBD, and 

lupus), Brap (T1D), and Cul1(IBD) (Z-scored per-trait MAGMA scores, Bonferroni MTC a = 
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0.1; Figure 6A). Several co-regulated gene programs also showed heritability enrichment in 

immune diseases. These included the mDC program (GP7) (Figure 6B, highest score by both sc-

linker and MAGMA), especially REL (rank 1 average MAGMA scores across immune diseases), 

JAK2 (rank 3) and STAT5A (rank 8); and the motility and cel1 maintenance (GP4) program in 

IBD and related traits (Figure 6B), with top driving genes CCL2 (rank 2) and CCL7 (rank 

9)104,105. 

 

Concomitantly, several of the perturbation-affected programs were enriched (relative to all genes 

expressed in this cell type) in disease progression programs from multiple cell types and diseases, 

especially those of three key cellular processes that are also implicated in modulating immune 

responses – mitochondrial metabolism26,106, ER stress107, and translation/antigen presentation. 

This is consistent with a model where processes affected by heritable variation in regulators lead 

to dysregulation of their target programs. For example, translation program genes (GP6) were 

enriched in disease progression programs of immune and non-immune cells in inflammatory 

diseases, including ulcerative colitis (UC) and multiple sclerosis (MS) (Figure 6C,D); ER stress 

response genes (GP2) were enriched in disease progression programs in epithelial cells in UC, 

lung fibrosis and asthma (Figure 6C); and disease progression programs in macrophages and 

DCs in UC are enriched for the translation program (GP6) (Figure 6D). These programs are all 

regulated by module M1, which is itself enriched for heritability of disease risk, as noted above. 

Thus, our analysis suggests that at least two modules (M1 and M6) may contribute to disease risk 

through their respective activation or repression of disease induced programs including ER stress 

(GP2), motility and cell maintenance (GP4), and translation (GP6), including by E3 risk genes 

Wdr36 (M1) and Keap1, Cul1, and Rbck1 (M6). In addition, the GP4 program is enriched for 
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genes with rare-variant driven association in Crohn’s disease108, including COX4I1, POLD4 and 

NPY (ranked 1, 2 and 4; Figure 6F). Interaction between NPY neurons and immune cells in the 

enteric nervous system has previously been implicated in IBD pathogenesis, and NPY expression 

changes occur in animal models of IBD109,110. 

 

Finally, we utilized our model as a “look up” resource for proposing regulators of rare risk 

variants for Crohn’s disease108. Our model suggests that Il10ra expression is repressed by Egr2 

and that expression of Ccr7, a chemokine receptor regulating many aspects of DC function and 

guiding DCs to lymph nodes111, is repressed by Ldb2, Traf2, and Rnf165 (Figure 6E). While 

Traf2 deletion impacts inflammation in both DCs and keratinocytes112, Traf2-based regulation of 

Ccr7 has not been previously reported. Increased Ccr7 expression could be an important 

mechanism in increased T cell infiltration and inflammation controlled by Traf2.  

 

Thus, multiple components of our model, including regulatory modules and their impacted 

programs are congruent with both risk genes for human immune and inflammatory disease and 

the dysregulated expression programs observed in patients. This highlights the relevance of our 

in vitro screen to human disease. 

 

 

DISCUSSION  

In this study, we characterized a large gene family, the E3 ligases, and their interacting partners 

in the cellular response of primary immune cells to an inflammatory signal. We showed the 

power of systematic Perturb-Seq to relate different members of one gene family as regulators in 
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distinct co-functional modules, and their impact on individual genes, co-regulated gene 

programs, and cell state distributions, across a mixed population of related cell types. The 

modular organization of the regulatory network further allowed us to study and predict the 

impact of genetic interactions and relate in vitro perturbations in a model system to the 

mechanisms underlying disease risk in humans. 

 

E3s regulate key phases of the DC life cycle 

The independent factors and programs of target genes regulated by perturbations in E3s and 

associated proteins span multiple stages in DC life cycle (Figure 7), showing the capacity of our 

screen to capture many phenotypes, and the breadth of roles E3s play in the immune response 

and the DC life cycle, many of which are novel roles. These include, in order of the lifecycle, 

regulation of: (1) differentiation towards DC2s (e.g., Cul3- Keap1), DC1 state (e.g., Arih2), and 

mDCs (e.g., Traf2); (2) sensing, including the response to LPS (factor #5), ER stress (#8), and 

oxidative stress (#2), ribonucleotide synthesis (#7), and metabolism and energy (#10), regulated 

by e.g., the Keap1-Cul3-Rbx1 complex, the Tceb1-Tceb2-Rbx1-Vhl complex, and Traf6; (3) DC 

migration, including chemotaxis (#3,9,11), cytoskeleton organization (#4), and myeloid 

migration (#13), regulated by e.g., Pparg, Rfwd2, Brap, and the Keap1-Cul3-Rbx1 complex; (4) 

antigen presentation and associated processes (antigen presentation (#12), endopeptidases (#15), 

and translation (#1)), regulated by e.g., Ambra1, March6, Traf2, and Traf3; and (5) production of 

chemokines that promote either a regulatory or immunostimulatory response (#6.1, #6.2, #14), 

regulated by e.g., Traf2, Traf3, March6, Pias1, Plgr1, Ptpn11, and Prpf19.  
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The detailed regulatory model highlights many novel regulatory relations and helps address open 

questions. For example, it has been unclear whether DC maturation and migration are 

inextricably linked113,114. Our model shows that while the expression of some migration factors 

(#11; #13) follow a cell maturation gradient, other factors (#3, #4, and #9) express migration 

genes independent of DC maturation. While the same regulators are shared across migration and 

maturation in some factors (e.g., Cul3-Keap1 and the CLR1 complex which co-regulate in Factor 

#4), they regulate them in opposite ways in others (e.g., Cul3-Keap1 and the CLR1 complex in 

Factor # 9 or #13). This suggests that some, but not all, of the DC migration program is 

controlled independently of maturation. Several E3s are regulators of multiple programs along 

the DC lifecycle (e.g., Keap1-Cul3-Rbx1, Fbxw11-Cul1-Skp1a, Fbxw7, March6), while others 

play specific roles in key stages (e.g., Rfwd2 (Cop1) in migration; Wdr70 in immunostimulatory 

vs. immunoregulatory response).  

 

Congruent genetic effects and physical interactions relate complex members and 

characterize E3 partners and substrates 

 

Screening both E3s and their interacting partners and substrates allowed us to relate functional 

(genetic) effects to physical interactions and molecular mechanisms. Co-functional modules of 

regulators are enriched for physical protein-protein interactions and members from the same E3 

complex. While multiple components of each Cullin complex grouped together in the same 

module (except the common interactor Rbx1), the Cullin substrate recognition adaptor proteins 

were in other modules, highlighting their specializing or directing Cullin E3 complexes to 

different substrates and pathways. Because programs may not be independent, and regulators are 
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strictly partitioned to separate modules, when regulators have multiple roles, this partitioning can 

mask their full set of relationships. For example, in the CUL4-DDB1-RBX1-DET1-RFWD2 E3 

cullin complex, Cul4b and its adaptor Ddb1 are both members of M2, and Rbx1, Cul1/3/5, and 

Det1 are in M5. This challenge is addressed when considering independent factors associated 

with overlapping regulators: Rfwd2 (Cop1) co-regulated the response to LPS with Rbx1 (factor 

#5), the response to oxidative stress with Ddb1 (#2), and chemotaxis with Det1 (#9). Thus, the 

ICA factors allow us to relate different adaptors with partly overlapping effects (e.g., Rbx1, 

Det1, and Ddb1) and the way in which they combine with different substrate recognition adaptor 

proteins. 

 

Combining co-functional genetic profiles with physical interactions showed congruence between 

genetic relations and molecular mechanisms, and helped suggest new interactions between E3s 

and putative adaptors. For example, surprisingly, Rfwd2, but not other members of the CUL4-

DDB1-RBX1-DET1-RFWD2 complex, is a regulator of factors 3, 10, and 11, suggesting that it 

may interact with other complexes to ubiquitylate targets. Other regulators of these factors that 

have strong physical interactions with Rfwd2 and could be such candidates include: Ptpn11 

(Shp2) (factor 3 and 10 regulator) that acts as an adaptor with p38-pRfwd2 to bind and catalyze 

Ub-mediated degradation of FASN115; Wdr82 and Ep300 (factor 10 and 11); Anapc13116, Cul2, 

Cul5, and Huwe1 (factor 10); and Crebbp, Skp1a, Nedd8, Cul1, and Wdr5 (factor 11).  

 

Because knockouts of E3s and their substrates should have opposite effects when the substrate is 

targeted for degradation, and similar effects when Ub modification is activating, we can predict 

the directionality of protein level regulation by the correlation between expression profiles of E3-
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substrate pairs in our screen. For example, the regulatory profile of Cebpb is negatively 

correlated with that of Rfwd2 in all ICA factors where both are regulators (#3,5,11), consistent 

with the targeting of CEBPB for degradation by the CUL4-DDB1-RBX1-DET1-RFWD2 

complex. Conversely, Fbxw11 KO leads to repression of (inferred) activity of all of NFKB1 

(p105/p50 precursor), NFKB2 (p100/p52 precursor), Rela (p65) and Relb. Because the targets of 

these transcriptional activators are repressed both by the TFs own KO and by Cul3, Keap1 and 

Fxbw11 KO, it is unlikely that this effect is mediated by the TF’s degradation. For Cul3 and 

Keap1, the effect is likely through direct CUL3-KEAP1 ubiquitin modification and subsequent 

degradation of IKBKB117. As for Fxbw11, it is reported to directly bind with NFKB1 and 

NFKB2118, and this binding is enhanced in the presence of a proteasome inhibitor119. While the 

current model suggests that full length Nfkb1 is processed constitutively and Fbxw11 (also 

known as BTrCP2) targets Nfkb2 for complete degradation upon stimulation such as LPS 

activation118,120, our data may not be fully consistent with such a model. We hypothesize that 

Fbxw11 could be part of the system that interacts with the proteasome to processes p105 (Nfkb1) 

and p100 (Nfkb2) to generate active p50 and p52, respectively. These analyses may be 

particularly helpful for multi-subunit E3 Ligase complexes reusing core scaffolds and adaptors 

with different substrate recognition adaptor proteins.  

 

Scaled genetic perturbation and combinatorial screens 

We leveraged several efficiencies to enable Perturb-seq at scale, including hashing and 

overloading (40,000 cells per droplet channel; 5-fold cost reduction) and shallow sequencing 

(15,900 reads per cell on average; 2-fold reduction). Future efficiencies could include pre-

barcoding (for even higher overloading121), cheaper sequencing122, and further guide-compressed 
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screens123,(Yao et al, bioRxiv 2023). For guide compression we note that we initially aimed for a 

larger number of perturbations per cell, but these have been challenging to achieve in our 

primary cells, and may require cells from CRISPRi124 engineered mice. 

 

The large scale of our screen and the modular organization of the regulatory circuit opened a 

path to systematically tackle genetic interactions. First, our large-scale screen encompassed a 

relatively large number of cells with multiple perturbations per cell, but as this was a random 

sample, any particular combination was present in too few cells to directly estimate their effects. 

However, because of the organization of the regulators in co-functional modules, we could 

assess genetic interactions at the level of modules, testing for the prevalence of significant inter- 

or intra-module interactions globally, as well as their impacts on individual genes. This analysis 

showed that intra-module interactions are far more prevalent than inter-module interactions and 

impact specific target processes. Consistently, the impact of most inter-module combinations of 

perturbations can be quite well predicted by a naïve additive (linear) model. Moreover, learning 

the interaction effects was improved by comβVAE, a conditional variational autoencoder we 

developed that relies on the latent structure of the expression profiles. This shows the power of 

combining rich profiles and modular structures to allow prediction of unobserved experiments. 

Using a higher number of perturbations per cell, implementing ‘compressed screens’123,(Yao et 

al, bioRxiv 2023) and dedicated gene editing tools, such as Cas12125, should help further 

facilitate the dissection of genetic interactions. 

 

Leveraging cell screens to decipher human genetics 
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The reverse genetic approach of Perturb-Seq screens can complement and help interpret the 

results of forward genetic studies in humans, such as GWAS, especially in systems like primary 

DCs, where human cell models are lacking. By considering both regulators and regulated 

programs from our model in the context of associations from human GWAS and single cell 

profiles from relevant human disease tissues, we found that both common and low frequency 

variants in regulators in module M1 are enriched for heritability in immune-related traits, 

including the predicted E3 WDR36 (in allergy/eczema and blood traits) and E3 adapter PTPN11 

in T1D and blood traits. Moreover, two of the programs affected by perturbations in module M1 

regulators – ER stress (GP2) and translation (GP6) are differentially expressed in relevant cell 

types in immune disease, including macrophages and DCs in UC (GP2) and fibrosis and asthma 

(GP6).  

 

Limitations of our study 

Although our study explores genetic circuits regulated by E3 family genes whose direct action is 

post-transcriptional, we rely on expression profiles as phenotypes, limiting our ability to draw 

direct mechanistic conclusions. We partly address this by post hoc analysis of protein-protein 

interaction and inference of TF activity, but further mechanistic studies and regulatory models 

that explicitly include physical interactions will be needed to generate a comprehensive model 

that is both causal (genetic) and mechanistic. For genetic interactions analysis, we were limited 

in our ability to transduce BMDCs at high MOI, resulting in fewer cells with multiple 

perturbations than desired. While module-level analysis allowed us to characterize genetic 

interactions and test our ability to predict them, this is a simplification. Moreover, our comβVAE 

currently focuses on inter-module interactions and further developments are needed to predict 
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intra-module interactions, which are more prevalent. Finally, although our goal was to relate E3 

family members and complexes in inflammatory circuits to human disease, no human DC line 

exists and patient-derived material is limited in scale and accessibility for genetic perturbations. 

We therefore screened mouse primary cells, and then related this signal to human genetics signal 

to prioritize regulators that may also play a large role in human health and disease. 
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STAR Methods  

 

Mice 

Six- to eleven-week-old female, constitutive Cas9-expressing mice were obtained from the 

Jackson labs (strain # 026179). All animal protocols were reviewed and approved by the MIT 

Committee on Animal Care (CAC protocol 0618-034-21) and all experiments conformed to the 

relevant regulatory standards. 

 

Bone marrow derived dendritic cells  

BMDCs were differentiated and perturbed as previously described16. Cells were grown in RPMI 

media (ThermoFisher 21870-076) supplemented with 10% heat inactivated FBS (Invitrogen), 

100 U/mL penicillin/streptomycin (GIBCO 15140122), 2 mM L-glutamine (ThermoFisher 

25030081), 10 mM HEPES (GIBCO 15630080), 1 mM Na pyruvate (ThermoFisher 11360070), 

1X MEM nonessential amino acids (VWR 45000-700),  55  μM β-mercaptoethanol (GIBCO 

21985023), and 20 ng/mL recombinant murine GM-CSF (PeproTech 315-03). On day 0, bone 

marrow was extracted from mouse femur and tibia by cleaning surrounding tissue and crushing 

the bones gently via mortar and pestle. Bone marrow was filtered with a 70μm cell strainer, and 

red blood cells were lysed in 2 mL RBC lysis buffer (Sigma R7757) for 10 minutes at room 

temperature. RBC lysis was quenched with 18 mL media, cells were spun at 1,500 RPM and 

resuspended in 25 mL media. Following a final 70μm filtration, white blood cells were plated in 

1,000mm non tissue culture-treated plastic dishes with 10 mL media at 200,000 cells/mL. On 

day 2, cells were fed with 10 mL media and infected with lentivirus (described below). On day 5, 

12 mL media were removed carefully avoiding nonadherent cells, and 10 mL fresh media were 
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added. On day 7, 5 mL media were added to cultures. On day 8, cells were collected, spun at 

1,500 RPM and resuspended in 10 mL fresh media at 1x106 cells/mL. On day 9, cells were 

stimulated for 3 hours with 100 ng/mL LPS (Invivogen, tlrl-peklps) and harvested by scraping. 

Cells then underwent antibody staining for cell hashing (described below) and mKate2+ 

(perturbation vector) and GFP+ (Cas9) cells were enriched by Fluorescence Activated Cell 

Sorting (FACS) (~8% population) prior to single cell library generation (Figure S1). 

 

Selection of genes for perturbation 

All 898 genes annotated as ‘E3 family’ were identified from the Mus musculus species in the 

iUUCD 2.0 database7 on April 2019. The ‘E3 family’ gene search included members with ‘E3 

activity’, ‘E3 adaptor’ and ‘ULD/UBD’ designations in iUUCD. This list was supplemented with 

1,054 Mus musculus genes identified by an NCBI Gene search of the term ‘E3 activity’, to a 

final non-redundant list of 1,137 E3s and interaction partner genes. 

 

Design and construction of feature barcoding lentiviral vector 

To generate a lentiviral perturbation vector compatible with Perturb-seq Feature Barcoding 

technology (10x Genomics), a new FB-LentiGuide-Puro-mKate2 vector was designed 

(pRDA_122: Supplemental Sequence File; AddGene #TBD), where sgRNAs contain a 3’ 

terminal binding sequence (gctcacctattagcggctaagg) complementary to Feature Capture oligos 

present on 10X v3 and v3.1 beads. To enable FACS or puromycin selection of perturbed cells, 

expression of mKate2-2A-PuroR was driven by the Ef1α promoter. The designed vector was 

generated by GenScript. 
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Cloning of guide pools 

A 3,390 Perturb-Seq guide library was designed with three guides targeting each of the 1,130 

genes using the Broad Institute Genetic Perturbation Platform Web sgRNA Designer 

(https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design)126, along with 330 

control guides (165 nontargeting guides and 165 targeting intergenic regions). The pooled 

CRISPR library was cloned into the FB-LentiGuide-Puro-mKate2 vector backbone as previously 

described17. 

 

Cell hashing and overloading 

BMDCs were washed with PBS and resuspended in 50μL PBS+ 2% BSA and 0.1% Tween20 

and stained with BioLegend hashing antibodies (BioLegend 155801, 155803, 155805, 155807, 

155809, 155811, 155813, 155815) as previously described127 and mKate2+GFP+ cells were 

sorted by FACS (Figure S1A). 40,000 cells were loaded per channel on 46 3’ v3 channels 

according to the manufacturer’s instructions128. 

 

Single cell RNA-seq library generation 

ScRNA-seq libraries were generated following the manufacturer’s instructions (v3 User Guide, 

10x User Guide, with Feature Barcoding)128.  

 

Feature barcoding (gRNA) and hashtag libraries generation 

The cDNA amplification reaction was mixed by adding 5  μL of 2 μM HTO additive (Table 

S14), 15  μL Feature cDNA primer 2000096, 50 μL Amp Mix (10x Genomics, 2000047 or 

2000103) and 30 μL cDNA followed by PCR (98°C for 3 min; 98°C for 15 sec, 63°C for 20 sec, 
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72°C for 60 sec x 11 cycles; 72°C for 1 min; hold at 4°C). cDNA supernatant was selected by 

collecting the eluant from the 0.6X SPRI cleanup of the cDNA amplification reaction. Eluant 

was taken from the 0.6X SPRI cleanup of the cDNA amplification reaction, and another 60μL of 

SPRI beads were added to the 150μL cDNA supernatant. After performing two 80% ethanol 

washes, elution was performed in 50μL EB buffer 

(https://www.qiagen.com/us/products/discovery-and-translational-research/lab-

essentials/buffers-reagents/buffer-eb/). An additional 1.0X SPRI elution was performed in 30μL 

EB buffer. This SPRI-purified cDNA supernatant was used as template for both hashtag and 

feature barcoding library generation.  

 

To generate feature barcode (single cell gRNA) libraries, 50μL 10X Amp mix was next mixed 

with 45μL Feature SI Primers 1 and 5μL SPRI-purified cDNA supernatant followed by PCR 

(98°C for 45 sec; 98°C for 20 sec, 60°C for 30 sec, 72°C for 20 sec x 15 cycles; 72°C for 1 min; 

hold at 4°C). Product was purified with 1.0X SPRI beads, eluting in 30μL EB. Next, the product 

was run on a 2% TBE agarose gel at 140 volts for 40 minutes and the 250-300 bp gel fragment 

was purified by adding 800μL agarose dissolving buffer 

(https://www.zymoresearch.com/products/adb-agarose-dissolving-buffer) to each sample and 

incubating at 55°C at 1,250 RPM for 10 minutes. The dissolved gel was added to a Zymo DNA 

Clean & Concentrator-5 kit column and columns were spun for 30 seconds at maximum speed, 

followed by two 200 μL washes with the included wash buffer 

(https://www.zymoresearch.com/products/dna-clean-concentrator-5). Columns were spun for 

four minutes at max speed to dry, then transferred to a new tube followed by elution in 15μL 

water (D4014). 5μL gel purified product was mixed with 50μL 10X Amp mix, 35μL Feature SI 
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Primers 2, and 10μL Chromium i7 sample indices (PN-120262/PN-220103: Chromium i7 

Multiplex Kit) followed by PCR (98°C for 45 sec; 98°C for 20 sec, 54°C for 30 sec, 72°C for 20 

sec x 6 cycles; 72°C for 1 min; hold at 4°C) and the product was purified with 0.7X SPRI and 

eluted in 30μL EB. 

 

To generate hashtag libraries, 5μL SPRI-purified cDNA supernatant was next combined with 

25μL NEBNext 2X MasterMix (https://www.neb.com/products/m0541-nebnext-high-fidelity-

2x-pcr-master-mix#Product%20Information) and mixed with 19μL water, 0.5μL 10μM SI-PCR 

primer, 0.5μL 10 μM K_HTOX primer (Table S14) followed by PCR (98°C for 10 sec; 98°C for 

2 sec, 72°C for 15 sec x 21 cycles; 72°C for 1 min; hold at 4°C). Product was purified with 2.0X 

SPRI and eluted in 15μL TE buffer 

(https://www.thermofisher.com/order/catalog/product/AM9849).  

 

Library sequencing 

Gene expression, hashtag, and feature barcoding libraries were pooled and sequenced together 

across 46 Illumina HiSeq 2500 lanes (R1 28 I1 8 R2 90), yielding on average 15,900 scRNA-Seq 

reads per cell (R3: 350M reads per lane total of 12 lanes, 78% spike-in), 680 hashing reads per 

cell (R3: 15M reads, 4% spike-in), and 3,600 feature barcoding reads/cell (R3: 80M reads, 18% 

spike-in).  

 

Read alignment and demultiplexing  
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ScRNA-seq reads were mapped to the reference mouse genome mm10_v3.0.0 with Cumulus129 

executed through Terra (https://app.terra.bio/), using CellRanger 3.0.2. Demultiplexing of cell-

hashing and feature barcoding data was performed with DemuxEM34 as implemented in 

Cumulus. 

 

scRNA-seq preprocessing  

Empty droplets were removed at FDR > 0.01 by EmptyDrops 36 with parameters: lower= 200, 

niters= 10,000, ignore=10 and retain= 1000. Droplets with either <300 detected genes, <1,000 

total UMIs or >15% mitochondrial reads were removed, retaining 1,071,671 droplet profiles. 

13,811 genes expressed in at least 400 of these droplets were retained. 838,201 droplets were 

categorized as singlets based on hashtags by DemuxEM34. Cells were assigned a feature (guide) 

if they had at least 2 feature barcode UMIs, and feature barcode-UMI pairs with <20% of the 

reads per cell were removed130, yielding 341,664 cells assigned one barcode and 177,871 cells 

assigned at least two. 186 targeting guides detected in <20 single perturbed cells were removed 

from further analysis, retaining 3,204 targeting guides.  

 

scRNA-seq expression matrix and dimensionality reduction 

Single cell expression matrix and feature barcodes were processed in an anndata object format in 

Scanpy131. Raw counts were saved in the ‘counts’ layer for downstream analysis. Expression 

counts per cell were normalized, to a total of 104 counts per cell, and normalized values were log 

transformed (natural log), after adding a pseudocount of 1.  
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A k-nearest neighbor (k=15) cell neighborhood graph was constructed with the first 50 principle 

components (PCs) of the log normalized expression matrix and clustered with the Leiden 

algorithm132 (resolution=0.5). Gene signatures were computed as the average expression of the 

gene set in the cells minus the average expression of a reference set of genes that is randomly 

sampled from the same expression bins. 

 

Outlier control guides were identified by PCA of the log-normalized expression matrix of the 

44,074 control cells with one of 330 control guides, followed by fitting a linear regression model 

to each of the top 100 PCs with Python statsmodels package133, where in each model one PC was 

the response and the binary feature barcode matrix of the control guides were the covariates. To 

identify outliers, the 330 X 100 coefficients matrix was fitted with each of four algorithms in 

scikit-learn Python package134: isolation forest135, elliptic envelope136, local outlier factor137, and 

one-class SVM, and the 9 non-targeting and 22 intergenic guides that were predicted as outliers 

by at least three methods were removed.  

 

Prediction of corresponding gene expression clusters in unperturbed cells with and without 

LPS stimulation 

Cluster assignment of LPS unstimulated unperturbed and LPS stimulated unperturbed cells were 

predicted by a logistic regression model trained on the LPS stimulated perturbed dataset, with the 

10 cluster scores of the top 100 marker genes of the clusters as covariates. 

 

Guide and knockout enrichment analysis  
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To test guide depletion in the screen vs. the initial guide pool, distributions of the ratio between 

the number of cells assigned a (single) guide in the screen vs. number of guides in the initial pool 

were generated for each of the 3,390 targeting and 330 control guides. The ratio distribution of 

the control guides was taken as background, to calculate an empirical P-value of the depletion of 

each targeting guide. Targeting guides with ratio of at most 0.08587 were identified as depleted 

(CDFnull (0.08587) = 0.0498). 

 

One-sided Fischer’s exact tests were used to test the enrichment (separately, depletion) of cells 

with a particular guide (or guides targeting the same gene) in each cell subset, where the test 

schema was the tested group versus rest, and a Benjamini-Hochberg FDR was calculated. 

 

Identification of congruent guides targeting the same gene  

The effects of each of 3,204 targeting guides on 6,685 genes expressed in at least 5% of the 

341,664 singly-perturbed cells were learned using a negative binomial regression model, with 

control cells as reference, and correcting for the total number of detected genes in a cell, % 

mitochondrial reads and cell states identified by the initial Leiden clustering. The pairwise 

Pearson correlation coefficient between the effect size profiles of each pair of guides targeting 

the same gene were calculated. If no pairs had a positive correlation, all guides were discarded. If 

all three pairs had r> 0.015, all three guides were retained. Otherwise, only the guide pair with 

the highest positive correlation was retained. 

 

A linear regulatory model of knockout effect 
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A mixed effects negative binomial linear regression model was fit for each of the 6,685 affected 

(response) genes, where the gene expression values were the response variable, the cell states 

identified by Leiden clustering were the random effect covariate, and the knockout target gene 

confounders (number of detected gene/cell, %mitochondrial reads/cell) were the fixed effect 

covariates, and control cells were the reference. Benjamini-Hochberg FDR was used to correct 

for multiple hypotheses (6,658 tested genes) with a stringent threshold, such that most regulatory 

coefficients close to zero were not significant. To generate a background distribution for the 

number of genes significantly affected due to lentivirus infection or off-target effects, the same 

model was fit for each of the 299 control guides, testing one control guide against the rest of the 

control guides. Based on this background distribution, 329 perturbed genes were retained as ones 

with significant (FDR < 0.1) effect on at least 15 of the 6,685 tested genes. 

 

Identification of co-functional modules and co-regulated gene programs 

The 329 retained knockouts (perturbed genes) were grouped based on their effects on the 1,041 

genes that were affected by at least by 4 perturbations. To this end, the top 50 PCs of the scaled 

and centered effect size matrix B (Bij = effect size of knockout of gene i on gene j) were used to 

calculate a k-nearest neighbors graph (k=10) of the knockout (perturbed) genes, and the Leiden 

algorithm (resolution=0.64) was used to identify the 6 clusters as co-functional modules. 

 

Similarly, to identify co-regulated gene programs, the top 50 PCs of the scaled and centered BT 

were used to construct a k-NN graph of the 1,041 response genes (k=10), and the Leiden 

algorithm (resolution=0.8) was used to identify 8 gene programs. Three of these programs were 

selected for further subclustering upon manual inspection, resulting in 11 gene programs. 
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Embedding cells jointly on KO module information and their gene expression profiles 

To assess the change in cell distributions across DC2.1, DC2.1 and DC2.3 subsets upon 

perturbations, supervised-UMAP 138 was used (target_weight = 0.5, kNN n_neighbors=18) to 

embed cells based on their normalized expression profiles and module assignment (M1-M6). 

 

Calculating Wasserstein distances within and across modules 

The average population distances between cell subsets perturbed for members of each module 

(or controls) or between randomly sampled cell subsets perturbed for members of the same 

modules, were calculated by sampling without replacement 300 cells (100 times), computing 

Wasserstein distances between pairs of cell populations using the Python Optimal Transport 

Library 139, and averaging across 100 iterations. 

 

Protein-protein interaction analysis 

Mus musculus protein-protein interaction network data was downloaded from STRING DB 

(version 11.5) and interactions with experimental evidence score > 0 were selected. Interactions 

between the 329 knockout targets were used to generate a protein-protein interaction graph. To 

test for enrichment of intra- and inter-module interactions, 400 random degree-preserving graphs 

were generated using the BiRewire R package140 and the distribution of number of intra- and 

inter-module interactions in these graphs was used as the null distribution to calculate empirical 

P-values for the corresponding observed number of interactions. 

 

Inference of KO effects on TF factor activity  
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Expression scores of high confidence targets (Levels A and B) activated by 123 mouse TFs in 

DoRothEA97,141,142, were calculated using the R package decoupleR96. A linear regression model 

was used to infer the effects of each 329 KOs on the expression of targets of each of the 123 TFs, 

where in each model the response variable was the expression score of each TF’s target genes, 

and the covariates were the 1-hot encoded feature barcode matrix (with control cells as the base 

level) and possible confounders (cell clusters, %mitochondrial reads, number UMIs). 

 

ICA module factorization 

Independent components analysis99,143 was used to identify statistically independent factors from 

the 1041 X 329 effect size matrix � from the mixed effect linear model (bij = estimated effect of  

knockout of gene j on expression of gene i). A source of variation �� � ���� , ��� , ��� , … , �������  
is defined as the set of relative weights (i.e., relative expression states) of genes 1, … , 1,041, 

such that the effects of perturbation j on expression of gene i is a weighted sum of the effects 

over P different sources, written as: 

	�� � 
����� � 
�����  � � � 
	���	  

 

where 
�� , 
�� , … , 
	�  are the mixing weights and 
	�  is the overall effect of perturbation j on 

source p. Thus, in matrix �, each row is an observation of a gene’s expression changes due to the 

varying effects of the knockouts on various pathways (sources of variation) to which the gene 

belongs. 
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Identifying the P underlying pathways s1,…,sP affected by 329 knockouts is formulated as 

finding a source matrix S (1,041 by P)  and mixing matrix M (P by 329) which are both 

unknown:  


 � �� 

ICA relaxes this factorization problem by assuming that the source signals are independent and 

requiring that they be non-Gaussian 99. Although modeling total perturbation effects as a linear 

combination of factors may miss nonlinear relationships, the nonlinear separation problem is not 

identifiable. 

 

ICA decomposition was computed using Information-Maximization (Infomax)144, as 

implemented in the ICA package in R145. The optimal number of latent sources, P was 

determined considering (1) the number of non-Gaussian components estimated by the Ladle 

estimator146,147; (2) reconstruction error of the original matrix from the obtained statistically 

independent components; and (3) prediction power of the identified factors for the effects of 

unseen perturbations during fitting. For (2), the ICtest R package146 was used to compute the 

ladle estimates (gn) for different number of factors, where ‘gn’ is the sum of the vectors giving 

the measures of variation of the eigenvectors and the normalized eigenvalues of the fourth order 

blind identification (FOBI) matrix and the estimated number of Gon-gaussian components is the 

value where gn takes its minimum. For (3), for P between 2 and 30, 80% (263) of the 329 

perturbations were randomly sampled 10 times, ICA was fitted each time to the 1,041 by 263 

matrix and the effects of each of the remaining 66 perturbations was predicted with a simple 

linear regression model, where the 1,041 by P matrix S was the covariate matrix.  
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After selecting P=15, the full 1,041 X 329 effect size matrix � was decomposed and for each 

factor ��  in S, gene i was defined as a prominent gene defining this factor if it had outlier weights 

��� � ������ � 1.5������� � �������     |    ��� � ������ � 1.5������� � �������. Likewise, a 

KO of gene j was defined as highly affecting factor k if it had outlier weights in component ��  

of the mixing matrix M, ��� � ������ � ������� � �������     |    ��� � ������ �

������� � �������.  

 

Genetic interaction analysis 

For inter-module interactions, for each of the 1,041 response genes, linear regression models 

were fit as follows: 

�� � �� � � ����




���

 � � � �������




��
����




���

�    

 

where ��  is the normalized expression level of gene i (corrected for cell cluster, % mitochondrial 

reads and number UMIs), ��  is a binary covariate denoting if the cell had a perturbation in a 

gene from module i. The model was fit with single KO cells and inter-module double KO cells. 

P-values of the � estimates were corrected with Benjamini-Hochberg FDR for the 1,041 tested 

genes. 

 

For intra-module interactions, for each KO module we randomly partitoned (for 50 times) the 

KO module Mj into two equal bins in terms of the number of KO genes, ��_� and ��_�, and for 

each response gene i fit the model:  

�� � �� � ����_� � ����_� � ����_���_� �    
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where ��  is the normalized expression level of gene i corrected for confounders as above. 

Benjamini-Hochberg FDR was first calculated for the p-values of the � estimates for each of the 

50 iterations, � estimates for which FDR >= 0.1 were set to zero, and then the mean of the 50 

parameter estimates as taken as the inferred intra-module interaction effect. 

 

Deep learning model to predict interactions 

To learn models that predict the effect of combinatorial perturbations, conditional VAEs 

(CVAEs) 101 were used, which model the distribution of a high-dimensional output as a 

generative model conditioned on the auxiliary covariates. In general, CVAEs aim to learn the 

marginal likelihood of the data in such a generative process: 

�
!
", #  $��
�|�,��

%log )��!|
, *�+ 

where ! , -� is a dataset of samples with labels (conditioned variable) a and generated by 

ground truth factors z, while ", # parametrize the distributions of the CVAE encoder and the 

decoder respectively. This can be rewritten as: 

log )��!|
, *�  �  .���/�*|!, 
� 0 )�*|
�� �  1�", #; !, 
, *� 

where .���0� is the non-negative Kullback-Leibler (KL) divergence between the true and the 

approximate posterior and 1�", #; !, 
, *� is the evidence lower bound (ELBO) on the log-

likelihood of the data: 

log )��!|
, *� 3 1�", #; !, 
, *� �  $��
�|�,��
%log )��!|
, *�+ � .���/�*|!, 
� 0 )�*|
�� 

To make optimization tractable in practice, )�*|
� is typically set to the isotropic unit Gaussian 

4�0, 6�148. The ELBO for the VAE and CVAE factorizes across the samples101,148,149. Therefore, 

it is straightforward to apply computationally efficient minibatch based stochastic gradient 
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descent (SGD) and learn the parameters " of the encoder (/��*|!, 
�) and # of the decoder 

()��!|
, *�) by deep neural networks148. 

 

In our com�VAE model, (xi,ai) denotes a single data point i, where ! , -� is the G-dimensional 

observed log-normalized gene expression profiles of G genes in a single cell i and 
� , 7 �
7��  8  7��  8 … 7��   representing the P-dimensional auxiliary (independent) discrete covariates 

of the same cell, such as the knockout(s) perturbing the cell, or confounders (cell subtype or cell 

cycle phase). The perturbation covariates in 7 are assumed to be independent binary covariates 

and a cell can have multiple perturbations, while other covariates are one-hot encoded. The latent 

variables zi are genenrated conditionally on a D dimensional vector 9 , -� which are the 

embeddings of 
�  learnt with a single hidden layer neural network of D units which is jointly 

trained with the encoder-decoder framework. An adjustable hyperparameter β is introduced to 

the original CVAE objective, which was previously shown to result in more disentangled latent 

representations z in standard VAE models 150,151 : 

 

1�", #; !, 9, *� �  $��
�|�,��
%log )��!|9, *�+ � β.���/�*|!, 9� 0 )�*|9�� 

 

Assuming the data generating process described above, our objective is to train a model such 

that, a target counterfactual distribution !�� of gene expression !�  can be generated if cell i had the 

covariates 
�
�  instead of 
� . For the network architecture after benchmarking the number of 

hidden units [2,3,4,5,6], and number of units per layer [32, 64, 128, 512, 1024], the encoder and 

decoder networks were defined with 2 hidden layers, with 512 units in each layer, and ReLU 

(rectified linear unit) activation function used between the hidden layers. The dimensions 
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[16,32,64,128] were benchmarked for the dimensions of z and 9, and both were set to 64. Models 

were trained and benchmarked with log-transformed normalized gene expression values of 1,041 

genes corrected for cell clusters, % mitochondrial reads and total UMI counts to minimize the 

effect of confounders in evaluating generated vs. observed effects. The model was implemented 

in Pytorch, and trained with hyperparameters batch_size =1000, max_epochs=8000, 

optimizer=adam, learning_rate= 0.001, weight_decay=0. 

 

Disease progression gene programs  

Disease progression programs were defined as previously described102 using publicly available 

scRNA-seq datasets, processed, annotated, and analyzed as previously described102. A gene-level 

non-parametric Wilcoxon rank sum differential expression test was performed between cells 

from healthy and disease tissues of the same cell type as previously described102. 

 

Identification of heritability signal  

Gene programs and co-functional modules were tested for enrichment in heritability signal using 

both scLinker102 and MAGMA103 over a set of 60 relatively independent diseases and traits 

(average N = 297K)102. 

 

In sclinker, each program or module were combined with enhancer-gene linking strategies 

defined by either SNPs in enhancers linked to genes based on the Roadmap152 and Activity-By-

Contact (ABC) SNP-To-Gene (S2G) strategies either aggregated across all biosamples related to 

blood (RoadmapUABC-Blood). For each gene score X and S2G strategy Y, a combined 

annotation X × Y was defined by assigning to each SNP the maximum gene score among genes 
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linked to that SNP (or 0 for SNPs with no linked genes); this generalizes the standard approach 

of constructing annotations from gene scores using window-based strategies153,154. Heritability 

analysis of these sclinker annotations was performed using stratified LD score regression155,156 

conditional on a set of 86 baseline coding, conserved and LD-related annotations (baseline-

LDv2.1157). The Enrichment Score (Escore) metric102 reported was derived from heritability 

enrichment analysis and its corresponding p-values.  

 

For MAGMA analysis, the MAGMA z-score was computed for each gene module or program 

using a 0kb window based strategy for linking SNPs to genes103 and then a gene set enrichment 

analysis of the MAGMA z-scores was performed for each with respect to a set of 1,000 sets of 

same size of randomly selected genes from across all perturbation programs (using the fgsea 

software158).   
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Figure legends  

Figure. 1. Large scale Perturb-seq of the function of E3 ligases in the LPS response in 

BMDCs 

A. Study overview. Top: Experimental flow. Middle: Perturb-Seq vector design. Bottom: 

Example E3 ligases and complex members known to regulate different processes. B. 

PerturbDecode. Workflow diagram of key features (full diagram in Figure S1E). C-E. Screened 

cell populations captures multiple cell states and subtypes. Uniform Manifold Approximation 

and Projection (UMAP) of 519,535 cell profiles colored by cluster membership (C), cell type 

signature scores (D-F), cell cycle phase (G), or the difference of macrophage vs. DC signature 

scores (STAR Methods) (H). I-J. E3 perturbations affect DC subset distributions. I. Odd-ratio 

(color bar) of the significant (FDR < 0.15, one-sided Fisher’s exact test) enrichment (pink) or 

depletion (blue) of guides targeting perturbed genes (rows) in each major cell subset (columns) 

in the screen. J. Summary of enrichment (pink) and depletion (blue) of guides targeting key 

proteins in major subsets (left) and in DC2 subtypes (right), colored by E3 family type and 

grouped by complex. ULD: ubiquitin-like domain; DUB: de-ubiquitylating enzyme; NS: non-

significant. 

See also related Figures S1 and S2 
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Figure 2. Six co-functional modules of E3 and related genes regulate 11 gene programs in 

the response of BMDCs to LPS  

A. Co-functional modules. Left: Distribution of E3 family member types across the 329 

significant regulators. Right: UMAP embeddings of the regulatory profiles of the 329 regulators 

(KO genes), colored by their module membership (STAR Methods). B. Co-regulated programs. 

UMAP embeddings of the regulated profiles of 1,041 affected genes, colored by their gene 

program membership (STAR Methods). C,D. Regulatory model. C. Top left: Regulatory matrix 

(beta). Regulatory effect size (red/blue) of perturbing (KO) each of 329 genes (rows) on the 

expression of each of 1,041 affected genes (columns). Red/blue: Induction/repression in response 

to perturbation (KO) compared to control cells. Black horizonal and vertical line delineate co-

functional modules and co-regulated programs, respectively. Top right: Co-functional modules. 

Covariance (green/purple) between the regulatory profiles in beta of perturbing each of 329 

genes. Genes are clustered by module (as in A; color code on top and right). Bottom left: Co-

regulated programs. Covariance (green/purple) between the regulatory profiles in beta of the 

effect on expression of each of 1,041 genes. Genes are clustered by program (as in B; color code 

on bottom and right). D. Regulatory network. Bipartite graph from co-functional modules to the 

co-regulated programs. Red point arrow/blue blunt arrow: module genes activate/inhibit program 

(i.e., KO inhibits/activates program) (arrow color determined by significant mean difference). 

Key gene names are noted. 

See also related Figure S3. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.23.525198doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525198


78 

Figure 3. The genetic regulatory network is congruent with physical interactions and 

highlights modularity in E3-based regulation 

A. Three E3 ligases are highly regulated ‘authorities’ in the E3 network. Regulatory relations 

from the model (Figure 2C) based on a perturbation (KO) in an E3 ligase to another E3 ligase 

whose expression is affected. Red/blue arrows: perturbed E3 activates/inhibits target’s 

expression (i.e., KO inhibits/activates expression). B-E. Co-functional modules impact 

distribution of cell states. B. UMAP embedding of single cell profiles colored by Gaussian kernel 

density estimations of cells control (top left), M1 (top right) or M5 (bottom) guides. C. 

Supervised UMAP embedding of DC2.1, DC2.2, and DC2.3 cell profiles using a cells’ co-

functional module assignment as the response label (STAR Methods), colored by the module 

assignment of their guides (color code). D. Average Wasserstein distances (color bar) between 

cells with guides from different co-functional modules (rows, columns). E. Odd-ratio (colorbar) 

of significantly enrichment (pink) or depletion (green) of DC subsets (rows) in cells with guides 

from each co-functional module (columns) (FDR < 0.15, one-sided Fisher’s exact test). F. Co-

functional modules are enriched for protein-protein interaction partners. Physical interactions 

(blue, red, grey; experimental score > 0, STRING DB) or lack thereof (white) between each pair 

of 78 E3 ligases and adaptors with at least 24 interactions (with any of the 165 E3 ligases among 

the 329 regulators). Red/blue: the regulatory profiles of the physically interacting genes have 

significant (P<0.05) positive/negative correlation. Grey: the regulatory profiles of the physically 

interacting genes are not significantly correlated. Bars: co-functional modules. Rows and 

columns are hierarchically clustered. Full matrix in Figure S4G. G,H,I. TF explaining 

expression impact of E3 perturbations. G. Inferred activity scores (color bar) of 32 TFs 

(columns) whose target genes are significantly (FDR < 0.1) induced (yellow) or repressed (blue) 
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when perturbing each of 41 E3 and related genes (rows) (STAR Methods). (Full matrix in 

Figure S4J). H,I. Intersection between TF targets (DoRothEA), E3 expression targets, and gene 

programs. 

See also related Figure S4. 
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Figure 4. Independent programs affected by distinct combinations of E3-ligase family 

members. 

A. E3 regulators association with independent factors from ICA. Left: Explained variance of 

effects on 1,041 genes of each of 203 perturbed genes (left matrix columns, sum of explained 

variance > 25%) or components of the CUL4-RBX1-DET1-RFWD2 complex (right matrix 

columns) by each of 15 latent factors (rows, main panel) and across all 15 factors (bottom). B-J. 

Member genes and regulators of example ICA factors. B,E,H. Effect sizes (yellow: positive; 

blue: negative; color bar) on significantly affected genes (columns; outlier loadings, separated by 

direction of effect) upon perturbation of each regulator gene associated with the factor (rows; 

outliers based on weights in the mixing matrix) (STAR Methods). Left bar: Co-functional 

modules; top bar: gene programs from the regulatory model. C,D,F,G,I,J. UMAP embedding of 

cell profiles (as in Figure 1C) colored by expression scores for each sub-factor (label on top). 

See also related Figure S5. 
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Figure 5. Intra-module genetic interactions are more prevalent than inter-module 

interactions and modular structure can be leveraged to predict combinatorial 

perturbations 

A. Inter-module interactions are more prominent. Number of genes (y-axis) significantly affected 

by intra- (left bar) or inter- (right bars) module combinatorial perturbation (x-axis), additively 

(grey) or non-additively (blue). B. Intra-module interactions. Observed (y axis) fold-changes in 

expression (vs. control) in cells with perturbations in two genes from the same module and the 

expected fold change (x axis) from an additive model based on the two individual perturbations 

for each of 1,041 genes (dots). Slope of the first PC (red line) and variance in observed double 

knockouts explained by the single knockouts (R2) are labeled. Module M4 is not shown to 

insufficient number of double-knockout cells. C. Inter- and intra-module interactions vary across 

programs. Significant effect sizes (red/blue color bar; FDR<0.1) of perturbations at the level of 

individual modules (Mi), inter-module pairs (Mi:Mj; i≠j), and intra-module pairs (Mi:Mi) (rows) 

on each of 1,041 genes (columns, labeled by gene program). Bottom row: Row centered mean 

expression in control cells. D. Substantial interactions between M3 and M5 regulators. Binarized 

significant effects (FDR<0.1, red/blue: positive/negative) on gene expression (rows, only genes 

with significant interaction terms) by single perturbations in regulators from M3 or M5, their 

additive effect (M3+M5), their interaction term (M3:M5), and observed combined effect 

(columns). E-G. comβVAE predicts combinatorial perturbations. E. Method overview. F. 

Distribution of explained variance (R2, y axis) in fold changes of the 1,041 genes from 7 runs 

with the same hyperparameters at different KL loss weights (x-axis) for individual modules (Mi) 

and inter-module combinations (Mi:Mj; i≠j). G. Distribution of the explained variance (R2, y 

axis) in fold changes of the 1,041 genes from 7 runs with the same hyperparameters in the 
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indicated inter-module combinations (labels on top) when the model (Beta=6.0) is trained only 

with data from single KOs from all modules (M) or single KOs from all modules and double 

KOs from one or two pairs of modules (Mi:Mj; i≠j) (x axis). Boxes display the first (Q1), second 

(Q2, median) and third (Q3) quartiles while the bottom and top whiskers show the intervals [Q1 -

1.5 IQR, Q1] and [Q3, Q3 +1.5 IQR], respectively. 

See also related Figures S6 and S7. 
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Figure 6. Co-functional modules and gene programs are enriched for risk heritability and 

cell programs in human immunological disease.  

A. Module M6 associated with genetic disease risk for human immunological disease. 

Significant MAGMA Z-scores (color bar; per trait; Bonferroni  α < 0.1) for immunological 

disease traits (columns) of module M6 E3 family genes (rows) with at least one significant score. 

B. Gene programs associated with genetic disease risk for human immunological disease. 

Significance (-log10(p-value), dot color) and effect size (dot size) of heritability enrichment in 

each gene program (rows) for different immune traits (columns) by sc-linker analysis with SNP 

annotations combined with intersection of Roadmap and ABC gene-enhancer linking strategy 

(left) or by MAGMA (right). C,D. Genes programs expressed during immunological disease 

progression in immune and non-immune cells. Enrichment (color bar) of gene programs 

(columns) for cell type specific disease progression programs in humans (rows), across diverse 

cell types and diseases (C) or only in DCs and macrophages in UC, fibrosis, asthma, and 

COVID-19 (D). E. Perturb-Seq regulatory model highlights E3 regulators of rare IBD disease 

genes. Regulatory coefficient (color bar, from the model of Figure 2C) of the impact of 

perturbing regulators (rows) on the expression of genes (columns) with rare variants associated 

with IBD that also have at least one significantly regulating E3 family member. F. Gene program 

enriched for rare variant in immunological disease. Significance (-log10(p-value), dot color) and 

effect size (dot size) of heritability enrichment of gene programs (rows) for CD or IBD based on 

rare (CD:SAIGE-GENE) or common (IBD:MAGMA and CD: MAGMA) variants.  
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Figure 7. The DC life cycle regulated by E3 ligases  

ICA factors and their key regulators grouped in each DC lifecycle stages (boxed). Bottom: 

UMAP embedding of cell profiles (as in Figure 1C) colored by expression scores (color bar) for 

migration-related factors.  
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Supplementary Materials  

Figure S1, related to Figure 1. Design and performance of large-scale Perturb-Seq in 

primary BMDCs 

A-D. Sorting of perturbed cells for profiling. A,B. Forward scatter (x axis) versus side scatter (y 

axis) for selected live (A) single (B) perturbed BMDCs. C. GFP fluorescence (x axis; Cas9 mice 

cells) versus mKate2 fluorescence (y axis; Perturb-Seq vector) to select mKate2+GFP+ cells. D. 

Distribution of mKate2 expression (x axis) in sorted live, single cells. E. PerturbDecode. 

Detailed workflow. F-J. Quality control for impact of guide-based perturbations. F. Cumulative 

distribution function (CDF) (y-axis) of Pearson’s r (x-axis) between the effect sizes of guides 

targeting the same gene (purple), different genes (red), one gene and one no-target control 

(green), or one gene and one intergenic control (blue). G. Distribution of number of genes (y-

axis) (of 6,685 tested genes) significantly affected (FDR < 0.1) by non-targeting controls, 

intergenic controls or targeting guides (with guides targeting the same gene combined) (x-axis) 

(STAR Methods). **** P < 2.2*10-16, one-sided Wilcoxon rank-sum test. H. Significant effect 

sizes (color bar; blue/red negative/positive fold-change; FDR<0.1) of perturbing each of 544 

targets (rows) that were also among the 6,685 genes with tested expression on itself and the other 

544 targets (columns). Rows and columns are ordered alphabetically. 137 of 539 genes 

significantly negatively affected their own expression (diagonal). I. Number of genes (y axis) 

whose expression is significantly (FDR<0.1) affected by perturbation of each of 849 perturbed 

genes (from 13,811 detected genes) and the mean expression of these perturbed genes (x axis, 

normalized log1p). Pearson’s r and significance in the upper right corner. J. Distribution of 

number of genes (y axis) significantly affected (FDR < 0.1) by the perturbation of genes that are 
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(“expressed”) or are not (“not expressed”) in the 13,811 detected genes. **** P-value < 10-4, 

one-sided Wilcoxon rank-sum test. 

Figure S2, related to Figure 1. Proportions of cells in different states and subtypes in screen 

are affected by perturbations. 

A-G. Markers of specific cell subsets in the screened BMDC population. Mean expression (dot 

color, mean normalized log1p expression) and fraction of expressing cells (dot size) for genes 

differentially expressed (columns) in each of the 10 cell clusters (A, rows) or in the major cell 

sub-types (B-G, rows). H,I. DC- vs. macrophage-like gradient. UMAP embedding of 519,535 

cell profiles (as in Figure 1C) colored by DC (DC1+DC2+mDC genes) or macrophage signature 

score. J-V. Cell subsets and stated in unperturbed resting or LPS-stimulated BMDCs. UMAP 

embedding of 3,655 unperturbed unstimulated and 4,027 unperturbed and LPS stimulated (3h) 

BMDC profiles colored by treatment (J), inferred cell cycle phase (K), signature scores for the 

top 100 upregulated genes of each of the 10 clusters of Figure 1C (L-U), or their predicted 

major cell subtype (V) (STAR Methods). W. Perturbation and stimulation affect cell subtype 

proportions. Percentage of cells (y axis) of each of four major subtypes in the screen (color 

legend) in unperturbed unstimulated, unperturbed LPS stimulated and perturbed, LPS stimulated 

data (x-axis). * P < 2.2*10-16, one-sided Fisher’s exact test. X,Y. Specific perturbations are 

enriched or depleted in specific cell subsets and clusters. Odd-ratio (color bar) of enrichment 

(pink) or depletion (blue) (FDR < 0.15, one-sided Fisher’s exact test) of cells with a perturbed 

gene (rows) in cell cycle phases in major subtypes (X, columns) or in the 10 cell clusters (Y, 

clusters as in Figure 1C).  
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Figure S3, related to Figure 2. Gene programs in the regulatory model 

A-K. Gene programs expressed in different cell subsets. UMAP embedding of cell profiles (as in 

Figure 1C) colored by expression scores of each program genes. L,M. Relation of gene 

programs to other programs and cell subset signatures of BMDCs. L. Jaccard index (left) and 

fractional overlap (right) between each gene program (rows, “A”) and programs in an earlier 

small Perturb-Seq screen of 24 TFs in the LPS-stimulated BMDCs 16 (left, columns, “B”) or DC 

subset signatures 39 (right, columns, “B”). M. Distribution of program scores (y axis) for DC1-, 

DC2-, mDC-, and macrophage-like cell subsets (x axis). * P < 0.05 one-vs.-rest one-sided 

Wilcoxon rank sum test. 
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Figure S4, related to Figure 3. Relation between regulatory (genetic) and physical (protein-

protein and TF-target) interactions. 

A,B. Three E3 ligases are 'authorities' highly regulated by other E3s. Binarized regulatory effects 

(blue/red: negative/positive) of perturbing each of 60 E3 ligases in the model that significantly 

affected the expression of at least one other of the 60 E3 ligases, for all 60 E3 ligases (A) or for 

the 15 that both impact and are impacted by another E3 (B). Module membership is labeled by 

color on left and top. Negative effects of the KOs on its own RNA level are not shown in A and 

shown in B. C-F. Co-functional modules affect distribution of cell states. C. UMAP embedding 

of cell profiles (as in Figure 1C) colored by Gaussian kernel density estimations of cells with 

control guides (top left) or guides targeting genes with each module (label on top). D. Supervised 

UMAP embedding of DC2.1, DC2.2, and DC2.3 cell profiles using a cells’ co-functional module 

assignment as the response label (as in Figure 3C, STAR Methods), colored by the difference 

of macrophage and DC signature Z scores. E. Percentage of cells (y axis) with guides targeting 

genes in each module (x axis) belonging to each of the cell clusters of Figure 1C (colors). F. 

Percentage of cells (y axis) in each of the cell clusters of Figure 1C (x axis) with guides 

targeting genes in each module (colors). G-I. Congruence between protein interactions and 

genetic effects. G. Physical interactions (blue, red, grey; experimental score > 0, STRING DB) 

or lack thereof (white) between each pair of 165 E3 ligases among the 329 regulators (rows, 

columns). Red/blue: the regulatory profiles of the physically interacting genes have significant 

(P<0.05) positive/negative correlation. Grey: the regulatory profiles of the physically interacting 

genes are not significantly correlated. Genes are sorted by module membership (colors on top 

and left). H. Physical interactions (edges, STRING DB experimental score > 0) between NFkB 

signaling pathway components included in the regulatory model (nodes), colored by significant 
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(P<0.05) positive (red) or negative (blue) correlation of their perturbation effects. I. Top: 

physical interactions (blue, red, grey; experimental score > 0, STRING DB; color code as in G) 

or lack thereof (white) between each perturbed CLR E3 ligases (rows) and their CLR complex 

members, including adaptor domain proteins (columns). Columns are ordered by CLR physical 

complexes / interactions (boxes and dashed lines). Bottom: As on top, except all significant 

covariances are displayed regardless of interaction evidence. J,K. TFs impacted by and 

mediating the effects of E3 perturbation. J. Inferred activity scores (colorbar) of 109 TFs 

(columns) whose target genes are significantly (FDR < 0.1) induced (yellow) or repressed (blue) 

(by at least 10 perturbations) when perturbing each of 156 E3 and related genes (rows) (that 

affected at least 10 of the 109 TFs) (STAR Methods). K. Intersection between TF targets 

(DoRothEA), E3 expression targets, and gene programs. 
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Figure S5, related to Figure 4. Independent factors in the regulatory model 

A,B. Genes and regulators associated with each factor. Regulators (A, rows) and member genes 

(B, columns) associated (green) with each factor (columns) by their outlier weights in the mixing 

matrix or outlier loadings in the matrix of source signal estimates, respectively. C-E. Choice of 

number of factors. ‘gn’-main criterion for the ladle estimate 146 (C, y-axis, STAR Methods), 

explained variance (D, R2, y-axis) after matrix reconstruction with estimated components, and 

distribution of explained variance (E, y axis) in randomly sampled unseen perturbation responses 

(STAR Methods) for ICA decomposition with different numbers of components (x-axis). F. 

Factor expression across cells. UMAP embedding of cell profiles (as in Figure 1C) colored by 

expression scores for each sub-factor (label on top). G,H. Jaccard index (color bar) for each pairs 

of factors (columns and rows) based on genes with outlier loadings in the matrix of source signal 

estimates (G) or regulators with outlier weights in the mixing matrix per factor (H). 
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Figure S6, related to Figure 6. Inter- and intra-module genetic interactions 

A. Combinatorial perturbations in the E3 screen. Number of cells (color bar, number) with pairs 

of guides targeting genes in the same or pair of modules (rows, columns). B. Genes vary in the 

extent of genetic interactions on their expression. Number of significant interaction terms (FDR 

< 0.1, y-axis) on the expression of each gene (x axis) from combinatorial perturbations across all 

intra-modules (red) and inter- (orange) module interactions. C. Module pairs vary in the extent of 

interactions. Number of target genes (y axis, of 1,041 in the regulatory model) with a significant 

effect on expression (blue) due to single perturbations in genes in one module (Mi, x axis) or 

with a significant interaction term due to perturbation in two genes from the same (Mi:Mi, x axis) 

or different (Mi:Mj, i≠j, x axis). D,E. Specific inter-module interactions across genes. Binarized 

significant effect (FDR < 0.1) (red/blue: positive/negative) on the expression of genes (row, only 

genes with significant interaction terms) by single perturbations in regulators from two different 

modules (Mi, Mj, i≠j), their additive effect (Mi+Mj), their interaction term (Mi:Mj), and the 

observed effect (columns). Gene program membership is labeled on left. F-H. Observed vs. 

additive effects across genes. Fold changes in gene expression observed (y axis) following inter-

module combinatorial perturbation or predicted by an additive model (x axis) for each of the 

1,041 genes (F, dots) or only genes with either significant (G, FDR < 0.1) or non-significant (H, 

FDR  >= 0.1) inter-module interaction terms. R2: explained variance in observed fold changes; 

MAE: mean absolute error of the predictions. 
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Figure S7, related to Figure 6. ComβVAE for prediction of combinatorial perturbations 

A,B. Fold change predictions from comβVAE. Fold changes in gene expression observed (y 

axis) following inter-module combinatorial perturbation (y-axis) or predicted by comβVAE (x 

axis) for each of the 1,041 genes (A, dots) or only genes with significant (B, FDR < 0.1) inter-

module interaction terms. The diagonal entries in (A) reflect the prediction in single knockouts. 

C. comβVAE performance for different modules and module combinations. Distribution of 

explained variance (top, y axis, R2) and mean absolute error (bottom, y axis, MAE) of the 

predictions of the comβVAE model for each module (Mi) or inter-module combination (Mi:Mj, 

i≠j) (x axis) across 7 runs with the same hyperparameters. D. Impact of changes in KL loss 

weight. Distribution of explained variance in fold changes (D, y-axis) of the comβVAE at 

different KL loss weight values (x axis) for each module (Mi) or inter-module combination 

(Mi:Mj, i≠j) across 7 runs with the same hyperparameters. E-G. Impact of training with doubly 

perturbed cells. E. Distribution of the explained variance in fold changes (y axis, R2) in the 

indicated inter-module combinations (labels on top of panel) when the model (Beta=6.0) is 

trained only with data from singly perturbed cells from all modules (M) or singly perturbed cells 

from all modules and doubly perturbed cells from one or two pairs of modules (Mi:Mj; i≠j) (x 

axis) across 7 runs with the same hyperparameters. F. Explained variance in fold changes (y-

axis) in each module pair (panels) when the comβVAE is learned with different KL loss weight 

values (x axis) and trained either only with singly perturbed cells (red) or with both singly 

perturbed and doubly perturbed cells of specific module pairs (green: M3M5, blue: M5M6, 

purple: M3M5 and M5M6). G. Explained variance in fold changes (y-axis) in select module 

pairs with relatively high number of genes with significant inter-module interaction terms 

(column headers) when the comβVAE is learned at different KL loss weight values (x axis) and 
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trained either only with singly perturbed cells (red) or with both singly perturbed and doubly 

perturbed cells of specific module pairs (row labels). All boxes in Box plots display the first 

(Q1), second (Q2,median) and third (Q3) quartiles, and bottom and top whiskers show the 

intervals [Q1 -1.5 IQR, Q1] and [Q3, Q3 +1.5 IQR], respectively.   
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