
ARTICLE OPEN

Systematically higher Ki67 scores on core biopsy samples
compared to corresponding resection specimen in breast
cancer: a multi-operator and multi-institutional study
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Ki67 has potential clinical importance in breast cancer but has yet to see broad acceptance due to inter-laboratory variability. Here
we tested an open source and calibrated automated digital image analysis (DIA) platform to: (i) investigate the comparability of
Ki67 measurement across corresponding core biopsy and resection specimen cases, and (ii) assess section to section differences in
Ki67 scoring. Two sets of 60 previously stained slides containing 30 core-cut biopsy and 30 corresponding resection specimens from
30 estrogen receptor-positive breast cancer patients were sent to 17 participating labs for automated assessment of average Ki67
expression. The blocks were centrally cut and immunohistochemically (IHC) stained for Ki67 (MIB-1 antibody). The QuPath platform
was used to evaluate tumoral Ki67 expression. Calibration of the DIA method was performed as in published studies. A guideline for
building an automated Ki67 scoring algorithm was sent to participating labs. Very high correlation and no systematic error (p=
0.08) was found between consecutive Ki67 IHC sections. Ki67 scores were higher for core biopsy slides compared to paired whole
sections from resections (p ≤ 0.001; median difference: 5.31%). The systematic discrepancy between core biopsy and corresponding
whole sections was likely due to pre-analytical factors (tissue handling, fixation). Therefore, Ki67 IHC should be tested on core
biopsy samples to best reflect the biological status of the tumor.
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INTRODUCTION
It has been long acknowledged that the immunohistochemical
(IHC) detection of Ki67 positive tumor cells provides important
clinical information in breast cancer1. More recently, Ki67 gained
clinical utility in the T1-2, N0-1, estrogen receptor-positive (ER) and
HER2-negative patient group by allowing to identify those
patients that are unlikely to benefit from adjuvant chemotherapy2.
However, Ki67 has not been consistently adopted for clinical care
due to unacceptable reproducibility across laboratories3–5.
Therefore, the International Ki67 in Breast Cancer Working

Group (IKWG) originally published consensus recommendations in
2011 for best practices in the application of Ki67 IHC in breast
cancer6. According to this consensus, parameters that predomi-
nantly influence Ki67 IHC results can be grouped into pre-
analytical (type of biopsy, tissue handling), analytical (IHC
protocol), interpretation and scoring, and data analysis steps6.
As the scoring method was the largest contributor to test
variability7, the IKWG has undertaken serious efforts to standardize
the Ki67 scoring method of pathologists8,9. Although in multi-
institutional studies, standardized Ki67 scoring methods reached
pre-defined thresholds for adequate reproducibility9,10, this was
only after completing calibration training and by using tedious
counting methods. In this context, recently updated guidelines by
the IKWG now recommend Ki67 IHC for clinical adoption in
specific situations, including the identification of very low (<5) or
very high proliferation (>30) indices, that render more expensive
gene expression tests unnecessary2.
An important additional issue that can cause variability in Ki67

measurements is the type of specimen (core biopsy vs excision)
and its effect on Ki67 scoring in a multi-center setting2. Indeed,
the IKWG recommended use of core biopsies (CB), based on
apparent superior results for Ki67 when visual evaluation was
compared to that of whole sections (WS).
In this multi-observer and multi-institutional study, we aimed to

investigate the comparability of Ki67 measurements across
corresponding core biopsy and resection specimens from the
same breast cancer cases, when evaluated using a calibrated,
automated reading system. Furthermore, we assessed between-
(consecutive) section differences in Ki67 scoring as no difference

between sections will facilitate the selection of the tumor-block to
perform the IHC staining on.

MATERIALS AND METHODS
Patients
Thirty cases of ER-positive breast cancer used in phase 3 of IKWG initiatives
collecting 15 cases from the UK and 15 cases from Japan designed to cover
a range of Ki67 scores9 were employed in this study. No outcome data
were collected for this cohort. Patient selection was irrespective of
patients’ age at diagnosis, grade, tumor size or lymph node status. The
clinicopathological characteristics of these 30 cases can be found in our
previous publications9,10.

Tissue preparation and immunohistochemistry (IHC)
Tissues from UK patients, both core biopsies and surgical resections were
collected according to ASCO/CAP guidelines, while patients’ tissues from
Japan were collected following ISO (International Organization for
Standardization) 15189 approved by the Japan Accreditation Board.
Preparation of the Ki67 slides of the first cohort has been previously
described9. Briefly, the corresponding core-cut biopsy and surgical
resection blocks were centrally cut and stained with Ki67, resulting in 60
Ki67 slides from 30 cases. The IHC was performed using monoclonal
antibody MIB-1 at dilution 1:50 (DAKO UK, Cambridgeshire, UK) using an
automated staining system (Ventana Medical Systems, Tucson, AZ, USA)
according to the consensus criteria established by the International Ki67
Working Group6. Sections from the same block were stained in a single
immunohistochemistry run, except for four cases where the staining was
performed in two different runs. This approach effectively controls for any
technical variation in staining.

Sample distribution
Twenty volunteer pathologists from 15 countries, most of whom participated
in the previous Phase 3A study, were invited to participate. Four adjacent
sections from each of the 60 blocks were centrally stained as follows: the first
section with haematoxylin and eosin (H&E), the second with p63 (a
myoepithelial marker, to assist the distinction of DCIS from invasive breast
cancer) and the third to fourth with Ki67 (designated as slide sets 1–2).
The Aperio ScanScope XT platform was used at 20× magnification to

digitize the slides (pixel size: 0.4987 µm × 0.4987 µm), which were
uploaded to a server and distributed as digital images. Seventeen
pathologists successfully completed the study (Fig. 1).

Fig. 1 Study design. Thirty patients of ER-positive breast cancer were enrolled comprising 15 cases from UK and 15 cases from Japan.
Corresponding core-cut biopsy and surgical resection blocks were centrally cut two adjacent sections per case and stained with Ki67.
Seventeen pathologists from 15 countries were given 60 slides (30 Core cut biopsy slides and 30 surgical resection specimen slides) of Ki67
to score.
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Digital image analysis (DIA)
The QuPath open-source software platform was used to build automated
Ki67 scoring algorithms for breast cancer11. A detailed guideline for setting
up and building an automated Ki67 scoring algorithm was sent to the
participating labs. All the participating labs were requested to build their
own Ki67 scoring algorithm following the instructions and apply them on
these 60 slides. The complete step by step instructions are available in
Supplementary File 1. The reason why we asked each lab to build their
own algorithm instead of using the same pre-trained and locked down
Ki67 algorithm was to mimic clinical practice. As of the date of the study,
no generalizable Ki67 scoring algorithm was available that provides whole
slide scoring. Thus, theoretically, all the labs would need to adjust/
optimize any such DIA approach to their lab characteristics (different
fixation, different antibodies and IHC protocols etc.) necessitating a lab-
specific DIA approach. Calibration of the DIA method/guideline was
performed in our previous studies demonstrating very good reproduci-
bility among users12,13. Briefly, after the whole invasive cancer area on a
digitized slide was annotated, hematoxylin and DAB stain estimates for
each case were refined using the “estimate stain vectors” command. We
used watershed cell detection14 to segment the cells in the image with the
following settings: Detection image: Optical density sum; requested pixel
size: 0.5 µm; background radius: 8 µm; median filter radius: 0 µm; sigma:
1.5 µm; minimum cell area: 10 µm2; maximum cell area: 400 µm2; threshold:
0.1; maximum background intensity: 2. In order to classify detected cells
into tumor cells, immune cells, stromal cells, necrosis and others (false
detections, background) (Supplementary File 1), we used random trees as
a supervised machine-learning method. The features used in the
classification are described in Supplementary Table 1. After setting the
optimal color deconvolution and cell segmentation, two independent
classifiers were trained on a randomly selected, pre-defined core biopsy
(CB classifier) and a resection specimen slide (WSI classifier). Both CB and
WSI classifiers were run on both CB slides and resection specimen slides in
order to adjust for potentially different characteristics of the two specimen
types (Fig. 2).

Statistical analysis
For statistical analysis, SPSS 22 software (IBM, Armonk, USA) software
was used. Degree of agreement was evaluated by Bland–Altman plot

and linear regression. To assess differences between specimen type the
Wilcoxon signed-rank test was applied, since the data were not
normally distributed. Data were visualized using boxplot, spaghetti
plot, and dot-plot.

RESULTS
Between-(consecutive) section difference in Ki67 scoring
Very high correlation and no systematic error (bias: −0.6%; p=
0.08) was found between the two consecutive (serial) sections
regarding Ki67 scores. If the Ki67 score is higher for a given
case, the difference between the sections tends to be also
greater (proportional error p= 0.002, Fig. 3.), however this
difference (0.6% mean difference) does not reach clinical
relevance.

Specimen type (CB vs resection specimen) difference in
Ki67 scoring
A low correlation was found between core biopsy and whole
section excision images (Fig. 4). Ki67 scores were higher when
determined on core biopsy slides compared to paired whole
sections (p ≤ 0.001; median difference: 5.31%; IQR: 11.50%) from
subsequent surgical excisions of the same tumor. Systematic
error occurred between specimens from the same patient as
core biopsy Ki67 scores were greater, with a clinically relevant
mean difference of 6.6% (bias p= 0.001). The limits of
agreement also have to be considered wide from a clinical
perspective (between −13.7 and 27). Furthermore, Ki67 scores
on CB were even higher compared to WS on cases with higher
Ki67 scores (proportional error p= 0.001). Moreover, the
variability of differences in Ki67 scores between CB and WS
showed an increasing trend, proportional to the magnitude of
Ki67 score (Fig. 4). The same results were found irrespective of
the origin of the specimens (CB vs WS p < 0.001 for both UK and
Japan cases Fig. 5).

Fig. 2 Digital Image Analysis. Representative pictures of digital image analysis (DIA) masks on a resection specimen (A, B) and a core biopsy
case (C, D). Blue corresponds to Ki67 negative tumor cells, red indicates Ki67 positive tumor cells, green indicates stromal cells and purple
marks immune cells. Black corresponds to necrosis and yellow marks other detections (false cell detections, noise).
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DISCUSSION
In this study, we observed that clinically relevant and systematic
discrepancies occurred in Ki67 scores between core biopsy and
corresponding surgical specimens when evaluated with an
automated reading system. Overall, Ki67 scores were higher on
CB compared to WS samples. Furthermore, this discrepancy was
even more pronounced in tumors that expressed higher levels of
Ki67 in general.

Ki67 is one of the most promising yet controversial biomarkers
in breast cancer with limited adoption into clinical practice due to
its high inter- and intra-laboratory variability3,15. However, Ki67 is
widely used in many countries, there is wide variability in its use
(to distinguish luminal A-like vs B-like tumors; to determine
whether to decide for gene-expression profiling or not; as an
adjunct to mitotic counts, etc.), with still no uniformity between
clinicians on how to use this biomarker, let alone which cut-off to

Fig. 3 Between-(consecutive) section difference in Ki67 scoring. Bland–Altman plot comparing Ki67 scores between consecutive sections
(A). Orange dashed line corresponds to the expected mean zero difference between Ki67 scores of the two sections. Red line represents the
observed mean difference between Ki67 scores of the two sections, namely the observed bias (red dashed lines are the CI of the observed
mean difference). Blue lines illustrate the range of agreement (lower and upper limit of agreement) based on 95% of differences (blue dashed
lines are the CI of the limits of agreement). Black line is the fitted regression line to detect potential proportional error (black dashed lines are
the CI of the regression line). B represents the scatter plot with fitted regression between the Ki67 scores of the two consecutive sections.

Fig. 4 Between-specimen (CB vs resection specimen) difference in Ki67 scoring. Bland–Altman plot comparing Ki67 scores between
specimens (A). Orange dashed line corresponds the expected mean zero difference between Ki67 scores of the two sections. Red line represents
the observed mean difference between Ki67 scores of the two sections, namely the observed bias (red dashed lines are the CI of the observed
mean difference). Blue lines illustrate the range of agreement (lower and upper limit of agreement) based on 95% of differences (blue dashed lines
are the CI of the limits of agreement). Black line is the fitted regression line to detect potential proportional error (black dashed lines are the CI of
the regression line). B shows the distributions of Ki67 scores of the two specimens. The bottom/top of the boxes represent the first (Q1)/third (Q3)
quartiles, the bold line inside the box represents the median and the two bars outside the box represent the lowest/highest datum still within 1.5×
the interquartile range (Q3–Q1). C represents the scatter plot with fitted regression between the Ki67 scores of the two specimens.
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use. Although the IKWG set up a guideline in 2011 to improve pre-
analytical and analytical performance, inter-laboratory protocols
still demonstrated low reproducibility related to different sam-
pling, fixation, antigen retrieval, staining and scoring methods6,7.
As the latter was the largest single contributor to assay variability,
the IKWG has undertaken multi-institution efforts that have
standardized visual scoring of Ki67 in a manner which requires
on-line calibration tools and careful scoring of several hundred
cells, which may or may not be ideal for pathologists in daily
practice with time-constraints8,9. This result suggests that digital
solutions may still be required to address this issue.
The rise of digital image analysis (DIA) platforms has improved

capacity and automation in biomarker evaluation16,17. DIA plat-
forms are able to assess nuclear IHC biomarkers such as Ki67, and
numerous studies have been conducted to compare human visual
scoring with DIA platforms12,18–28. Although the latest guideline of
IKWG recommends Ki67 for clinical practice in specific situations,
the type of specimen as a potential pre-analytical factor
contributing to Ki67 variability was not specifically investigated
in a multi-operator/multi-center setting. In this study we aimed to
address these biospecimen questions including assessment by
specimen type and between serial sections.
One explanation for our finding would be the presence of

tumor heterogeneity, and the broader field of review in a whole
section from resection specimen. However, one would expect that
this cause of discrepancy would result in random discordance, not
the consistent finding that Ki67 scores on core biopsies are higher
than that of on resection specimens. Rather, we conclude that
lower Ki67 in resection specimens is more easily explained by pre-
analytical factors. For example, since longer times to fixation occur
with resection specimens compared to CB, persistent cell division
will occur even in an unfixed, hypoxic environment. Further,
epitope degradation also occurs with prolonged time to
fixation29–31.

In addition, one can expect that hot spot scoring might lead to
less discrepancy between CB and WS because it considers only the
hottest area of Ki67 positivity (highest percentiles of Ki67
distribution) on both specimen types, while global assessment
evaluates the total Ki67 distribution which can be variable10.
However, there remains a fundamental issue of exact hot spot
definition and where pathologists set its boundaries. Moreover,
the International Ki67 Working Group has recommended global
scoring over hot spot as it did show a consistent trend towards
increased reproducibility in both core biopsy9 and excision10

specimens.
Additional support for the conclusion that the difference in Ki67

between CB and WS is provided by the observation of clinically
relevant differences between specimens in cases from different
institutions used in this study, independently scored multiple
times by 17 pathologists. Although many studies focused on
assessing the level of agreement between CB and resection
samples in Ki67 scoring; consensus was not possible due to lack of
standardization32.
Our results are consistent with previous results showing poor/

moderate concordance (κ= 0.195–0.814) occurring between CB
and resection specimen in Ki67 scoring1,33–46. However, some
studies showed higher Ki67 scores on resection samples35,36,38.
This discrepancy among studies may be due to lack of
standardization in methodology leading to different scoring
methods, which we have previously demonstrated to be highly
variable2. Moreover, inter-institutional discrepancies could also be
the result of different antibodies and protocols used to detect
Ki67, different tissue handling/fixation protocols and at some
point tumor Ki67 heterogeneity since Ki67 is heterogeneous in
tumors6. Thus, our findings provide further support to the latest
IKWG recommendations and provide a consensus that Ki67 should
be ideally tested on CB samples because it minimizes many
fixation problems as Ki67 IHC is more sensitive than ER or HER2 to

Fig. 5 Between-specimen (CB vs resection specimen) difference in Ki67 scoring by case and by origin of the cases. A represents cases
collected in the United Kingdom with representative Ki67 IHC images of corresponding CB and resection specimens. B represents cases
collected in Japan with representative Ki67 IHC images of corresponding CB and resection specimens. The bottom/top of the boxes represent
the first (Q1)/third (Q3) quartiles, the bold line inside the box represents the median and the two bars outside the box represent the lowest/
highest datum still within 1.5× the interquartile range (Q3–Q1). Outliers are represented with circles, extreme outliers with asterisk.
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variabilities in fixation2. Since pre-analytical factors are critical in
diagnostic pathology, the IKWG recommends that breast cancer
samples for Ki67 testing should be processed in line with ASCO/
CAP guidelines2.
There are a number of limitations in this study. This study only

focused on analytical and preanalytical questions, therefore we
cannot demonstrate the clinical validation of the calibrated tool.
There are many other studies that address the prognostic or
predictive value of this test, and that goal was beyond the scope
of this effort. For the same reason, further clinical studies are
needed to demonstrate how does this consistent difference in
Ki67 between corresponding core-cuts and resection specimen
impact on prognostic value or its clinical implication on the
assessment of neoadjuvant endocrine therapy benefit. Further-
more, the low correlation suggests a critical difference between a
core biopsy score and a whole section excision score, which can
undermine the use of data on outcome, derived predominantly
from resection samples, to identify patients at high risk using a
score derived from a core biopsy. Therefore, this study suggests
caution in this approach given that even without intervening
therapy a clinically relevant change in Ki67 may occur. Further, the
Ki67 assessments were based on biospecimens from only 2 central
sites. While the participating pathologists within the IKWG
represented 15 countries, specimens were centrally acquired
and stained. Whereas other investigators have compared speci-
mens from multiple different sites5,7,47 we limited the number of
sites to remove the variables associated with the technical aspect
of the stain. Finally, while the core cut biopsy and resection are
from the same case, only a single core was assessed. Thus, we
could be missing heterogeneity seen in larger resection speci-
mens. The effect of heterogeneity could be decreased by taking
multiple core cuts when clinical situation allows. However, since
examination of a single core cut represents the clinical standard of
care in several countries, we did not pursue multiple cores.
In conclusion, while we find no significant difference in digitally-

assessed Ki67 index between serial sections, we do find a
systematic discrepancy between core biopsy and corresponding
whole sections – core biopsy samples yield higher scores (likely
due to pre-analytical factors including more standard and prompt
tissue handling, fixation, etc.). Therefore, this work suggests that
Ki67 IHC tested on core biopsy samples should be preferred to
excision specimens in clinical decision-making, because doing so
will preclude many pre-analytical factors.

DATA AVAILABILITY
The datasets used and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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