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Systematically study on the magnetism and critical behaviour of layered
NdMn1.4Cu0.6Si2

Abstract

The strong dependence of the field-induced on the body-centered tetragonal ThCr2Si2-type and the critical
behaviour of magnetic phase transition in NdMn2-xCuxSi2based compounds guide us to study the
substitution Mn (atomic radius = 1.35 Å) by Cu (atomic radius = 1.28 Å) in layered
NdMn1.4Cu0.6Si2compound. Room temperature x-ray diffraction study indicates clearly that most of the
reflections can be identified with ThCr2Si2-type structure with space group I4/mmm. It found lattice
parameters a slightly increases and lattice parameter c decrease compare to NdMn2Si2as indicated the
decreasing of volume structure. The Neel temperature TNis found at 340 K while Curie temperature TCfound
at 75 K respectively. The increasing concentration of Cu in replacement of Mn changes the magnetic phase
transition from first order type for NdMn2Si2to second order type for layered NdMn1.4Cu0.6Si2compound
as been determined by particular the S-shaped nature of the Arrott plot near TC. Our results indicate that the
magnetic-field-induced magnetic phase transition plays a critical role on producing large magnetocaloric effect
in these systems especially on second order type as the key for further investigation. The critical behaviour
analysis in the vicinity of TCdemonstrates that the magnetism of the layered NdMn1.4Cu0.6Si2compound is
governed by long range interactions.
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Abstract. The strong dependence of the field-induced on the body-centered tetragonal ThCr2Si2-type and the critical 
behaviour of magnetic phase transition in NdMn2-xCuxSi2 based compounds guide us to study the substitution Mn (atomic 
radius=1.35 Å) by Cu (atomic radius=1.28 Å) in layered NdMn1.4Cu0.6Si2 compound. Room temperature x-ray diffraction study 
indicates clearly that most of the reflections can be identified with ThCr2Si2-type structure with space group I4/mmm. It found 
lattice parameters a slightly increases and lattice parameter c decrease compare to NdMn2Si2 as indicated the decreasing of 
volume structure. The Neel temperature TN is found at 340 K while Curie temperature TC found at 75 K respectively. The 
increasing concentration of Cu in replacement of Mn changes the magnetic phase transition from first order type for 
NdMn2Si2 to second order type for layered NdMn1.4Cu0.6Si2 compound as been determined by particular the S-shaped nature of 
the Arrott plot near TC. Our results indicate that the magnetic-field-induced magnetic phase transition plays a critical role on 
producing large magnetocaloric effect in these systems especially on second order type as the key for further investigation. The 
critical behaviour analysis in the vicinity of TC demonstrates that the magnetism of the layered NdMn1.4Cu0.6Si2 compound is 
governed by long range interactions.

INTRODUCTION

Research on near-room-temperature magnetic cooling which related to magnetocaloric effect (MCE) phenomena 
has been a favorable increase nowadays [1,2]. This MCE process, will supersede the conventional refrigeration 
technology based on gas operation which its special interest because of considerable socio-economic benefits and 
high efficiency on performance [3,4]. Material systems which use as refrigerant such as LaFeSi [5], NiMnGa [6], 
MnAsSb [7], CeMn2Ge2-xSix [8] and GdSiGe [9] undergo first-order magnetic transitions and have been found to 
possess a giant MCE. However, issue which include large thermal and magnetic hysteresis that is detrimental to the 
refrigerant capacity, drive them undesirable for real applications. From this issue, layered NdMn1.4Cu0.6Si2 compound 
become to be significant interest, which indicated a second-order phase transition as well as no thermal and magnetic 
hysteresis behavior.

An investigation on substituting other transition metal (Cu) for Mn in NdMn2Si2 compound (NdMn1.4Cu0.6Si2) 
has been implemented in this case study, and it was found that an appropriate Cu concentration successfully changed 
the magnetic phase transition type from first order to second order and Curie temperature into the temperature range 
of interest, leading to the attainment of a high contribution in order to produce giant magnetocaloric effect 
(GMCE). From this point of view, the replacement of Mn by Cu is expected to significantly modify the magnetic 
state of both 
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the Nd and the Mn sublattices due to the difference of magnetic moment and atomic radius of Mn and Cu. Thus, in an 
effort to understand the nature of the magnetic transition in NdMn1.4Cu0.6Si2, critical exponent analysis in the vicinity 
of the ferromagnetic (FM) – paramagnetic (PM) region [10-12] has been performed. The outcomes revealed that this 
compound undergoes a second-order ferromagnetic (FM) - paramagnetic (PM) transition at ~ 75 K. Based on this 
ability to design the overall NdMn2-xCuxSi2 compounds, we present a detailed investigation of the crystal structure, 
magnetic phase transitions and critical behaviour in the layered NdMn1.4Cu0.6Si2 compound.

EXPERIMENTAL AND PROCEDURES

The layered NdMn1.4Cu0.6Si2 compound were prepared by arc melting the appropriate amounts of Nd (99.9%), 
Mn (99.999%), Cu (99.9%) and Si (99.9%) chips in an argon atmosphere. During arc melting, a 3% excess of Mn 
over the stoichiometric amount was added to compensate for the weight loss of Mn. The compounds were melted 
several times to achieve good homogeneity. The compound were then wrapped in tantalum foil, sealed in a quartz 
ampoule, and subsequently annealed at 900 °C for 120 h and then quenched in water at room temperature. The crystal 
structure of the samples were checked by room temperature powder x-ray diffraction (XRD) measurements 
1.54059 Å using Cu K 1 radiation with the diffraction patterns refined using the Fullprof software package [13]. The 
magnetization measurements were carried out using the vibrating sample magnetometer option of a Quantum Design 
14 T physical properties measurement system (PPMS) and a Quantum Design magnetic properties measurement 
system (MPMS) in the temperature range of 100–340 K at applied fields of up to 5 T. For critical exponent study, 
magnetization isotherms were measured in the temperature range of 65–105 K with an interval of 3 K at applied fields 
of up to 5 T.

RESULT AND DISCUSSION

Crystal Structure

Confirmation that the layered NdMn1.4Cu0.6Si2 compound crystallize in the expected NdMn1.4Cu0.6Si2 type 
structure with space group I4/mmm was provided by analysis of the x-ray powder diffraction patterns as indicated in 
Fig. 1. Layered NdMn1.4Cu0.6Si2 compound have Nd atoms in the 2a site (0, 0, 0), while Cu and Mn share the position 
at the 4 d site (0, 1/2, 1/4), and Si atoms occupy the 4e site (0, 0, z). The measured data from the diffraction patterns 
were analysed using the Rietveld refinement technique, and the distances between neighbouring atoms have been 
obtained with the BLOKJE program, using the structural and positional parameters. It found lattice parameters a 
slightly increases from 4.004 (5) Å to 4.036 (7) Å and lattice parameter c decrease from 10.527 (4) Å to 10.358(5) Å 
compare to NdMn2Si2 as indicated the decreasing of volume structure from 168.76 Å to 168.59 Å.

FIGURE 1. Room temperature x-ray diffraction   patterns of 
NdMn1.4Cu0.6Si2
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Magnetic Properties

The temperature dependences of the magnetization and the differential scanning calorimetry curve obtained at 
higher temperatures of NdMn1.4Cu0.6Si2 is shown in Fig. 2. As is also evident from the analyses of the neutron 
diffraction data presented below, NdMn1.4Cu0.6Si2 indicated two magnetic transitions over the temperature range of 
10–450 K. The TN ~ 340 K antiferromagnetic transition temperatures were determined from a graph of the DSC data 
plotted against inverse temperature with the TC ~ 75 K ferromagnetic transition temperature determined from the 
maximum of the dM/dT versus T curve from the zero-field cooling magnetization data. Comparison of the cooling 
and warming magnetisation results in shows that the no thermal hysteresis at TC.

FIGURE 2. Temperature dependence of the magnetization as measured 
in a field of 0.01 T (left axis: zero field cooling (ZFC) and field cooling 

(FC)); right axis: DSC results over the range T=300–450 K)

Critical Behaviour

In an effort to further clarify the nature of the FM – PM phase transition, an analysis of the critical behaviour near 
TC for NdMn1.4Cu0.6Si2 compound was performed. The isothermal magnetization versus the applied field around TC
has been measured using intervals of 5 K and 3 K, as shown in Fig. 3.

FIGURE 3. Isothermal magnetization curves for NdMn1.4Cu0.6Si2
compound in the vicinity of TC
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A plot of B/M versus M2, known as the standard Arrott plot, is shown in Fig. 4 for the temperatures in the vicinity 
of TC. According to the criterion proposed by Banerjee [14], the order of magnetic transition can be determined from 
the slope of the isotherm plot. If the B/M versus M2 curves show a negative slope, the transition is first order, while a 
positive slope corresponds to a second order transition. For the NdMn1.4Cu0.6Si2 compound, the always positive slope 
of the B/M, versus M2 curves throughout the transition temperature range indicates that the phase transition is second 
order. This result is consistent with the absence of thermal and magnetic hysteresis in the vicinity of the FM – PM 
transition as discussed, thereby confirming the second order nature of this transition. The scaling hypothesis postulates 
that a second order magnetic phase transition near TC is characterized

[15]. In this work, different methods have been used to investigate the critical behaviour of NdMn1.4Cu0.6Si2 
compound, namely, modified Arrott plots (MAPs), the Kouvel-Fisher method, critical isotherm analysis, and the the 
Widom scaling relation. The first method used to calculate the critical exponents is the MAPs method, which is based 
on the Arrott-Noakes equation of state [15]. Quantitative fits are made to the Arrott plots using the following equations 
[16]. (ܶ)ௌܯ = limு՜଴(ܯ) = ଴ܯ (െߝ)ఉ , ߝ < 0                                                                (1)߯଴ିଵ(ܶ) = limு՜଴(ܯ/ܪ) = (݄଴/ܯ଴)ߝఊ, ߝ > 0                                                              (2)
where M0 and h0 are constants and (= (T-TC)/TC
and then a plot of M versus (B/M) is obtained. The spontaneous magnetisation, MS, is then determined from the 
intersection of the linearly extrapolated curve with the M axis.

FIGURE 4. Arrott plots (M2 vs. B/M) at temperatures in the vicinity of 
TC for NdMn1.4Cu0.6Si2 compound

It is imperative to note that only the high field linear region is used for the analysis because MAPs tend to deviate 
from linearity at low field due to the mutually misaligned magnetic domains [17]. Next, MS is plotted as a function of 
temperature. To determine the inverse initial magnetic susceptibility, ߯଴ିଵ(ܶ), a similar procedure is used in 
conjunction with the (B/M) axis. The values of  ߯଴ିଵ(ܶ) and MS(T) are plotted as a function of temperature in 
Fig.
exponent values are then used to construct new MAPs. These steps are repeated until the iterations converge to the 

TC values. Using Equations (1) and (2), the MAPs shown in Fig.

The Kouvel-Fisher (KF) method, which makes use of Equations (3) and (4) shown below, is a more accurate way 
of determining the critical ex [17].

ெೄ(்)೏ಾೄ(೅)೏೅ = ்ି்಴ఉ                                                                                   (3)
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ఞబషభ(்)ௗఞబషభ(்)ௗ் = ்ି்಴ఊ                                                                             (4)

According to Equations (3) and (4), plotting ܯௌ(ܶ)[݀ܯௌ/݀ܶ]ିଵ and ߯଴ି ଵ(ܶ)[݀߯଴ି ଵ/݀ܶ]ିଵ versus temperature 
y, as shown in Fig. 5. The value of TC is obtained from the 

intercepts on the x- TC, obtained using the Kouvel-Fisher method 
TC = 75 K. A comparison of the critical e

MAPs and those obtained using the KF method reveals that these values match extremely well. The value of the 
M(TC, H) according to Equation (5) below.

CT TTDHM
C

,0,/1

                                                                               (5)

ߜ = 1 + ఊఉ                                                                                      (6)

Kouvel-
confirmed the reliability of the critical exponents deduced from the experimental data. The reliability of the calculated 

nfirmed by using the scaling theory. 

FIGURE 5. Kouvel-Fisher plot for the spontaneous magnetization MS

and the inverse initial susceptibility ߯଴ି ଵ(T). (Solid lines are fitted to 
Equations (3) and (4))

In the critical region, according to the scaling theory, the magnetic equation of state can be written as:

= f ± ( )                                                            (7)

Where is the reduced temperature, (T–TC)/TC, and f+ and f- are regular analytical functions above and below TC,
-Fisher method, the plots of M/ versus H/ (shown in 

Fig. 6) yield two universal curves, one for temperatures above TC and the other one for temperatures below TC, in 
agreement with the scaling theory. This therefore confirms that the obtained values of the critical exponents as well 
as the TC are reliable and in agreement with the scaling hypothesis.
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FIGURE 6. Scaling plots indicating universal curves below and above 
TC for the NdMn1.4Cu0.6Si2 compound

It is well accepted that the order parameter of the phase transition around the  magnetic transition temperature is 
fluctuating on all available length scales, and those fluctuations smear out the microscopic details of the interactions 
in the continuous phase transition system [18]. The mean-field interaction model for long range ordering has 

[19], while the theoretical values based on the three 
= 0. = 1. =4.80 [20].

1.4Cu0.6Si2 compound are close to the mean-field values, thus 
indicating that long range interactions dominate the critical behaviour around TC in this compound. Thus, the critical 
behaviour analysis in the vicinity of TC demonstrates that the magnetism of the NdMn1.4Cu0.6Si2 compound is 
governed by long range interactions, which is in agreement with the linear fit to the data, which clearly also 

SM ן ( 0H/TC)2/3 is valid around TC.

CONCLUSION

An excellent agreement of the critical exponents of the NdMn1.4Cu0.6Si2 compound was determined using the 
isothermal magnetization in the vicinity of TC, based on various techniques such as the Kouvel-Fisher method, 
modified Arrott plots, and critical isotherm analysis. Moreover, all critical exponents fulfil the Widom scaling law. 
The validity of the calculated critical exponents was confirmed by the scaling equation with the obtained 
magnetization, field, and temperature data below and above TC, showing a collapse into two different curves. Thus, 
the scaling of the magnetization data above and below TC obtained using the respective critical exponents and the 
consistency in the values of the critical exponents determined by different methods confirm that our calculated 
exponents are unambiguous and intrinsic. The determined critical exponents are close to those predicted by the mean-
field theory, with long range interactions.
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