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abstract: The crisis of emerging infectious disease stems from the 

absence of comprehensive taxonomic inventories of the world's para- 
sites, which includes the world's pathogens. Recent technological de- 

velopments raise hopes that the global inventory of species, including 

potential pathogens, can be accomplished in a timely and cost-effective 
manner. The phylogenetics revolution initiated by systematists provides 
a means by which information about pathogen transmission dynamics 
can be placed in a predictive framework. Increasingly, that information 

is widely available in digital form on the internet. Systematic biology 
is well positioned to play a crucial role in efforts to be proactive in the 
arena of emerging parasitic and infectious diseases. 

The biodiversity crisis often is considered solely one of habitat loss 

and species extinction. It is, however, also a crisis of emerging infec- 

tious disease (EID) (Daszak et al., 2000; Harvell et al., 2002; Wool- 

house, 2002; Epstein et al., 2003; Brooks and Ferrao, 2005). In popular 
parlance, the term "emerging infectious disease" means primarily viral, 
sometimes bacterial, infections of humans that show up unexpectedly. 
More than 50% of the known species on this planet are parasites of 
some form, including all viruses and most bacteria, as well as the eu- 

karyotic species most commonly associated with parasitology. These 

include agents of diseases affecting not only humans, but also livestock, 

crops, and wildlife. That is, all pathogens are parasites, but not all par- 
asites are pathogens in all circumstances. Restricting the term "emerg- 
ing infectious disease" to a subset of species of human health concern 

gives a misleading, falsely comforting, impression of the scope of the 
crisis. Thinking that EIDs are likely to be rare, much attention is given 
to managing an EID once it has emerged, but little attention is paid to 
its origins, beyond a search for the taxonomic identity of the parasite 
acting as the pathogen, and its immediate reservoir, if there is one. That 

is, we usually spend our energies fighting the immediate problem, and 

neglect looking ahead to trying to mitigate the occurrence of additional 
EIDs. This is managing a problem, not solving it. 

Parasites, including viruses and many prokaryotic microbes, have 
dual and conflicting significance. On the one hand, they may regulate 
host populations, playing a central role in maintenance of genetic di- 

versity and structuring of vertebrate and invertebrate communities. On 
the other hand, they may represent threats to human health, agriculture, 
natural systems, conservation practices, and the global economy via ( 1 ) 
translocation, introduction, and dissemination; (2) faunal disruption and 

ecological release; (3) increasing host population density; and (4) am- 

plification of parasite populations linked to environmental change, such 
as global warming (Hoberg, 1997; Altizer et al., 2003; Horwitz and 

Wilcox, 2005). Knowledge of the diversity and distribution of known 
and potential pathogens is critical in limiting economic, societal, and 
biotic impacts and liability in management of endemic or exotic organ- 
isms (Brooks and Hoberg, 2000, 2001; Brooks, 2003). Yet, we find that 
our knowledge remains insufficient for patterns of diversity, biogeog- 
raphy, and host associations, and, remarkably, even in relatively well- 
studied regions, we continue to make substantial discoveries about the 
distribution of EIDs (Kutz et al., 2004). 

Anticipating a problem is always more time- and cost-effective than 

responding to a crisis, no matter how effective the response. Systematic 
biology provides and integrates the knowledge that is crucial for any 
effort to be proactive in the arena of emerging parasitic and infectious 
diseases. That knowledge is organized into 3 interconnected research 

programs of local risk assessment, the evolutionary arena of EIDs, and 

global risk assessment. 

LOCAL RISK ASSESSMENT 

Some non-native parasites have become established in the areas 
where they have been introduced (Torchin et al., 2003). Rapid estab- 

lishment and spread of introduced pathogens is facilitated by transmis- 

sion dynamics that are specialized and phylogenetically conservative, 
and we can use such information to assess the risk of EIDs. For ex- 

ample, the inventory of eukaryotic parasites of vertebrates of the Area 

de Conservacion Guanacaste (hereafter ACG), a World Heritage Site in 

northwestern Costa Rica (http://www.parasiterus.com), documents spe- 
cies of special concern. White-tailed deer, Odocoileus virginianus, are 

infected by 18 species of parasites (Carreno et al., 2001), including 6 

species of ticks and the nematodes Parelaphostrongylus tenuis and Ash- 

worthius patriciapillittae. None of the tick species is a known reservoir 

for Borellia burgdorferi, causative agent of Lyme disease, and no cases 

of Lyme disease have been reported from Costa Rica. Some of the ticks, 

however, are relatives of known vectors for Lyme disease, so there is 

an expectation, derived from historical and systematic data, that this 

debilitating illness could be introduced to Costa Rica inadvertently by 
natural range expansion or anthropogenic processes, such as a visit by 
an asymptomatic eco-tourist. 

Native parasites also can be a potential source of EIDs. For example, 

Parelaphostrongylus tenuis lives in the meninges of ungulates as adult 

parasites, causing neurological disorders in hosts other than white-tailed 

deer (Lankester and Fong, 1989; Samuel et al., 1992; Woodford and 

Rossiter, 1994). Translocation with the introduction of parasites or ex- 

posure to novel pathogens is a major consideration in wildlife manage- 
ment decisions (Lankester and Fong, 1989; Samuel et al., 1992; Wood- 

ford and Rossiter, 1994; Daszak et al., 2000). Given the potential for 

neurological disease in susceptible hosts, we now know that care must 

be taken when considering introduction of, e.g., llamas or alpacas for 

commercial purposes onto farms on the margins of the ACG, or rein- 

troduction of brocket deer (Mazama americand) within the ACG. Prior 

to its discovery in Costa Rica, P. tenuis was not known south of Texas, 

suggesting that it also occurs in all countries between the United States 

and Costa Rica. 
In a complementary manner, Ashworthius patriciapilittae, another 

parasite inhabiting white-tailed deer in the ACG, closely resembles Hae- 

monchus contortus, an important pathogen of livestock, especially 

sheep, and definitive identification is necessary for their differentiation. 

Ashworthius patriciapilitta is a member of a group that radiated in cer- 

vids and bovids in the Old World, with subsequent dispersal to the New 

World (Kennedy, 1993; Scholz and Cappellaro, 1993; Hoberg and Lich- 

tenfels, 1994; Hoberg et al., 1995; Hoberg, 1997; Barse and Secor, 

1999; Hoberg et al., 1999; Hoberg, Kocan, and Ricard, 2001; Hoberg 
et al., 2002). If A. patriciapilittae is widespread in temperate latitudes 

across the Western Hemisphere, some previous reports of H. contortus 

in white-tailed deer and other endemic cervids are likely to be in error. 

Money and effort expended on controlling H. contortus, in part through 

minimizing contact between livestock and deer, thus has been spent 

needlessly. Alternatively, if A. patriciapilittae currently is restricted to 

the southernmost range of O. virginanus because of cooling of the bo- 

real and temperate regions of the Nearctic, it represents a potential EID 

of wildlife and livestock that may have a capacity to move north as 

global warming progresses. In either event, there is reason for concern. 

THE EVOLUTIONARY ARENA OF EID 

When ancestral humans moved out of the African forest and onto the 

savannah during the late Pliocene and early Pleistocene, they made a 

rapid transition from herbivory to facultative carnivory to active pre- 
dation. During that time, humans apparently shared more than just food 

with other apex carnivores, becoming hosts to species of cestodes, e.g., 
Taenia spp., whose closest relatives inhabit hyenas, large cats, and Af- 

rican hunting dogs (Hoberg et al., 2000, Hoberg, Alkire et al., 2001). 
This pattern is repeated in 2 other parasite groups, hookworms (Oe- 

sophagostomum sp.) and pinworms {Enterobius sp.). Although phylo- 
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Figure 1. Branching diagram indicating host context of parasite 
speciation events (host cladogram) implied by phylogenies for nema- 
tode groups Enterobius sp. and Oesophagostomum sp. (Conoweberia). 

Heavy lines indicate parasite associations congruent with host phylog- 
eny; thin lines indicate host-switching events, or ancient EIDs. (For 

methodology, see Wojcicki and Brooks 2004, 2005; Ferrao and Brooks, 

2005.) 

genetic analysis depicts long-term associations between these parasites 
and hominoids, one-third of their host associations are the result of host 

switches (Fig. 1), most of which occurred during episodes of biotic 

expansion since the Miocene (Fig. 2) (Brooks and Ferrao, 2005). 

Systematic studies integrating morphology, molecules, phylogeny, 

biogeography, coevolution, and ecology, with refined understanding of 

fossil and recent species, define the evolutionary arena of EIDs. As 

shown above, movement of hosts and parasites from their areas and 

ecological contexts of origin into novel areas and ecosystems leads to 

rapid host switches (through a process known as "ecological fitting"; 
Janzen, 1985; Brooks and McLennan, 2002; Brooks and Ferrao, in 

press), some of which may be sufficiently maladapted to produce dis- 

ease. In the past, episodes of regional to global climate change have 

catalyzed such episodes, with biotic expansion as a primary mechanism 

for dissemination of pathogens (Hoberg, 1997). The current episode of 

EIDs has been catalyzed by anthropogenic activities, but the results are 

similar. "New" diseases emerge either as a result of geographic spread 
of parasites and pathogens from their places of origin into novel areas 

or by the modification to ecosystems in which they originated or were 

introduced. Thus, an evolutionary context is established for invasive 

and emergent pathogens on deep historical and broad geographic scales. 

GLOBAL RISK ASSESSMENT 

If our knowledge of pathogen diversity is equivalent to our overall 

knowledge of biodiversity, we have documented fewer than 10% of the 

world's pathogens. The remaining 90% represent the realm of potential 
EIDs. That realm of the EID crisis comprises the occurrence of suscep- 
tible hosts outside the area of origin for each pathogen, intersecting 
with our fundamental ignorance of their phylogeny, biogeography, host 

specificity, and transmission dynamics. It is not an overstatement to say 
that the crisis stems from the absence of comprehensive systematic in- 

ventories of the world's parasites and pathogens. It is impossible to be 

proactive about public health and veterinary, crop, or wildlife diseases 

caused by species whose existence has not yet been documented. During 
the past 15 yr, systematists have made a concerted effort to determine 

how we might change from an ignorance-based stance of crisis response 
to a knowledge-based foundation of preventive action. The most general 
statements for a transformation in philosophy and for those planning 
efforts are the 3 main goals of the Global Taxonomy Initiative (GTI) 

(www.biodiv.org; GTI, 1999). 
The first goal is to complete the global inventory of species, an ab- 

solute necessity if we are to assess risk and be proactive (Brooks and 

Hoberg, 2000; GTI, 1999). For example, until recently, techniques for 

isolating and identifying particular viral and bacterial pathogens were 

Figure 2. Branching diagram indicating geographic context of spe- 
ciation events (area cladogram) implied by phylogenies for Enterobius 

sp. and Oeoshagostomum {Conoweberia) sp. Notations at nodes indicate 

episodes of isolation (in either "Asia" or "Africa") and biotic expan- 
sion ("Africa to Asia" or "Asia to Africa"). Thin lines connected to 
biotic expansion nodes are EIDs associated with host switches during 
episodes of climate change. (For methodology see Wojcicki and Brooks, 
2004, 2005; Ferrao and Brooks, 2005.) 

so costly in terms of time and money that inventory efforts required for 

proactive strategies were impossible. Technological advances in imag- 
ing and computer-assisted morphological analysis, coupled with ever 

cheaper and faster molecular analysis, all performed by ever-faster and 

cheaper computers make a once daunting task economically feasible. 
At the moment, considerable excitement surrounds the proposal to 

provide rapid species identification using a genetic "bar code" (Hebert 
et al., 2003). In addition to increasing the rate at which species are 

documented, the ability to match genetic profiles for different devel- 

opmental stages of each pathogen species will accelerate enormously 
the pace at which we document the transmission dynamics of potential 
EIDs. This renewed interest in the global inventory, although created 

by a breakthrough in laboratory-based technology, emphasizes the im- 

portance of field-based systematists. They are the specialists who know 
how to find, collect, and presort specimens for the bar coders, while 

collecting and recording critical natural history information. Their iden- 
tifications will be the industry standard until a majority of species have 
been bar coded, and will be essential to calibrating the progress of the 
bar coding initiative. Additional speed can be realized by undertaking 
integrated and taxonomically broad-based inventory activities (Janzen, 
1993; Janzen and Hallwachs, 1994), in which relatively few field-based 

specialists are assisted by cadres of parataxonomists (Janzen et al., 
1993). For example, 2 inventories in the ACG rely on many of the same 

parataxonomists to collect specimens of different life cycle stages of lep- 
idopterans, their host plants, and their parasites and parasitoids (http:// 
janzen.sas.upenn.edu/) and to collect specimens of different life cycle 
stages of parasites and their vertebrate hosts (http://brooksweb.zoo. 
utoronto.ca/index.html), for both morphological and molecular analysis. 

The second goal of the GTI is to put all of the information collected 

by biologists into a predictive framework. Phylogenetic classification 

systems are the most predictive information systems about organisms 
and their places in the biosphere currently available. The predictable 
parts of biological systems are the stable elements, form and function, 

autecological and synecological, that have persisted through evolution- 

ary time. Shared history allows us to make predictions, and this buys 
us time and saves money, two resources that are in short supply in 

battling the EID crisis (Brooks and McLennan, 2002). Although con- 

temporary phylogenetic analysis is characterized by diverse methods, 
all produce highly similar results, and simulation and experimental stud- 
ies suggest they will converge on the same answer more and more as 
we obtain more information (Folinsbee et al., in press). 

The third goal of the GTI is to get critical information to concerned 

stakeholders, in this case physicians, veterinarians, researchers, policy 
makers, and the general public, anywhere in the world. Today, this 
means putting that information into digital form that is readily available 
over the Internet. Complementing this goal of the GTI is the Global 
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Biodiversity Information Facility (GBIF) (www.gbif.net), whose goal is 
to provide access for all people to all biodiversity information, from 
individual web sites to institutional outlets, to comprehensive informa- 
tion projects such as the Encyclopedia of Life (www.pinheadinstitute. 
org). 

CONCLUSIONS 

Those working in the realm of EIDs seldom have felt the need to 
document biodiversity within an accurate systematic context for para- 
sites, pathogens, vectors, or hosts. Their focus thus often has been bi- 
ased toward what we already know as invasive or emergent, e.g., a 

response-based system, rather than what remains to be discovered, e.g., 
a prediction-based system (Daszak et al., 2000). A contemporary focus 
has emphasized further "what was left behind" during translocation of 
hosts (Torchin et al., 2003), in contrast to what components of parasite 
diversity have established successfully and become emergent, making 
an unnecessary distinction preventing us from taking advantage of the 
fact that contemporaneous processes do not differ materially from those 
embedded in a deeper historical continuum. 

If we could be confident that EIDs were a rare phenomenon, perhaps 
it would be cost-effective to engage in the kind of crisis response we 
have seen globally to this point in time. Unfortunately, the evolutionary 
perspective provided by systematists leads us to assume that the poten- 
tial number of EIDs is very large; there are many "accidents waiting 
to happen" as a result of continued anthropogenic activities. Our lack 
of a comprehensive taxonomic inventory of pathogens on this planet, 
and of phylogenetic assessments of their revolutionary and biogeo- 
graphic histories, is a major hindrance to dealing with the problem 
(Brooks and Hoberg, 2000; Horwitz and Wilcox, 2005). Our past at- 

tempts to manage biodiversity have not been very successful (Fayer, 
2000), and we believe it is time to shift our attention to problem-solv- 
ing. 

On a positive note, if EIDs are a regular feature of biogeographic 
dispersal associated with large-scale environmental changes, we can un- 
derstand the contemporary EID crisis and learn from the lessons of 

(evolutionary) history. We can hope to move from being ignorant-re- 
active to being informed-proactive. We thus wholeheartedly concur with 
Daszak et al. (2004), calling for the formation of multidisciplinary 
groups of scientists focused on "solution-oriented" approaches, and 

proposing that experts in the integration of phylogenetic and ecological 
information be included in those groups. 

Society, through its public, wildlife, and livestock health managers, 
must decide whether to expend its funds continuing to manage the EID 
crisis or to solve it. We have the tools and the personnel to move from 

being less uninformed-reactive to more informed-proactive. For this to 

happen, however, we must forego the usual academic practice of cre- 

ating exclusive enclaves of research and become more inclusive. How 

many new EIDs will manifest themselves while we argue about the 

proper definition of EID? The term Emerging Infectious Disease needs 
to encompass a much wider range of both hosts and parasites. At the 
moment, specialists working with eukaryotic parasites have much more 

experience with basic inventory work, phylogenetic analysis, and inte- 

grative evolutionary and ecological studies than those working with 
viruses and bacteria. We call for an immediate integration of current 

approaches with a powerful foundation derived from the predictive and 
historical nature of systematics. 
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