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1 Introduction

Fields protected by exact or approximate shift symmetries play an integral role in a wide

variety of physical phenomena, ranging from magnetic fluctuations of topological insulators

in condensed matter physics to inflation in early universe cosmology. Axion fields are a

particularly interesting example: to all orders in perturbation theory they have a continuous

shift symmetry which is broken to a discrete one by non-perturbative effects. Axions were

originally proposed to solve the strong CP problem of QCD [1], and many (∼ 100) axions

often arise in compactifications of string theory (see e.g. [2–12]). Axions can be dark

matter [13–17], drive inflation [18–24] and (similar to quantized fluxes [25]) can account

for the observed vacuum energy [26]. In order to analyze the interplay between these

distinct phenomena, one requires a comprehensive framework for multi-axion theories. The

purpose of this paper is to present such a framework, which can be employed to unify the

cosmological mechanisms mentioned above.

Theories of N ≫ 1 axion fields constitute an extremely complex “landscape” — that

is, they have an exponentially large number of minima with different energies and a large

diversity of regions of the potential. We will study general multi-axion theories, providing

a systematic approach that renders even complex theories analytically tractable.1 In this

paper we focus on properties of the axion potential. We identify all exact and approximate

shift symmetries, provide the location of local minima and characterize features of the po-

tential through a natural partition of the axion field space. In a companion paper [27] we

study the dynamics of these theories in the context of cosmology. A brief summary of our

results can be found in [28]. In this paper and its companions we find that generic theories

of N ∼ 100 axions with a single energy scale close to the fundamental scale and with O(1)

random coefficients can simultaneously account for the Big Bang (tunneling from a parent

minimum), inflation (because such potentials generically have light directions with en-

hanced field ranges), “fuzzy” dark matter [13] with roughly the correct abundance [14, 15],

1While we focus on axion field theories, our techniques carry over to the analysis of more general theories

where the potential is a sum of terms with discrete shift symmetries.
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and provide many minima with energies consistent with observation that can solve the

cosmological constant problem anthropically [29–33].2

This paper is divided into three parts. In section 2 we identify the exact and approx-

imate discrete shift symmetries of multi-axion theories by introducing a P -dimensional

auxiliary field space. We discuss how in many cases the approximate shift symmetries can

be used to eliminate all phases from the potential to good accuracy. Following the discus-

sion of symmetries, the two subsequent sections can be read independently. In section 3 we

apply the framework of symmetries to locate the critical points of the potential. We pro-

vide an algorithm that finds all minima in exponential time, while a representative sample

of all minima can be obtained in polynomial time. More specifically we demonstrate how

an exponentially large number of minima can be located analytically via a polynomial in

N algorithm. We estimate the magnitude of the remaining phases, as well as the num-

ber of minima in certain ensembles of random axion theories. In section 4 we provide a

general discussion of the geometry of the approximately quadratic regions of the potential

surrounding minima. This discussion generalizes and corrects misleading prior results in

the literature (including those of one of the authors [35]).

A Mathematica demonstration of our framework for multi-axion theories is available

online [36].

1.1 Systematic framework

Consider the general two-derivative theory of N axions θi. The N continuous shift symme-

tries of the free theory are broken to discrete ones by P leading non-perturbative effects.3

The Lagrangian takes the form

L =
1

2
∂θ⊤K∂θ −

P∑

I=1

Λ4
I

[

1− cos (Qθ + δ)I
]

+ . . . , (1.1)

where K is the metric on field space, Q is the P × N integer matrix where the Ith row

contains the charge associated with the axions’ coupling to the Ith non-perturbative effect,

and ΛI is the energy scale of this effect. The dots denote subleading terms in the potential

that we will generally neglect (but see section 3.7), as well as a possible additive constant

(a bare cosmological constant) that will be irrelevant in this paper, as we do not consider

coupling to gravity here (but see [27]). We denote matrices and vectors by bold font, with

upper and lower indices identifying rows and columns, respectively. The lower case indices

i, j run from 1 to N , a runs from 1 to P −N , and I runs from 1 to P .4 Throughout this

work we assume that K is independent of the axions θ.

Potentials of the form appearing in (1.1) are very complex when N,P ≫ 1. However,

because the cosine arguments consist of integer linear combinations of the axions, the

2See also [34] and references therein.
3In some cases the shift symmetries are entirely broken for some linear combinations of fields by couplings

to classical objects, such as sources or fluxes. In this work we restrict our attention to fields that retain

discrete shift symmetries. Appendix B discusses the appropriate coordinate transformations that eliminate

axions that couple to classical sources from the theory.
4Without loss of generality we may assume that P ≥ N and Q has maximal rank N . See appendix A

for a discussion.
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potential is manifestly invariant under the N discrete shifts θi → θi+2π.5 The existence of

exact discrete symmetries is a fundamental characteristic of axion theories, and it allows us

to restrict our attention to a finite region in field space — a single periodic domain defined

by these symmetries. What is not so obvious is that the potential in (1.1) additionally

possesses as many as P −N approximate discrete shift symmetries, which can be used to

eliminate all phases δI to good accuracy. We develop a framework that identifies these

symmetries, and provides a natural division of the field space into domains over which

none of the individual terms in the potential exceed their period. As we shall see, the

identification of approximate symmetries consists of finding short lattice vectors of a P -

dimensional rank P −N lattice, which at fixed P −N requires a number of evaluations that

scales polynomially in N . The (approximate) symmetries then allow us to identify regions

that are very similar. Furthermore, our framework allows us to identify a vast number of

distinct minima by considering the approximate symmetry transformations away from a

given minimum.

Axions are protected from perturbative corrections of the potential and therefore con-

stitute prime candidates in the constructions of models for large field inflation and tests

of quantum gravity more generally [37–46]. Large field inflation requires very flat poten-

tials, therefore there has been much interest in the invariant distances over which axion

potentials remain featureless [35, 47–51]. The potential certainly is featureless in a field

space region within which none of the cosine terms traverses more than its period. The

invariant size of these regions depends both on the kinetic matrix K and the charge matrix

Q. Historically, two mechanisms have been proposed to construct theories with potentials

that remain featureless over large invariant distances: lattice alignment [20], which relies

upon an almost exact degeneracy between the axion charges, and kinetic alignment [47],

which relies upon the delocalization of eigenvectors of the kinetic matrix. In this work

we clarify the relation between these mechanisms and demonstrate that the diameter of

featureless regions is bounded from above by

D ≤ 2π
√
P

1

λmin

(

|QK−1/2|
) , (1.2)

where λmin( · ) returns the smallest eigenvalue and we defined |Q| ≡
√
Q⊤Q. The

bound (1.2) is approximately saturated in large classes of axion theories. Note that the

diameter, perhaps surprisingly, scales with
√
P ≥

√
N .

1.2 Results for random ensembles

To illustrate our framework we apply it to random ensembles of axion theories defined by

a collection of integer charge matrices Q, energy scales Λ4
I and axion-independent field

space metrics K that are loosely motivated by flux compactifications of string theory.

While our techniques apply to all N,P , they are most powerful in the regime N ≫ 1 and

P < 2N . We will take Q to be a P × N matrix of independent, identically distributed

5In general these shifts are linear combinations of “minimal” discrete symmetries of the potential, in a

sense which we will clarify.
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(i.i.d.) random integer entries with mean zero and standard deviation σQ. As long as at

least a small fraction & 3/N of the entries is non-vanishing — which at large N includes

very sparse matrices — the universality of random matrix theory takes over and yields

simple analytic results.6 As it turns out, in this regime the approximate shift symmetries

become exponentially close to exact.

Even for the simplest case P = N + 1 we will find that the number of minima scales

factorially with the number of terms in the potential (see also [26]),

Nminima ∝ σP
Q

√
P ! , (1.3)

with a simple generalization to larger P−N . In these potentials there is a natural definition

of neighboring minimum: those that are separated by no more than one traversal of the

maxima of each cosine term of the potential. We will find that even when P = N + 1

the neighboring minima realize a wide variety of energy densities so long as N ≫ 1. In

other words these theories have extremely complex potentials that look random in the

vicinity of any point or along a randomly chosen direction. However, they also possess

nearly exact symmetries that make their analysis tractable. In particular, we can use

the symmetries to identify minima with energy close to any desired value to exponential

accuracy in polynomial time [28]. This kind of tractability in complex landscapes was

recently discussed in [52].

We will consider both specific examples and ensembles of isotropic, positive definite

kinetic matrices and parametrize the resulting field space diameters in terms of the largest

eigenvalue f2
max of K. Both the field space diameters and the distribution of energies in

minima have previously been studied in such random axion theories. In this work we unify

and generalize many of those results. We find that the field space distance suitable for

inflation is typically as large as (see also [35])

D .

{

N3/2fmax , for P −N = constant ,

N1/2fmax , for P −N ∝ N .
(1.4)

This result is robust even when large hierarchies are present between the energy scales Λ4
I .

The approximate shift symmetries are lost in the limit P ≫ N . In this case the poten-

tial ceases to be analytically tractable and approaches a Gaussian random field instead. In

appendix G we discuss a connection between multi-axion theories in this limit and Gaussian

random fields with a Gaussian power spectrum.

2 Exact and approximate axion symmetries

The leading non-perturbative potential for the N axions θ in (1.1) is

V (θ) =

P∑

I=1

Λ4
I

[

1− cos (Qθ)I
]

, (2.1)

6Note that P ×N matrices with a fraction of non-zero entries fewer than 1/P cannot be full rank, and

can be dealt with using the techniques of appendix A. Hence our methods apply to all matrices except

those with a fraction of non-zero entries between 1/P and 3/N .
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where we postpone the discussion of non-vanishing phases δI to section 2.5. This potential

depends on the P energy scales ΛI and the PN integers in the charge matrix Q. At large

N the field space volume becomes large, but given the limited number of parameters and

the periodicity of the cosines, one might suspect that the entire structure of the potential

is analytically tractable, at least so long as P is not too great. In the following we will

make this expectation precise.

2.1 Auxiliary fields and a geometric picture

To analyze (2.1) it turns out to be useful to consider a set of P real scalar fields φ, subject

to an auxiliary potential

Vaux(φ) ≡
P∑

I=1

Λ4
I

[
1− cos(φI)

]
. (2.2)

Comparing to (2.1) we observe that the argument of the Ith cosine (Qθ)I has been replaced

by an independent field φI . Hence the physical potential (2.1) is identical to (2.2) if

φI = (Qθ)I , or more compactly

φ|Σ = Qθ , (2.3)

where this equation defines a hyperplane Σ in the auxiliary field space RP (which we call

φ-space). Specifically, note that

Qθ = θ1Q1 + θ2Q2 + · · ·+ θNQN (2.4)

is a linear combination of the columns Qj of Q. The surface Σ is the hyperplane spanned

by these columns (the column space of Q ≡ colsp(Q)), and (2.1) and (2.2) coincide when

φ is constrained to Σ:

V (θ) = Vaux (φ|Σ) . (2.5)

For this reason we refer to Σ as the constraint surface (cf. figures 1 and 2). An efficient

way to impose this constraint on φ is to introduce P − N Lagrange multiplier fields into

the action; we will do so explicitly in section 2.5. For P ≥ N the dimension of Σ is N if

the columns of Q are linearly independent, and so the map is one-to-one. In this case Q

is called full rank. We can assume this to be true without loss of generality and will do so

from now on (cf. appendix A).

The utility of framing the problem in the extended P -dimensional space stems from

the fact that the symmetries of Vaux are manifest: φI → φI + 2πnI with nI ∈ Z, so that

Vaux is identical in P -cubes of side-length 2π that we take to be centered on the sites of

the scaled integer lattice 2πZP . Each cube can be labeled by an integer P -vector n:

{φ : ‖φ− 2πn‖∞ ≤ π} , n ∈ ZP , (2.6)

where the ℓ∞-norm of a vector returns its largest absolute component.7 Within a single P -

cube the potential Vaux is relatively featureless and every P -cube contains a single minimum

7Clearly the ℓ∞-norm is basis dependent. We denote the basis of a vector by its symbol, i.e. φ is a vector

in the standard basis for φ-space, while θ is a vector in the standard basis for θ-space (RN ).
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Figure 1. Top: constraint surface (red line) along with the lattice 2πZP (gray dots). Arrows show

the aligned basis vectors t‖ and t∦. Bottom: axion potential as a function of the aligned coordinate

ω‖ (defined later in (2.18)). Distinct tiles Tn are numbered and shaded.

at its center φ = 2πn where Vaux = 0. Points where Σ passes through the center of a P -

cube are therefore global minima of the physical potential. This set of points forms a

sublattice LΣ ≡ Σ ∩ 2πZP . It is simple to see that this sublattice is rank N if Q has

integer entries and full rank.8 The auxiliary potential is manifestly invariant under shifts

between any pair of such points, and therefore so is the physical potential V . In other

words, this sublattice defines the N exact shift symmetries of (1.1).

The tiling of φ-space into P -cubes (2.6) provides a useful way to divide the physical

field space into distinct regions. The constraint surface Σ slices across the cubes, and the

regions of intersection of Σ with various P -cubes are an N -dimensional tiling of Σ (see

figure 2). Within each tile the potential is relatively smooth because none of the individual

cosine terms in (2.1) traverses its respective period. We can label each tile by the integer

P -vector n of the corresponding P -cube (2.6):

Tn = {θ : ‖Qθ − 2πn‖∞ ≤ π} , n ∈ ZP . (2.7)

Not every integer P -vector n corresponds to a tile because some P -cubes do not intersect Σ.

When some or all of the angles of Σ with respect to the grid defined by (2.6) are small,

one expects that at least some shifts from an initial tile to an adjacent one (adding 1 to

one of the components of n) will leave the physical potential close to invariant. This is the

case, but we will see in section 2.3 that we can define a different set of shifts that are in

general closer to exact symmetries than these, and have the desirable property that they

form a complete (but not overcomplete) basis for the set of all distinct tiles (2.7).

8One might worry that GL(N,R) transformations of the axion fields do not preserve the fact that Q

has integer entries. In fact, the necessary and sufficient condition on Q such that LΣ = colsp(Q) ∩ 2πZP

is rank N is that P = Q(Q⊤
Q)−1

Q
⊤, which is the orthogonal projector onto colsp(Q), contains only

rational entries. This property is preserved under GL(N,R) transformations.

– 6 –



J
H
E
P
1
1
(
2
0
1
7
)
0
3
6

0 π−π

−π
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‖
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‖

φ3

φ2

φ1

Figure 2. Left : contour plot of the auxiliary potential on the constraint surface Σ in φ-coordinates,

for an example with N = 2, P = 3. The solid black lines denote one periodic domain of the potential,

while the dashed gray lines denote the boundaries of the tiles defined in (2.7) (the intersections of

the cubical tiling (2.6) of the auxiliary potential with the constraint surface). The depicted cubes

constitute a full set of those with distinct intersections with Σ. Right : contour plot of the physical

potential and its tiles in aligned coordinates ω‖ (defined later in (2.18)). Opposing boundaries of

the periodic domain are identified.

2.2 Exact periodicities and periodic domains

As discussed above, displacements between points in the sublattice LΣ ≡ Σ ∩ 2πZP leave

Vaux unchanged and lie within the constraint surface Σ. These are the exact shift symme-

tries of the physical potential.

In general, a basis for a rank M lattice is a set of M linearly independent vectors with

the property that integer linear combinations generate all lattice points. Consider an M -

parallelepiped, with edges defined by the basis vectors of a lattice. This parallelepiped is a

periodic domain for the lattice and contains exactly one lattice point. A simple example is

a P -hypercube in (2.6) with e.g. n = 0, which is a periodic domain for the P -dimensional

lattice 2πZP .

We will use the notation {t‖i } to denote the N integer vectors that generate the lattice

Σ ∩ ZP (so that the vectors {2πt‖i } generate LΣ).
9 A single cell of this lattice sublattice

is a region in which all distinct features of the potential are captured — in other words,

it is a periodic domain of the physical potential, and we can restrict our attention to one

such cell.

9Given a hyperplane and a lattice, it is non-trivial to find a basis for the sublattice resulting from their

intersection. For a rank M sublattice a set of M linearly independent lattice vectors that lie within in the

hyperplane do not in general generate all points in the sublattice. For instance, the columns of Q do not

generally serve as a basis for LΣ. It is possible, however, to find the sublattice basis algorithmically, for

instance with the extended LLL algorithm [53].
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Any basis {2πt‖i } for LΣ forms a primitive set for the full auxiliary lattice 2πZP

(see appendix C for a proof). This means there exists a set of P − N lattice vectors

{t∦1, . . . , t
∦
P−N} that are not parallel to Σ and that when combined with the N vectors {t‖i }

form a basis for ZP . It will be important in a moment that the P −N supplemental vectors

are not unique. The only condition is that the matrix containing all P basis vectors

[
t
‖
1 . . . t

‖
N t

∦
1 . . . t

∦
P−N

]
(2.8)

is unimodular (determinant one with integer entries). Whenever the vectors t
∦
a are (at least

somewhat) aligned with Σ, in a sense we shall make more precise below, we refer to this

basis for ZP as the aligned lattice basis.

2.3 Approximate symmetries and well-aligned theories

In general the transverse lattice vectors t
∦
a will not be orthogonal to Σ. Their decomposition

into Σ and its orthogonal complement Σ⊥ will be important. We label the orthogonal

projectors onto these subspaces by P and P⊥, respectively. Since Σ = colsp(Q), it follows

that Σ⊥ = ker(Q⊤) and we have the following explicit form of the projectors in terms of

the charge matrix,

P = 1P − P⊥ = Q(Q⊤Q)−1Q⊤ . (2.9)

Now consider a shift of the fields generated by the projection of a non-parallel lattice

vector onto Σ:

Qθ → Qθ + 2πP t∦a . (2.10)

This shift is projected onto Σ and hence corresponds to a physical shift of the potential

V = Vaux|Σ. However it is not an exact symmetry because P t
∦
a is not an integer vector.

The amount by which this shift breaks the symmetry is proportional the projection of t
∦
a

onto Σ⊥:

Vaux(φ) → Vaux(φ+ 2πPt∦a) (2.11)

= Vaux(φ+ 2πt∦a − 2πP⊥t∦a) (2.12)

= Vaux(φ− 2πP⊥t∦a) , (2.13)

where in the second step we used that the potential is invariant under φI → φI + 2π.

Therefore, if the integer vectors t
∦
a can be chosen so that each component of P⊥t

∦
a is much

less than one — if ‖P⊥t
∦
a‖∞ ≪ 1 — the correction to each cosine term in (2.2) is small

and the shift φ → φ+ 2πPt
∦
a is an approximate symmetry.

To identify both the exact and approximate symmetries, we choose a basis (2.8) for

ZP which is as aligned as possible with Σ. The first N vectors t
‖
i lie in Σ (and are a basis

for the lattice Σ ∩ ZP ), thus

P⊥t
‖
i = 0 , ∀i ∈ {1, . . . , N} . (2.14)

These vectors generate the N exact shift symmetries of the physical potential and any

parallelepiped with the t
‖
i as edges is a periodic domain of the potential. The remaining

– 8 –
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P −N vectors t
∦
a should satisfy
∥
∥
∥P

⊥t∦a

∥
∥
∥
∞

are smallest possible, ∀a ∈ {1, . . . , P −N} . (2.15)

The vectors 2πPt
∦
a generate P−N approximate symmetries of the potential.10 The aligned

lattice basis for a simple axion potential, one with P = 2 and N = 1, is shown in figure 1.

We refer to theories where the orthogonal projections of all elements of the aligned basis

are small as well-aligned. That is, a well-aligned theory satisfies

∥
∥
∥P

⊥t∦a

∥
∥
∥
∞

≪ 1

P −N
, ∀a ∈ {1, . . . , P −N} (2.16)

(cf. (3.28) for the origin of the 1/(P −N) on the right-hand side).

To illustrate the utility of these approximate symmetries, suppose φ is chosen to be

a global minimum of the potential that lies on Σ (for instance φ = 0). Repeated shifts

by 2πPt
∦
a then identify the approximate location (and determine the energy, as we discuss

in section 3.3) of many physically distinct minima with slightly different properties (see

figure 1). We will see later that in the random ensembles we study ‖P⊥t
∦
a‖∞ can generically

be chosen so that it is exponentially small in N , for all 1 ≤ a ≤ P −N . More generally it

can be small when det(Q⊤Q) is large, since this determinant appears in the denominator

of the projector. This allows us to locate and characterize many minima in an otherwise

intractably complex landscape very easily and to good accuracy. Furthermore, in well-

aligned theories all P phases δI can be eliminated to good accuracy (cf. section 2.5).

2.4 Aligned coordinates and similar tiles

The tiling (2.7) of Σ was introduced in section 2.1 as a means of delineating relatively

featureless sections of the potential by using the basic infrastructure provided by the auxil-

iary lattice. Here we show how this tiling enables the identification of many similar regions

within one periodic domain of the physical potential.

As a preliminary illustration of a more general method, consider the periodic domain

surrounding a global minimum of the potential (say the origin θ = 0), and a P -cube

centered at this position on Σ. Now choose a specific non-parallel lattice vector t
∦
a and

consider the set of P -cubes obtained by sequentially shifting the center of each cube by 2πt
∦
a,

together with the tiles defined as their intersections with Σ. In well-aligned theories the

auxiliary potential evaluated on successive intersections in the list (and hence the physical

potential in the corresponding tiles) will be very similar. Now, regardless of whether or

not a model is well-aligned, after a certain number of shifts the P -cube will have receded

far enough from Σ that it no longer intersects it. If the number of shifts before this point

10Equation (2.15) defines what is known as a reduced basis for the lattice generated by P⊥. We are pur-

posefully vague in the precise definition of “smallest possible” and “reduced”: there are multiple definitions,

such as Minkowski, LLL, or Rankin reduction. For example, depending on the precise application, one may

be interested in a basis that aligns only some of the P −N transverse directions. These details are irrelevant

for the present discussion and we refer to the literature [54–60]. A particularly simple approximation is

given by the Mathematica package for the extended LLL algorithm [53]. We thank Liam McAllister and

John Stout for discussion on this point.
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is m, we have identified m distinct tiles that are labeled by consecutive integer multiples of

t
∦
a.11 These tiles may be scattered across multiple periodic domains because accumulating

shifts eventually push part or all of the intersection out of the original periodic domain.

Shifts by integer linear combinations of the 2πt
‖
i can then be used to uniquely return all

portions of tiles into the periodic domain containing the origin. All such tiles are distinct

because they originated from distinct intersections with Σ.

A complete tiling of the periodic domain can be found by following a generalization

of the procedure outlined above — shifting the P -cube containing the global minimum by

linear combinations of all non-parallel directions 2πt
∦
a , and scanning this space until all

intersecting P -cubes are identified. A more convenient labeling of the regions that tile the

periodic domain is achieved by defining aligned coordinates ω for the auxiliary space:12

φ ≡
(
t‖ | t∦

)
ω . (2.17)

Recall that the matrix appearing in (2.17), which is identical to (2.8), is unimodular (de-

terminant one) and thus has a unimodular inverse. Integer P -vectors in φ-coordinates are

in one-to-one correspondence with integer vectors in ω-coordinates. The components of ω

separate into components parallel and not parallel to Σ:

ω =

(

ω‖

ω∦

)

. (2.18)

A shift by 2π of any of the first N entries leaves the physical potential invariant, since this

is a shift of φ by a 2πt
‖
i . The periodic domain in ω-coordinates is simply an N -cube of side-

length 2π in the ω‖-plane. Since opposing sides of the periodic domain are identified, any

point on Σ is readily identified with a corresponding point in the central periodic domain

ω‖ (mod 2πZN ). It is likewise easy to recognize similar tiles in well-aligned theories: they

correspond to P -cubes with similar ω∦-coordinates. The above is illustrated in figure 3.

Note finally that an advantage of using aligned coordinates is that distinct tiles within

one periodic domain are labeled by distinct integer (P −N)-vectors m,13 as P −N is the

amount of t
∦
as and integral shifts along the ω‖-directions do not change the tile.

Notational intermezzo. To simplify equations like (2.17), from now on we adopt the

notation T αβ for a transformation between the components of a vector in two bases. The

subscript pair is to be read left to right: “transform from α-coordinates to β-coordinates”.

In this notation (2.17) becomes

φ = T ωφω .

The inverse transformation is simply

ω = T φω φ .

11Note that m ∼ 1/‖P⊥t
∦
a‖∞, which is large in a well-aligned theory.

12It may be useful to reduce the basis for the lattice spanned by the t
‖
i .

13And vice-versa, modulo those related by m ↔ −m, as the P -cube grid and N -parallelepiped domains

in Σ are symmetric under the reflection about any of the P Cartesian coordinate axes.
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Figure 3. Illustration of the tiling of the periodic domain of the physical potential induced by

the intersections of the constraint surface with P -cubes surrounding lattice sites in the auxiliary

lattice. We used P = N +2 = 4 and labeled each distinct intersection by a P −N = 2-vector. This

example is well-aligned only in the direction t
∦
1 corresponding to the upper label (if both directions

are well-aligned, the plot becomes too dense to be legible).

When the transformation is between spaces of equal dimension as here (so that T is square),

T φω = (T ωφ )
−1. When a transformation matrix’s columns or rows separate in a useful

way, as is the case here,

T ωφ =
(
t‖ | t∦

)
, (2.19)

the (rectangular) submatrices are labeled in the natural way:

(
t‖
︸︷︷︸

≡Tω‖φ

| t∦
︸︷︷︸

≡Tω∦φ

)
. (2.20)

We can apply this notation to the transformation (2.3) between the N -vector θ and the

P -vector φ constrained to Σ,

T θφ = Q , T φθ = (Q⊤Q)−1Q⊤ . (2.21)

Combining the transformations (2.20) and (2.21) we can also relate the coordinates ω‖

and θ,

T ω‖θ = T φθ T ω‖φ , T θω‖
= (T ω‖θ)

−1. (2.22)

Finally, we can express the exact and approximate shift symmetries of the theory in terms

of the θ-coordinates we started off with in (1.1) (in section 2.2 and section 2.3 these were

only expressed in φ-coordinates). The exact symmetries are given by

θ → θ + 2π T φθ t
‖
i (2.23)

= θ + 2π(Q⊤Q)−1Q⊤t
‖
i , (2.24)
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while the approximate symmetries are given by

θ → θ + 2π T φθ Pt∦a (2.25)

= θ + 2π(Q⊤Q)−1Q⊤t∦a . (2.26)

Returning to the tiling of the periodic domain, it is not hard to see that there are only

finitely many tiles: consider sliding the center of a P -cube along any real linear combination

of the t
∦
a (which corresponds to a line emanating from the origin in the (P−N)-dimensional

ω∦-space) — a generalization of the illustration at the beginning of this section. As the

perpendicular distance from the center of the cube to Σ is ever-increasing along the line,

eventually the cube will no longer intersect Σ. Thus there are only finitely many distinct

tiles, which are labeled by certain integer (P − N)-vectors m. We now argue that the

allowed values for m lie in a particular (compact) convex region C in ω∦-space. We define

C by the set of all points in ω∦-space which correspond to centers of P -cubes in φ-space

that have some intersection with Σ (note that this includes also vectors with irrational

entries). This is the same as the collection of the ω∦-coordinates of all the points lying

inside the P -cube of side-length 2π centered at the origin in φ-space, or yet in other terms,

the orthogonal projection of that P -cube onto Σ⊥ (in ω∦-coordinates). It follows that

distinct tiles are labeled by distinct integer vectors m ∈ C with14

C =
{

T φω∦
φ

∣
∣
∣ ‖φ‖∞ ≤ π

}

. (2.27)

Quite clearly the extreme points15 of C correspond to the projections of certain vertices of

the P -cube. Since a compact convex set equals the (closed) convex hull16 of its extreme

points by the Krein-Milman theorem [54, 61], we have the following alternate definition

of C:

C = Conv
({

T φω∦
e | eI = ±π, I ∈ {1 . . . P}

})

, (2.28)

where Conv( · ) denotes the convex hull of a set. C is a polytope in the (P −N)-dimensional

m-space, illustrated in figure 5.17

To recap, the aligned coordinates ω are very convenient to identify a complete set

of tiles covering exactly one periodic domain of the potential of (1.1). First, it suffices

to fix ω‖ = 0. This guarantees that only one periodic domain’s worth of tiles will be

counted, and the value of ω‖ at a point is irrelevant to how or if a P -cube centered there

intersects Σ. Therefore, all distinct tiles are labeled by the ω∦-coordinates of the centers of

14This is indeed a convex set: if T φω∦
φ1, T φω∦

φ2 ∈ C then also λT φω∦
φ1 + (1− λ)T φω∦

φ2 ∈ C since

it is of the form T φω∦
[λφ1 + (1− λ)φ2] with indeed ‖λφ1 +(1−λ)φ2‖∞ ≤ λ‖φ1‖∞ +(1−λ)‖φ2‖∞ ≤ π.

15Extreme points of a convex set are points which are not interior points of any line segment belonging

to the set.
16The convex hull of a set is the intersection of all convex sets containing that set. For the vertices of a

polytope, the convex hull is the polytope.
17In principle one could eliminate all the redundant points in the set of which the convex hull is being

taken in (2.28), which correspond to vertices of cubes that lie on the constraint surface but which are not

the only intersection of the P -cube with Σ (cf. figure 5), and maintain the same polytope C. The amount of

remaining (extreme) points of C is much less than the 2P used in (2.28): we believe an upper bound scales

only polynomially as PP−N−1. However, we are not aware of a polynomial time algorithm that can find C.

– 12 –



J
H
E
P
1
1
(
2
0
1
7
)
0
3
6

(c)

(b)

(a)

P
ot
en
ti
a
l
[a
.u
.]

Field Displacement [a.u.]

Figure 4. The potential plotted along three different rays through field space (starting at the

global minimum), for an example of the potential in (1.1) with N = 23, P = 40. Top pane: a line

oriented along an exact symmetry direction. Middle pane: a line oriented along an approximate

symmetry direction. Bottom pane: a random direction.

their P -cubes, and there is some compact and convex region C of ω∦-space that contains

them all.

In general it is computationally very hard to identify the vertices that define the

polytope C in (2.28). A simple sufficient condition for a lattice site 2πm to lie within the

polytope is that its projections onto the φ-coordinate axes do not exceed π,

‖2πP⊥ T ω∦φm‖∞ ≤ π ⇒ m ∈ C , (2.29)

while the inverse is not true. This subregion of the polytope is illustrated in figure 5.

As mentioned above, another advantage of the ω-coordinates is that in well-aligned

theories, regions of Σ corresponding to intersections with P -cubes that are close together

in ω∦-space will be nearly identical, because they differ by only a small number of shifts by

approximate discrete symmetries. The corresponding regions may be very far apart even

after modding to one periodic domain in ω‖-space, because the shifts 2πPt
∦
a can be very

long. Neighboring regions on Σ are not in general similar, while specific distant regions

are. This is illustrated in figure 4: there is no clear structure in the potential along an

arbitrary ray in field space, but when considering lines that intersect widely separated tiles

related by exact or approximate shift symmetries the potential becomes structured.

2.5 Phases

We now return to the phases δ appearing in the original Lagrangian (1.1), with potential

V =

P∑

I=1

Λ4
I

[

1− cos (Qθ + δ)I
]

. (2.30)

Just as before, we promote the cosine arguments to P independent fields φI that must

be constrained to a hyperplane in order to reproduce the physical potential. That is,

we require

φ = Qθ + δ , (2.31)
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Figure 5. Illustration of the ω∦-coordinates for every distinct tile on Σ, in an example where

P = N + 2 = 8. The central six-sided region denotes the area bounded by the simple sufficient

condition (2.29), while the full shaded region C contains all lattice sites whose P -cubes intersect the

constraint surface. Blue crosses (large and small) denote the coordinates of centers of cubes which

have a vertex that lies on Σ.

which defines a hyperplane parallel to Σ = colsp(Q), such that the constraint surface on

which the auxiliary potential reproduces the physical potential (2.30) is Σ + δ.

To impose the constraint (2.31) in the action we introduce P −N Lagrange multipli-

ers νa:

V =

P∑

I=1

Λ4
I

[
1− cos(φI)

]
+

P−N∑

a=1

νaR
a(φ− P⊥δ) . (2.32)

HereR is any (P−N)×P matrix with the property that its row space is Σ⊥, the orthogonal

complement to Σ. For instance, for R one could use any P −N linearly independent rows

of the matrix P⊥ = 1P −P . The equations of motion for the νa constrain φ−P⊥δ to be

perpendicular to Σ⊥; that is, they constrain φ to lie in Σ+P⊥δ = Σ+ δ. In checking this

the identity RP⊥ = R is useful.

Since P⊥δ is a vector in the (P−N)-dimensional subspace Σ⊥, the projection in (2.32)

has already removed all but P−N of the original P phases (this reduction is simply the ob-

vious freedom to continuously redefine the N fields θ in (2.30)). We will now demonstrate

that in well-aligned theories, the remaining phases P⊥δ can be reduced to small values us-

ing the approximate shift symmetries of the theory. Consider the shift φ → φ+2π T ω∦φnδ,

where nδ is an arbitrary integer (P − N)-vector. This shift is an exact symmetry of the

cosines, but affects the constraint terms in (2.32):

V =
∑

I

Λ4
I

[
1− cos(φI)

]
+
∑

a

νaR
a
(

φ+ 2π T ω∦φnδ − P⊥δ
)

. (2.33)

To identify the integers nδ that minimize the remaining phases in (2.33), recall the relation

between the aligned coordinates ω and φ-coordinates

ω = T φω φ ≡
(

T φω‖

T φω∦

)

φ . (2.34)
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Using these definitions, the vector nδ that minimizes the remaining phases is

nδ =

[
1

2π
T φω∦

P⊥δ

]

n.i.

, (2.35)

where [. . . ]n.i. denotes the nearest integer vector. Using P⊥ = P⊥ T ω∦φ T φω∦
P⊥, one

can see that this choice of nδ reduces the phases to zero with an error bounded above by

π‖P⊥ T ω∦φ ‖∞, which is small when the theory is well-aligned.18

Explicitly, the field redefinition θ → θ + θshift that reduces the phases, and the re-

maining phases are given with (2.21) and (2.35) by

θshift = mod
[−π,π]

[

T φθ (2π T ω∦φnδ − δ)
]

, δr = mod
[−π,π]

[Qθshift + δ] . (2.36)

From now on, to simplify the discussion we will focus on well-aligned theories where we

can neglect the phases. As we shall see in section 3.6 this holds to good accuracy for large

classes of axion theories with P . 2N . An explicit example illustrating the use of the

aligned lattice basis and phase reduction can be found in appendix D.

3 Minima and saddle points

In the previous section we identified the most suitable basis to identify the symmetries,

treating all P terms in the potential on equal footing. These symmetries can be employed

to systematically explore all potential minimum locations, which in principle yields all

minima to arbitrary accuracy. In typical applications, however, it may be more efficient to

include other data as well, such as the scale of each of the non-perturbative terms. In order

to find the stable minima, for example, non-perturbative terms that are entirely subleading

will have essentially no effect on the location of the minimum, but may split the degeneracy

between minima as discussed in [26] and reviewed in section 3.7. We will now discuss how

the minima of a given axion theory can be determined to various degrees of accuracy.

3.1 Systematics of all minima

In section 2 we described how to decompose the field space into tiles, each of which cor-

responds to an intersection of Σ with a distinct P -cube in φ-space centered on a lattice

point of 2πZP . The auxiliary potential Vaux(φ) is identical inside all P -cubes, but they can

have a distinct (or empty) intersection with the constraint surface, and therefore contain

a distinct region of the physical potential V (θ).

18 The ℓ∞-norm of a matrix A can be defined as the maximum absolute row sum, ‖A‖∞ =

maxi

{

∑

j |Ai
j |
}

. After the shift specified by (2.35), the remaining phase is δr = 2πP⊥ T ω∦φ α for some

(P − N)-vector α with ‖α‖∞ ≤ 1/2. We may bound the magnitude of the largest component of this

remaining phase by using the general inequality ‖Av‖∞ ≤ ‖A‖∞ ‖v‖∞ for any matrix A and vector v:

‖δr‖∞ ≤ π‖P⊥ T ω∦φ ‖∞. To make the connection with our definition of well-aligned theories (2.16), note

‖P⊥ T ω∦φ ‖∞ = max
I

{

P−N
∑

a=1

∣

∣

∣

∣

(

P
⊥
T ω∦φ

)I

a

∣

∣

∣

∣

}

≤
P−N
∑

a=1

max
I

{∣

∣

∣

∣

(

P
⊥
T ω∦φ

)I

a

∣

∣

∣

∣

}

=

P−N
∑

a=1

‖P⊥
t
∦
a‖∞.
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Just as already done in section 2.5 we introduce P −N Lagrange multipliers νa that

enforce the constraint of the auxiliary potential to Σ. To find extrema on Σ within a tile

labeled by m we then minimize the potential,

V = Vaux(φ) +

P−N∑

a=1

νaR
aφ , (3.1)

within the corresponding P -cube φ = 2π T ω∦φm + δφ, where ‖δφ‖ ≤ π. Requiring a

vanishing gradient gives

Λ4
I sin

(
δφI
)
+ (νR)I = 0 , ∀I ∈ {1, . . . , P} ,

R (2π T ω∦φm+ δφ) = 0 . (3.2)

Since R is a set of row vectors that span Σ⊥, the first condition is the requirement that the

gradient of Vaux is perpendicular to Σ — in other words, that the gradient projected onto

Σ vanishes. The second condition ensures that the point is in Σ. Solving the optimization

problem (3.2) within all P -cubes labeled by m ∈ C yields all distinct extreme points,

including all minima.

3.2 Neighboring minima

The aligned basis is ideally suited to identify similar regions of the axion potential. These

tiles need not be close to one another in the physical field space, as we saw in section 2.4.

Recall that this is because the t
∦
a may contain large integers and therefore generate a

large separation between the tiles’ associated P -cubes (in φ-coordinates). This means that

similar tiles are not generally immediate neighbors. For the purpose of this paper, we

define immediately neighboring minima to be those whose P -cubes share a face or corner.

A minimum located at φ, which is within in the P -cube labeled by n = [φ/(2π)]n.i.,

has 3P neighboring P -cubes labeled by

nneighbor = n+ e , eI ∈ {0,±1} , (3.3)

only some of which have a non-vanishing intersection with Σ. In order to identify all

immediately neighboring minima we have to consider all neighboring P -cubes (3.3) that

do intersect Σ. That means we need to consider all vectors e that correspond to lattice

sites which satisfy 2π T φω∦
P⊥(n+ e) ∈ C (cf. (2.28)). Again, a simple sufficient condition

is given by

‖2πP⊥(n+ e)‖∞ < π . (3.4)

The precise locations of neighboring minima can be found by solving the optimization

problem (3.2) with φ = 2π(n+ e) + δφ for each candidate e.

3.3 Minima to quadratic order

In principle we can solve (3.2) and determine the location of all minima in the theory.

However, although we can certainly solve (3.2) in any one P -cube to arbitrary accuracy,

the very large number of domains make this impossible at large P . Instead, we will employ
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Figure 6. Contour plot of the relative error made by expanding cos(φ1) + cos(φ2) to quadratic

order. The dashed lines indicate, from inner to outer, the levels of 0.25, .5, 0.75 and 1 relative error,

respectively. The maximum relative error is 1.5. The quadratic domain is indicated by the gray

square of side length π while the periodic domain is the whole box.

a quadratic expansion of the potential and the approximate symmetries to find an analytic

expression for the approximate location of many minima.

The auxiliary potential has one single minimum located at the center of each P -cube,

around which we can use a quadratic expansion. We will refer to the (somewhat arbitrary)

region within which the quadratic expansion is a good approximation as the quadratic

domain. Since the non-perturbative potential consists of simple cosines, we define the

quadratic domain as

− π

2
≤ φI ≤ π

2
, ∀I ∈ {1, . . . , P} , (3.5)

such that the relative error made never exceeds 25% within that region. This choice might

change if the underlying periodic function deviates from a cosine, but we chose it with some

foresight in a way that this region will, in well-aligned theories, capture many minima of

the full non-linear potential. The periodic and quadratic domains along with the relative

error made by approximating cosines by a quadratic function are illustrated in figure 6.

The quadratic expansion dramatically simplifies the problem of finding minima. Con-

sider a small displacement δφ from the auxiliary lattice point 2π T ω∦φm. The potential in

the corresponding quadratic domain evaluates to

Vδφ =
1

2
δφ⊤diag(Λ4

I)δφ+ ν⊤R(2π T ω∦φm+ δφ) +O(δφ4) , (3.6)

so a vanishing gradient is implied by the conditions

diag(Λ4
I)δφ+R⊤ν = 0 ,

R(2π T ω∦φm+ δφ) = 0 . (3.7)

Solving this system of equations for the location of a minimum φm on the constraint
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Figure 7. The blue shaded region illustrates the polytope C in ω∦-coordinates containing all

lattice points corresponding to distinct tiles for an example with P = N +2 = 8 (cf. figure 5 where

the same region is shown). The central six-sided region is bounded by the 2P half-planes that

determine the validity of the quadratic approximation (3.10). Tiles that contain a minimum as

determined by numerical minimization are denoted by blue crosses, and nearly perfectly overlap

with the quadratic region.

surface gives19

φm = 2π(1 −∆⊥)T ω∦φm , (3.8)

where 1 −∆⊥ is a non-orthogonal projector onto the constraint surface:

(∆⊥)2 = ∆⊥ ≡ diag(Λ−4
I )R⊤

[

R diag(Λ−4
I )R⊤

]−1
R . (3.9)

Scanning over all m, we can check which φm lie within the quadratic domain of their

respective lattice site 2π T ω∦φm; namely, within the intersection of 2P half-planes,

‖2π∆⊥ T ω∦φm‖∞ ≤ π

2
. (3.10)

For these minima we will have succeeded at finding an approximate location of the con-

strained system. The energy density is given by

V (φm) ≈ 2π2m⊤
[

T φω∦
diag(Λ−4

I )T φω∦

⊤
]−1

m , (3.11)

where we used the specific choice R = T φω∦
to simplify the expression.

In figure 7 we illustrate the tiles in which there is a minimum located by numerically

minimizing the potential, along with those for which the quadratic approximation predicts

a minimum (i.e. predicts a minimum located within the quadratic domain where the ap-

proximation is self-consistent). In general these sets of points are not immediately related,

but for explicit examples we typically found a substantial overlap.

19For non-vanishing phases δr in (2.36) the minima are located at φ
m

+ δr, and correspondingly at

potentials (δφ
m

− δr)
⊤diag(Λ4

I)(δφm
− δr)/2, where we defined δφ

m
= 2π∆⊥ T ω∦φ m. Note the relation

φ = T ω‖φ ω‖ + δr, which implies that the locations of minima in ω‖-coordinates remain unchanged in the

presence of small phases.
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Finally, let us comment on the special case of equal scales ΛI = Λ and P = N + 1. In

this case the energies of the minima are

V (φm) ≈ 2π2Λ4

(
cm√

detQ⊤Q

)2

, ∀|m| < Nvac , (3.12)

where c is an integer. The derivation of this result can be found in appendix E. The

approximate signs in (3.12) denote the quadratic approximation which is valid for Nvac ∼√
detQ⊤Q minima. No other approximations are made in (3.12).

3.4 A uniform sample over all minima

The most direct approach to find all minima is to consider the (P−N)-dimensional polytope

C defined in (2.28). This region contains all vectors m ∈ ZP−N that label the tiles of

one periodic domain of the potential constrained to Σ (see figure 3). Minimizing the

potential in all the tiles in C covers one entire periodic domain of the potential, yielding

the set of all minima. However, the number of tiles is typically exponential in N or

P , so even at moderately large values of these parameters this comprehensive approach

becomes intractable.

Instead, we can take advantage of the approximate symmetries of the potential that we

identified. The auxiliary potential has minima only at the centers of each P -cube, which

suggests that many tiles containing minima of the physical potential will occur in those

P -cubes for which the constraint surface Σ passes through the quadratic domain near the

center of the cube. Such tiles lie within a connected region in m-space; that is, a subset

R ⊂ C. (This compactness property only applies for the specific tiling and labeling of the

tiles defined by the aligned coordinates.) The region R contains exponentially fewer lattice

sites than C, so the problem of comprehensively sampling R is much less computationally

intensive, but still requires a number of computations that is exponential in P .

We can further simplify the problem if we are interested only in statistical properties

of the potential for which a relatively small, but representative sample of distinct tilings

suffices. Such a representative sample can be obtained by uniformly sampling over lattice

sites contained within the polytope C, for example by performing a random walk that

samples the polytope in a time polynomial in P − N [62–64]. A simpler but much more

computationally intensive mechanism to uniformly sample a polytope would be to define a

simple region that fully contains the polytope and sample that, rejecting any sample that

is not contained in the polytope. Again, in order to determine a statistical sample of most

of the minima it suffices to sample only the region R. The sampling techniques above

apply for both the non-linear optimization problem of section 3.1 and the analytic result

for the energies of the minima in the quadratic approximation, (3.11).

We illustrate the distribution of energies at the minima for a specific theory obtained

via three different approaches in figure 8. The probability distribution of the energy density

obtained by sampling a small number of all minima agrees well with the exact distribu-

tion. Furthermore, as expected, the quadratic approximation works best for relatively low

minima, and becomes increasingly inaccurate for higher minima.

– 19 –



J
H
E
P
1
1
(
2
0
1
7
)
0
3
6

N
v
a
c
u
a

1200

1000

800

600

400

200

0

0

Vvacua/〈V 〉
0.50.40.30.20.1

Figure 8. Histogram showing the number of minima over the energy density, for an example with

N = 5, P = 6. Shaded region: the exact distribution of all minima; red/dark: the distribution

obtained via random sampling; blue/light: the distribution obtained via quadratic approximation.

It is possible for the physical potential to have minima in tiles for which Σ does not

intersect the quadratic domain (that is, tiles that are outside R). However such minima

are rare, at least in the well-aligned regime N ≫ 1, P −N ≪ N . This can be understood

qualitatively as follows. Each P -cube of sidelength 2π can be decomposed in to various

regions — the quadratic domain at the center ‖φ‖∞< π/2 (which contains a fraction 2−P of

the volume of the cube), surrounded by rectilinear regions defined by allowing some of the

components of φ to exceed π/2 in magnitude. The Hessian of the auxiliary potential (2.2) is

(Haux)
I
J = δIJ Λ

4
I cos(φ

I) . (3.13)

This is positive definite precisely in the quadratic domain around the center. Because

the Hessian of the physical potential is a projection of Haux onto Σ, any critical point of

the physical potential that occurs in the quadratic domain must be a minimum. For each

component of φ that lies outside the quadratic domain, the auxiliary Hessian matrix (3.13)

has an additional negative eigenvalue. Critical points of the physical potential in such

regions can be minima (rather than saddle points) only if the negative eigenvalue(s) of

the Hessian are projected out when the potential is constrained to Σ. For P − N ≪ N ,

only a small fraction P − N/P of the P directions are projected out and therefore it is

unlikely (or impossible if P −N is less than the number of negative modes) that an critical

point outside the quadratic domain will be a minimum. We have verified this expectation

numerically. Therefore, in this regime the great majority of the exact minima lie within R.

3.5 Saddle points and maxima

The cosine function changes sign under a half-period shift, cos(φ) = − cos(φ + π), so

the physical characteristics of maxima mirror those of minima. Due to the “1”s in (1.1),

the global maximum has energy Vmax ≈ ∑

I 2Λ
4
I . (As explained below, this would be an

equality if the phases were exactly δI = π, and is a very good approximation in well-aligned
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theories.) All the techniques we apply to minima carry over to maxima and other critical

points almost unchanged. In particular, the locations and energies of maxima and saddles

can be found efficiently by using the approximate symmetries. In fact, the property of

“well-alignedness” that allowed us to reduce the phases to values very close to zero allows

us to set the phases to anything we like, subject to errors of order those in our original

procedure. In other words, we can set the phases δ = δarb + O
(
‖P⊥ T ω∦φ ‖∞

)
, where

the P -vector δarb denotes any arbitrary phases. Geometrically, this is possible because in

well-aligned theories the angles between Σ and the grid in φ-space are small, so that Σ

approaches very close to every distinct point in φ-space.

For studying maxima it is convenient to set all phases as close as possible to π. Relating

φ and θ in this way corresponds to shifting the centers of the P -cube tiling of φ-space so

that they fall on global maxima rather than global minima — that is, the new cubes are

centered on the corners of the original ones. With this change nearly every equation in

this paper carries over unchanged or with the obvious changes from minima to maxima. In

particular maxima have a quadratic domain defined in the same way as for minima in (3.5),

as the cube of side-length π surrounding a now maximum of Vaux, and they have identical

statistics for their number, energies (except subtracted from Vmax rather than added to

Vmin, etc.

This trick of setting the phases to a desired value is also useful for studying saddle

points of any given degree. For instance, to study saddles of degree one (critical points

where the Hessian has 1 negative eigenvalue and N − 1 positive eigenvalues) we should

set one phase equal to π and the rest as close as possible to zero. These points are the

centers of the faces of the original cubes, and are points where the auxiliary Hessian (3.13)

has precisely one negative mode (and the auxiliary potential has a degree one saddle).

Tiles where Σ passes through the quadratic domain of these points often contain degree

one saddles of the physical potential, and tiles that do not may not, for the same reason

described in the previous subsection for the case of minima. Such degree one saddles occur

between tiles that correspond to P -cubes that are neighbors along a face, and play a crucial

role in the analysis of tunneling transitions (cf. [28]).

3.6 Estimates in random ensembles

In the previous section we discussed how to systematically enumerate and locate all minima

of a given axion theory. We found an analytic expression for their energy densities in

the quadratic approximation. We now turn to a discussion of the expected number and

distribution of minima in ensembles of random axion theories.

We define these theories by ensembles of random integer charge matrices Q and energy

scales Λ4
I , as discussed in section 1. To repeat our assumptions, Q is a P × N matrix

of independent, identically distributed random integer entries with vanishing mean and

standard deviation σQ. We assume the universal limit of random matrix theory such that

the precise distribution (including the fact that the entries of Q are integer) becomes

irrelevant and all expectation values only depend on σQ. This assumption roughly holds

whenever & 3/N of the entries of the charge matrix are non-vanishing, and the distribution
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of the entries is not heavy-tailed. The field space metric is irrelevant for the discussion in

this section.

In general it is a very difficult task to analytically obtain the distribution of minima,

or even the number of stable minima. Even in the quadratic approximation this problem

amounts to determining the number of lattice sites within a non-trivial high-dimensional

polytope defined by (3.10). In this section we therefore mostly restrict our attention to

the simplest case of one single auxiliary field, P = N + 1 and equal scales ΛI = Λ, unless

otherwise noted. We will find that the energy density (3.12) is valid for super-exponentially

many minima.

3.6.1 The quantity and energies of minima for P = N + 1

We now determine the number of distinct minima Nvac that are well-approximated by

the quadratic expansion in (3.12). This count is simply given by the number of sites of

the P -dimensional, rank P − N = 1 sublattice δφm = 2πP⊥ T ω∦φm that are contained

within the quadratic domain ‖δφm‖∞ ≤ π/2. When all phases in the original Lagrangian

exactly vanish there exists a two-fold degeneracy of all minima. If the phases do not

precisely vanish, they can be absorbed up to a finite remainder that is typically of order

the change of δφ between similar minima, see section 2.5. To further simplify the problem

we assume identical scales ΛI = Λ. The number of distinct minima in the quadratic domain

is then simply

Nvac =
1

2 ‖P⊥ T ω∦φ ‖∞

. (3.14)

Note that since Q has independent, identically distributed random entries, P⊥ projects

onto a random direction that is isotropically distributed, hence the vector P⊥ T ω∦φ is

isotropically distributed, with (E.2) its two-norm is given by

‖P⊥ T ω∦φ ‖22 =
c2

detQ⊤Q
, (3.15)

and we defined the positive integer c as in (E.2). A vector that is distributed isotropically

on the sphere consists of independent, normally distributed entries. Matching the expected

norm of that vector to (3.15) then determines the distribution of the entries,

(P⊥ T ω∦φ )
I ∈ N

(

0,
c√

P detQ⊤Q

)

, ∀I ∈ {1, . . . , P} , (3.16)

where N (0, σ) denotes a normal distribution of mean zero and standard deviation σ. It

is now straightforward to evaluate the median of the largest absolute entry of P⊥ T ω∦φ ,

which yields the number of minima as

Nvac ≈
√
P

2ℓ(P )

√

detQ⊤Q , (3.17)

where ℓ(N) ≡
√
2 erf−1(2−1/N ) is the median largest absolute entry of an N -vector with

entries that are unit normal distributed. In (3.17) we used that c is an order one integer,

which we confirmed in extensive simulations for the ensembles under consideration.
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The matrix Q⊤Q is a real Wishart matrix, the determinant of which is distributed as

the product of P −N chi-squared random variables with P , P − 1, . . . , P −N +1 degrees

of freedom, respectively [65], which gives for our case

〈detQ⊤Q〉 = σ
2(P−1)
Q

P !

1!
. (3.18)

Finally, we find a simple expression for the expected number of minima,

Nvac ≈
σP−1
Q

2ℓ(P )

√
PP ! , (3.19)

which is exponentially large in N in the universal regime, where at least a fraction 3/N of

the entries inQ are non-vanishing. To give a sense of these numbers, with P = N+1 = 150,

and σQ = 1, one obtains Nvac ≈ 10131. Note that this result was only derived for P−N = 1,

but as we discuss below we expect similar results to hold more generally (see (3.30)). The

scaling with N is identical to that observed in [26] for a specific case where P ≫ N .

Finally, let us estimate the energy levels at which the minima arise. To that end, we

will assume that the distribution of minima can be well-approximated by all lattice sites

that lie within the quadratic domain, i.e. |δφI | ≤ π/2. Since the displacements δφ are

proportional to P⊥ T ω∦φ , which by (3.16) is roughly normal distributed, we can easily

estimate the typical magnitude of the entries of the displacement vector, when the largest

component is π/2,

|δφI | ≈ π

2ℓ(P )
. (3.20)

The maximum energy density in a minimum is therefore well-approximated by20

max (Vvac) ≈
1

2

(
π

2ℓ(P )

)2

〈V 〉 ≈ 0.14 〈V 〉 , (3.21)

where we used ℓ(N) ≈ 3 for N ∼ 100 in the last approximation, and used the mean of

the potential 〈V 〉 = ∑P
i=1 Λ

4
I . Since the potential is simply quadratic the median energy

density is given by

median (Vvac) ≈
1

4
max (Vvac) ≈ 0.034 〈V 〉 . (3.22)

3.6.2 Hessian eigenvalues

Beyond their energies, another interesting characteristic of critical points is the spectrum of

eigenvalues of the Hessian. If the kinetic matrix is Kij = f2δij , the canonically normalized

fields are Θ ≡ fθ. Defining Q ≡ K−1/2Q = Q/f , the potential in canonically normalized

coordinates is

V (Θ) =
P∑

I=1

Λ4
I

[

1− cos (QΘ)I
]

. (3.23)

The eigenvalues of the Hessian of this potential at a critical point are then the masses of

the canonical fields at that point. In section 4 we will perform a more detailed analysis

20Note that this expression applies for general P .
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of the size of the tiles surrounding minima and the masses of the canonically normalized

fields for various less trivial choices of kinetic matrix.

Expanded around a minimum labeled by m, the Hessian of (3.23) is

H = Q⊤diag
(
Λ4
I

)
Q+O[(P⊥m)2] . (3.24)

For simplicity let us take all ΛI = Λ. In that case Q⊤Q is a Wishart matrix, and at large

N the empirical density (i.e. the amount of eigenvalues in a small interval) follows the

Marchenko-Pastur distribution [66]. For a Wishart matrix with standard deviation 1, the

mean smallest eigenvalue is O(1/N) while the largest is O(N) (if P = N + 1 the precise

values are 1/4N and 4N , respectively). The Marchenko-Pastur distribution has a sharp

peak near the minimum and a long tail to larger values. The mean and median are both

of order N . Putting the dimensions back in, this means the masses will range from

σ2
Q

N

(
Λ2

f

)2

. m2 . Nσ2
Q

(
Λ2

f

)2

.

As mentioned previously, the Hessian on a degree one (one negative mode) saddle is of

interest for questions involving tunneling from one minimum to another [28]. Such saddles

are most easily analyzed by setting one phase to π and the rest to zero. This corresponds

to considering points where Σ passes close to the center of one face of the P -cube (note

that such points are degree one saddles of Vaux). Since Q is isotropic it does not matter

which phase we set to π. Choosing the first one, it is easy to see that (3.24) becomes

H ≈ Λ4Q⊤diag(−1, 1, 1, . . . )Q . (3.25)

This is not a Wishart matrix and we are unaware of any analytic results for its eigenvalue

spectrum. It has at most one negative eigenvalue. If the smallest eigenvalue λmin turns out

to be positive, this critical point is in fact a minimum rather than a saddle. Numerically

we established that the mean and standard deviation of the minimum eigenvalue are

〈λmin(H)〉 ≈ −N

2
σ2
Q

(
Λ2

f

)2

, σλmin(H) ≈
√

3

2N
|〈λmin(H)〉| .

Hence, at large N is extremely unlikely that there is no negative eigenvalue and the would-

be degree one saddle is actually a minimum. This at least partially confirms the expectation

explained in section 3.4, that most local minima occur in tiles where the constraint surface

intersects the quadratic domain of the minimum of Vaux, rather than in neighboring regions

such as these. Similarly most saddles of degree k will occur in regions where Σ intersects

the quadratic domain of a degree k saddle of Vaux. The relation between the number of

saddles N (k) of degree k and the number of minima can then be estimated from (3.25):

N (k) ≈
(
P

k

)

Nvac .
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3.6.3 Neighboring minima

In the previous section we estimated the total number of distinct, non-degenerate minima

in the entire potential. For some questions one might however only be interested in the

immediate neighborhood of one particular minimum. We therefore turn to determining the

expected number of immediate neighboring minima, including degenerate ones. To allow

for a simple estimate, consider all sites neighboring the origin, n = 0+e, with unit or zero

entries for e as in (3.3). Let us count the immediate neighbors that lead to a minimum

within the quadratic domain (3.5),

‖2πP⊥e‖∞ ≤ π

2
. (3.26)

We verified numerically that in the universal limit the entries of the orthogonal projector

matrix P⊥ have variance (P −N)/P 2. Using the central limit theorem and denoting the

number of non-vanishing entries of e by ne, we can approximate

(

P⊥e
)I

∈ N
(

0,
√

ne(P −N)/P
)

. (3.27)

The median largest entry of P⊥e evaluates to ℓ(P )
√

ne(P −N)/P , such that for P . 2N

a large fraction of the 3P neighbors are stable minima, i.e. ‖P⊥e‖∞≪ π. Therefore, not

only is the total number of minima extremely large, but each minimum has a vast number

of immediately neighboring minima.

3.6.4 Phases

As discussed in section 2.5, in well-aligned axion theories the N exact and P − N ap-

proximate shift symmetries allows one to set N phases to precisely to zero and make the

remaining P −N phases very small. The accuracy to which all phases can be eliminated,

as measured by the largest remaining phase δmax, depends on how aligned the basis is:

δmax ≤ π
∥
∥
∥P

⊥ T ω∦φ

∥
∥
∥
∞

≤ π(P −N) max
a

{

‖P⊥t∦a‖∞
}

. (3.28)

In order to get some analytical intuition for how well-aligned theories in our ensemble tend

to be, let us assume that the vectors P⊥t
∦
a are orthogonal and are the shortest they could

possibly be, as in (3.15), and that the volume of the cubic, but arbitrarily oriented periodic

domain of the lattice generated by P⊥ is given by
(
detQ⊤Q

)−1/2
. These assumptions

yield the distribution for the components of all projections,

(P⊥t∦a)
I ∈ N

(

0,
(detQ⊤Q)

− 1
2(P−N)

√
P

)

, ∀I ∈ {1, . . . , P} , a ∈ {1, . . . , P −N} . (3.29)

This gives an upper bound on the number of minima in the quadratic domain,

Nvac .

( √
P

2ℓ(P )

)P−N
√

detQ⊤Q ≈
( √

P

2ℓ(P )

)P−N

σN
Q

√

P !

(P −N)!
, (3.30)

reproducing (3.19) in the special case P = N + 1.
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Figure 9. Ensemble average of largest phase (3.28) as a function of P , with N = 20 and σ2
Q = 2/3.

The solid line is the estimate (3.31).

We can furthermore easily obtain the largest components of the orthogonal projections

of the aligned lattice basis,

max
a

{

‖P⊥t∦a‖∞
}

∼ ℓ(P [P −N ])
√
P (detQ⊤Q)

1
2(P−N)

≈ ℓ(P [P −N ])√
P

(

1

σ2N
Q

(P −N)!

P !

) 1
2(P−N)

.

(3.31)

Using Stirling’s approximation we observe that when random matrix universality applies

the basis is well-aligned for P ≈ N , and for order unity σQ the basis ceases to be well-

aligned with growing P at P . 2N . We illustrate how the largest phase increases with the

number of non-perturbative terms along with the analytic estimate (3.31) in figure 9.

3.7 Band structure of subleading terms

Finally, let us address the last feature of the axion Lagrangian that we ignored so far;

the subleading terms in the non-perturbative potential, denoted only by ellipses in (1.1).

Explicitly, we have the full axion potential

V =
P∑

I=1

ΛI

[

1− cos (Qθ)I
]

+ Vsl(θ) , (3.32)

where we introduced a subleading potential −Λ4
sl ≤ Vsl ≤ Λ4

sl of scale Λ4
sl that is negligible

compared to the leading P terms in the non-perturbative potential. Remember that we

chose coordinates such that θi → θi + 2π are the discrete shift symmetries respected

by the full theory, such that also Vsl(θ) breaks any larger symmetries respected by the P

leading terms to those fundamental symmetries. If there are any shift symmetries respected

by the P leading terms that are broken by the subleading potential this will result in a

multiplicative increase in the number of distinct minima, as discussed in [26]. This effect

is related to, but distinct from the mechanism discussed thus far.

The leading potential is invariant under the P shifts (Qθ)I → (Qθ)I+2π, which gener-

ates an N -dimensional lattice denoting the shift symmetries in terms of the θ-coordinates.
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Figure 10. Top: constraint surface (red line) along with the lattice 2πZP (gray dots). Distinct tiles

of the leading cosine terms are numbered and shaded dark, while the periodicity of the subleading

terms is indicated by the light shading. Bottom: axion potential. The subleading terms further

split the energies in the minima of the leading terms.

In the notation of section 2 a basis for this lattice is given with (2.22) by B = T ω‖θ ,

i.e. the leading potential is (minimally) invariant under the N shifts θ → θ + 2πBi. The

subleading potential, however, is only invariant under shifts on the integer lattice 2πZN .

This means that the periodic domain of the full potential contains Nsl = 1/
√
detB⊤B

periodic domains of the leading potential (as this is the inverse volume of that domain). If

the leading P terms in the non-perturbative potential contain NQ minima, each of these

minima degenerates into Nsl distinct minima due to the further symmetry breaking in the

subleading potential. The total number of minima therefore becomes

Nvac = Nsl ×NQ . (3.33)

We illustrate this energy level splitting in figure 10.

Of course we could have included the charges of the subleading terms in the P rows of

the leading potential and found the corresponding aligned basis that includes all possible

charges in the theory. However, the subleading potential is irrelevant for all practical pur-

poses when identifying approximate shift symmetries of the potential and therefore would

only introduce a spurious complication of the computational problem by increasing the

dimensionality P of the auxiliary lattice. When identifying the shift symmetries according

to section 2 it is therefore important to identify which terms in (1.1) can safely be ignored

for a problem at hand.

4 Aligned axion diameters

In this section we provide a systematic discussion of the theory in the vicinity of local

minima; that is, within the tiles Tn. Recall that the tiles are defined as regions within
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which none of the individual terms in the potential exceeds its maximum (see section 1),

and therefore define the characteristic scale on which the potential changes. Within each

of these tiles the potential is relatively flat and hence provides for a natural environment to

study large field inflation. Several specific cases were previously studied in the literature [19,

20, 35, 47–50, 67–76]. In this section we describe a systematic approach to determine the

size of an arbitrary tile. We restrict our discussion to well-aligned theories (cf. section 2)

where we can set all P phases in (1.1) to zero to good accuracy by a shift of θ.

Recall the Lagrangian (1.1) of a well-aligned axion theory,

L =
1

2
∂θ⊤K∂θ −

P∑

I=1

Λ4
I

[

1− cos (Qθ)I
]

, (4.1)

where we retain only P ≥ N leading terms in the potential. In this section we are interested

in invariant field space distances, so it is convenient to introduce canonically normalized

fields Θ,

Θ ≡
√
Kθ , (4.2)

where
√
K is the positive matrix square root.21 The Lagrangian in canonically normalized

coordinates reads

L =
1

2
∂Θ⊤∂Θ−

P∑

I=1

Λ4
I

[

1− cos (QΘ)I
]

, (4.3)

where the canonical charges are related to the integer charges by

Q ≡ QK−1/2 . (4.4)

In canonically normalized coordinates the tiles (2.7) are given by

Tn = {Θ : ‖QΘ− 2πn‖∞ ≤ π} . (4.5)

The tiles are polytopes in N dimensions defined by the intersection of 2P half-planes,22

and spherical shells determine the surfaces of constant invariant distance to the center of

the sphere. We illustrate this polytope in figure 11.

4.1 Diameters and field ranges in well-aligned theories

To characterize the scale of these domains we will consider two distinct measures of size.

One is the diameter Dn, that is, the length of the longest straight line contained in the tile

Tn. It is clear that this line will run between two vertices of the polytope, and that the

tile with the largest diameter is the one at the origin n = 0. If we denote the vertices of

the polytope by dn,l, we have therefore the corresponding diameter

Dn = max
l,k

‖dn,l − dn,k‖2 ≤ D0 = 2max
l

‖d0,l‖2 . (4.6)

21The matrix square root satisfies
√
K

√
K = K, and is related to the matrix SK containing the (column)

eigenvectors of K and its eigenvalues f2
i by

√
K = SK diag(fi)S

⊤
K .

22Note that Tn is indeed a polytope, i.e. a finite volume subset of RN bounded by hyperplanes of codi-

mension one, since Q is full rank.
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Figure 11. Illustration of the tile T(3 0)⊤ of the potential shown in figure 3 in canonical fields Θ.

The solid arrows denote the field ranges R± along the two lightest directions in the vicinity of the

minimum, while the dashed arrow denotes the diameter D of the tile.

Note that the diameters of the tiles depend only on the charge and kinetic matrices of the

theory (not on the couplings Λ4
I).

The expression (4.6) defines a unique size for every tile, but in practice there are

exponentially many vertices, making it hard to evaluate. Furthermore, the low energy

physics in the vicinity of a minimum is generally dominated by the lightest degrees of

freedom, which do not necessarily coincide with the axis of largest diameter. This motivates

our second characterization of the scale (which does depend on the couplings), namely the

field range Rn± within Tn along the lightest direction — the line defined by the eigenvector

Ψ̂H of smallest eigenvalue of the Hessian H at the minimum in the tile. The Hessian is

given by

H = Q⊤diag
(
Λ4
I

)
Q+O[(P⊥n)2] . (4.7)

More precisely we define two field ranges Rn(±Ψ̂H) ≡ Rn± as the canonically normalized

field space distance between a minimum at Θn and the boundary of the corresponding

tile in the least massive directions ±Ψ̂H . Solving the equation defining the boundary of

the tile,
∥
∥
∥
∥
±Rn±QΨ̂H + mod

[−π,π]
QΘn

∥
∥
∥
∥
∞

= π , (4.8)

yields the field ranges

Rn(±Ψ̂H) = min
I







π

|(QΨ̂H)I |
∓

mod
[−π,π]

(QΘn)
I

(QΨ̂H)I







. (4.9)

Note that (4.9) holds for the field range Rn(Θ̂) along an arbitrary direction Θ̂.

In well-aligned theories the sizes of exponentially many tiles Tn are well-approximated

by the size of the tile T0 containing the origin Θ = 0 (or, when P = N , this is the only

tile), so we will focus our attention on this last tile in the remainder of this section. In T0
the expressions for the diameter and field ranges simplify. For any unit N -vector Θ̂ (in
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particular the lightest directions ±Ψ̂H) we have

R0(Θ̂) = R0(−Θ̂) =
π

‖QΘ̂‖∞
, (4.10)

which indeed follows from the general expression (4.9). The diameter can alternatively be

expressed as

D0 = max
{

2R0(Θ̂)
∣
∣
∣ Θ̂ ∈ SN−1

}

= max

{

2π

‖QΘ̂‖∞

∣
∣
∣ Θ̂ ∈ SN−1

}

. (4.11)

This last expression for the diameter can be used to derive bounds on it in an arbitrary

theory, namely23

2π

λmin(|Q|) < D0 ≤ 2π
√
P

λmin(|Q|) , (4.12)

where λmin(|Q|) denotes the smallest eigenvalue of the matrix |Q| ≡
√

Q⊤Q, i.e. it is the

smallest singular value of Q.

4.2 N-flation, lattice and kinetic alignment

In the previous sections we defined two notions of size of the axion field space in the vicin-

ity of minima. To illustrate these definitions we now apply them to three special cases,

focussing in particular on how the diameter in multi-axion theories may be enhanced com-

pared to the single-axion diameter 2πf . We will consider N-flation [19], lattice24 (or KNP)

alignment [20], and finally kinetic alignment [47]. Each of these models was originally re-

stricted to P = N non-perturbative terms, but we will generalize the main ideas behind

lattice and kinetic alignment to well-aligned theories with P ≥ N . As mentioned in sec-

tion 4.1 in well-aligned theories it suffices to consider the representative tile T0 around the

origin, which we will do in the following.

4.2.1 N-flation

As our first example we consider the N -axion theory with diagonal kinetic matrix K =

diag(f2
I ) and P = N trivial charges Q = 1N [19]. In terms of canonical coordinates the

Lagrangian is given by

L =
1

2
∂Θ⊤∂Θ−

N∑

I=1

Λ4
I

[

1− cos

(
ΘI

fI

)]

. (4.13)

This theory has only one distinct tile and has one minimum at the origin Θ = 0, as

illustrated in figure 12. The mass matrix is diagonal, H = diag(Λ4
I/f

2
I ) ∝ 1N , where for

simplicity we selected the scales ΛI such that all masses are equal.

23See appendix F for a short derivation.
24The term “lattice alignment” is used synonymous with “KNP alignment” and should not be confused

with the “aligned lattice basis” introduced in section 2.2. The two terms refer to unrelated mechanisms.
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1
+ f

2

2

Figure 12. Illustration of the tile T for N-flation. The diameter is the Pythagorean sum of the fI .

The tile consists of an N -dimensional hyperrectangle with side-lengths 2πfI , which

yields the diameter as the Pythagorean sum

D = 2π

√
∑

I

f2
I . (4.14)

For fixed fmax ≡ maxI{fI}, the largest possible diameter is obtained when all metric eigen-

values are equal, fI = fmax : D = 2π
√
Nfmax. By contrast, if there are large hierarchies

in the fI the diameter is D & 2πfmax. Since all directions are equally massive, the lightest

direction is degenerate and the field ranges accessible from the minimum at the origin are

just half of the diameter, R± = D/2. In the cosmological context this scenario is known

as N-flation, a particular realization of assisted inflation [77]: while none of the individual

fields ΘI traverse a displacement larger than fmax, the simultaneous displacement of N

fields realizes an invariant field range parametrically as large as
√
Nfmax.

4.2.2 Lattice alignment

We now consider the lattice alignment (or KNP) mechanism, first discussed by Kim, Nilles

and Peloso [20] for the special case N = P . Lattice alignment relies on a small singular

value of the charge matrix. For simplicity, we assume a kinetic matrix proportional to the

identity, K = f2
1N , while the P ≥ N integer charges are left general,

L =
1

2
∂Θ⊤∂Θ−

P∑

I=1

Λ4
I

[

1− cos
(QΘ)I

f

]

. (4.15)

Recall the general bound (4.12) on the diameter of the tile T0,

D0 >
2πf

λmin(|Q|) . (4.16)
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(|Q

|)

Figure 13. Illustration of the tile T for lattice alignment. The diameter is enhanced by the inverse

of the smallest singular value of the canonical charge matrix.

Lattice alignment is the observation that one can arbitrarily enhance the field range in

these theories compared to the single-field 2πf by decreasing the smallest eigenvalue λmin

of |Q| =
√
Q⊤Q.25 As λmin decreases, the lower bound on the diameter increases. We

illustrate this phenomenon in figure 13.

4.2.3 Kinetic alignment

Finally let us discuss models with kinetic alignment [47]. In the original discussion one

assumed P = N , a trivial charge matrix Q = 1N and a general kinetic matrix K, but

the definition of kinetic alignment can just as easily be given in the more general context

of well-aligned theories with P ≥ N and K,Q unspecified. Note that the upper bound

in (4.12) is saturated if

‖QΨ̂|Q|‖∞ =
1√
P
‖QΨ̂|Q|‖2 , (4.17)

in other words, if the direction defined by QΨ̂|Q| aligns with a diagonal of the P -cube,

and Ψ̂|Q| denotes the eigenvector of |Q| with smallest eigenvalue. For this to be possible it

is in particular necessary that the constraint surface Σ contains a diagonal of the P -cube.

The sufficient condition (4.17) to saturate the upper bound in (4.12) is the extension of

the original kinetic alignment proposal to arbitrary well-aligned theories with P ≥ N . In

models with (perfect) kinetic alignment we therefore have a diameter

D =
2π

‖QΨ̂|Q|‖∞
=

2π
√
P

λmin(|Q|) . (4.18)

One might naively expect that alignment with a diagonal requires a great amount of fine-

tuning in the canonical charge matrix Q. In large dimensions N,P ≫ 1, however, the

25Practically this can be achieved by having some columns of Q be nearly degenerate, meaning that their

normalized variants have an overlap nearly equal to one (recall that Q is integer-valued).
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Figure 14. Illustration of the tile T for kinetic alignment in the original model where P = N,Q =

1N . The diameter is enhanced by
√
N relative to fmax.

converse is true: a P -cube has many more vertices (2P ) than faces (2P ). Therefore,

an isotropically oriented vector within an isotropically oriented constraint surface Σ is

much more likely be pointing towards a vertex of a P -hypercube than towards a face.

In section 4.3 we will make this expectation more precise and demonstrate that in broad

classes of random axion theories the relation (4.17) is indeed approximately satisfied, and

kinetic alignment is generic.

For completeness let us consider the original model where P = N , Q = 1N . Here

Q = K−1/2, and the eigenvector Ψ̂
K−1/2 is equal to the eigenvector corresponding to

the largest eigenvalue f2
max of K. The vector QΨ̂

K−1/2 = Ψ̂
K−1/2/fmax points towards a

diagonal when Ψ̂
K−1/2 does, which is the condition for (perfect) kinetic alignment as given

in [47]. In this case

D = 2π
√
Nfmax . (4.19)

Note that here the diameter only depends on the largest metric eigenvalue f2
max, and

is independent of all other fI ≤ fmax. When there are large hierarchies in the metric

eigenvalues, the diameter (4.19) in kinetically aligned theories is larger by a factor of
√
N

relative to the diameter (4.14) of the N-flation scenario. The enhancement of the diameter

by
√
N relative to fmax was originally referred to as kinetic alignment, which we illustrate

in figure 14. More generally we have (4.18): the enhancement of the diameter by
√
P

relative to the inverse of the smallest singular value of Q.

4.3 Alignment in random ensembles

We now discuss diameters and field ranges in ensembles of random axion theories.26 The

Lagrangian is given by

L =
1

2
∂θ⊤K∂θ −

P∑

I=1

Λ4
I

[

1− cos (Qθ)I
]

, (4.20)

26This was previously considered in [35], but important aspects were missed that we discuss here.
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and we study random ensembles of kinetic matrices K, integer charges Q, and dynamical

scales Λ4
I introduced in section 1 and used already in section 3.6. We work at 2N & P ≥

N ≫ 1, where the theory (1.1) is generically very well-aligned so that it is consistent

set the phases to zero in (4.20). Furthermore as in the previous section we restrict our

attention to the tile around the global minimum at Θ = 0, because at least for minima

in the quadratic regime (see section 3.4) the diameters and field ranges along particular

directions are similar up to O(1) factors.

Before discussing the details we first briefly review the main results for diameters in

random axion theories. With (4.18) the diameter of a tile in a well-aligned theory is given by

D ≈ 2π
√
P

λmin(|Q|) , (4.21)

where, again, |Q| =
√

Q⊤Q. The diameter is enhanced by
√
P due to the fact that a

random P -vector is very likely to be aligned with a vertex of the P -cube periodic domain

of the auxiliary lattice rather than with one of its faces (kinetic alignment, see section 4.2.3),

as well as by 1/λmin(|Q|) (lattice alignment, cf. section 4.2.2).

In the universal limit the matrix Q⊤Q resembles a Wishart matrix so we expect its

eigenvalue distribution to depend only on P , N and the scale of the charges. In the simple

case of K = f2
1N and random Q this scale is (σQ/f)

2. We can substitute a naive random

matrix theory expectation [78] for the smallest eigenvalue in (4.21) and obtain

D ≈ 2π
√
P

f

σQ

1√
P (1−

√

N/P )
≈ 2π

√
P

f

σQ

2
√
N

P −N
, (4.22)

where the last approximate equality is valid when P −N ≪ N .

For aligned theories where P ≈ N , there are three parametric enhancements that each

can scale as ∼
√
N . The first factor of

√
P ≈

√
N in (4.22) is due to kinetic alignment

and depends on the fact that the canonical charge matrix is isotropic. The second factor

can arise from the sparsity of the charge matrix, encoded in σQ, which may be as small as

≈ 3/
√
N , while retaining universality. The last factor is due to the eigenvalue distribution

of a Wishart matrix and leads to two different parametric scalings: when P−N = constant

and N is large, we have a third parametric enhancement of
√
N , while for P − N ∝ N

and N large the third term decreases the diameter parametrically as 1/
√
N . Using the

least possible entries in the integer charge matrix we therefore have the following scaling

with N :

D .

{

N3/2f , for P −N = constant ,

N1/2f , for P −N ∝ N ,
(4.23)

both valid when N is sufficiently large.

Even though these naive expectations are very crude, they turn out to accurately

represent the mean diameter in a broad class of random models as we show below. Fur-

thermore, we will find that the field range R0± along the lightest direction scales with N in

a manner very similar to the diameter, and that this scaling is robust even when there are

large hierarchies present in the dynamical scales Λ4
I . The simple expectation (4.23) from
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random matrix theory can then be compared to fundamental theories with axions, such as

compactifications of string theory [10].

Finally, via (4.21) the results (4.22) and (4.23) can also be applied to determine the

scaling of the smallest eigenvaluem2 of the Hessian matrix (4.7) — that is, the mass-squared

of the lightest field around a minimum. Up to O(1) factors and with all ΛI = Λ equal,

m ≈ 2π
√
P

Λ2

D . (4.24)

4.3.1 Diameter estimates

To estimate the diameter in random axion theories, recall from section 4.2.3 that perfect

kinetic alignment implies that the diameter D0 of the tile is given by twice the field range

along the eigenvector Ψ̂|Q|. In the random theories we introduced (modulo a caveat on the

kinetic matrices K that we will discuss) we claim that kinetic alignment is well-satisfied

at large P . More precisely

2π

‖QΨ̂|Q|‖∞
≈ 2π

√
P

ℓ(P )

1

‖QΨ̂|Q|‖2
(4.25)

is satisfied with ever-increasing probability as P → ∞.27 This hinges on the following fact:

the images of eigenvectors of Q⊤Q under Q are uniformly distributed on the unit P -sphere

and therefore their entries are approximately normally distributed. In other words they

are delocalized.28 The asymptotic exactness of the relation (4.25) as P → ∞ provides us

with a reliable lower bound on the diameter D0 at large P ,

D0 ≥ 2R0(Ψ̂|Q|) →
2π

√
P

ℓ(P )σQ λmin(|Q̂|)
. (4.26)

Here we have extracted a scale σQ from the entries in Q = QK−1/2 via the definition

Q̂ = Q̂K−1/2, where the entries of Q̂ are distributed according to N (0, 1) in the universal

regime. This separates a trivial scaling factor σQ appearing in λmin(|Q|) from its more

intrinsic scaling properties with N,P . The lower bound (4.26) is significant because it

differs from an upper bound on D0 (cf. section 4.1) only by the logarithmic factor ℓ(P ):

D0 ≤ 2π
√
P

σQ λmin(|Q̂|)
. (4.27)

An intuitive understanding of (4.25) was given in section 4.2.3: in a large-dimensional

P -cube the number of vertices vastly outnumbers the number of faces, thus it is much

more likely for a vector to (approximately) point towards a vertex than towards a face.

More quantitatively, the matrix Q⊤Q is rotationally invariant (i.e. its form is preserved

under Q → OQ with O a P × P orthogonal matrix) so from general considerations in

random matrix ensembles [79] we expect the eigenvectors of Q⊤Q (including Ψ̂|Q|) to

27Recall the definition of ℓ(P ) in (3.17), ℓ(P ) =
√
2 erf−1(2−1/P ) ≈

√
2 logP at large P .

28In fact, the eigenvectors of Q⊤Q themselves are delocalized (in particular Ψ̂|Q|), but this is of subor-

dinate relevance.
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be delocalized (see also [80]). Furthermore, provided K does not introduce significant

anisotropy, the vector QΨ̂|Q| will be delocalized as well.

In the following three sections we will verify the delocalization of QΨ̂|Q| in various

ensembles of kinetic matrices. Having established this, we will use (4.26) to analytically

obtain a reliable lower bound on the diameter of T0 in the different ensembles. We will

examine two distinct regimes:

• “hard edge”: as N → ∞, P −N is held fixed,

• “soft edge”: as N → ∞, N/P is held fixed.

4.3.2 Unit metric

In random axion theories where K = f2
1N with f a fixed scale, we can formulate the

most precise results. In this case Q⊤Q = (σQ/f)
2Q̂⊤Q̂, is well-described by a Wishart

matrix. At large N , the eigenvector Ψ̂|Q| is delocalized and we further verified numerically

that the P -vectors QΨ̂|Q| are delocalized as well. The field range along Ψ̂|Q| is therefore

given via (4.26) by

R0(Ψ̂|Q|) ≈
π
√
Pf

ℓ(P )σQ λmin(|Q̂|)
. (4.28)

For any specific N,P the probability distribution of the smallest eigenvalue in the

Wishart ensemble can be calculated (either recursively [81, 82] or directly [83]). When P −
N is held fixed as N tends to infinity, the asymptotics of its mean satisfy 〈λmin(Q̂

⊤Q̂)〉 ∼
1/N as N → ∞, hence the name “hard edge” statistics, as the smallest eigenvalue ap-

proaches the constraint that the matrix is positive definite. The knowledge of the distribu-

tion of the smallest eigenvalue can be translated to calculate the probability distribution

of a lower bound on the diameter D0 via (4.28). In general only the first P −N moments

of the probability distribution of the diameter along Ψ̂|Q| are finite, while higher moments

diverge.29 More specifically, at large N , we find for the zth moment (z ≤ P −N):

〈R0(Ψ̂|Q|)
z〉 ∼ c(z, P −N)

(
πNf

ℓ(P )σQ

)z

as N → ∞ with P −N = constant , (4.29)

for some constants c(z, P −N).30 As σQ ∼ 1/
√
N in sparse models, we see the mean field

range along Ψ̂|Q| scales as N
3/2 for all P −N > 0, up to a logarithmic correction factor.31

The standard deviation also exhibits this N3/2 scaling with N .32 It may be instructive

29In particular for P = N the distribution of the diameter along Ψ̂|Q| is heavy-tailed. In that case one can

show that the median diameter behaves as c(1, 0)(2πfN/ℓ(P )σQ) with c(1, 0) = (
√
log 4 + 1− 1)−1 ≈ 1.84.

30We found c(1, 1) =
√

π/2 ≈ 1.25, c(1, 3) =
√
πe [3I1(1)− I0(1)] /3

√
2 ≈ 0.49, c(2, 3) =

(

e2 − 5
)

/8 ≈
0.30 and c(3, 3) =

√
πe [5I0(1)− 9I1(1)] /15

√
2 ≈ 0.28. To our knowledge there is no closed-form expression

for c(z, P −N) — generic values must be determined numerically. This can be done algorithmically [81].
31This parametrically improves the lower bound on the diameter of the tile obtained in [80] for this

random model, where for P −N > 0 one found a lower bound that scales only linearly with N .
32However, the probability distribution on R0(Ψ̂|Q|) is super-exponentially suppressed at small values,

and only power-like suppressed at large values. Thus the field range along Ψ̂|Q| may easily become larger

than the mean, but not smaller. This holds in the hard edge limit for all P ≥ N . For the P = N case see

also the discussion in appendix A of [80].

– 36 –



J
H
E
P
1
1
(
2
0
1
7
)
0
3
6

to recapitulate how the N3/2 scaling arises, namely as the product of three factors N1/2

with different origins: one comes from the alignment of QΨ̂|Q| along a diagonal of the P -

hypercube (kinetic alignment), another from the square root of the smallest eigenvalue of

a Wishart matrix scaling like 1/
√
N in the large N -limit where P −N is held fixed (lattice

alignment), and finally a
√
N arising from the assumed sparsity of the charge matrices.

For soft edge statistics where N/P is held fixed, we may use the result of [78], which

implies 〈λmin(|Q̂|)〉 → (
√

P/N − 1)
√
N . We only discuss the mean field range along Ψ̂|Q|

in this case. We find

〈R0(Ψ̂|Q|)〉 ∼
πf

ℓ(P )σQ(1−
√

N/P )
as N → ∞ with N/P constant . (4.30)

So in sparse models where the amount of non-perturbative effects scales linearly with N ,

the mean field range along Ψ̂|Q| (and hence, typically, the diameter D0) is enhanced only

by the minimal amount N1/2 compared to the single-axion f .

4.3.3 Wishart metric

Here we discuss the random ensemble where K is a Wishart matrix, constrained to have

largest eigenvalue equal to a fixed scale f2
max. Specifically, we draw the entries of a matrix

A ∈ RN×N from a normal distribution with zero mean and unit variance, and form the

combination A⊤A. After, we rescale this matrix to have largest eigenvalue f2
max.

As in the case of unit kinetic matrix, we find the eigenvector Ψ̂|Q| to be delocalized

to good accuracy for all P ≥ N . For constant P − N as N → ∞, we numerically estab-

lished that

λmin(|QK−1/2|) ≈ 2

fmax
λmin(|Q|) (4.31)

to good approximation (in the distributional sense). For fixed N/P , we found

〈

1

λmin(|QK−1/2|)

〉

= g(N/P )

〈
1

λmin(|Q|)

〉

fmax (4.32)

for some profile g(N/P ) which decreases monotonically from 1 at N/P = 0 to 1/2 at

N/P = 1. This allows us use the results of the K ∝ 1 ensemble discussed in the previous

section. Thus, in the hard edge limit, the field range along Ψ̂|Q| satisfies

〈R0(Ψ̂|Q|)
z〉 ∼ c(z, P −N)

(
πNfmax

2ℓ(P )σQ

)z

as N → ∞ with P −N constant , (4.33)

while for soft edge asymptotics we find

〈R0(Ψ̂|Q|)〉 ∼
π g(N/P )fmax

ℓ(P )σQ(1−
√

N/P )
as N → ∞ with N/P constant . (4.34)

As in the ensemble with K ∝ 1, the mean field range along Ψ̂|Q| scales as N
3/2 in the hard

edge limit and as N1/2 for soft edge statistics, up to a logarithmic correction factor.
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4.3.4 Heavy-tailed metric

Finally we consider an example of a heavy-tailed ensemble of kinetic matrices K, i.e.,

large fluctuations of its eigenvalues are polynomially suppressed (as opposed to exponen-

tially, as in the Wishart ensemble). Specifically, we consider inverse-Wishart matrices K,

with largest eigenvalue rescaled to f2
max. (We rescale the combination (A⊤A)−1 of the

previous section.)33

Once again Ψ̂|Q| is delocalized to good approximation, and we established numerically

that the mean field range along Ψ̂|Q| qualitatively behaves as

〈R0(Ψ̂|Q|)〉 ∝
√
Nfmax

ℓ(P )σQ
as N → ∞ with P −N constant , (4.35)

and as

〈R0(Ψ̂|Q|)〉 ∝
fmax

ℓ(P )σQ
as N → ∞ with N/P constant . (4.36)

In the hard edge case, a factor of
√
N is lost compared to the unit and Wishart kinetic

matrix ensembles because the distribution of the smallest singular value of the canonical

charge matrix is qualitatively different. In particular, we found

fmax

σQ

〈

λmin(|QK−1/2|)
〉

= O(1) as N → ∞ with P −N fixed. (4.37)

An intuitive explanation of this goes as follows: in the ensemble where the kinetic matrix is

a rescaled Wishart matrix, K = A⊤A/λmax(A
⊤A), the largest eigenvalue λmax is not too

different from a typical eigenvalue; the ratio λmax/mediani(λi) is of order 1. This is because

large eigenvalues occur with exponentially small probability. So a typical eigenvalue of K

is expected to be broadly distributed on the interval [0, f2
max]. In other words,

f2
max λmin(K

−1/2Q⊤QK−1/2) ≈ λmin(Q
⊤Q) ≈ σ2

Q/N . (4.38)

In the ensemble K =
(
A⊤A

)−1
/λmax[(A

⊤A)−1], on the other hand, the largest eigenvalue

is on average much larger than a typical eigenvalue. So eigenvalues of K will be small

(≪ f2
max) with high probability. With this one can appreciate how fmax〈λmin〉/σQ = O(1)

in this ensemble.

For soft edge statistics the reason for the reduction of the expected field range down

to N1/2 is the same as in the other ensembles: 〈λmin〉 ∝ N . We summarize these results

together with the mean field range behaviour along Ψ̂|Q| in the unit and Wishart kinetic

matrix ensembles (sections 4.3.2 and 4.3.3) in figure 15.

4.3.5 Variable couplings: dynamic alignment

To investigate the dynamics we consider the field range along the lightest direction Ψ̂H

emanating from Θ = 0, as discussed in section 4.1. From H = Q⊤diag
(
Λ4
I

)
Q we observe

33With this rescaling the eigenvalues of K no longer follow a heavy-tailed distribution. However, we will

see that the field range distribution along Ψ̂|Q| is qualitatively different in this ensemble compared to the

others we have discussed, and we will argue that this is precisely due to the heavy-tailed character of the

non-rescaled eigenvalues of K.
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Figure 15. Mean field range along Ψ̂|Q| for three ensembles of kinetic matrices K. The field range

along Ψ̂|Q| is a significant lower bound on the diameter D0 as explained in section 4.3.1. Left : the

hard edge, P = N + 5. Right : soft edge, P = 2N . Top, middle and bottom (blue, green and red)

lines denote the unit kinetic matrix, Wishart and inverse Wishart ensembles with largest eigenvalue

f2
max (set to 1 here). We chose σQ = 7/N . Dashed lines show the analytic scaling.

that if the couplings Λ4
I are not all equal, this is not the same direction as the previously

considered Ψ̂|Q| (which we showed was well-aligned with the direction providing the actual

diameter D0 of the tile T0 due to kinetic alignment). However if the two directions are

sufficiently aligned the available field range within the tile along each will be similar.

Below we illustrate in two specific examples how much the couplings may deviate from

overall equality before this alignment fails and the expected field ranges along Ψ̂|Q| and

Ψ̂H become parametrically different in N . In these examples we find that Ψ̂|Q| and Ψ̂H

remain well-aligned although the couplings may differ from one another to a certain degree.

While a general analysis of the alignment between the lightest and the kinematic direction

lies beyond the scope of this work,34 the insensitivity of this alignment to the distribution

of couplings has been called dynamic alignment in a previous discussion [35].

For simplicity we consider ensembles with trivial kinetic matrix, K = f2
1, and consider

two qualitatively different hierarchies in the couplings. These are illustrated in figure 16. In

a first example, assume the couplings Λ4
I are uniformly distributed on the interval [Λ4

min, 1].

As we dial down Λ4
min from one to zero, we expect the field range along Ψ̂H to diminish

with respect to the field range along Ψ̂|Q|. In a second example, consider the case where the

couplings are log-uniformly distributed on the interval [10−10, 1]. Although the couplings

may wildly differ from one another, the expected field range along the lightest direction is

very robust.

5 Conclusions

In this paper we presented the details of a novel formalism that allows us to analyze a class

of periodic functions of many variables, focusing on those of the form 2. Our technique

34An interesting question is whether there exists a simple criterion on the distribution of the couplings

Λ4
I that assures the vectors Ψ̂|Q| and Ψ̂H are aligned. A useful definition of “aligned” would relate the

field ranges R(Ψ̂|Q|) and R(Ψ̂H) as N,P → ∞.
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Figure 16. Scaling of mean field range along the lightest direction Ψ̂H with N , R(Ψ̂H)/f ∝
Nα/ℓ(P ), for the hard edge case P = N + 5. Left : Λ4

I
are uniformly distributed over [Λ4

min,Λ
4
max].

Right : log10(Λ
4
max/Λ

4
I
) are uniformly distributed over [0, 10]. The scaling is extracted from sampling

the range 100 ≤ N ≤ 200. Observe that even when large hierarchies are present in the couplings,

the scaling behavior with N of the mean field range along the lightest direction may remain very

similar to the scaling behavior of the mean diameter.

identifies the exact periods, breaks up a unit cell of the resulting lattice into conveniently

labelled tiles, and makes it possible to identify approximate shift symmetries. This last

feature is very powerful, because (at least in the large N random ensembles we consider)

these approximate symmetries are extremely close to exact. As a result if we analyze one

region of the function, the results can be translated to exponentially many other regions

with exponential accuracy. In particular the number of critical points is exponentially

large, and the spacing of their energy levels is exponentially fine.

We employ this technology to determine the number and characteristics of critical

points of the potential 2, and to analyze the vicinity of a typical minimum. For N ∼ 100

there are generically (in our ensembles) an enormous number of distinct minima, each with

a unique vacuum energy. This number can be larger than 10120 and the distribution of

energies is smooth, so this theory provides values for the vacuum energy consistent with

observation even if the energy scales in the potential are close to the Planck scale [26, 28].

Furthermore we find that there is a range of masses for the canonically normalized fields

that is enhanced by powers of N . The lightest of these provide long gentle slopes that may

turn out to be suitable for large-field inflation if the energy scales are high (or small field

inflation if they are lower) [28]. Lastly, the characteristics of the critical points are such

that the barriers between basins of attractions of adjacent minima tend to be quite thin.

We will explore the consequences of this for tunneling transitions in [27], where we will

also discuss the natural candidate for dark matter that arises in these theories.
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A Separating flat directions in V

In this appendix we discuss how to separate flat directions in V (that is, directions in field

space with exactly zero potential) from the non-flat directions. Such directions are present

when the charge matrix Q has rank R < N . This can happen either when P < N (in

which case necessarily R ≤ P < N) or because Q is not full rank. After the separation

procedure described in this appendix, we are left with N − R massless fields decoupled

from a reduced theory of R axions with a full rank charge matrix, to which the techniques

in the bulk of our paper apply.

We start with the N -axion theory (1.1),

L =
1

2
∂θ⊤K∂θ −

P∑

I=1

Λ4
I

[

1− cos (Qθ + δ)I
]

+ . . . , (A.1)

and change coordinates to canonically normalized fields Θ =
√
Kθ, in which the charge

matrix takes the form Q = QK−1/2. Suppose the rank of Q is R < N . This happens

either when P < N , or when P ≥ N but not all columns of Q are linearly independent.

Then there are L = N − R flat directions; moving along these directions does not change

V . In other words, the null space of Q, ker(Q), is L-dimensional, which is the same as the

dimension of ker(Q). Find an orthonormal basis t1, t2, . . . , tL of ker(Q), and extend it to

a basis of RN by the adherence of R vectors tL+1, tL+2, . . . , tN (note these are generally

not integer-valued vectors). Now define new coordinates Ω via the rule

Θ = TΩΘΩ =
(
TΩLΘ | TΩRΘ

)

(

ΩL

ΩR

)

, (A.2)

where we have split the N -vector Ω into a piece of length L and a piece of length R, and the

matrices TΩLΘ and TΩRΘ are composed by placing the t1,...,L respectively the tL+1,...,N

on consecutive columns. Note that TΩΘ is an orthogonal matrix. In these coordinates the

flat directions are manifestly separated from the non-flat ones. Indeed, since

QΘ = QTΩRΘΩR ≡ QRΩR , (A.3)

only the R fields ΩR appear in the potential. Furthermore the kinetic term reads

1

2
∂Ω⊤

L∂ΩL +
1

2
∂Ω⊤

R∂ΩR , (A.4)

such that the massless fields ΩL decouple. In (A.3) QR is a full rank P × R matrix

(but it is not integer-valued, in general). For the final step, note that there exists an
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invertible R × R matrix R such that QRR is an integer-valued matrix.35 Transforming

to coordinates ΩR = RΞR, the Lagrangian in ΞR-coordinates has a kinetic matrix R⊤R

and an integer-valued, full rank charge matrix QRR. As P ≥ R, there are effectively

more non-perturbative contributions to the potential than axions. So one can apply the

techniques developed in the body of this work to the reduced system of R axions ΞR.

B Eliminating very massive axions

In this appendix we discuss how to eliminate axions that receive large masses, e.g. due to

their coupling to classical sources. At low energies these axions are effectively fixed to a

certain value. Specifically let us assume the N -axion theory (1.1),

L =
1

2
∂θ⊤K∂θ −

P∑

I=1

Λ4
I

[

1− cos (Qθ + δ)I
]

+ . . . , (B.1)

is supplemented with L < N such classical sources, where the rows of a full rank L ×
N matrix C specify which axion combinations couple to each source,36 and that these

directions are fixed according to

Cθ = δC , (B.2)

where δC is a certain L-vector. We would like to perform a (linear) coordinate transfor-

mation θ → ξ that disentangles the massive directions from the others in (B.1). In order

to retain the same discrete shift symmetries in the ξ-basis as in the θ-basis, such a trans-

formation must be unimodular. To construct it, note that the directions unaffected by the

classical sources lie in ker(C), which has dimension N−L ≡ R. The intersection ker(C)∩ZN

is thus a lattice of rank R.37 Extend a basis t1, t2, . . . , tR of this lattice to a basis for ZN

by adding L integer vectors tR+1, tR+2, . . . , tN (see appendix C for a proof that this can

always be done). The N × N matrix T ξθ = (T ξRθ | T ξLθ ) is unimodular, where T ξRθ

(T ξLθ ) is formed by placing the t1, t2, . . . , tR (tR+1, tR+2, . . . , tN ) on consecutive columns.

If we denote the first R components of the N -vector ξ by ξR and the final L = N −R by

ξL, and relate the coordinates ξ to θ by θ = T ξθ ξ, we have Cθ = C T ξLθ ξL, and thus

via (B.2)

ξL = (C T ξLθ )
−1δC . (B.3)

The Lagrangian (1.1) then effectively becomes

L =
1

2
∂ξ⊤RKR∂ξR −

P∑

I=1

Λ4
I

[

1− cos (QRξR + δR)
I
]

+ . . . , (B.4)

35This is because colsp(QR) = colsp(Q), and the projector onto a linear subspace is basis-independent. So

we know the projector onto colsp(QR) has rational entries, implying the existence of R (see also footnote 8).
36In general identical combinations may couple to more than one source, implying that C would not be

full rank, or L may be greater than N . These cases are easily dealt with.
37We assume the projector onto ker(C) contains only rational entries.
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where

KR = T ξRθ
⊤K T ξRθ , (B.5)

QR = Q T ξRθ , (B.6)

δR = δ +Q T ξLθ (C T ξLθ )
−1δC . (B.7)

The axions that couple to classical sources have been eliminated while preserving the

original form of the theory.

C Extending a sublattice basis

In this appendix we prove that any basis for the rank N sublattice defined by the intersec-

tion of an N -dimensional linear subspace Σ with the integer lattice ZP can be extended to a

basis for the full integer lattice. In particular, one can always supplement the N P -vectors

t
‖
i with P −N additional vectors t

∦
a to form a basis for ZP (cf. section 2).

Before giving the proof, it is perhaps worth giving an example of a sublattice that

cannot be extended this way. First, recall that since we are discussing lattices, one should

consider only linear combinations of the basis vectors with integer coefficients. Now con-

sider the rank one sublattice of Z2 that is the even integers along the x-axis; that is, the

sublattice generated by the vector (2, 0). It is clear that this cannot be extended to a basis

for Z2 by the addition of any vector. However, note that this sublattice is not the intersec-

tion of any linear subspace with Z2 — the intersection of the x-axis with Z2 is generated

by the vector (1, 0).

The proof is as follows:38 every rank P lattice L can be thought of as a finitely

generated free Abelian group (under addition of the lattice vectors). Any rank N ≤ P

sublattice L′ of L is then a subgroup. The structure theorem for finitely generated Abelian

groups implies that there always exists a special basis B ≡ {b1, . . . , bP } for L with the

property that {a1b1, . . . , aNbN} is a basis for L
′, where {a1, . . . aN} are a set of integers

with the property that each divides the next. However if L′ is the intersection of a linear

subspace Σ with the lattice L, then aibi ∈ L
′ implies bi ∈ L

′. Therefore {b1, . . . , bN}
must in fact be a basis for L′ (because it generates {a1b1, . . . , aNbN}). But this basis can
trivially be extended to the basis B for L by appending {bN+1, . . . , bP }.

To see that any basis for L′ can be extended to a basis for L, note that any basis for L′

is related to any other basis (for instance, {b1, . . . , bN}) by some N×N unimodular matrix.

But any such N × N unimodular matrix can obviously be extended to a block-diagonal

P × P unimodular matrix. Acting with this matrix on B gives the extended basis.

D An explicit example

In this appendix we illustrate the construction of the aligned lattice basis and the reduction

of the relative phases in an explicit example with P = N+1 = 3. In particular, we consider

38MK would like to thank Arman Mimar for explaining this to him.
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a theory with charges and phases

Q =






1 1

2 −3

−3 0




 , δ =






2.04

6.20

4.16




 , (D.1)

and take the non-perturbative scales Λ4
I to be identical for simplicity. The potential is

therefore

V (θ)=Λ4
[
3−cos

(
θ1+θ2+2.04

)
−cos

(
2θ1−3θ2+6.20

)
−cos

(
−3θ1+4.16

)]
. (D.2)

The auxiliary coordinates φ are constrained by the condition P⊥φ = δ to reproduce (D.2)

on-shell, where the orthogonal projector onto the orthogonal complement of the constraint

surface Σ is given by

P⊥ = 1 −Q(Q⊤Q)−1Q⊤ =
1

115






81 27 45

27 9 15

45 15 25




 . (D.3)

As expected, the rank of the orthogonal projector is P − N = 1 in this example.

Employing the LLL lattice reduction algorithm [53, 55], we find the aligned basis vectors,

T ωφ =






−1 −1 1

3 −2 −1

0 3 −1




 , T ω‖φ =






−1 −1

3 −2

0 3




 , T ω∦φ =






1

−1

−1




 . (D.4)

It is easy to verify that the first two basis vectors, T ω‖φ are parallel to Σ, while the last

basis vector T ω∦φ has a very small projection onto the orthogonal complement of Σ,

P⊥ T ω∦φ =
1

115






9

3

5




 . (D.5)

Note that the length of the shortest lattice vector of the lattice generated by P⊥ agrees

with 1/
√

det(Q⊤Q) = 1/
√
115, as expected. The inverse transformation is given by

T φω =






5 2 3

3 1 2

9 3 5




 , T φω‖

=

(

5 2 3

3 1 2

)

, T φω∦
=
(

9 3 5
)

. (D.6)

We now can express the potential in terms of the aligned coordinates ω‖ = T φω‖
φ,

V (ω‖) = Λ4
[

3− cos
(

2.04− ω1
‖ − ω2

‖

)

− cos
(

3ω1
‖ − 2ω2

‖ + 6.20
)

− cos
(

−3ω2
‖ + 4.16

)]

.

(D.7)

Finally, we note that considering the shift φ → φ+2π T ω∦φ nδ the constraint equation can

be rewritten as

P⊥(φ+ 2π T ω∦φ nδ − P⊥δ) = 0 , (D.8)
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which allows to reduce the phase via (2.35),

nδ =

[
1

2π
T φω∦

P⊥δ

]

n.i.

= 21 , (D.9)

which gives the potential

V (ω‖) = Λ4
[

3− cos
(

−ω1
‖ − ω2

‖ − 0.09
)

− cos
(

3ω1
‖ − 2ω2

‖ − 0.03
)

− cos
(

−3ω2
‖ − 0.05

)]

.

(D.10)

As expected, the phases are significantly reduced by employing the approximate shift sym-

metry.

E Derivation of (3.12)

In this appendix we derive (3.12), starting from (3.6). For the case of equal ΛI , one has

∆⊥ = P⊥ = R⊤
(
RR⊤

)−1
R. Using (3.6), it is easy to see that energies at the minima

can be written

V (φnω
) ≈ 2π2Λ4

[

T ω∦φ
⊤P⊥ T ω∦φ

]

n2
ω ≈ 2π2Λ4

(
c nω√

detQ⊤Q

)2

, ∀|m| < Nvac , (E.1)

where the positive integer c is

c ≡
√

det

[(

P⊥ T ω∦φ

)⊤ (

P⊥ T ω∦φ

)]

detQ⊤Q =

√

detQ⊤Q

det T ω‖φ
⊤ T ω‖φ

. (E.2)

To derive (E.2) we first used that T ω∦φ
⊤P⊥ T ω∦φ = T ω∦φ

⊤
(
P⊥
)2

T ω∦φ =
(

P⊥ T ω∦φ

)⊤ (

P⊥ T ω∦φ

)

is a number, because P − N = 1, and thus equal to the deter-

minant of the matrices that form it. Then we use the identity

det

[(

P⊥ T ω∦φ

)⊤ (

P⊥ T ω∦φ

)]

=
(

det T ω‖φ
⊤ T ω‖φ

)−1
. (E.3)

To see this note that

det T ωφ = 1

= det
(

T ω‖φ T ω∦φ

)

= det
(

T ω‖φ P⊥ T ω∦φ

)

≡ detT ′
ωφ , (E.4)

where we used the invariance of the determinant under adding linear combinations of

some columns to other columns. Then, by computing det
(
T ′

ωφ

)⊤
T ′

ωφ and using that the

columns of T ω‖φ and P⊥ T ω∦φ are orthogonal, one obtains (E.3).
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F Derivation of (4.12)

To derive the bounds (4.12) on the diameter of the tile containing the origin, note first the

general inequality for P -vectors v: ‖v‖2/
√
P ≤ ‖v‖∞ ≤ ‖v‖2, or

1

‖v‖2
≤ 1

‖v‖∞
≤

√
P

‖v‖2
. (F.1)

The field range inside T0 along any specific direction is a lower bound for (half of) the

diameter (cf. (4.11)). This holds in particular for the field range along the eigenvector

Ψ̂|Q| corresponding to the smallest eigenvalue of |Q| ≡
√

Q⊤Q. Combining this with the

left-most inequality in (F.1) we have therefore

D0 ≥ 2π

‖QΨ̂|Q|‖∞
≥ 2π

‖QΨ̂|Q|‖2
=

2π

λmin(|Q|) .
39 (F.2)

On the other hand, each P -vector QΘ̂ is subject to the right-most inequality in (F.1).

Therefore the same inequality holds between the maxima of both sides over all Θ̂ ∈ SN−1.

Using this relation in the expression (4.11) for the diameter, we arrive at

D0 ≤ max

{

2π
√
P

‖QΘ̂‖2

∣
∣
∣ Θ̂ ∈ SN−1

}

=
2π

√
P

λmin(|Q|) , (F.3)

where we used λmin(|Q|) = ‖QΨ̂|Q|‖2 ≤ ‖QΘ̂‖2 for all Θ̂ ∈ SN−1.

G Axion potentials and Gaussian random fields

In the body of this work we developed tools that allow for a systematic approach to general

(multi-)axion theories. This analytic approach is most powerful for well-aligned axion

theories. Unfortunately, when the number P of non-trivial non-perturbative terms becomes

very large, alignment typically fails and all approximate shift symmetries are broken. We

now turn to a complimentary description of the axion potential, in terms of a Gaussian

random field, that is valid precisely when the theory ceases to be well-aligned, and again

allows for a simple statistical description of the theory. In particular, we find that at large

P ≫ N the potential statistics are typically well approximated by an isotropic Gaussian

random field with Gaussian covariance function, henceforth referred to by the shorthand

Gaussian field. The statistical properties and the distribution of minima in Gaussian fields

is very well understood, and efficient numerical algorithms exist to numerically sample such

fields [80]. Therefore, by providing an effective description of the axion potential in terms

of Gaussian fields a host of tools become available to study axion theories.

G.1 Gaussian fields

Before discussing the connection to axion potentials, let us review some of the basic prop-

erties of a stationary, isotropic Gaussian field VG(χ) in N dimensions χi. We will assume

39It is not hard to see that this lower bound can never be saturated.
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a Gaussian covariance function for simplicity, although more general results exist. The

ensemble is specified fully by the mean and the two-point function,

〈VG(χ)〉 = V̄G , (G.1)

〈(VG(χ)− V̄G)(VG(χ
′)− V̄G)〉 = Λ8

G e−‖χ−χ′‖22/2∆
2
G , (G.2)

where the typical length scale over which the potential varies significantly is called ∆G and

the overall scale is set by ΛG . V̄G denotes the mean of the random function. In order to

understand the distribution of minima in the potential defined above, we will be interested

in the correlations between the potential, its gradient and the Hessian matrix Hij = ∂i∂jVG .

The correlations of the Hessian are give by [80] (see also [84])

〈Hab(χ)Hcd(χ)〉 = (δabδcd + δadδbc + δacδbd)
Λ8
G

∆4
G

. (G.3)

Let us consider the ensemble of points at which the random function takes on a particular

value, V , and denote the corresponding ensemble average as 〈. . . 〉V . The only non-vanishing

correlations between the field and its derivatives are given by

〈Hab(χ)〉V = −V − V̄G

∆2
G

δab , (G.4)

〈Hab(χ)Hcd(χ)〉V =

(

(V − V̄G)
2

Λ8
G

δabδcd + δadδbc + δacδbd

)

Λ8
G

∆4
G

. (G.5)

Note that crucially the gradient is uncorrelated with the potential and the Hessian. These

correlations can be cast into a simple random matrix model,

H = M − V − V̄G

∆2
G

1 , (G.6)

where the matrix M is a real, symmetric random matrix in the Gaussian orthogonal en-

semble (GOE), i.e. it can be written as

M =
1√
2
(A+A⊤) , Aij ∼ N (0, σM ) , (G.7)

where σM = Λ4
G/∆

2
G . In the large N -limit the eigenvalue spectrum of GOE matrices is

given by the famous Wigner semicircle,

ρ(Λ) =
1

2πNσ2
M

√

4Nσ2
M − λ2 . (G.8)

By considering the case where the smallest eigenvalue is no longer negative, λmin > 0, we

can therefore easily solve for the mean value of stable minima in the large N -limit. We find

〈V 〉minima ≈ V̄G − 2
√
NΛ4

G . (G.9)

The probability distribution function of energies at minima with barely positive definite

Hessian matrix is simply obtained by considering the smallest eigenvalue of the Hessian

in (G.6) and solving for V : it is approximated by the convolution of the Tracy-Widom

distribution with a normal distribution.
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G.2 Axion theories at large P

In the previous section we reviewed the statistical properties of Gaussian random fields

with Gaussian covariance function. We are now in a position to consider the statistics

of the axion potential in the large N and P ≫ N limit, and compare those results to a

Gaussian random field.

The non-perturbative potential for the axions with unbroken discrete shift symmetry

is given in (2.1),

V =
P∑

I=1

Λ4
I

[

1− cos (Qθ)I
]

, (G.10)

where as above Q is a P ×N integer charge matrix. In the following we will assume that

the couplings Λ4
I are of similar magnitude and independent of the charges QI . In the large

P -limit the potential approaches a Gaussian random field. However, the potential (G.10)

clearly is not isotropic (it is periodic under vi‖ → vi‖ + 2π only for some directions v‖),

nor does it have a Gaussian covariance function. Curiously, however, when sampling over

random one-dimensional slices through the N -dimensional potential, the mean power spec-

trum is very well approximated by a Gaussian. It is therefore not very surprising that there

are some similarities between the distribution of minima in Gaussian random landscapes

and random axion landscapes, as we make precise below.

When sampling over ensembles of potentials defined by random Q, containing i.i.d.

random integers distributed uniformly in the interval [−s, s] and random phases, the mean

V̄np and variance Λ8
np of the potential V respectively are given by

V̄np ≡ 〈V (θ)〉 =
P∑

I=1

Λ4
I ,

Λ8
np ≡ 〈[V (θ)− 〈V (θ)〉]2〉 = 1

2

P∑

I=1

Λ8
I . (G.11)

Just as in the case of a Gaussian field, the gradient is not correlated with the potential,

or the Hessian. The correlations of the Hessian Hab ≡ ∂a∂bV (θ) of the non-perturbative

potential are given by

〈Hab(θ)Hcd(θ)〉 =
(

δabδcd + δadδbc + δacδbd −
6

5
δacδbcδcd

)
Λ8
np

∆4
np

, (G.12)

where we defined an effective correlation length of the axion potential,

∆np =

√
3

s
. (G.13)

The correlations (G.12) are very similar to the Hessian correlations of a Gaussian fields

in (G.3), and only deviate for the diagonal elements of the Hessian. Furthermore, we have

for the correlation between the Hessian and the potential

〈Hab(θ)〉V = −V − V̄np

∆2
np

δab . (G.14)
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Figure 17. Normalized eigenvalue spectrum of Hessian of potential along with random matrix

model for N = 20, P = 2000.

We can therefore propose an approximate random matrix model for the Hessian, that

reproduces the correct correlations, except for the variance of the diagonal terms,

H ≈ M − V − V̄np

∆2
np

1 , (G.15)

where M is a GOE matrix with standard deviation σM = Λ4
np/∆

2
np. We display the

eigenvalue spectrum of the full Hessian matrix along with this simple random matrix model

in the left part of figure 17. Using the main result of [85], this implies that in the large

N -limit we expect most minima at

〈V 〉minima ≈ V − 2
√
NΛ4

np

(

1− 0.6

N2/3

)

= V̄np −
√
2N〈Λ4

I〉r.m.s

(

1− 0.6

N2/3

)

, (G.16)

so that the leading term behaves just like in the case of Gaussian fields. It is extremely

hard to accurately sample the distribution of minima of the axion potential at large P .

However, we can obtain a (not necessarily representative) sample of minima by numerically

solving for local minima. We find a good agreement between the numerical results and the

random matrix theory expectation.
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