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1. Introduction 

It is now over a decade since ‘t Hooft first proposed that we might learn much 

about the strong interactions by studying a world in which the underlying gauge 

group is SU(N) with N very large. This world is populated with an infinity of 

meson states in each Jpc channel; these mesons are stable and noninteracting 

in the N + 00 limit, with decay widths and 2-body scattering amplitudes which 

vanish as N-’ and Ns2, respectively. When N is large but finite, meson inter- 

actions are governed by the exchange, not of quarks and gluons, but of single 

mesons and glueballs, so that meson processes can be described by the tree-level 

diagrams of an “effective Lagrangian” of the sort that was extensively studied in 

the 196O’sl” . For the special case of the pseudoscalar mesons, chiral symmetry 

constrains the form of this Lagrangian to: 

L: = 2 Tr (a,UPU+) + .a*, (14 

where U takes values on the group SU(n,) with nf the number of light flavors. 

In this paper we shall specialize to the case nf = 2. The parameter N enters 

in (1.1) through the pion decay constant fK, which is proportional to Ni in the 

large-N limit. 

Recent years have seen mounting evidence that the baryons of the large-N 

world may be thought of as solitons of some effective meson Lagrangian Ps31 . 

At a first level, solitons typically have masses that diverge like the inverse of 

the coupling constant; likewise baryons, which are composed of N quarks, have 

m-N = l/N-? In contrast, the size and shape of a soliton have smooth, 

nontrivial limits for vanishing coupling constant; this is the case for baryons as 

2 



well when N + 00. Most strikingly, as first noticed by Skyrme141 , systems 

such as (1.1) based on a dynamical variable U(z) E SU(nf) do indeed possess 

topologically stable solitons whose additive topological charge may be identified 

with baryon number (analogous statements hold for the effective meson theories 

which follow from other underlying gauge groups). It was shown long ago that 

these solitons can be quantized as fermions I51 . In fact, when nf 2 3 and the 

effect of QCD anomalies is properly taken into account in (l.l), one can prove 

a stronger statement: The soliton must be treated as a fermion when N is odd 

and as a boson when N is even, just as one would expect from the quark model. 

These points and others are discussed in detail in Refs. 2 and 3. 

In this paper we shall examine some implications of this “chiral soliton” 

ansatz for the real world. At leading order in l/N, this ansatz implies a set 

of energy-independent linear relations between pion-nucleon scattering ampli- 

tudes in various channels of isospin and angular momentum, as recently noted 

by Hayashi et al. [61 ’ m their analysis of rrN scattering in the Skyrme model. These 

relations can be used, for example, to express the isospin-g AN elastic scatter- 

ing amplitudes as linear combinations of the isospin-) amplitudes in the same 

partial wave; this comparison as applied to the experimental scattering data is 

depicted in the graphs of Fig. 2. Similar relations will be shown to hold for 

the process AN + aA. We shall find that in Nature these relations seem to be 

satisfied fairly well for most partial waves. Furthermore we shall argue that the 

handful of channels for which the relations are grossly disobeyed are precisely the 

ones most sensitive to higher-order corrections, which we have not attempted to 

calculate. 

3 



In addition, we shall find that the soliton interpretation of baryons provides 

a coherent framework for understanding some general features of the zN --) 

RN partial wave amplitudes. In particular it offers a simple explanation for 

a surprisingly consistent pattern that emerges for when the four independent 

amplitudes in a given partial wave L are compared: namely, the amplitudes 

corresponding to (I, J) = (f,L - f) or ($,L + i) are characterized by much 

bigger excursions through the unitarity circle than those with (I, J) = ($, L + f) 

or (g,L - i). (H ere I and J denote the total isospin and angular momentum 

of the pion-nucleon system.) Furthermore, the chiral soliton picture gives an 

intuitive understanding for why the S-, P- and D-waves are characterized both by 

enormous, low-lying resonances in some channels and marked repulsive behavior 

near threshold in others. 

We begin our exposition in Section 2 with a general discussion of zN scat- 

tering in the large-N limit. Here we set out our approximations and justify them 

as appropriate to a systematic analysis to leading order in l/N. In Section 3, 

we employ these approximations to derive the general structure of the spin- and 

isospin-dependence of rrrN amplitudes implied by the l/N expansion. Our results 

agree with those obtained in Ref. 6 by somewhat different means; the length- 

ier derivation given here has the advantage of highlighting the various points at 

which we invoke the large-N approximation, which we hope will help pave the 

way for a higher-order calculation. We recover the linear relations of Ref. 6 

for elastic scattering and present new relations among partial wave amplitudes 

for the process ?rN + ?rA. We then apply these relations to the experimentally 

determined partial wave amplitudes, considering TN + rrrN and zN + ?rA in 

Sections 4 and 5, respectively. The casual reader is encouraged to skip directly 
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to the linear relations (Eqs. (3.22)-(3.25)) and their discussion, and to peruse 

the justaposed graphs of Fig. 2. 

The group-theoretic results of Section III are put to different use in Ref. 7 

to obtain the elastic zN partial-wave amplitudes and, correspondingly, the full 

spectrum of nucleon and delta resonances in the specific context of the Skyrme 

’ model14’ . The results of that paper are on the whole in surprisingly good agree- 

ment with experiment for total energies up to 3 GeV. For the case of the F-waves, 

this agreement was already noted in Ref. 6. 

. 

2. Assumptions, Approximations, and Apologies 

Most of the approximations we will make relate in one way or another to 

the large-N expansion. Our major approximation will be that of deriving the 

zN + ?rN and rrrN -+ zA amplitudes from the lowest-order pion propagator in 

the (appropriately rotated) soliton background, ignoring all loop contributions to 

the two-point function. Loop diagrams necessarily contain 3-meson, 4-meson or 

higher-order vertices which are damped by increasingly higher powers of f;’ N 

N-3. Consequently, all loop contributions to the propagator are suppressed by 

at least one power of N and can therefore be disregarded in our lowest-order 

treatment. 

The fact that the bare pion propagator has enough structure to lead to non- 

trivial scattering is noteworthy and deserves some comment. On the one hand, 

this should be expected from the soliton picture, since meson-soliton scattering 

normally appears at zeroth order in a weak-coupling expansion. On the other 

hand, this fact implies that, in large-N, baryon resonances are not at all the 
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counterparts of excited mesons. As we have already noted, the widths of all ex- 

cited mesons vanish like NW1 as N --+ 00. Among the baryons found in Nature, 

however, only the nucleon and delta (and perhaps a handful of others: see Section 

4) appear as sharply defined states in this limit. Higher-mass baryons cannot be 

identified with narrow states; they appear only as resonances above threshold in 

the various channels of pion-nucleon scattering. The widths of these baryons are 

determined by the motion of the AN phase shifts in the relevant partial waves; 

since the equations for rrN scattering have a definite, finite large-N limit, both 

the widths and the excitation energies of these resonances will be of order No. 

This picture contrasts sharply with the quark model description of baryon reso- 

nances. One may think of the quark model as representing the leading term in 

a nonrelativistic approximation to the baryon and meson states. In this limit, 

unlike that of large N, the baryon resonances appear as eigenstates of a Hamilto- 

nian and hence are stable to lowest order. The first nonzero contribution to their 

widths arises from the corrections to this approximation involving the creation 

of extra quark-antiquark pairs. 

The major limitation of our lowest-order large-N analysis is that it is appro- 

priate only to elastic or quasielastic nN scattering. Multiple production of pions 

is formally suppressed by powers of l/N; nevertheless, in Nature it becomes the 

dominant feature of zN scattering at high energies. Our analysis, on the other 

hand, allows a pion to scatter inelastically from a nucleon only by producing a 

rotationally excited state of the soliton. This may be a delta, with I = J = i, 

or a specific higher excitation, peculiar to chiral soliton models, with I = J = %, 

as discussed further in Section 3. 

Our second approximation will consist of ignoring the rotation of the soliton 
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during the scattering process. As we shall review below, nucleons and deltas cor- 

respond in the chiral soliton models to rotating solitons PI of angular momentum 

J2 = i(i + l), with i = i and i = g, respectively. The nucleon-delta mass- 

difference is then simply due to to the rotational kinetic energy term J2/21, 

where I denotes the moment of inertia of the soliton. Since I - N this mass 

splitting is a l/N effect. The rotational frequency of the soliton is then given by 

w = J/I, which likewise vanishes like l/N for large N, thereby justifying our 

approximation in this limit. 

This argument might not appear particularly compelling when applied to the 

real world, where N = 3. However one can reverse the above relations and solve 

for w in terms of mN and mA; the result is w = ?jJ(rnA - mN). The ratio of 

the time it takes a pion of velocity u to cross the charge radius R of a nucleon to 

the period of rotation of the nucleon viewed as a soliton is then (u/c)-‘(wR/27r) 

k! &(u/c)-1, while the corresponding ratio in the case of the delta is roughly 

k(u/c)-l. Thus our approximation appears to be a reasonable one for TN + TN 

except near threshold, whereas for AN + XA it is somewhat more severe. 

Finally, we will ignore both the deformation and the recoil of the soliton. 

This, too, is formally justified for large N, since in this limit the baryon is much 

more massive than the pion. But in Nature this would seem to be a drastic 

assumption if one wants to go up to typical resonance energies, say 1700 MeV. 

Curiously, the linear relations among XN + AN scattering amplitudes work 

better and better for higher energies for a reason that has nothing to do with 

the validity of the large N limit; we will discuss this point in Section 4. But it 

is remarkable that in the Skyrme-model calculation of Ref. 7, in which the same 

approximations are invoked, locations of resonances of very high mass (up to 3 
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GeV) are, if anything, obtained more accurately than for the lighter ones. 

For ?rN -+ AA this last approximation is even harder to justify. In that case, 

the linear relations derived in Section 3 are only valid on an unphysical line in 

momentum space for which, not only are the initial and final baryons both at 

rest, but in addition the momenta of the incoming and outgoing pions are equal. 

When the final baryon is a nucleon we can get arbitrarily close to this line by 

considering pions sufficiently near threshold, but this is obviously not the case 

when the Enal baryon is a delta. 

3. Derivation of Linear Relations 

We begin our analysis of pion-nucleon scattering from the assumption that 

the solitons associated with the Lagrangian (1.1) have the “hedgehog” form14’31 : 

(34 

If F(t) tends to 0 as r -+ 00 and to 7~ as t + 0, this defines a configuration 

with topological charge (which we identify with baryon number) equal to unity. 

This configuration is maximally symmetric in the sense that, although it is not 

invariant with respect to isospin or spatial rotations separately, it is invariant 

under a combination of space and isospace rotations. 

We shall use the symbols zand s’to denote the isospin and angular momentum 

of the baryon alone, and reserve I’and J’for the pion-baryon system, i.e.,i’= 

7 + &ion) and f = s’+ &ion). In this notation, the soliton is transformed 

both by 7 and by s’, but is preserved by l+ s’. We shall see the significance 

of this peculiar symmetry in a little while, when we consider the expansion of 
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Z about the chiral soliton and identify the fluctuations with pions; the result 

is that the pion wavefunctions decompose into eigenstates of the operator rl! E 

f&on) + &on). For the moment, however, let us return to the question of 

identifying the soliton with a physical baryon. 

As it stands, UO is not a suitable candidate for a nucleon or delta; this is 

because physical baryons are characterized by definite values of zand s’ indiuidu- 

ally. In order to establish our notation we shall take this opportunity to review, 

in first-quantized language, the construction of nucleons and deltas that was pre- 

sented in second-quantized form in Ref. 8. This construction begins with the 

realization that (3.1) picks out only one of an infinite class of possible orienta- 

tions between spin and isospin axes; equally acceptable soliton solutions of (1.1) 

are furnished by 

where A is any (constant) SU(2) group element with spin-h and spin-l represen- 

tations AC;) and Acl). The natural action of isospin and angular momentum on 

this rotated soliton is given by: 

It is fruitful at this point to think of A as a quantum-mechanical variable that 

takes values on the group manifold SU(2). A suitable candidate for a physical 

, baryon is then a coherent superposition 

/ 
dA x(A) IA) - (3.4 

Here dA represents the group-invariant measure, normalized so that s dA = 27r’; 

_ .: 
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IA) is the state containing a soliton in the orientation UA; and the wavefunction 

x(A) is chosen appropriately to make this expression an eigenstate of both land 

6’. Because U. is invariant under z+ s’, (3.4) will always have i = 8. One may 

think of this expression as describing a rotating soliton. 

The construction of the wavefunctions x(A) corresponding to definite states 

of (i, iz) and (s, sZ) is a straightforward exercise 1” . For nucleons (with i = s = i) 

one finds 

while a general rotational eigenstate, with i = 8 = R, has as its properly normal- 

ized wavefunctionnl : 

(34 

Note that these wavefunctions are really only appropriate for baryons at rest; 

however, as we have discussed in Section 2, we will in any event neglect the 

baryon’s recoil in the scattering process. 

Let us turn next to the question of how to represent pion field fluctuations 

about the classical soliton. It is easiest to begin by considering the soliton in 

its canonical orientation (3.1). One can then allow pion fluctuations about the 

soliton by letting F(r)? -+ F(r)i+ *9(5&t) in the exponent. Expanding (1.1) in 

fll Of course, for each R, we have the freedom to redefine the wavefunctiona xiR,,, by a common 
phase; our choice agreee with Ref. 8 for the nucleons but differs by a sign for the deltas, 
in order to conform in this case to Ref. 9. A different phase convention modifies the linear 
relation (3.25) below. 
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powers of the pion field yields an action 

S = -m. + 
/ 

dzri*(z)GjTi(Z) + O(T3/fir), P-7) 

where m, is the mass of the soliton and i and j are isospin indices that we shall 

think of as running over (1,2,3) or (+, 0, -) as convenient (the latter basis re- 

quiring complex conjugation in (3.7), as well as in the associated Green’s function 

(3.10) below). 2 is accordingly a 3 x 3 matrix of differential operators formed 

from various products of &, a:, Ti and &j. That is, 

with the Gk(r) being, in general, horrible, model-dependent functions of the 

soliton profile F(r) and its derivatives lt2 . We note that, with no loss of generality, 

z can be chosen uniquely to be self-adjoint. As discussed in Section 2, we shall 

henceforth neglect all 0 (z3/fr) t erms in keeping with our lowest-order approach. 

We can now imagine constructing the pion propagator (~‘(Z’,t’)zj(Z,t))~ in 

the soliton background by the following procedure: The pion field is expanded 

in terms of a complete set of appropriately normalized eigenfunctions $f(Z,t) 

satisfying 

The propagator is then given, somewhat schematically, by 

(3.9) 

(3.10) 

Note that by time-reversal invariance 2, hence also $A, is purely real when con- 

g2 The symbol rijk is forbidden by parity; likewise derivatives of odd order in time are disal- 

lowed by time-reversal invariance. 
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sidered in the (1,2,3) basis. The ‘nought’ on the propagator will serve to remind 

us that (3.10) represents pion-scattering from a tied soliton in its standard ori- 

entation (3.1). 

It is obvious how to generalize this formula to the case of a rotated soliton 

27~ as defined in (3.2). Pion fluctuations are naturally incorporated by letting 

F(r)+)* + F(r)+)* + Eff(Z,t) as before. This results in z + A~l$A~,~-‘, 

$~f + Atl)jk$i, and thus 

(3.11) 

We should point out that this step assumes the rotation A to be time-independent; 

thus, it is valid only in the limit in which the soliton does not rotate significantly 

during the scattering process. This approximation was justified in Section 2 as 

arising from the l/N expansion. 

It is now a simple matter to express in this framework the Green’s functions 

for the “real-world” processes TN + AN and IAN -+ 7rA. If we represent the 

initial and final baryons by the wavefunctions x&,(A) and &(A), respectively, 

then the Green’s functions are given by 

(7&j) = / dA $b’:(A) A(l)irn (nm~“)o Ac\njXE, (A) 

= 592R + 1)(2R’ + 1) c (7rm7rn)o 
mn 

(3.12) 

where we have substituted the explicit expressions for the baryon wavefunctions 

given in (3.6). 
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It turns out that the A-integration in Eq. (3.12) can be carried out explic- 

itly. The most compact expression for the Green’s function is then obtained by 

projecting the initial and final pion-baryon states onto states of definite total 

isospin and angular momentum llIz J Jz). (f and J’ are of course conserved in 

the scattering process.) Furthermore we restrict the incoming and outgoing pions 

to partial waves L and L’, respectively, while the initial and final baryons are 

characterized by spin (and isospin) R and R’ as before. These steps are carried 

out in detail in Appendix A. The appropriately projected pion Green’s functions, 

which we label GLL,RR,ff (rt; r’t’), are then given by an expression of the form: 

G LL’RR’ff = c PLL’RR’IJK * gKL’L(rt; r’t’) (3.13) 
K 

The meanings of the terms on the right-hand side of this expression are 

as follows: gKL#L(rt; r’t’) is the “reduced” radial Green’s function describing 

elastic pion-scattering from the “elementary” soliton (3.1), where the incoming 

and outgoing pions are restricted to partial waves L and L’, respectively; this 

restriction leaves a purely radial scattering problem. The index K denotes the 

conserved quantum number of this “elementary” process, which is the vectorial 

sum 2 = &ion) +&ion). Note that, by the triangle inequality, K is restricted 

to the values max(lL - 11, IL’ - 11) 5 K 5 min(L + 1,L’ + 1). Finally, the P- 

symbols are group-theoretic coefficients calculated in Appendix A: 

PLL~RR~IJK = (-1)P-Rd(2R + 1)(2R’ + 1)(2K + 1) 
{El} {E}- 

(3.14) 

The appearance of Gj-symbols in this expression is quite natural, since, as 

indicated in Fig. 1, the problem in both the entering and the exiting rrN channels 
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is characterized by six intertwined angular momenta. Explicit formulas for the 

P-symbols relevant to wN + ?rN and IAN + rrrA are presented in Appendix B. 

Note that all the model dependence arising from the details of the Lagrangian 

(1.1) is subsumed in the quantities gKL’L; the P-symbols, in contrast, depend 

only on the hedgehog nature of the chiral soliton. 

Since 6j-symbols embody various triangle inequalities, the same is true for 

the P-symbols. Specifically, the seven triads (RlI), (R’lI), (RLJ), (R’L’J), 

(LlK), (L’lK) and (IJK) must each satisfy the triangle inequality in order for 

the P-symbol not to vanish (cf. Fig. 1). Of these triads, the first four merely 

express the obvious bounds on the total isospin and angular momentum formed 

from a baryon of spin and isospin R (or R’) and a pion with orbital angular 

momentum L (or L’). 

As for (LlK) and (L’lK), these reflect the existence of the conserved vector 

I? in processes in which a pion scatters off an elementary soliton. Indeed Eq. 

(3.13) can best be regarded as an expansion of the physical processes rrN --) TN 

or ?rN -+ 7rA in terms of these elementary channels, each labeled by its own 

value of K. The emergence of this new quantum number as a quantity of physical 

import is of course peculiar to models that admit solitons of the form given in 

Eq. (3.1). 

The final triad (IJK) is something of a surprise. (In fact it is the only one 

of the seven triangle inequalities not already manifest in the Clebsch-Gordon 

coefficients of Eq. (A.9), which is the penultimate formula in the derivation of 

(3.14).) In practice, it frequently serves to eliminate one of the (typically three) 

elementary channels associated with fixed K which would normally be expected 

to contribute to a given (I, J, L) channel of physical pion-baryon scattering. 
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Despite these restrictions it turns out that Eq. (3.14) does not prohibit any 

XN or ~FA processes otherwise allowed by parity, isospin, and angular momentum. 

For example, (LlK) and (L'lK) taken together forbid jumps in pion angular 

momentum greater than two; but AL 2 3 is in any event excluded by parity 

and/or angular momentum conservation. (Such would not be the case in a world 

where the color group were SU( N) with N > 3. Suppose, for example, that 

N were seven. One would then expect to find well-defined baryons B; with 

. 
t=S = 7/2; consequently jumps of four units of pion angular momentum in such 

processes as ?rN + aB;, although disallowed by (3.13), would nevertheless be 

consistent with angular momentum conservation.) 

The relation (3.13) for Green’s functions can be immediately converted to a 

relation for S-matrix elements by moving onto the pion mass-shell and extracting 

the pole term on each side of this equation. Modulo the extrapolation from an 

unphysical region in momentum-space as discussed in Sec. II, these manipulations 

do not change the form of the relation, and we have: 

SLL,RR,IS- E+ R’f~L’lRf.fL )-=C PLL’RR’IJK ’ BKL’L. (3.15) 
K 

We will refer to the BKLlL as the reduced S-matrix. Notice that a resonance in 

some elementary channel (K LL’) manifests itself in nN scattering as a family 

of resonances coupling to that value of K. It is thus appropriate in the chiral 

soliton picture to classify resonances according to K 
[lo-131 

. This scheme replaces 

the conventional SU(6) 1 c ossification of baryon resonances. We should recall, 

though, that these resonances should not be considered narrow, so that one may 

not ignore background contributions from other values of K coupling to the same 

physical partial wave amplitude. 
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As a check on (3.15) let us verify the unitarity condition 

+ (fli>- = C + (flto)” O ($li)-, (3.16) 
3 

where 1,)” runs over a complete set of states at an intermediate time. Accordingly 

we rewrite the reduced S-matrix as 

8KL’L = &IL E+ (KL’IKL)- 

and insert 

c /R” fiL”)O ’ (R” f.iL” 1 
R”L” 

(3.17) 

(3.18) 

into (3.15). Taking advantage of the fact that 

c PLL”RR”IJK’PL”L’R”R’IJK = 6KK’PLL’RR’IJK (3.19) 
R” 

(which holds so long as the triad (L”lK) satisfies the triangle inequality), we 

obtain the constraint 

c PLLIRR~IJK * (S&L - c szL,L~sgLuL) = 0, (3.20) 
K L” 

where we have set + (KL’~KL”)” = s~;O~,~,,, etc. From this we can draw the 

reassuring conclusion that if the reduced S-matrix obeys (3.16) (as surely it 

must), then the physical amplitudes are guaranteed to do so as well. 

Note, however, that it is generally necessary,to include the “exotic” baryons 

with R” > 3/2 called for by the model among the states of the complete set 
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(3.18). This should not be surprising; the chiral soliton model contains a state of 

spin and isospin $ as the second rotational excitation of the nucleon, and there 

is no selection rule forbidding the production of this baryon in isospin-e AN 

scattering, via the process AN -+ TB;. By analogy with the rigid rotor, the mass 

of this baryon would satisfy (mg - mN)/(mA - mN) = 3, or mg N 1720 MeV. 

Of course, in Nature there is no such state narrow enough to be distinguished. 

It is nevertheless conceivable that a very broad i = s = g resonance exists. 

Presumably it would decay mostly into Air and would therefore show up obliquely 

in Nature as an enhancement of the Am (or Ap) final state in pion-nucleon 

scattering. 

The obvious benefit of Eq. (3.15) is that it decomposes a large number of 

physical scattering amplitudes in terms of a substantially smaller set of reduced 

amplitudes. Consequently it is possible to eliminate the latter and be left with 

nontrivial energy-independent linear relations between physical amplitudes. Be- 

fore doing so, however, we pause briefly to take note of two general constraints 

on the the reduced amplitude sKL’L. First of all, parity conservation together 

with the triangle inequalities discussed above for (LlK) and (L’lK) imply that 

either L = L’ or L = L’ f 2. Secondly, it follows from time-reversal invariance 

and unitarity that the S-matrix is symmetric PI . . 

SKL’L = BKLL’. (3.21) 

Bearing these constraints in mind, we can now straightforwardly find linear com- 

binations of the left-hand side of (3.15) so that the model-dependent right-hand 

side cancels out. 
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We focus first on the case lrN -+ IAN; in our notation this implies L = L’ 

and R = R’ = i. We choose to solve for the I = e amplitudes in terms of those 

with I = $. From the explicit formulas for the P-symbols as given in Appendix 

B one obtains: 

L-l 
SLL;f;,L-; = - l 4L+2 SLL;;;,L-; (3.22~) 

+ 
3L+3 -. 
4L+2 SLL$$;,L++ 

and 

3L 
sLL$;;,L+; = - ’ 

4L+2 
SLL’ 11 L-I ‘i’i?) a (3.22b) 

L+2 
+ -. 

4L+2 sLL;;;,L+; 

These relations were also derived in Ref. 6. 

For TN ---) ?rA we can have either L = L’ or L = L’ f 2 consistent with 

angular momentum conservation. For L = L’ we find: 

S LLl?!!!L-L = 
4(L - 1) 

11P’ a 4q2L + 1) * sLL;&L-; 

+&p--p-. sLLiqi,L+; 

and likewise 

(3.23~) 

3 
sqq;,L+; =- 

L(2L + 3)(2L - 1) 

2L+1 lO(L + 1) 
l SLL;;&L-; 
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while for L = L’ f 2 we obtain the simple proportionality relations 

&Ti.sLL+2 , 1.91 L+l = -4m*sL,L+2 1aa L+l 
,333’ 3 ‘333’ 3 

= -me SL+z,L;g;,L+; = @pxj- &+24;; L+S* ’ 3 

Finally, for each L there is one additional linear relation which 

rrrN+IrNto?rN+xA: 

sLLf;$L+-s LL#,L+; 

. 

= -. 
SLL SLL;;+,L+; 

(3.24) 

serves to relate 

(3.25) 

(Note that this relation depends on the phase convention of the delta wavefunc- 

tions uis-a-t& the nucleons.) 

We turn now to an examination of how well these relations are obeyed in 

Nature. 

4. Comparison with Experiment: TN 3 XIV 

We focus first on the process rrN + TN. Elastic xN scattering in the low- 

energy regime has been the subject of thorough experimental investigation. Our 

analysis in this section relies on the data compilation of Hehler, et al., 
1151 in 

which a complete partial-wave analysis of elastic rrN scattering is presented for 

center-of-mass energies W up to 4.5 GeV. For elastic scattering the relevant linear 

relations are given by Eq. (3.22), which expresses the isospin-g amplitudes as 

linear combinations of the two isospin-$ amplitudes in the same partial wave. 

We now examine the experimental validity of these relations. 
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In Fig. 2, we display the experimental isospin-e TN scattering amplitudes for 

L 5 7 juxtaposed with those particular linear combinations of isospin-k ampli- 

tudes to which they are predicted to correspond; these are indicated by solid and 

dashed lines, respectively. The closeness of these comparisons can be considered 

a model-independent test, not only of the chiral-soliton description of baryons, 

but also of the extent to which a lowest-order analysis in the l/N expansion can 

be trusted to give a reasonable description of Nature. We should point out that, 

in keeping with tradition, our Argand plots depict the T-matrix; this is related 

to the S-matrix via T = &(S - l), with 1 denoting the identity operator on the 

Hilbert space (which vanishes for inelastic scattering). 

The most striking feature of the graphs taken as a whole is the substantial 

qualitative agreement that one finds between theory and experiment, particularly 

for L 2 3 (F-waves and higher). On a quantitative level, it turns out that, with 

few exceptions, the actual I = i resonances are typically more massive by 150- 

300 MeV than predicted by the superposed I = i amplitudes. This systematic 

splitting is presumably caused by the same rotational energy contribution that is 

responsible for the nucleon-delta mass difference; since this is a l/N effect, it does 

not, indeed cannot, emerge in our lowest-order analysis. In contrast, it is apparent 

on the whole that the shapes of the resonances are correctly predicted by Eq. 

(3.22), and that the form of the backgrounds are reproduced quite satisfactorily. 

The correlation between the detailed structure of the F37 resonance and the 

corresponding linear combination &J’rs + &FIT is particularly remarkable. Note 

that the background contributions tend to be given correctly even in those low-L 

channels such as Pa3 for which the structure of the resonances is not reproduced 

well. 
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Having noted the generally high degree of agreement, it is of course important 

to confront the disappointing results in the &I, Pa3 and 035 channels. It turns 

out that the poor agreement in these channels is not necessarily fatal to the chiral 

soliton ansatz. To see this, note that in each case the discrepancies are clearly 

the greatest near threshold. Now, it is a property of all chiral soliton models in 

which the soliton is of the ‘hedgehog’ form that the threshold behavior of the S-, 

P- and D-wave amplitudes (and only these amplitudes) is extremely sensitive to 

small perturbations. This point is argued at length in Ref. 7; we should briefly 

review that argument here. 

The argument follows from the existence of rotational and translational zero- 

modes of the soliton which manifest themselves in lowest-order in l/N as zero- 

excitation-energy boundstates in pion-nucleon scattering. Explicitly, these are 

given by 

and 

nAm(n)(F’ + F) + I-I;m(fI)fi(; - F’), 

(4sa) 

(&lb) 

respectively, where F(r) is the profile of the soliton (3.1)) and IIEKs(n) is the 

vector spherical harmonic defined in Appendix A. The subscripts denote the par- 

tial waves of xN scattering in which these boundstates appear; consequently the 

rotational zero-modes couple to the four P-wave channels, and the translational 

zero-modes to the six S- and D-waves. 

When the pion mass is small, as it is in Nature, these degenerate boundstates 

lie only slightly below threshold. Now, this degeneracy is really only an artifact of 
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working to lowest order; in particular, the S-matrix poles corresponding to these 

zerc+modes are inevitably perturbed away from their canonical location by terms 

which contribute in the next-leading order in the l/N expansion. (The rotational 

energy responsible for the nucleon-delta mass-splitting is one such term.) Since on 

general grounds the behavior of the S-matrix in a given energy range is always 

strongly dependent on the precise position of nearby poles, we can conclude 

that the low-energy behavior of the S-, P- and D-wave ?rN amplitudes will be 

extremely sensitive to the details of the perturbations induced by these next- 

leading terms. For example, a small positive displacement of the pole into the 

fourth quadrant of the second sheet will result in the appearance of an enormous 

low-energy resonance, while, in sharp contrast, a small negative displacement of 

the pole, i.e. one which moves it away from the physical region, will produce only 

a (possibly repulsive) background contribution to the amplitude. (The reader is 

directed to Sec. III of Ref. 7 for further details.) 

It is therefore completely unrealistic to expect a lowest-order calculation in 

l/N such as ours to yield good agreement near threshold for the S-, P- and 

D-wave amplitudes. We find it encouraging that these are the only partial waves 

which are not in accord with Eq. (3.22) at low energies, and furthermore, that 

at higher energies (albeit still in the resonance region) the agreement markedly 

improves. 

As evidence for this latter claim, consider Fig. 3, where we have plotted the 

speed of motion IdT/dWI f o our prediction for the Pss partial wave amplitude 

as a function of the excitation energy AW; the maxima of the speed should give 

the positions of resonances, In Nature, this channel is characterized by three 

resonances, at 1232, 1522 and 1868 MeV. Our prediction likewise gives evidence 
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of three resonances, at 1360, 1780 and 2140 MeV; the shifts from Nature are 

of the order of l/N corrections. The discrepancies at low energies evident in 

the juxtaposed graphs in this channel can be traced to the large difference in 

elasticity between the A(1232), in the true P’s channel, and the ‘Roper resonance’ 

Prr (1410), which contributes to the comparison curve. Now, elasticity factors 

are measures of the phase-space of available decay modes; consequently, near 

thresholds they are extremely sensitive to small shifts in mass, and hence, to 

higher-order l/N effects. We conclude that the agreement obtained in the Pss 

channel is as good as can reasonably be expected in a lowest-order treatment. 

In fact, one might go so far as to assert, following Ref. 7, that the chiral 

soliton ansatz provides precisely the right framework for understanding why the 

S-, P- and D-wave amplitudes exhibit such a wide variety of behavior in the low- 

energy regime. Specifically, some channels are characterized by strong low-lying 

resonances (certainly the &(1232), and arguably the Prr(1410), Dra(1519) and 

Srr (1526) as well), while others, in complete contrast, are marked by repulsive be- 

havior of the amplitudes near threshold (cf. the Ssr, Par, Prs and 035 channels). 

According to the scenario outlined above, the former would simply correspond 

to zero-mode poles which have been perturbed by higher-order effects into the 

fourth quadrant, while the latter would indicate that the poles had been pushed 

into the first or second quadrants. Note that, in this picture, the above-named 

resonances are considered to be heavier than the proton only by an amount of 

order l/N, whereas the usual resonances have excitation energies proportional 

to No. These resonances should also have parametrically small widths. 

Before leaving the discussion of discrepancies in the low-lying partial waves, 

we should address the subject of the apparent violation of Weinberg’s well-known 
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calculation[161 of the S-wave scattering-lengths 113 aI+ and aI=s f. The prediction 

is 

which, in particular, correctly implies that the isospin-i and &spin-i S-wave 

amplitudes should exhibit attractive and repulsive behavior, respectively, near 

threshold. In contrast, the chiral-soliton prediction emerging from Eq. (3.223) 

is that these amplitudes should be identically equal to one another! This is 

all the more disturbing in light of the result I171 that chiral soliton models must 

necessarily obey all soft-pion theorems, of which Weinberg’s is a notable example. 

Actually, there is no contradiction. To see this, recall that the equality of the 

amplitudes implied by (3.223) is only valid to order No. To this order, as just 

discussed, the ‘nearby’ S-matrix poles in the two S-wave channels sit precisely on 

the real axis at the nucleon mass (where they have actually coalesced with zeroes 

of the S-matrix). Now, by elementary trigonometry, a phase-shift evaluated at 

a given value of energy is roughly proportional to the imaginary part of the 

nearby pole; this implies that, to lowest order, both aI=l and aI=; must vanish 

identically. And indeed, the right-hand side of Eq. (4.2; is manifestly of order 

l/N, with the result that Weinberg’s prediction is trivially satisfied to order No. 

A nontrivial consistency check, then, must await a higher-order calculation. 

We should comment further on the striking agreement apparent in all the 

channels depicted in Fig. 2 in the high-energy limit. Actually this agreement is 

something of an accident: in Nature, the four independent amplitudes in each 

fl3 Recall that the S-wave T-matrix is related to the scattering length a near threshold via 

T= &(exp(%ak) - l), where k is the pion momentum. 
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partial wave become virtually degenerate at high energies (typically, W 2 2800 

MeV), with the result that Eq. (3.22) is satisfied automatically. What we have, 

then, is in essence no more than a pleasing consistency check on our linear 

relations O4 . 

In fact, one can argue that the l/N expansion is no longer appropriate at 

high energies. In this regime, the TN total cross section is dominated by mul- 

tiple production of pions. The elastic amplitude (which becomes characterized 

more and more by forward scattering) then arises as the shadow of this multiple 

production via the optical theorem. In the language of Regge theory, the elastic 

amplitude is dominated by Pomeron exchange. The couplings of the Pomeron 

are independent of spin and isospin orientation; this accounts for the degeneracy 

mentioned above. In any case, it is clear that these couplings, arising as they do 

from multiple pion production, depend simultaneously on many orders in l/N. 

Consequently, where the Pomeron dominates, a leading-order l/N analysis is 

II5 necessarily inadequate . 

We turn, finally, to what we consider the most compelling argument in favor 

of the chiral soliton ansatz that can be gleaned from an analysis of pion-nucleon 

scattering. We have just seen that, as the center-of-mass energy W --) 00, the four 

independent amplitudes corresponding to each partial wave approach a common 

limit. However, for intermediate ranges of energy this is decidedly not the case. 

In fact, as pointed out in Ref. 7, when one restricts W to be < 2.5 GeV the 

$4 It should be mentioned, however, that for the majority of channels the agreement in this 
region is closer by 30 - 50% than what one would expect from comparing to a ‘random” 
(convex) linear combination. 

05 It is therefore not rurprising that expC&, calculations of the partial-wave amplitudes in 

the specific case of the Skyrme model ’ grossly underestimate the inelasticity of KN 

scattering in all partial waves at high energy. 
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experimental Argand plots exhibit a strikingly consistent pattern: for each value 

of L, the excursion of the amplitude into the unitarity circle is nearly always 

much larger for the (I, .I) = (5, L - i) or (g, L + k) channels than for (i, L + i) 

or (i, L - i). This pattern is even more pronounced if, for each L, one considers 

energies ranging up the ‘natural’ scale characterizing the resonance region of that 

partial wave (a precise determination of these ‘natural’ scales is unimportant). 

Certainly in a case such as thii a picture is worth a thousand words; we present 

the relevant pictures in Fig. 4. (Not surprisingly, the only exception to the rule 

is in the recalcitrant 035 channel; also, the G~Q amplitude is as large as the G~Q.) 

Clearly, this pattern of size alternation is consistent with Eqs. (3.22~) and 

(3.22b), since, in these equations, the (i, L - $) and (g , L + f) amplitudes are 

linked by large coefficients to the (i, L + t) and (f , L - i) amplitudes, respec- 

tively. But of course, the reversed pattern, with the ‘small’ and ‘large’ channels 

interchanged, would have been equally consistent. For a more compelling argu- 

ment, one must necessarily go beyond the purely group-theoretic reasoning that 

led to (3.22) and add a single plausible dynamical assumption. 

To this end, let us return to Eq. (3.15), in which the physical rrN -+ rrN 

amplitudes in the Lth partial wave are expressed as linear combinations of the 

‘reduced’ amplitudes SKLL with K = L - 1, L, L + 1. Now, in the specific case 

of the Skyrme model, it turns out that the variation of SL+~,LL away from unity 

is essentially negligible compared to that of s~-r,t~ and BLLL for energies less 

than 2.5 MeV, as discussed in Ref. 7. Certainly it is not unreasonable to assume 

that this continues to be true for the ‘optimal’ two-flavor effective Lagrangian, 

especially in light of the relatively high degree of success with which the Skyrme 

model is able to reproduce the full spectrum of nucleon and delta resonances in 
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Nature [6’71 , If accordingly we make the dynamical assumption that SL+~,LL NN 

1 throughout the relevant energy ranges (ignoring inelasticities for the sake of 

simplicity) and represent the physical amplitude SLLllIJ more compactly as 
91 

SLIJ, then Eq. (3.15) becomes: 

SL;,L-f - 1 = 

S L&L+; - 1 = 

SL;,L-; - 1 = 

SL),L+; - 1 = 

2L-1 Lfl 
- * (SL-1,LL - 1) + r * (SLLL - I), 

3L 

L 
-. (SLLL - l), 3L+3 

PL-W-1) *( 2L-1 
6L(2L + 1) SL-1,LL - 1) + - 

6L 
* (SLLL - I), 

(4.3) 

2L-1 2L+3 
- * (St-l,LL - 1) + G * (SLLL - 1). 
4L+2 

The pattern of alternating size now emerges as an automatic consequence of the 

group theory: it is simply due to the relatively small coefficients in the middle 

two equations of (4.3) as compared to the outer two. A further prediction of 

these expressions is that, of the two ‘large’ amplitudes, SL+; should dominate 

SL;,L+; -and, with the single exception of the P-channels, this is also apparent 

in Fig. 4. 

5. Comparison with Experiment: rlV + rA 

We conclude with a brief examination of the inelastic process rrN + AA in 

the chiral soliton framework. We should remark at the outset that this process 

constitutes a much more tenuous proving ground for the chiral soliton ansatz than 

the elastic case: On the one hand, the extraction of partial-wave amplitudes from 

experiment requires a nontrivial and model-dependent analysis to disentangle ~FA 

from a variety of other final states such as pN, rN and ?rN*. On the other hand, 
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from a theoretical point of view, several of the approximations we have invoked 

in the derivation of the linear relations become substantially more drastic in the 

inelastic case, as we have discussed in Section 2. Throughout this section we draw 

from the recent partial-wave analysis of Manley et aL[‘] ; the IDA data presented 

there is restricted to W 5 2 GeV and L 5 3” 

We begin by looking at processes in which the pion jumps two units of angular 

momentum. From Eq. (3.24) we predict simple proportionality relations between 

partial-wave amplitudesn7 : 

SDll = - fi.DSn=-diii4D31=&6.DS33 

and 

FPl5 = - d% FP35. 

(5.14 

(5.lb) 

These relations are checked in Fig. 5. For the SD and DS waves, the agreement is 

not impressive. The relative signs of the four amplitudes are predicted correctly, 

but there is no evidence for the factor of a which connects the first and second 

pairs of terms in Eq. (5.1~). One should note, of course, that these channels 

all couple to the translation zero-modes. For the FP waves, which do not, the 

agreement is quite satisfactory, up to the customary 150-200 MeV energy shift 

between the isospin-i and the isospin-i amplitudes. 

116 The analysis of ref. 9 presents the values of the partial-wave amplitudes derived from an 
energy-independent analysis and a unitary, energy-dependent fit to this values. Because 
the directly extracted amplitudes are often sparse and erratic, we have chosen to use the 

fit in making our comparison. This fit ia generally a good representation of the elementary 
data, but one should note that there are Borne large deviations, for example, in the SD,, 
and PPss partial waves. 

117 The notation is LLh,,,,, with L and L’ the incoming and outgoing pion angular momenta, 

respectively. 
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We turn next to processes for which the initial and final pion angular mo- 

menta are equal. In both the D- and F-waves, the partial-wave amplitudes for 

three out of the four possible channels could be resolved from the data in the 

analysis of Ref. 9. These triplets of amplitudes are predicted to obey the rela- 

tions: 

4 
DD33 = - 

50 
(5.2a) 

and 

7 
FF37 = - 

645 
(5.2b) 

In Fig. 6 we have displayed the experimental 0033 and FF37 amplitudes (in- 

dicated by solid lines) juxtaposed with the appropriate linear combinations dic- 

tated by (5.2) (dotted lines). Although in the first instance (where again there is 

mixing with the translational mode) the shape of the Argand plot is reasonably 

rendered, the predicted curve is obviously too big by roughly a factor of four. 

In the second case, however, as for F-waves in general, the agreement is quite 

respectable. 

Unfortunately, out of the four possible PP processes, only PP,, and PP33 

were considered by Manley, et uZ., to be adequately determined by the data. 

This makes it impossible for us to test the validity of Eq. (3.23) for this case. If, 

however, we assume the PPl3 amplitude to be small, Eq. (3.233) suggests that 

the PPll and PP33 amplitudes will have the same sign; this is indeed what is 

observed experimentally. 

We turn, finally, to Eq. (3.25), which links the processes TN --) TN and 

AN + rrA. The relations which follow from (3.25) may be expressed in several 
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different ways, by combining this equation with the relations (3.22) and (3.23) 

already discussed. For example, one may obtain: 

&is - F17) = f - FF35 + 6 - FF37. 

(5W _ 

(5.3b) 

(5.3c) 

The left- and right-hand sides of these equations are compared in Fig. 7; they 

are indicated by solid and dotted lines, respectively. The comparisons are typical 

5 
among the choices which we have examined, though different choices yield curves 

of very different size ‘* . In making this comparison, it is also necessary to choose 

a convention for relating energies in TN + XA to those in TN -+ TN. It is not 

clear to us to us whether it is best to define the excitation energy in rrN --) rrA 

as starting from the TN or the TA threshold; as a compromise we have taken 

the average of the two (for these graphs only). Once again, although the sizes 

of the amplitudes are not in especially close agreement, the signs are correctly 

given and the general shapes are similar. 

All in all, we can conclude that the limited rrN + TA data, while not par- 

ticularly compelling in and of itself, is certainly consistent with the elegant in- 

terpretation of the baryon as a soliton in the field of pions. 

fl8 We should note, though, that in (5.3) we-have avoided combinations which require cance- 
lations among large amplitudes, or which involve the exceptional channels P33 and 035. 
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APPENDIX A: Derivation of Eq. (3.14) 

The purpose of this appendix is to fill in the steps between Eqs. (3.12) and 

(3.13). W e s a not assume isospin and angular momentum conservation ab h 11 

5 . 
tnitio; these will emerge in the course of our derivation. 

We begin by considering the integral over the SU(2) group manifold in (3.12). 

Changing variables to Ae-’ transforms the integral to 

/ 
dAA(~y:r: 

using 

0 0 1 

E(l) = ( 0 -1 0 1 . 

1 0 0 

It turns out that the A-integration can be carried out explicitly, thanks to the 

Clebsch-Gordon decomposition 

A(R~)obA(R2)cd = c A(gjo+e,b+d RiRscI~, a + c ) (g, b + djRIRzbd) (A.2) 

s 
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and the orthogonality relation 

We obtain: - 

Ri,r.;R'i's' ‘ * 

= c (rmTn), (-qn-m x42R ;;y + 1) 

mnE 

R'l$ilk j + i, >( i,sz - nlh!'lsi, -m > 
(A.4 

x Rls,, -n@?, sL - n 
>( 

2, j + ;,IRli,j 
> 

It is useful to project the initial and final pion-baryon states onto states of 

%efinite total isospin IIIZ) and IPI:), respectively. A straightforward calculation 

yields the somewhat simpler expression 

(4 
42R + 1)(2R’ + 1) 

Rf6.;R@r’ I = hI’bIJ: 
2I+1 

x C(-1)“-” (P7P), 
mn 

(A4 

x (I, s, - nlR’ls$ -m) (Rls,, -nil, s, - n) . 

Happily, isospin conservation is now manifest in the Kronecker-deltas. 

We have not yet arrived at our final destination, where the initial and final 

pion-baryon states are characterized, not only by definite isospin, but by definite 

angular momentum as well. But in order to make progress we must necessarily 

return to the question of diagonalizing the differential operators 2, defined in 

Kqs. (3.7) and (3.8). Complicated though f; may be, it respects the symmetry 

17s &ion) + i&on). C onsequently 2 preserves the subspaces of states of 

definite K and KZ. 
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How do we construct these subspaces? Consider the quantity 

(LlK, - 1, lIKEi,) E,K,-I (fl> 

IqK=(n) = (LlKzOIKKz) YLK.(~~) ; (A-6) 

i (LlKi + 1, -1IKKz) T~,K;+I(~ 1 

-these are -the vector spherical harmonics. By the familiar rules for addition of 

angular moment a lYI,KKs is indeed a state of definite K and Kz. Unfortunately 

it also has definite orbital angular momentum L, which is not preserved by 6 

the pion can jump two units in L in the process rrN + zA, for example, in a 

manner consistent with angular momentum conservation. Therefore, in order to 

block-diagonalize c we must sum over all allowed values of L for each K, namely 

L = (K - 1, K, K + 1). Parity precludes the states with L = K from mixing 

-* with those with L = K f 1; consequently the eigenstates of 2 are of the following 

form: 

Parity (-l)L-’ : $K(r, t)lI~~(fl) + $,“(r, t)II~~(n) 

Parity (-1)’ : fAY(rJ)@Ks(n) - 

One can imagine expanding an arbitrary pion field in terms of these eigen- 

functions and carrying out the angular integration in (3.7). The result will be a 

purely radial problem, where for each value of K, z is replaced by an operator 

acting on the space 

t@ 

( i 

tiK 0 

(cl,” 

with the zeroes of course reflecting parity conservation. 

33 



I 

Furthermore from the radial wavefunctions r,!JK (r, t) one can construct the 

‘effective” Green’s functions gK(rt;r’t’) associated with c;(“; this is of course a 

3 x 3 matrix checkered with zeroes just as in (A.7). We will find it convenient 

to label its matrix elements by pairs .of subscripts (L;-L’)-that Take values (K - 

1, K, K % 1, instead of the usual (1,2,3) or (+,O,-); thus g435, say, instead of 

(g4)1,3. 

Having defined gK we are now in a position to write down the partial wave 

decomposition of the pion propagator in the unrotated soliton background. One 

finds 

(7P(Z’t’)7?* (5, t)), = 
c( yL’L:(wiiL.(~) x 

LL.L'L: 

c (KK,~LlL,n) (L’lLlm[KK,) gKL’L(rt; r’t’) 

KK, 

(A.8) 

with J? and E’ the incoming and outgoing pion angular momentum, respectively. 

This formula will presently prove very useful to us. 

We now have all the machinery in place for our final result. We return to Eq. 

(A.5) and project the initial and final pion-baryon states onto states of definite 

total angular momentum IJJ,) and IJ’J:), respectively; likewise the incoming 

and outgoing pions are restricted to partial waves L and L’, which we still have 

the freedom to specify. A short calculation making use of (A.8) then produces 
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(4 
&R + 1)(2R’ + 1) 

RrJ-L*R’I-‘J-IL’ , = hb& 
2I+1 

x c c (-I)“--mf!!KL’L 

KK,mn r,s:L,L: 
T - 

- x (RLs,L,IJJ*) (J’J,‘p’L’s:L:) (A-9) 

x (1,~~ - njR’ls:, -m) (Rls,, -nlI, sz - n) 

x (KKzjLILZn) (L’lL:mlKK,) . 

It is certainly not manifest from this rather unwieldy formula that total an- 

gular momentum is conserved, as of course it must be. In order to see that, it is 

convenient to reexpress the Clebsch-Gordon coefficients as gj-symbols 

e 

( 

jl h J 
ml m2 -M ) 

= (-l)i1-ia+M(2J + 1)-‘i2 (jr j2mlm2lJM) 

These, in turn, can be used to construct the 6j-symbols via 

c (-1) 
J~+Js+Js+MI+Ms+Ms 

MMNs ( 

Jl 52 5 

Ml 4% m3 > 

( 

J2 53 5 

>( 

53 Jr i2 

’ M2 -M3 ml M3 -Ml mp > 

A short calculation making use of some standard properties of 6j-symbols pro- 

duces 

c 
(A.lO) 

= h&,I$JJt~J.J., -PLL’RR’IJK ’ gKL’L(‘% r’t’) 

K 
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where the P-symbols are defined in Eq. (3.14). Both isospin and angular mo- 

mentum are now manifestly conserved. This is Eq. (3.13). 

APPENDIX B: Explicit formulae for P-symbols 

This appendix contains explicit formulas for those P-symbols as defined by 

Eq. (3.14) which contribute to either TN ---) rrN or rrN + AA. The notation is 

PLL~RRIIJK where L and L’ give the orbital angular momentum of the incoming 

and outgoing pion, respectively; R and R’ denote the spin (and isospin) repre- 

sentation of the initial and final baryon; I and J are total isospin and angular 

momentum; and K labels the conserved vector &ion) + &ion). 

We consider first the process RN + AN, which in our notation implies L = L’ 

and R = R’ = f . With two exceptions as noted below, the scattering must 

be P-wave or higher in order for the P-symbol not to vanish. For L 2 1 the 

nonvanishing values of the P-symbols are given by: 
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PLL;;f,L-;,L-l = 
J(L + 1)(2L - 1) 

3L 

PLLM,&-$r, = 
-&L + 1)(2L - 1) 

3L 

- 
pLL;;$,L+;,L = 

dE(zTTq <-- 
3L+3 

pLL$;;,L+f,L+l = 
-y/m 

3L+3 

PLL;g;,L-f,L = 
(L+4) 2L- 1 

3L r lO(L + 1) 

(B.2) 

PLLLS! L 
222’ 

-;,L+l 

pLL;g&L+$,L-l = 

PLL;Qg,L+;,L+1 = - 
4(L+2) 

(3L+ 3)(2L+ 1) 

Txe final possibility is TN --$ rA with L = L'f2. Now L = 0 is allowed, and 

we have: 

38 



2L+3 
PL,L+z ,;$+,L+;,L+l 

=-- 
3(L + 1) 

P L,L+2,;$;,L+$,L+l = - 

PttZ,L;$;,L+&L+l = 

PL+2,L;q;,L+q,L+l = - 

All other P-symbols with R = $ and R’ = $ or i vanish. 
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1. 

- -2. 

3. 

e 

4. 

5. 

6. 

FIGURE CAPTIONS 

Relation of the six coupled angular momenta in either the initial or the 

final state of pion-baryon scattering. 
c- - H 

Experimentally determined I = g partial-wave amplitudes for rrN elastic 

scattering, plotted together with the linear combinations of I = i ampli- 

tudes which should reproduce them if Eq. (3.22) is valid. The I = i 

amplitudes are indicated by solid lines, the I = f combinations by dotted 

lines. We have used the values of these amplitudes presented by HGhler, et 

al PSI . . 

Speed of motion IdT/dW) of the predicted P33 rrN elastic scattering am- 

plitude, PIFd = :Pll + iPl3. AW is the energy above threshold (1077 

MeV) . 

Motion of the various rrN scattering amplitudes in the unitarity circle, over 

a range of W from threshold into the resonance region in that channel. 

?rN -+ ?rA processes in which the pion jumps two units of angular momen- 

tum: (a). Test of Eq. (5.1~) by comparison of the various SD and DS 

rrrN + IDA partial-wave amplitudes. The upper graph plots SD11 against 

-4. D&3; the lower graph plots SD31 against -&a D&3. (b). Test 

of Eq. (5.lb) by comparison of F&5 to -fl. FP35. In each case, the 

first-named amplitude is represented by the solid curve. Here and in Figs. 

6 and 7, we have used the values of these amplitudes corresponding to the 

fits presented by Manley, et aLiQ1 

rrN + lrA processes in which the initial and final pion angular momenta 

are equal. The DD33 and FFs7 amplitudes (solid lines) are juxtaposed with 

42 



i 

the linear combinations to which they are predicted to correspond via Eq. 

(5.2) (dotted lines). 

7. Comparison of AN ---) TN and IAN -+ rrA scattering in the same partial 
,- - m 

_ wave. .-The linear combinations of elastic amplitudes (solid lines) are jux- 

taposed with the appropriate combinations of inelastic amplitudes (dotted 

lines) as dictated by Eq. (5.3). Excitation energy AW is measured from 

the xN threshold in the elastic case, and from the average of the TN and 

KA thresholds in the inelastic case. 
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