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Abstract: Extracting reliable low-energy information from string compactifications noto-

riously requires a detailed understanding of the UV sensitivity of the corresponding effective

field theories. Despite past efforts in computing perturbative string corrections to the tree-

level action, neither a systematic approach nor a unified framework has emerged yet. We

make progress in this direction, focusing on the moduli dependence of perturbative correc-

tions to the 4D scalar potential of type IIB Calabi-Yau orientifold compactifications. We

proceed by employing two strategies. First, we use two rescaling symmetries of type IIB

string theory to infer the dependence of any perturbative correction on both the dilaton

and the Calabi-Yau volume. Second, we use F/M-theory duality to conclude that KK re-

ductions on elliptically-fibred Calabi-Yau fourfolds of the M-theory action at any order in

the derivative expansion can only generate (α′)even corrections to the 4D scalar potential,

which, moreover, all vanish for trivial fibrations. We finally give evidence that (α′)odd ef-

fects arise from integrating out KK and winding modes on the elliptic fibration and argue

that the leading no-scale breaking effects at string tree-level arise from (α′)3 effects, modulo

potential logarithmic corrections.
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1 Introduction

Effective field theories (EFT) have been the subject of recent debates regarding their rel-

ative importance for a UV complete theory of gravity. On the one hand, based on the

outstanding success of EFTs to describe all kinds of physical phenomena [1], a common

bottom-up attitude is to fully concentrate on EFTs at low-energies assuming that their

self-consistency is enough to expect that they can be completed in the UV. On the other

hand, the swampland programme argues that most EFTs cannot be UV completed, and

concentrates on conjectures that could eliminate general classes of EFTs [2]. In this paper

we take an alternative, more traditional, top-down approach where we perform a system-

atic study of α′ corrections to the 4D effective action of compactified string theories which

automatically provide a UV completion.

From the topological understanding of Calabi-Yau (CY) compactifications, direct di-

mensional reduction, supersymmetry and scaling symmetries, we have a very good control
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over tree-level effective actions for N = 1 supersymmetric compactifications in terms of

the Kähler potential K and superpotential W for moduli and matter fields. Focussing on

type IIB compactifications, these EFTs are of the no-scale type in the sense that the cor-

responding 4D scalar potential for the Kähler moduli vanishes identically when the other

moduli are fixed supersymmetrically, since Kij̄KiKj̄ = 3. Given that this is a tree-level

property, α′ and string loop corrections are in general expected to lift these flat directions

and to play a crucial role in stabilising moduli.

The challenge is further complicated by the fact that string theory does not have free

parameters since the higher derivative and string loop expansions are controlled respectively

by the vacuum expectation values of the CY volume modulus V and the imaginary part of

the axio-dilaton τ . Hence it is only after determining their value that we can assess if the

expansion parameters are small enough to trust the calculations. Furthermore, the fact that

free 10D string theory is always a solution already indicates that the determination of other

vacua will never be under full computational control since the scalar potential for V and τ

runs away towards their value at infinity. This is the well-known Dine-Seiberg problem [3].

It is essentially the prize string theory has to pay for not having free parameters and is a

fully general situation independent of any scenario of moduli stabilisation.

Not having arbitrary good control of perturbative expansions is not a string theory

disease but a condition we have to live with. Fortunately there are extra parameters ap-

pearing from the nature of the compactification which can play an important role to allow

non-trivial moduli stabilisation at couplings which are weak enough to trust the perturba-

tive expansions. These are usually discrete parameters such as the CY Euler number, the

rank of condensing gauge groups and the many integer fluxes which are ubiquitous in string

compactifications. The derivation of non-trivial vacua necessarily involves a combination

between these discrete parameters as well as perturbative and non-perturbative corrections

to the 4D scalar potential.

Together with the dilaton, every Kähler modulus, which measures the size of a 4-cycle,

can be considered as an expansion parameter, since it determines the gauge coupling of the

EFT on D7-branes wrapped on the corresponding 4-cycle. Thus the 4D EFT has many

expansion parameters which on the one hand make the calculations more involved since

each of them has to be stabilised within the regime of validity of the approximations. On

the other hand, however, they allow to stabilise the moduli at weak coupling since, as it

happens in the Large Volume Scenario (LVS) [4, 5], a vacuum can arise from balancing

terms of two different expansions without causing a breakdown of perturbation theory.

On top of moduli stabilisation, identifying the leading no-scale breaking effects beyond

the tree-level approximation is crucial to shed light on several important implications of

string vacua for cosmology and particle phenomenology. Promising inflationary models

based on Kähler moduli [6–12] feature a shallow potential which is protected by approxi-

mate non-compact rescaling shift symmetries [13, 14] that are broken by no-scale breaking

effects. As shown in [15], leading-order perturbative corrections to the Kähler potential are

in general also crucial to determine the mass spectrum of the Kähler moduli. Moreover, in

sequestered models with D3-branes at singularities, the mass scale of the soft terms is set

by the dominant no-scale breaking effect at perturbative level [16–19].
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In this article we present a systematic analysis of α′ corrections to the 4D scalar

potential of type IIB string compactifications. It is well-known that in 10D type IIB

string theory the leading higher derivative corrections arise only at order (α′)3. These

include the R4 correction to the Einstein-Hilbert action plus its supersymmetric extensions.

This property is inherited by N = 2 CY compactifications where the corresponding (α′)3

correction to the Kähler potential has been computed in [20]. Additional N = 2 string

loop corrections to K at O((α′)2) and O((α′)4) have been computed in [21–23], and in the

F-theory context in [24], but they yield subdominant contributions to the scalar potential

due to a cancellation of O((α′)2) terms named ‘extended no-scale’ in [25]. Backreaction of

(α′)3 effects on the internal geometry have been considered in [26] which however found

only moduli redefinitions. Further O((α′)3) terms have been shown in [27, 28] to give rise

to contributions to the 4D scalar potential at F 4 order, where F denotes the F-term of the

moduli fields.

Genuine N = 1 corrections are less understood. Different papers found shifts of the CY

Euler number induced by O((α′)3) corrections at tree- [29] and loop-level [30–33]. Using

M/F-theory duality, novel O((α′)2) effects were found in [34, 35], which can however be

affected by field redefinitions of the 11D fields [36]. More corrections in the N = 1 4D

effective action of F-theory were discussed in [37], which were further constrained recently

in [38] by studying infinite distance limits. A full understanding of α′ corrections to the

type IIB N = 1 effective action is not available yet. In particular any correction that would

dominate over the (α′)3 ones may play an important role in moduli stabilisation scenarios

as LVS [4, 5] and KKLT [39]. They may shift the minimum, provide a potential de Sitter

uplift or destabilise the original vacuum. Moreover, subdominant higher derivative or string

loop corrections can still be relevant for lifting leading order flat directions in scenarios with

more than one Kähler modulus [12, 25, 40, 41].

A complete analysis of α′ corrections is too ambitious to be achievable. Here we

will extract information on the moduli dependence of the low-energy scalar potential by

combining techniques that rely on either symmetries of 10D type IIB string theory or on

dimensional analysis in M/F-theory compactifications which come along with a rich web

of dualities summarised pictorially in figure 1. Our analysis is simplified by concentrating

only on the dilaton and overall volume dependence of perturbative corrections. Even if a

full dependence of arbitrary α′ and gs effects on all the Kähler moduli is beyond our reach,

it is the V-dependence that is the most relevant information for moduli stabilisation.

In practice, investigations of F-theory compactifications start from M-theory by reduc-

ing the 11D action on a CY fourfold Y4 which leads to 3D gauged N = 2 supergravity [42–

46]. Under the assumption that Y4 is elliptically fibred over a 6D Kähler base manifold

B3, one takes the point-wise limit of vanishing fibre volume, vf → 0, thereby decompact-

ifying a single direction giving rise to F-theory in 4D, that is type IIB compactified on

the base manifold B3 [47–51]. The elliptic curve in Y4 is effectively keeping track of the

dynamics of the axio-dilaton. The singular loci of the fibre are associated with 7-branes

on the base whose precise realisation within Y4 specifies the gauge algebra (see [52] for a

recent review). In the weak coupling limit gs ≪ 1 of F-theory, the so-called Sen limit [53],

one recovers perturbative type IIB orientifold compactifications on the double cover X3 of
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Figure 1. Schematic picture of dualities and limits of the various theories in different dimensions

employed throughout this paper.

the base B3 [50]. The existence of an elliptic fibre leads to an SL(2,Z) symmetry acting

on the axio-dilaton τ in type IIB. More precisely, the strong coupling dynamics of string

theory is accessible via dualities even if the microscopic origin remains elusive. The most

basic duality is M-theory compactified on an S1
A giving rise to 10D type IIA supergravity.

After a subsequent reduction on another circle S1
B, we can use T-duality [54, 55] to obtain

type IIB supergravity on a circle. This is equivalent to compactifying M-theory on a torus

T 2 = S1
A×S1

B and taking the Vol(T 2) → 0 limit [56], as we said above. Recently an effective

12D approach (indicated by dashed lines in figure 1) has been put forward in [29] which

in principle allows for a new access to α′ effects in F-theory. In this paper we will take

advantage of these dualities together with scaling symmetries to extract direct information

on α′ corrections to the 4D scalar potential.

This paper is structured as follows. In section 2 we follow [15] and use the symmetries

of the 10D type IIB action to organise different perturbative corrections to the N = 1 4D

effective action concentrating on the dilaton and volume dependence of each order in the

α′ and string loop expansions. We make use of the fact that each of the two expansions is

directly related to the existence of two scaling symmetries of the 10D action. In particular

we present the general expression of the 4D scalar potential including each order in the α′

and gs expansions as well as the number of powers of F-terms of the low-energy moduli

which corresponds to an expansion in terms of inverse powers of the Kaluza-Klein (KK)

scale [57], as typical of KK compactifications. We recover all known corrections that have

been computed so far as particular cases of our general expression.

In section 3 we see how the absence of (α′)1 corrections at string tree-level to either

the 10D bulk action or to the 8D action of localised sources, combined with our symmetry

considerations and the extended no-scale structure, allow us to infer that the leading no-

scale breaking effects at tree-level in gs should arise from (α′)3 effects. We confirm this
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claim by dimensional reduction and dimensional analysis considering all potential sources

for these corrections: bulk terms, brane effects and backreaction.

Section 4 is the core of the paper, where we utilise F/M-theory duality techniques

as well as a dimensional analysis to extract systematic information on the α′ expansion

of the 4D scalar potential. We present the rules to perform the F-theory limit by first

considering the 3D EFT obtained via a fourfold compactification of 11D M-theory and

then taking the vanishing fibre volume limit to extract information on 4D compactifications

of F-theory. In particular, using a very general ansatz for the metric of an elliptically

fibred fourfold, we constrain the moduli dependence of higher derivative corrections to the

4D scalar potential. We find that conventional KK reductions on elliptically fibred CY

fourfolds of the 11D supergravity action, corrected at arbitrary order in the derivative

expansion, can generate only (α′)even corrections to the 4D scalar potential. We come to

the conclusion that only a certain class of higher-order terms in the 11D Planck length

ℓM gives rise to a finite contribution in the F-theory limit. Remarkably, this class of 11D

higher derivative structures precisely falls into the general pattern of the M-theory higher

derivative expansion as conjectured by [58], using symmetry constraints from the Kac-

Moody algebra E10.1 Furthermore, for the case of trivial fibrations, we find that all such

higher derivative corrections give vanishing contribution in 4D.

In contrast, we argue that (α′)odd effects arise from a proper process of integrating out

KK and winding states on the elliptic fibration, which we outline in section 5. Here we

provide evidence in favour of this claim by focusing on the simple case of trivial fibrations

where we manage to show that our approach based on dimensional analysis allows to

reproduce, from 11D loops, known (α′)3 corrections at different orders in the low-energy

F-term expansion.

We present our conclusions and outlook in section 6 and leave some technical aspects to

the appendices. In appendix A we collect some results on higher curvature terms for elliptic

fibrations. For completeness, in appendix B we explore the effects that potential loop

corrections at order (α′)1 could have, if they existed, on moduli stabilisation. Interestingly

we find that they could give rise to new dS vacua in a regime where the EFT is under

relatively good control.

2 Perturbative corrections from symmetries in type IIB

In this section we show how perturbative corrections to the 4D EFT of type IIB string

theory can be constrained using the symmetries of the underlying 10D theory.

2.1 Tree-level effective action

10D perspective. The low energy description of string theory can be obtained by com-

puting scattering amplitudes of massless string excitations. This gives rise to a 10D EFT

whose action can be written as SIIB = Sbulk + Sloc, where Sbulk describes the dynamics of

1More precisely, we show that higher derivative corrections in M-theory should appear only at order ℓ
6p
M

with ℓM the 11D fundamental length and p ∈ N, assuming that they contribute to the effective action in

the F-theory limit.
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the bulk degrees of freedom while Sloc is associated to objects localised in the extra dimen-

sions, like D-branes and O-planes. The bosonic bulk action at tree-level and in Einstein

frame reads [59]:

S
(0)
bulk =

1

2κ2
10

∫
√

−g̃
(

R− |∇τ |2
2(Imτ)2

− |G3|2
12Imτ

− |F̃5|2
4 ·5!

)

+
1

8iκ2
10

∫
C4 ∧G3 ∧G3

Imτ
, (2.1)

where g̃MN is the 10D Einstein frame metric, τ = C0 + i e−φ is the axio-dilaton whose

imaginary part controls the string coupling (eφ = gs), and G3 = F3 − τH3 is the 3-form

background flux with:

H3 = dB2 , Fp+1 = dCp , F̃5 = F5 − 1

2
C2 ∧H3 +

1

2
B2 ∧ F3 . (2.2)

In addition to the equations of motion, the 5-form flux must satisfy the self-duality con-

dition F̃5 = ⋆10F̃5. Beyond general coordinate invariance, N = 2 supersymmetry and

the gauge symmetries of the p-forms, the tree-level bulk action (2.1) enjoys the following

accidental symmetries:

• SL(2,R)

τ → aτ + b

cτ + d
, G3 → G3

cτ + d
with ad− bc = 1 . (2.3)

This symmetry is broken by α′ and gs corrections. However two subgroups survive

at higher order: the axionic shift symmetry of C0 is unbroken at perturbative level,

while SL(2,Z) is an exact symmetry of the whole non-perturbative theory.

• Scale invariance

Scaling the bosonic fields with two arbitrary weights ω and ν as [15]:

g̃MN → λν g̃MN , τ → λ2(ω−ν)τ, B2 → λ2ν−ωB2, C2 → λωC2, C4 → λ2νC4 ,

(2.4)

the bulk action (2.1) transforms as:

S
(0)
bulk → λ4ν S

(0)
bulk , (2.5)

showing that it enjoys two families of classical scale invariance that are expected to

be broken by corrections beyond tree-level. Notice that for ν 6= 0 the equations of

motion are still invariant even if S
(0)
bulk is not, while the case with ν = 0 reproduces

the scale invariance included in SL(2,R) for b = c = 0 and a = 1/d.

Let us stress that the existence of two scaling symmetries is closely related to the

fact that the EFT features two independent perturbative expansions: in terms of gs

controlled by the dilaton (corresponding to worldsheet topologies/loops in the space-

time theory), and α′ controlled by the metric (associated to loops in the worldsheet

theory/higher derivative terms from the spacetime point of view). This property is

shared by all five different 10D superstring theories but it does not hold for the effec-

tive action of 11D supergravity since its massless spectrum does not include a dilaton

– 6 –
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field. This implies that in this case there is just a single perturbative expansion which

is reflected in the existence of a single scaling symmetry. In fact, all terms of the 11D

supergravity action:

S11 =
1

2κ2
11

∫

d11x

[√

−g(11)

(

R− 1

48
G2

4

)

+
1

6
G4 ∧G4 ∧ C3

]

, (2.6)

scale homogeneously as S11 → λ9ωS11 under the 1-family rescalings:

g
(11)
MN → λ2ωg

(11)
MN and C3 → λ3ωC3 . (2.7)

Coming back to the type IIB action, let us now include localised sources in 10D. The

action of a Dp-brane contains a DBI and a Wess-Zumino (WZ) contribution. It can be

shown that, under the rescalings (2.4), both of them scale as [15]:

S
(0)
loc → λρ S

(0)
loc with ρ = (p− 1)ν − 1

2
(p− 3)ω . (2.8)

Given that ρ 6= 4ν ∀p, we realise that the Dp-brane action breaks the 2-family scale

invariance of the bulk action down to a 1-family scaling symmetry parametrised by the

relation 2(p − 5)ν = (p − 3)ω. This can be easily understood from noticing that the 10D

string frame metric ĝMN = g̃MN/
√

Im τ scales with weight 2ν−ω. Hence choosing ω = 2ν,

the 10D string frame metric does not rescale and ρ = 2ν ∀p. In this case S
(0)
bulk ∝ e−2φ = g−2

s

while S
(0)
loc ∝ e−φ = g−1

s , showing that Sloc can be seen as a higher order effect in the

expansion of the action in powers of gs that breaks one of the two scaling symmetries

enjoyed by the leading expression. This remaining scale invariance is then expected to be

broken by additional gs and α′ corrections.

4D perspective. Type IIB string theory compactified on a CY threefold X3 yields an

N = 2 4D EFT which can be broken down to N = 1 by the inclusion of O-planes and

D-branes. The scaling properties of the 4D fields inherited from the higher dimensional

theory can be understood from looking at the decomposition of the 10D metric:

ds̃2
(10) = g̃µν dxµ dxν + g̃mn dzm dzn , (2.9)

where we ignored the warp factor since it does not scale. Thus we realise that (2.4) implies

that the 4D metric scales as the 10D one, g̃µν → λν g̃µν , while the Einstein frame CY

volume scales as:

V =
1

ℓ6s

∫

X3

d6z
√

−g̃(6) → λ3ν V , (2.10)

where we measured V in units of the string length ℓs = 2π
√
α′. Therefore the 4D Einstein

frame metric and Lagrangian scale as:

gµν = V g̃µν → λ4ν gµν and L → λ4ν L , (2.11)

where the scaling of L is fixed by the Einstein-Hilbert term just by knowing the scaling of

gµν . The scaling of the overall volume (2.10) implies that also the Kähler moduli rescale

since V can be rewritten as:

V =
1

6

∫

X3

J ∧ J ∧ J =
1

6
kαβγ t

αtβtγ , (2.12)

– 7 –
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where J is the Kähler form which we expanded in a basis D̂α of H
(1,1)
+ (X3,Z) as J =

∑h1,1
+

α=1 t
αD̂α, the tα’s, α = 1, . . . , h1,1

+ , are 2-cycle volumes and kαβγ are the triple intersec-

tion numbers given by:

kαβγ =

∫

X3

D̂α ∧ D̂β ∧ D̂γ . (2.13)

Given that the Kähler moduli are defined as Tα = bα + i τα with bα =
∫
C4 ∧ D̂α and

τα = 1
2kαβγt

βtγ , (2.4) and (2.10) imply Tα → λ2ν Tα ∀α. Since the Kähler moduli are

the scalar components of h1,1
+ chiral superfields Tα = Tα +

√
2θψα + Fα, the superspace

coordinate θ has to rescale as θ → λνθ together with ψα → λν ψα to ensure that the

fermionic kinetic term ψ̄eµ
aγ

a∂µψ scales as the bosonic one gµν∂µT∂νT . The h1,2
− complex

structure moduli Zi instead do not rescale.

The implications of these scaling symmetries can be easily understood by using the

superconformal formalism which allows to write the Lagrangian in terms of the chiral

compensator Φ as (ignoring the contribution from the gauge kinetic function):

L√−g = −3

∫

d4θ e−K/3 ΦΦ +

∫

d2θWΦ3 + h.c. , (2.14)

where K and W denote respectively the Kähler potential and the superpotential.

Using (2.11) together with dθ → λ−νdθ, we obtain:

e−K/3 ΦΦ → λωL−4ν e−K/3 ΦΦ = e−K/3 ΦΦ , (2.15)

WΦ3 → λωL−6ν WΦ3 = λ−2ν WΦ3 , (2.16)

where ωL is the weight of the Lagrangian, with ωL = 4ν at tree-level. These two relations

can be used to derive the dependence of K on two combinations of rescaling fields (due

to the presence of two scaling symmetries) once the weight of W is known. This can be

deduced from direct dimensional reduction which yields the tree-level flux superpotential

W0 =
∫

X3
G3 ∧ Ω where Ω is the CY holomorphic (3, 0)-form. Since Ω is a function of the

complex structure moduli which do not rescale, W0 scales as G3 whose weight is ω (see the

weight of C2 in (2.4)). Thus (2.16) can be used to fix the weight of the chiral compensator

which in turn determines the weight of the tree-level Kähler potential K0 from (2.15) as:

Φ → λ−
1
3

(ω+2ν) Φ ⇒ e−K0/3 → λ
2
3

(ω+2ν) e−K0/3 . (2.17)

Using the scaling properties of the dilaton and the volume mode together with the fact that

axionic shift symmetries forbid a dependence of the tree-level K0 on C0 and C4-axions, the

relation (2.17) allows us to fix:

e−K0/3 = A (Im τ)1/3 V2/3 , (2.18)

where A is a scale invariant combination of all other 4D fields. Notice that this expression

reproduces the one obtained by direct dimensional reduction:

K0 = −2 ln V − ln(−i(τ − τ̄)) − ln

(

i

∫

X3

Ω ∧ Ω

)

for A =

(∫

X3

Ω ∧ Ω

)1/3

.

– 8 –
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Thus we have seen the dependence of K0 on φ and V can be fixed without the need

to perform any computation but just by symmetry arguments via a combination of su-

persymmetry, scale invariance and shift symmetries. As shown in [15], these symmetry

considerations are also enough to infer that the 4D EFT enjoys a no-scale cancellation

where the associated flat direction, the volume mode, corresponds to the Goldstone boson

of one of the two scaling symmetries which is spontaneously broken by the vacuum expec-

tation value of the metric. The other scaling symmetry is also spontaneously broken by the

vacuum expectation value of the dilaton. However the corresponding would-be Goldstone

mode, the dilaton, would become massive in the presence of non-zero 3-form flux quanta

which would break the rescaling symmetry explicitly. In fact, as can be seen from (2.4),

G3 rescales with weight ω, and so any 4D EFT with G3 fixed at a non-zero background

value would necessarily break this symmetry explicitly.

2.2 Perturbative corrections

10D perspective. As already stressed above, the two rescaling symmetries of the bulk

tree-level action are expected to be broken by higher order gs and α′ effects (we have already

seen that any Dp-brane action already breaks one of these two scale invariances). However

these breaking effects arise in a controllable manner since the parameters which control

these two perturbative expansions are two fields, φ and V, which rescale with a non-trivial

weight. We thus expect to be able to infer the dependence on φ and V of any perturbative

correction to K at all orders in gs and α′. This can be achieved by exploiting again the

superconformal chiral compensator formalism together with the scaling properties of the

10D and 4D EFT.

Before seeing how this works, let us remind the reader that the 10D type IIB super-

gravity action can in general be expanded as:

SIIB = S
(0)
bulk +

∞∑

m=3

∞∑

n=0

(α′)mgn
s S

(m,n)
bulk + S

(0)
loc +

∞∑

m=2

∞∑

n=0

(α′)mgn
s S

(m,n)
loc . (2.19)

Notice that, because of N = 2 supersymmetry, the first higher derivative corrections to

the bulk action arise only at order (α′)3.2 Corrections to the action of localised sources are

instead expected to emerge only at (α′)2 order. The higher derivative corrections in (2.19)

can be obtained from string amplitudes [60–63], the pure spinor formalism [64, 65], via

duality to M-theory [28, 66–71] or supersymmetry [72–79] (see also [80–84]). It should be

stressed however that the challenge is not so much computing string scattering amplitudes

where e.g. the full α′ expansion is known at closed string tree level [85] and where partial

results are available up to 3-loop order, cf. the recent work [86] for more references. It is

rather constructing a local effective action that reproduces the amplitude kinematics which

involves an intricate procedure of pole subtractions from lower-point amplitudes together

with a plethora of kinematical structures as discussed in [87].

2While R2 corrections can arise in the heterotic string, in type II theories the greater degree of super-

symmetry forbids R2, R3 as well as all other terms at order α′ and (α′)2 [59].
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At order (α′)3, one finds schematically:

S
(3,0)
bulk ∼

∫

d10x
√

−g̃
[

R4 + R3
(

G̃2
3 + |G̃3|2 + G̃

2

3 + F̃ 2
5 + |P|2

)

(2.20)

+ R2
(

|∇G̃3|2 + (∇F̃5)2 + G̃4
3 + . . .

)

+ R
(

G̃6
3 + . . .

)

+
(

G̃8
3 + (|∇G̃3|2)2 + . . .

)]

,

where:

G̃3 ≡ G3√
Im τ

and P ≡ i ∇τ
Im τ

. (2.21)

In general, an arbitrary correction to the 10D bulk action in string frame at order (α′)mgn
s

involving the dilaton, the curvature and the 3-form flux H3 can be written as:

S
(m,n)
bulk ∼

∫

d10x
√

−ĝ
(

1

Im τ

)(n−2) (

ĝ◦◦R̂◦
◦◦◦

)p+1
[ĝ◦◦ĝ◦◦ĝ◦◦H◦◦◦H◦◦◦]r m = p+ r ,

(2.22)

where ◦ denotes the appropriate index structure and m = p + r since each power of

R̂ and H2
3 contains two derivatives. In (2.22) we ignored potential contributions from

gradients of the dilaton since φ is set to be constant by the equations of motion (except in

the vicinity of localised sources). Higher derivative corrections are expected to introduce a

dependence of the dilaton on the internal coordinates but, given that explicit computations

have shown that this dependence can be rewritten in terms of the curvature [20], we expect

this effect to be captured by (2.22). Notice that (2.22) is generic enough to describe also

contributions of the form Rp+1(∇G3)2r since they would scale as Rp+r+1G2r
3 . Moreover

in (2.22) we neglected potential F̃5-dependent higher derivative corrections since F̃5 = 0

in the absence of warping. Writing H3 in terms of G3 and converting (2.22) to Einstein

frame via ĝMN = g̃MN/
√

Im τ , we end up with:

S
(m,n)
bulk ∼

∫

d10x
√

−g̃
(

1

Im τ

)(2n−p+r)/2 (

g̃◦◦R̃◦
◦◦◦

)p+1
[g̃◦◦g̃◦◦g̃◦◦G◦◦◦G◦◦◦]r . (2.23)

Notice that for n = m = 0 (2.23) reproduces the correct scaling of two terms in (2.1): the

Einstein-Hilbert term for p = r = 0, and the kinetic terms of G3 for p = −1 and r = 1.

Using (2.4), we can easily infer that the generic O ((α′)mgn
s ) correction (2.23) rescales as:

S
(m,n)
bulk → λ4ν−2n(w−ν)+m(w−2ν) S

(m,n)
bulk . (2.24)

4D perspective. Non-renormalisation theorems ensure that the superpotential receives

only tree-level and non-perturbative contributions, whereas the Kähler potential can be

corrected at all orders in α′ and gs. The 10D action (2.23) is therefore expected to yield

a perturbative correction to the 4D Kähler potential. Using again the two scaling sym-

metries of the classical action and the chiral compensator formalism, we can work out the

dilaton and volume mode dependence of a generic O ((α′)mgn
s ) perturbative correction to

K. Combining (2.15) with (2.16) for ωL = 4ν − 2n(w − ν) + m(w − 2ν) from (2.24), we

realise that:

(

e−K/3
)

(m,n)
→ λ

2
3

(ω+2ν)
[

λ−2(w−ν)
]n [

λw−2ν
]m (

e−K/3
)

(m,n)
. (2.25)
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This rescaling property, together with τ → λ2(ω−ν) τ , V → λ3ν V and the axionic shift

symmetries, implies that the perturbative Kähler potential has to take the form [15]:

e−K/3 = (Im τ)1/3V2/3
∑

n,m

A(n,m)

(
1

Im τ

)n
[

(Im τ)1/2

V1/3

]m

, (2.26)

where A(n,m) are scale invariant combinations involving other non-axionic fields. Inter-

estingly, supersymmetry dictates that the quantity which is corrected at a given order in

α′ and gs is e−K/3 and not directly K. This observation explains why some corrections

beyond tree-level which break scale invariance can still satisfy a generalised no-scale con-

dition [15] which accounts for the presence of an extended no-scale structure [25]. The

expression (2.26) is valid for m = p + r where p controls the number of curvature con-

tributions while r counts the factors of G2
3 in 10D. Since a non-zero G3 gives rise to the

4D superpotential W0 =
∫

X3
G3 ∧ Ω, when r 6= 0 A(n,m) should be proportional to W 2r

0 .

Knowing that the weight of W0 is ω, it is easy to deduce that the corresponding scale

invariant combination has to be:

A(n,m) = Â(n,m)

(

W 2
0

V2/3 Im τ

)r

with m = p+ r , (2.27)

where Â(n,m) is another scale invariant combination. As shown in [57], the ratio appearing

in (2.27) corresponds exactly to the parameter which controls the 4D superspace derivative

expansion since:
(
gF

M2
KK

)2

∼
(
m3/2

MKK

)2

∼ W 2
0

V2/3 Im τ
, (2.28)

where F denotes the F-term of the light fields and g is the coupling between heavy KK

modes and light states. Thus in the regime where the superspace derivative expansion is

under control, i.e. when gF/MKK ≪ 1, the leading correction at fixed order in α′ is expected

to be the one corresponding to r = 0. Notice that these higher F-term corrections might not

be incorporated into K but they might induce directly a correction to the scalar potential.

This difference does not matter for our scaling arguments (which can be applied equally

well by extending (2.14) to the more general case of corrections to
∫

d4θD), and so we

shall consider them as ‘effective’ corrections to K.

Perturbative gs and α′ contributions to the scalar potential of the 4D EFT can be

obtained by plugging W = W0 and the Kähler potential given by (2.26) and (2.27) into

the general expression:

V = eK
(

KAB̄ DAW DB̄W − 3|W |2
)

= eK
(

Kαβ̄ KαKβ̄ − 3
)

|W0|2 , (2.29)

where α and β run only over the Kähler moduli and, in the second equality, the dilaton and

the complex structure moduli have been fixed supersymmetrically. This yields a generic

O ((α′)mgn
s ) correction at O(F 2r) of the form:

V(n,m,r) = Â(n,m,r)
W 2

0

V2 Im τ

(

W 2
0

V2/3 Im τ

)r−1 (
1

Im τ

)n
[

(Im τ)1/2

V1/3

]m

(2.30)

= Â(n,m,r)

(
1

Im τ

)n+r−m/2 W 2r
0

V2+ m
3

+ 2
3

(r−1)
. (2.31)
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Notice that (2.30) displays clearly the 3 expansion parameters of the EFT associated to

higher F-terms, string loops and α′ effects. The relation (2.31) implies also that an arbitrary

contribution of the form V ∼ gs
s W

2r
0 /Vq corresponds to an O ((α′)m gn

s ) correction at

O(F 2r) with:

m = 3q − 2(2 + r) and n = s− 2(r + 1) +
3

2
q . (2.32)

From p ≥ −1 one finds also r = m− p ≤ m+ 1 which implies that at a fixed (α′)m order,

one can have higher F-term corrections up to F 2(m+1).

Moreover, the expression (2.31) reproduces several known perturbative effects:

1. m = n = 0 and r = 1 ⇒ p = −1: this is the standard tree-level scalar potential

arising from the 10D G̃2
3 term:

V(0,0,1) ∼ Â(0,0,1)

Im τ

W 2
0

V2
. (2.33)

The coefficient of this term is zero due to the no-scale cancellation: Â(0,0,1) = 0.

2. n = 0, m = 3 and r = 1 ⇒ p = 2: (α′)3 correction at O(F 2) like the one computed

by [20], which should arise from 10D terms like R3G̃2
3 and R2|∇G̃3|2:

V(0,3,1) ∼ Â(0,3,1)

√
Im τ

W 2
0

V3
. (2.34)

Notice that the dilaton dependence of this correction, when written in terms of the

number of closed string loops ℓc, reproduces the scaling expected from modular in-

variance:

(
1

Im τ

)2ℓc−1/2

=
1

Im τ

[

(Im τ)3/2(ℓc = 0) +
1√

Im τ
(ℓc = 1) + . . .

]

∼
f

(0,0)
3/2 (τ, τ̄)

Im τ
.

3. n = 0, m = 3 and r = 2 ⇒ p = 1: (α′)3 contribution at O(F 4), like those derived

in [27], which should come from 10D terms like R2G̃4
3 and (|∇G̃3|2)2:

V(0,3,2) ∼ Â(0,3,2)√
Im τ

W 4
0

V11/3
. (2.35)

4. n = 2, m = 2 and r = 1 ⇒ p = 1: (α′)2 open string 1-loop corrections (notice that

n = ℓo + 1 for ℓo open string loops) at O(F 2), like those worked out in [21] which,

from the closed string viewpoint, can be seen as due to the tree-level exchange of KK

modes between parallel stacks of branes:

V(2,2,1) ∼ Â(2,2,1)

(Im τ)2

W 2
0

V8/3
, (2.36)

where however Â(2,2,1) = 0 due to the extended no-scale cancellation.
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5. n = 2, m = 4 and r = 1 ⇒ p = 1: (α′)4 open string 1-loop effects at O(F 2), like

those derived in [21], which can be interpreted as the tree-level exchange of winding

modes between intersecting stacks of branes:

V(2,4,1) ∼ Â(2,4,1)

Im τ

W 2
0

V10/3
. (2.37)

This shows that the leading no-scale breaking effects in a large volume expansion seem to

be (α′)3 corrections at O(F 2), like the one derived in [20, 29]. Interestingly our scaling

analysis combined with generalised no-scale relations is powerful enough to argue that

(α′)2 corrections should be absent at any order in gs [15] (unless they come along with

ln V-factors [37]). On the other hand, (α′)1 effects, if they existed at some order in the

gs expansion, would dominate over (2.34) for V ≫ 1 since they would scale as V−7/3.

However also these perturbative effects might not be generated. In fact, in section 3 we

provide evidence for the absence at tree-level in gs (n = 0) of any correction to the 4D

scalar potential which scales as V−7/3. In appendix B we discuss instead the effect on

moduli stabilisation of potential (α′)1 corrections arising at loop level.

3 Leading no-scale breaking effects in type IIB

In this section we shall try to understand what is the leading order no-scale breaking

contribution to the 4D scalar potential in the limit where the EFT is under control, i.e. for

V ≫ 1 and at tree-level in the string loop expansion. We shall first exploit the symmetry

considerations of section 2.2, and we shall then confirm our findings with a combination of

dimensional reduction and dimensional analysis.

3.1 Symmetry considerations

Symmetry arguments led us to the fundamental result (2.32) which implies:

1. Any contribution to the scalar potential at O(F 2r) should feature r ≥ 1. This implies

q ≥ 2+m/3. At tree-level, i.e. m = 0, one has q ≥ 2, and so the first dangerous higher

derivative correction arises at order (α′)1, i.e. m = 1, corresponding to q ≥ 7/3.

2. A term as V−7/3 can arise only at order (α′)m F 2r with m = 3−2r. For r = 0 one has

m = 3, corresponding to the O((α′)3)R4 term. However r = 0 implies F 0, and so no

contribution to the 4D potential. This fits with the fact that the integral of R4 over

a CY threefold gives zero. For r = 1 one has instead m = 1 at O(F 2), potentially at

different orders in the string loop expansion counted by the powers of gs. However,

given that at tree-level there are no (α′)1 corrections since the bulk action starts

being corrected at O((α′)3) while the brane action at O((α′)2), no V−7/3 term can

be generated at tree-level in gs. For r = 2, m becomes negative, leading to an absurd

result.

3. A correction which scales as V−8/3 would correspond to m = 4 − 2r. For r = 1,

we have m = 2, and so an (α′)2 F 2 term which however should come with a zero
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coefficient due to the extended no-scale cancellation, regardless of the order in the gs

expansion.3 This can be easily seen from the fact that, in a supersymmetric theory,

such a term should come from a V-independent correction c to the Kähler potential

of the form e−K/3 = V2/3 + c that would however satisfy a generalised no-scale

relation [15]. For r = 2, m = 0 which would be an F 4 term at tree-level. This would

correspond to the V−8/3 term used in T-brane uplifting scenarios [90] since it is a

tree-level effect that scales in terms of F-terms of matter fields as (Fmatter)2 where

it can be easily seen that they are related to the F-terms of the Kähler moduli as

Fmatter ∼ (F T )2.

4. A perturbative correction which scales as V−3 features m = 5 − 2r. For r = 1, one

has m = 3, and so standard (α′)3 corrections at O(F 2) [20, 29]. For r = 2 one would

have instead m = 1 but we have just recalled that there are no (α′)1 corrections in

10D at tree-level. The r = 3 case can instead be safely ignored since the α′ order

would become negative.

This analysis, just based on symmetries and the known absence of (α′)1 corrections at

tree-level, implies that the leading no-scale breaking effect in the 4D scalar potential at

tree-level should arise from (α′)3 effects and should scale as V−3.

3.2 Arguments from dimensional analysis

Let us now provide further evidence in favour of this claim from arguments based on

a dimensional analysis combined with dimensional reduction. As we have seen above,

the order in α′ and the number of F-terms is dictated by the V and W0 dependence of a

generic perturbative correction. This has been derived in (2.31) using symmetry arguments

and it agrees with the expectations from direct dimensional reduction. In fact, when all

components of tensors and derivatives are taken along internal directions,4 the generic

O ((α′)mgn
s ) 10D correction (2.23) generates a contribution to the 4D scalar potential whose

V dependence can be inferred as follows [5]:

(i) the Weyl rescaling to 4D Einstein frame yields a V−2 factor;

(ii) the integration over X3 brings a V contribution;

(iii) as can be seen from (2.10), each inverse metric factor introduces a V−1/3 dependence.

The number of F-terms and the associated W0 dependence can instead be easily deduced

from the number of G3 terms in 10D. Hence dimensional reduction is expected to produce:

V(n,m,r) ∼ W 2r
0

V1+ λ
3

with λ = 3r + p+ 1 , (3.1)

where λ counts the net number of inverse metric factors, and its expression in terms of r and

p follows from (2.23). This formula can further be motivated as follows: flux quantisation

3Modulo ln V corrections [37, 88, 89], if present at all.
4Upon modifying the volume factor coming from Weyl rescaling, this dimensional analysis can in principle

be applied to determining the volume behaviour of any other term in the 4D effective action.
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(α′)m p r 10D term 10D N = 2 λ V (V) 4D V F 2r

0 0 0 R √
1 V−4/3 × —

0 −1 1 |G̃3|2 √
3 V−2 √

F 2

1 1 0 R2 × 2 V−5/3 × –

1 0 1 R|G̃3|2 × 4 V−7/3 × —

1 −1 2 |G̃3|4 × 6 V−3 × —

2 2 0 R3 × 3 V−2 × –

2 1 1 R2|G̃3|2 × 5 V−8/3 × –

3 3 0 R4 √
4 V−7/3 × —

3 2 1 R3|G̃3|2 √
6 V−3 √

F 2

3 1 2 R2|G̃3|4 √
8 V−11/3 √

F 4

3 0 3 R|G̃3|6 √
10 V−13/3 √

F 6

3 −1 4 |G̃3|8 √
12 V−5 √

F 8

Table 1. Volume scaling and F-term order of different α′ corrections to the 4D scalar potential

generated by various 10D terms. The V dependence and the number of inverse metric factors λ is

obtained from (2.31) and (3.1). 10D terms of the form Rp+1(∇G̃3)2r can also be incorporated by

noticing that they would scale as Rp+r+1G̃2r
3 .

implies G̃3 ∼ O(α′) as the leading order solution to the 10D equations of motion. At a

fixed order m in the 10D α′ expansion, one has λ = 2r+m+1 net factors of inverse metrics.

Hence, for dimensional reasons, each power of (G̃3)2 introduces an additional V−2/3 power

in (3.1).5 Using p = m − r it is straightforward to realise that the V dependence in (3.1)

agrees with the one in (2.31). We summarise in table 1 the volume scaling and the F-

term order of different α′ contributions to the 4D scalar potential arising from various 10D

terms. For completeness we include also higher derivative terms like R2 and R3 which are

forbidden in the type IIB action due to supersymmetry [59] and R4 even if it does not

contribute to the 4D scalar potential due to Ricci-flatness and Kählerity of the underlying

manifold [91] (see appendix A for details).

Coming back to the leading order no-scale breaking effects, we now apply the dimen-

sional analysis to argue against the presence of V−7/3 corrections at string tree-level in the

4D scalar potential. The starting points are two higher dimensional actions: the 10D bulk

type IIB action and the 8D D7/O7 DBI and WZ actions. In this type of compactifications,

5Similar arguments apply to F̃5 which satisfies F̃5 ∼ O((α′)2) due to the 5-form Bianchi identity. Hence,

each power of (F̃5)2 comes with a volume factor of V−4/3.
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localised D5-brane sources are projected out by the orientifold. Localised D3-branes are

instead relevant for the 4D 2-derivative effective action as far as their backreaction on the

closed string background is concerned, but higher derivative couplings on their worldvol-

ume can clearly be ignored. We will come back to D3-branes later. Upon dimensional

reduction (on CY threefolds and on Kähler twofolds respectively), these two actions po-

tentially give rise to a plethora of perturbative corrections to the 4D scalar potential which

we now discuss schematically.

Bulk corrections. The 32 supercharges characterising the 10D bulk theory force the

first higher derivative corrections to arise only at order (α′)3. Schematically, one finds:

Lbulk = R + |P|2 + |G̃3|2 + |F̃5|2 + (α′)3L′(τ ; R,P, G̃3, F̃5) + O((α′)5) , (3.2)

where L′ collects all possible 8-derivative couplings, and we have neglected the classi-

cal Chern-Simons term since it is irrelevant for the present discussion. Notice that the

axio-dilaton can appear either in P (with gradients involved) or in the modular functions

multiplying the various kinematic structures. Moreover all terms in L′ contain an even

number of G̃3’s and F̃5’s due to parity invariance.

Recall also that, due to Ricci flatness and Kählerity, terms in (3.2) involving only

powers of R give vanishing contributions to the 4D scalar potential when integrated on

the internal manifold.6 The same holds true for CY fourfold compactifications of M-theory

down to 3D where a 3D scalar potential can be generated only for a non-vanishing G4

flux [43, 92]. Considering an elliptically fibred fourfold and performing the F-theory limit,

we therefore conclude that a 4D scalar potential can be generated only by turning on either

G̃3 or F̃5 in the bulk, or F2 on D7-branes. This is a crucial statement since terms like R4

or P2n(∇P)mR4−n−m with 1 ≤ n ≤ 4, 0 ≤ m ≤ 4, if they were contributing to the 4D

scalar potential, would produce corrections which scale as V−7/3. This is easy to see: each

power of R and of ∇P, and each pair of P’s need one net factor of inverse metric of the

CY threefold to give rise to a Lorentz invariant. Hence λ = 4 and (3.1) yields V ∼ V−7/3.

As we have already seen, the leading corrections beyond the tree-level V−2 term coming

from |G̃3|2, originate from reductions of terms like R3G̃2
3 and R2|∇G̃3|2 which scale like

V−3 with λ = 6 in (3.1) (corresponding to (α′)3 corrections at F 2 order). Every pair of

G̃3’s that replaces a power of R introduces an additional V−2/3 suppression. Analogous

considerations hold for higher derivative terms containing F̃5, which start contributing

at order V−11/3 and acquire an additional V−4/3 suppression each time a pair of F̃5’s

replaces an R (recall footnote 5). Notice that, contrary to the purely gravitational sector,

in N = 1 compactifications there is no reason to exclude contributions from terms of the

form R3−nG̃2
3P2n with 1 ≤ n ≤ 3 (or analogous terms involving also ∇P). This is because

the presence of D7-branes induces non-trivial gradients for the axio-dilaton.7

6It is well-known that in flux-less N = 2 compactifications, moduli remain massless to all orders in α′

and gs [5]. In appendix A we show explicitly that R4 does not contribute to the scalar potential.
7Corrections of this type are e.g. those discussed in [29] from a 12D viewpoint.

– 16 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
9

To summarise, the classical KK reduction of the 8-derivative bulk 10D action down

to 4D on a orientifolded CY threefold gives rise to only (α′)odd corrections to the scalar

potential, starting from (α′)3 at tree-level in gs (sphere level) which yields V ∼ V−3.

Brane corrections. The 16 supercharges of the 8D worldvolume theory of a stack of

D7-branes (or O7-planes) fix to (α′)2 the order of the leading higher derivative corrections.

Schematically, this amounts to:

Lloc =

√−g
(α′)2

+ Tr
(

|F2|2 + |DΦ|2 + [Φ,Φ]2
)

+ (α′)2L′′(τ ; R,F2, DΦ, [Φ,Φ]) + O((α′)4) ,

(3.3)

where again we have ignored the classical Chern-Simons couplings to RR forms since they

are irrelevant for our discussion. All bulk quantities in (3.3) are meant to be pulled-back

to the brane world-volume, g denotes the determinant of the induced metric with R its

curvature 2-form,8 F2 is the gauge invariant world-volume field-strength and Φ collectively

denotes worldvolume scalars (possibly non-Abelian). The τ dependence is again due to the

modular functions multiplying the various kinematic structures and we have dropped all

terms of the type R2 since there is no 4D scalar potential generated purely by geometry.

It is a common convention (T-duality friendly) to take world-volume fields, like Φ and

the gauge field A, to have mass dimension 1 (as opposed to bulk fields). Moreover, T-

duality and gauge invariance force any possible correction to be written just in terms of

the arguments of L′′.9

D7-brane tadpole cancellation guarantees that the classical tension does not contribute

to the 4D scalar potential which would have otherwise yielded a V−4/3 dependence from

integrating the first term in (3.3). In fact, following the same logic which led to (3.1) with

the only difference that now the internal integration gives a V2/3 instead of a V factor, we

can easily infer that a generic term in the localised action (3.3) can in principle generate a

contribution to the 4D scalar potential which scales as V ∼ V−(4+λ)/3 where λ counts again

the number of inverse metric factors. The classical tension would correspond to λ = 0.

The classical 4D scalar potential thus arises from integrating |F2|2 over the internal

4-cycle.10 If we have a non-Abelian stack and/or the brane has a non-trivial profile in the

normal directions, further contributions to the 4D scalar potential come from integrating

|DΦ|2 and [Φ,Φ]2 [93]. Notice that all of these terms would produce a scalar potential

which scales as V−2. In fact they all have λ = 2 since they involve 2 pairs of indices (both

longitudinal for |F2|2, both transverse for [Φ,Φ]2, while one longitudinal and one transverse

for |DΦ|2), and hence need 2 inverse metric factors to give rise to a Lorentz invariant.

The term proportional to F2 is the well-known D-term scalar potential contribution from

moduli-dependent Fayet-Iliopoulos (FI) terms [94].

8Here it is not relevant to distinguish between curvature of the tangent and of the normal bundle.
9With the only exception of the implicit dependence of bulk quantities on the normal coordinates

√
α′ Φ,

which is often used to encode backreaction effects of the branes on the closed string background.
10More precisely, only the anti-self-dual part of F2 generates a potential since the self-dual part contributes

to D3-brane tadpole cancellation.
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The leading higher derivative corrections to the brane action are all encoded in L′′

and are all quartic in R, F2, DΦ and [Φ,Φ].11 Thus each term necessarily involves 4 pairs

of indices (which may be all longitudinal, all transverse, or mixed) which implies λ = 4

and V ∼ V−8/3, as expected for (α′)2 corrections. As stressed above, supersymmetry and

generalised no-scale relations should imply the absence of these corrections [15] (in the

sense that they might just induce moduli redefinitions [34]). However if they arise with

an additional logarithmic dependence on the Kähler moduli, they might still represent the

leading no-scale breaking effect [37]. Symmetries and scaling arguments are clearly not

enough to provide a definite answer to this important issue.

To summarise, the classical KK reduction of the 8D higher derivative brane action down

to 4D on a Kähler twofold gives rise to only (α′)even corrections to the scalar potential,

starting from (α′)2 level which might yield at most a correction of the form V ∼ V−8/3

(starting at the disk and projective-plane level, in the string coupling expansion).

Let us finally mention that we focused above only on stacks of D7-branes in isolation

whose physics is accurately described by the DBI and WZ actions. However in N = 1

compactifications D7-branes can also intersect in complex codimension-1 loci where the 8D

action fails to fully capture the physics due to the possible presence of massless matter at the

intersection. Such special loci may be viewed as 6D defects of the 8D theory with their own

EFT. Unfortunately, not much is known about the structure of higher derivative corrections

to such a theory. However two intersecting stacks of D7-branes12 can approximately be

described as a single stack (of size the sum of the two sizes) with a non-trivial profile for the

worldvolume scalars [95, 96].13 Such a profile encodes the information of the wavefunctions

of localised fields as can be seen by solving the D-term differential equations.14 Aside

from the details, what this reasoning teaches us is that there cannot be higher derivative

corrections on the defects which cannot be continuously extracted from corrections already

present in the 8D worldvolume action.

Backreaction. The analysis of the previous paragraphs does not take into account the

effect of branes and fluxes on the bulk background. A clever way to capture at least some

of them is to regard the bulk fields as functions of the brane worldvolume scalars and

Taylor expand them.15 The couplings that arise induce new operators on the worldvolume

field theory, which softly break the original 16 supercharges. This phenomenon makes

also the D3-brane worldvolume theory contribute to the 4D scalar potential. Imaginary-

anti-self-dual bulk fluxes indeed generate terms like gs(α′)2(∗6G̃3 − iG̃3)ijkΦiΦjΦk on a

11Again terms of the type R4 are not expected to contribute to the 4D potential. Moreover terms where

a power of F2 is replaced by a pair of D’s give the same V dependence.
12We assume that the stacks wrap homotopically equivalent 4-cycles. We conjecture the same conclusions

to hold in the more general case where however we cannot use the continuity arguments employed here.
13The smaller the intersection angle, the more accurate this description compared to the defect picture.
14As an easy example in affine space, consider two D7-branes intersecting on z1 = z2 = 0 in C

2. This

system can equivalently be described by a stack of two D7-branes on z1 = 0 with a Higgs field given by

Φ = diag(z2, −z2).
15This method has been introduced in [93] and later used in [97–99] to compute soft supersymmetry

breaking terms.

– 18 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
9

stack of D3-branes,16 where the power of gs shows that such effects appear at 1-loop in

string perturbation theory. Analogous terms are expected to pop up also on D7-branes and

to contribute to the 4D potential after integration on the internal 4-cycle. An interesting

example in the case of T-branes is a term which scales as V−8/3 that has been used to achieve

dS vacua [90]. Given that the Taylor expansion does not require any metric contraction,

the structure of all these terms is such that a Lorentz invariant can be constructed only in

the presence of an even number of net inverse metric factors. Thus λ has to be even, and

so no V−7/3 correction can be generated this way.

Another important backreaction effect is the generation of warping in the spacetime

metric due to branes and fluxes [100], see in particular [101, 102] for Kähler potentials in

warped backgrounds. Thanks to open/closed string duality, by solving for the warp factor

the tree-level equations of motion in the closed string sector, we infer a 1-loop correction in

the open string (and non-orientable closed string) sector. Following the discussion of [36],

the V dependence of such a correction to 4D scalar potential depends on the dimension of

the D-branes/O-planes involved. In the type of compactifications we are analysing, this

dependence is however bounded from below by V−8/3 (due to graviton exchange between

D7-branes).

Final remarks. Altogether, the arguments given above lead us to state with reasonable

certainty that V−7/3 corrections are absent in the 4D scalar potential at string tree-level.

This is because all 4D corrections at string tree-level must already be present in the higher

dimensional (and more supersymmetric) theories whose zero-mode reductions we have anal-

ysed in detail. It is starting from the string 1-loop level that new states (such as KK and

winding modes) come into play and potentially contribute to amplitudes between low-

energy states. Therefore we cannot guarantee that the reduction of supersymmetry down

to 4 supercharges caused by compactification does not give birth to novel 4D perturbative

corrections. Famous examples of such loop corrections due to exchange of KK and wind-

ing modes are those computed in [21] for both N = 2 and N = 1 toroidal orientifolds.

They appear at (α′)even order but their origin as higher derivative corrections in the D7

worldvolume theory (or equivalently in M/F-theory) is still unclear.

Apart from the backreaction effects discussed above, little is known about the conse-

quences of supersymmetry breaking on the starting bulk and brane actions. A hint in this

direction might be obtained by analysing loop amplitudes of 11D supergravity compactified

on elliptically fibred CY fourfolds. Such amplitudes, albeit in the case of toroidal reduc-

tions only, were shown in [68, 71] to efficiently capture string loop and non-perturbative

corrections.17 In order to able to make an exact-in-gs claim of absence of V−7/3 corrections,

one should find a way to perform a dimensional analysis of the kinematic structures ex-

pected from loop amplitudes of 11D supergravity on non-toroidal backgrounds. This will be

further motivated in section 5. In the remainder of this paper we shall use M/F-theory tech-

niques to infer the form of α′ corrections at different orders in the 4D superspace derivative

expansion without however being able to shed too much light on the gs expansion.

16They arise by a first order Taylor expansion of the non-Abelian DBI coupling B[Φ, Φ] [97].
17Examples of that are the bulk couplings (α′)3L′ in (3.2).
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4 α
′ corrections from dimensional analysis in F/M-theory

Here we come to the core of our study. In section 4.1 we outline the rules for connecting the

4D EFT to the intermediate 3D theory obtained after CY fourfold reductions of M-theory.

In section 4.2 we then apply these rules to the reduction of higher derivative structures

appearing in 11D supergravity. This will allow us to make general statements about the

ensuing α′ corrections to the 4D F-theory effective action.

4.1 The F-theory limit

In this section we will discuss the rules to extract the 4D F-theory effective action from the

3D one arising from the associated M-theory reduction [51, 103]. To do so, we will exploit

F/M-theory duality, which can be roughly summarised as follows [50]. One compactifies

M-theory on an elliptically fibred CY fourfold Y4 and picks up a basis of fundamental

1-cycles, called A and B-cycles, on the generic smooth fibre. First of all one reduces the

11D theory on the A-cycle and then T-dualises it along the B-cycle, ending up with type

IIB compactified on the threefold base of the fibration (over which the axio-dilaton has

a non-trivial profile) times the circle T-dual to the B-cycle. The final step is the limit

of vanishing volume of the original fibre, the so-called ‘F-theory limit’, which renders the

effective theory Poincaré invariant in 4D, by decompactifying the extra circle in IIB.18

The best strategy is to compare two actions in 3D: one obtained from a fourfold reduc-

tion of the 11D supergravity action, and the other from a preliminary threefold reduction

of the type IIB supergravity action, followed by a circle reduction. We first make this

comparison at the classical level, i.e. considering all terms at lowest order in ℓM and α′,

in order to derive all the formulas which are relevant to take the F-theory limit. These

formulas are then used in section 4.2 to discuss the structure of α′ corrections. We will

not pay attention to the exact derivation of all 2π factors since our focus will instead be

on volume factors and on how the duality between M and F-theory relates ℓM and α′.

Since fluxes will play a crucial rôle in what follows, let us first say a few preliminary

words about them. According to the F/M-theory duality, Poincaré invariance in 4D forces

the internal M-theory G4 flux to have 1 leg along the fibre and 3 legs on the base [104].19

Depending on whether the 3 legs on the base are along a 3-cycle or a 3-chain, G4 gives rise

respectively to bulk type IIB F3 and H3 fluxes or to the D7-brane F2 flux. The integral

flux quanta on both sides of the duality must be the same, translating into the following

equality of vacuum expectation values:

1

ℓ3M

∫

C4

G4 =
1

α′

∫

C3

pF3 + qH3 . (4.1)

18See [34, 35] for earlier formulations of the F-theory limit. The present one differs from them only in the

powers of the base volume, V, which is a finite quantity in the F-theory limit. However, since one of the

main goals of this paper is to estimate the behaviour of string corrections at large V, it is crucial to derive

how the various terms in the action precisely scale with V after the F-theory limit.
19We will not discuss the case where G4 has 3 legs on R

1,2 which is instead associated to F5 and to the

warp factor in type IIB.
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Here the 4-cycle C4 is a circle bundle over the 3-cycle/3-chain C3 with fibre pS1
A + qS1

B,

where p, q are integers and S1
A,B are the A and B-cycle respectively. As a consequence, the

flux-induced M2/D3 tadpole reads:

1

2ℓ6M

∫

Y4

G4 ∧G4 =
1

(α′)2

∫

B3

F3 ∧H3 , (4.2)

where Y4 → B3 is the elliptic fibration and the factor of 1/2 is combinatorial. Hence

one gets a match between the Chern-Simons terms of 11D and type IIB supergravity by

requiring:
1

ℓ3M

∫

R1,2
C3 =

1

(α′)2

∫

R1,2×S1
C4 . (4.3)

We will find below how to write G4 in terms of F3 and H3, and C4 in terms of C3, in order

to satisfy both (4.1) and (4.3).

On the CP-even side of the 11D action, the kinetic term of the G4 flux combines

with the 8-derivative curvature correction R4 to give rise, upon using M2-brane tadpole

cancellation [105–107], to the 3D scalar potential [43, 108]:

V
(M)

tree =
1

2ℓ6M

∫

Y4

(G4 ∧ ⋆8G4 −G4 ∧G4) =
1

ℓ6M

∫

Y4

G4− ∧ ⋆8G4− , (4.4)

where G4− denotes the anti-self-dual part of G4. Correspondingly, on the side of type IIB

compactified on B3, one has:

V
(F)

tree =
1

(α′)2

∫

B3

G3− ∧ ⋆6Ḡ3−

Im τ
, (4.5)

which originates from the kinetic term of the G3 flux, after removing the contribution of

its imaginary-self-dual part G3+, fixed by the D3 tadpole. The F/M-theory duality in this

case amounts to the statement:

V
(M)

tree = V
(F)

tree . (4.6)

Moreover, according to the M/F theory duality, Euclidean M5-branes in M-theory which

are ‘vertical’, i.e. wrapped around a 6-cycle in Y4 having the structure of an elliptic fibration

over a 4-cycle in B3, descend to Euclidean D3-branes wrapped on the same 4-cycle. This

leads us to equating their tension in the respective units, namely:

v2vf = v2
b , (4.7)

where vf and v are respectively the volumes of the fibre and a 2-cycle of the base, computed

with the M-theory metric in units of ℓM , whereas vb is the volume of a 2-cycle of the base,

computed with the type IIB Einstein frame metric in units of α′.20

After reducing the 11D classical action down to 3D on an elliptically fibred CY fourfold,

one finds:

S
(3)
M =

1

ℓM

∫

V4 R̃
(3)
√

−g̃(3) d3x+
1

ℓ3M

∫

V
(M)

tree

√

−g̃(3) d3x , (4.8)

20Given that we are interested just in volume scalings, we can consider without loss of generality a base

manifold with just a single Kähler modulus.
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where R̃(3) denotes the Ricci scalar of the 3D metric g̃
(3)
µν , and V4 is the volume of Y4 in

units of ℓM which can be written in terms of the Kähler form J as:

V4 =
1

ℓ8M

∫

Y4

J ∧ J ∧ J ∧ J . (4.9)

To bring this action to the standard 3D Einstein frame, we have to rescale the metric as:

g̃(3)
µν = g(3)

µν

(〈V4〉
V4

)2

, (4.10)

so that we get:

S
(3)
M = M3

∫

R(3)
√

−g(3) d3x+M3
3

∫
V

(M)
tree

V3
4

√

−g(3) d3x , (4.11)

where we have defined the 3D Planck mass as M3 ≡ 〈V4〉/ℓM .

On the other hand, the reduction of the type IIB Einstein frame classical action down

to 4D on the base B3 of the elliptic fibration gives:

S
(4)
IIB =

1

α′

∫

V R̃(4)
√

−g̃(4) d4x+
1

(α′)2

∫

V
(F)

tree

√

−g̃(4) d4x , (4.12)

where V is the volume of B3 in units of α′. To bring this action to the standard 4D Einstein

frame, the 4D metric has to be rescaled as:

g̃(4)
µν = g(4)

µν

〈V〉
V , (4.13)

so that we get:

S
(4)
IIB = M2

p

∫

R(4)
√

−g(4) d4x+M4
p

∫
V

(F)
tree

V2

√

−g(4) d4x , (4.14)

where the 4D Planck mass has been defined as Mp ≡
√

〈V〉/α′. Next, we dimensionally

reduce this action to 3D on a circle of radius r
√
α′, obtaining:

S
(3)
IIB = M2

p

√
α′

∫

r Ř(3)
√

−ǧ(3) d3x+M4
p

√
α′

∫
V

(F)
tree

V2
r
√

−ǧ(3) d3x . (4.15)

In order to match (4.11) and (4.15), we first have to write both of them in terms of the

same dynamical fields (in this case just the 3D metric). This leads us to perform another

Weyl rescaling:

ǧ(3)
µν = g(3)

µν

(〈r〉
r

)2

, (4.16)

which turns (4.15) into:

S
(3)
IIB = M2

p

√
α′〈r〉

∫

R(3)
√

−g(3) d3x+M4
p

√
α′〈r〉3

∫
V

(F)
tree

V2r2

√

−g(3) d3x . (4.17)
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Now we are ready to match the 3D Lagrangians (4.11) and (4.17). Using (4.6) and the

definitions of the 3D and 4D Planck masses, we find:

V3
4 = 〈V〉 V2r2 and

ℓM√
α′

=
1

〈r〉1/3
. (4.18)

Notice that the first of the above equations is consistent with the expected relation between

the M-theory (3D) and the type IIB (4D) Kähler potentials, up to a constant shift (which

does not affect the field space metric):

KM = KIIB − 2 ln r − ln 〈V〉 . (4.19)

The second equation in (4.18) can also be rewritten as:

ℓM√
α′

= 〈vf 〉1/4 , (4.20)

which can be easily seen from the fact that (4.7) implies V = V4
√
vf from V4 = v3vf and

V = v3
b . Notice that these are the same relations valid in the trivial fibration case [67].

Moreover it can be easily shown that (4.20) holds also for compactifications to 5D and

7D, indicating that these are universal relations imposed by M/F-theory duality. It is also

worth pointing out that the dimensionful volumes of any 2p-cycles (p=1,2,3) of the base of

the elliptic fibration (measured with the respective metric and fundamental scale) are the

same on both sides of the duality:

(

〈v〉 ℓ2M
)p

=
(〈vb〉α′

)p
, (4.21)

which is easy to verify using (4.7) and (4.20).

To conclude, we observe that, due to (4.20), the relation:

G4

ℓ3M
=

√

〈vf 〉
ℓ2M

(

F3 ∧ dXA

ℓM
+H3 ∧ dXB

ℓM

)

(4.22)

between 4-form and 3-form fluxes is compatible with (4.1), provided that XA,B/ℓM are

angular variables normalised in such a way that ℓ−1
M

∫

S1
A,B

dXA,B = 1. Similarly, we have:

C4

(α′)2
=

〈r〉
(α′)3/2

C3 ∧ dY B

√
α′

, (4.23)

which, again due to (4.20), guarantees that (4.3) is satisfied, provided that Y B/
√
α′ is the

angular variable of the circle S̃1
B T-dual to the B-cycle, normalised in such a way that

(α′)−1/2
∫

S̃1
B

dY B = 1.

A few comments are now in order. Even though we talked about 3D actions, the actual

duality match concerns the Lagrangians in 3D, which are quantities with the dimension of

length−3. This is why we obtained a relation between the two fundamental scales ℓM and

α′. Internally, in contrast, we take the dimensionless coordinates used to parametrise the
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base of the elliptic fibration to be the same on the two sides of the duality. More precisely,

we have:
XJ

M

ℓM
=
XJ

IIB√
α′

, J = 1, . . . , 6 . (4.24)

The differentials of these coordinates are used to expand the various forms in the respec-

tive contexts (e.g. G4 in terms of dXJ
M, and F3 and H3 in terms of dXJ

IIB). For this

reason, (4.24) combined with (4.22) allows us to derive the following formulas connecting

the form coefficients:

ℓM (G4)IJKA =
√
α′ (F3)IJK , ℓM (G4)IJKB =

√
α′ (H3)IJK . (4.25)

These relations essentially state that dimensionless, metric-independent quantities are du-

ality invariant, and this is particularly useful when estimating the volume behaviour of the

terms in the 11D Lagrangian generating the low-energy scalar potential after compactifica-

tion. In addition, using this observation, it is easy to prove (4.6) when the classical scalar

potentials are written in terms of the form coefficients. In the following we shall exploit

this result to analyse perturbative corrections to the 4D EFT.

4.2 α
′ corrections to the 4D scalar potential

General framework. In this section we propose a scheme to argue for or against the

existence of certain α′ corrections in the 4D F-theory effective action. In particular, we

shall focus on corrections to the tree-level flux potential due to 8-derivative terms in the

11D M-theory action.21 In full generality, the 3D action obtained from reducing M-theory

on a fourfold Y4 contains a scalar potential of the form:

S
(3)
M ⊃

∫ √

−g(3) d3x

(〈V4〉
V4

)3 1

ℓ3M
V (M) , (4.26)

where:

V (M) = V
(M)

tree + V (M)
corr =

∫

Y4

V (M)(G4,R)
√

g(8) d8x . (4.27)

Up to ℓ6M order, we have (schematically):

V (M)(G4,R) =
|G4|2
ℓ6M

+ (∇G4)2R2 +G2
4R3 + (∇G4)4 +G4

4R2 +G6
4R +G8

4 . (4.28)

Strictly speaking, these are only the 8-derivative couplings appearing in the CP-even sector.

We ignore CP-odd terms as derived in [63] which do not contribute to V (M).22 Recalling

that 4D Poincaré invariance requires the 4-form flux to have exactly 1 leg along the fibre,

and applying the results of section 4.1, the tree-level contribution in (4.26) reads:

〈V4〉3

V3
4

1

ℓ3M
= M4

p

(〈r〉
r

)3

r
√
α′

1

V2
, (4.29)

21Our analysis can also be applied to other terms in the 3D/4D action as corrections to the kinetic terms.

However the formulae need to be adjusted to account for the Weyl rescaling of the 3D metric.
22These couplings might however become relevant once our scheme is applied to deriving corrections to

other 4D quantities.
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where (〈r〉/r)3 disappears by undoing the Weyl rescaling (4.16) of the 3D metric. Fur-

thermore V−2 reproduces the correct volume scaling of the tree-level scalar potential in 4D

Einstein frame. Finally r
√
α′ generates the 4-th dimension upon taking the F-theory limit:

r
√
α′

∫

R3

√

−ǧ(3)d3x =

∫

S̃1
B

√

g(1)dy

∫

R3

√

−ǧ(3)d3x
vf →0−−−→

∫

R4

√

−g(4)d4x ,

where y is the dimensionful coordinate along the circle. This is just the opposite process

to the one in eq. (4.15). Having isolated these prefactors, the terms in V (M)(G4,R) that

contribute to the 4D scalar potential are those which are independent on vf . All in all, the

F-theory limit results in:

M3
3

∫
d3x

V3
4

∫

Y4

V (M)(G4,R)
√

g(8) d8x
vf →0−−−→ M4

p

∫
d4x

V2

∫

B3

V (F)(G3,R)
√

g(6) d6x .

(4.30)

The contribution to the scalar potential of the tree-level term in (4.29) is vf -independent,

therefore leading to (4.6). In what follows, we shall focus on metric contractions of the

8-derivative terms in (4.28) and on their behaviour under the F-theory limit to derive the

volume scaling of α′ corrections to the 4D scalar potential.

A metric ansatz for elliptically fibred CY fourfolds. For the subsequent dimen-

sional analysis and in contrast to [5], we require an ansatz for the internal metric in order

to distinguish between the scaling with respect to fibre and base volume. The former de-

termines the behaviour of a given metric contraction in the F-theory limit vf → 0, whereas

the latter specifies the V dependence of the corresponding correction in V (F). In this sense,

the upcoming analysis goes beyond the type IIB arguments of [5], by identifying all relevant

M-theory structures responsible for α′ effects in F-theory.23

To start with, we recall that Y4 is a Kähler manifold and both base and fibre are Kähler

submanifolds of Y4. For this reason, the various metric components are obtained from a

Kähler potential which can be split into two pieces. We denote local complex coordinates

on Y4 as ZA with A = 1, . . . , 4, and divide them as fibre coordinates ζa with a = 1, and

base coordinates zα with α = 1, 2, 3. Then the Kähler potential on Y4 reads:

K(Z, Z̄) = Kf (ζ, ζ̄, z, z̄) +Kb(z, z̄) , (4.31)

where Kb and Kf are respectively the Kähler potential of the base and the fibre, and the

non-triviality of the fibration is encoded in the dependence of Kf on z and z̄.

In the following, we assume that all metric components scale with integer powers of

vf and v, resulting in:24

Kf (ζ, ζ̄, z, z̄) = vf k
f (ζ, ζ̄, z, z̄) , Kb(z, z̄) = v kb(z, z̄) , (4.32)

23Here we focus solely on the zero-mode KK reduction of the M-theory action which, as we argue below,

is not sufficient to generate all α′ effects in F-theory compactifications.
24We use the fact that vf does not vary as we move over the base since J is closed in a Kähler manifold.

According to [109], however, deviations from Kählerity are possible due to backreaction effects, starting at

order ℓ9
M . The present analysis is purely classical and does not take into account such effects.

– 25 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
9

where kf and kb are two scale-independent functions. Our assumption is justified because

the Kähler form can be expanded as J = vf ωf + v ω, where ωf and ω are the harmonic

(1,1)-forms Poincaré dual to the horizontal and vertical divisor respectively. In other

words, there are no divisors wrapping only a 1-cycle of the fibre. Let us denote the metric

components as:

gAB̄ =

(

gab̄ gaβ̄

gαb̄ gαβ̄

)

, gαβ̄ = Kf

αβ̄
+Kb

αβ̄
, gab̄ = Kf

ab̄
, gaβ̄ = Kf

aβ̄
. (4.33)

Given that in the F-theory limit Kf

ab̄
∼ Kf

aβ̄
∼ Kf

αβ̄
∼ vf and Kb

αβ̄
∼ v, the components of

the metric and its inverse scale as:

gαβ̄ ∼ vf + v , gab̄ ∼ vf , gaβ̄ ∼ vf ,

gαβ̄ ∼ 1

vf + v
, gab̄ ∼ 1

vf
+

1

vf + v
, gaβ̄ ∼ 1

vf + v
, (4.34)

implying:

V4 =
√

det(g) ∼ v3vf

(

1 +
vf

v
+
v2

f

v2
+
v3

f

v3

)

. (4.35)

This result may also be obtained directly from (4.9) using ω2
f = −ωf ∧ c1(B3), with c1(B3)

the first Chern class of the base. For the same reason, (4.7) gets corrected as:

v2
b ∼ vf (v + vf )2 , (4.36)

which implies the following useful formula:

v3 ∼ V
v

3/2
f

+ V2/3 + V1/3v
3/2
f + v3

f . (4.37)

Next we compute the connection coefficients and the Riemann tensor. Up to symmetries

and complex conjugation, the non-vanishing components on a generic Kähler manifold are:

ΓA
BC = gAD̄ ∂BgCD̄ and RA

BC̄D = ∂C̄ΓA
DB . (4.38)

In appendix A we give the details of the various components after the fibre/base split

ZA → (ζa, zα). Concentrating only on the parametric volume dependence, we use (4.33)

and (4.34) to find:

Γa
bc,Γ

a
µb,Γ

a
αβ ,Γ

α
bc,Γ

α
βγ ∼ O(1) +

vf

v
+ . . . , Γα

γb ∼ vf

v
+ . . . , (4.39)

where . . . encodes additional terms of higher order in vf/v. Similarly, the non-vanishing

components of the curvature tensor satisfy:

Rα
βγ̄δ, R

a
βγ̄δ, R

a
βc̄δ, R

a
bγ̄δ, R

a
βγ̄d, R

a
bc̄δ, R

a
bγ̄d, R

a
bc̄d ∼ O(1) +

vf

v
+ . . . ,

Rα
βc̄δ, R

α
βγ̄d, R

α
aγ̄δ, R

α
aγ̄d, R

α
ac̄δ, R

α
ac̄d ∼ vf

v
+ . . . . (4.40)
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Parameter Specification

λf net number of inverse fibre metrics gab̄

λb net number of inverse base metrics gαβ̄

λmix net number of inverse mixed metrics gaβ̄

λ net number of inverse metrics

x number of tensors with non-trivial scaling

λcrit critical value of λf for finite results as vf → 0

Table 2. Summary of parameters used in the dimensional analysis.

4.3 No (α
′)odd terms from dimensional reduction

We are now ready to perform our scaling analysis. The idea is to look at all 8-derivative

Lorentz-invariant contractions allowed to appear in (4.28). We will actually be more general

and, analogously to (2.23) for 10D type IIB string theory but ignoring dilaton factors, we

schematically denote any 11D higher derivative term as:

KP RL ∝
(

g◦◦R◦
◦◦◦

)P +1[

(g◦◦)4G◦◦◦◦G◦◦◦◦

]R[

(g◦◦)5 ∇◦G◦◦◦◦∇◦G◦◦◦◦

]L
, (4.41)

with all indices taken along internal directions. As for the type IIB case, given that we

are interested just in scaling considerations, we can set L = 0 without loss of generality

since each power of (∇G4)2 scales as RG2
4. We now play a multi-parameter game counting

all possible contractions of (4.41), using the various parameters summarised in table 2.

We want to build contractions using all possible metric components. The total number of

inverse metrics λ satisfies:

λ = 4R+ P + 1 + 5L = λmix + λf + λb , (4.42)

which we use to eliminate λb in favour of the other parameters. Contrary to the type IIB

discussion in section 2.2, we have to take into account the possible non-trivial scaling of

the various connection coefficients and Riemann tensor components as in (4.39) and (4.40).

We count these scaling factors with an additional parameter x.

A standard KK reduction of the various 8D contractions results in a scaling of the 4D

scalar potential V with respect to base and fibre volume given by:

V ∼ M4
p

V2

∫

Y4

d8x
√

−g(8)KP RL ∼ M4
p

V2
(gaβ̄)λmix(gαβ̄)λ−λmix−λf (gab̄)λf

︸ ︷︷ ︸

metric contractions

V4
︸︷︷︸
∫

Y4




v

3/2
f

V1/3





x

︸ ︷︷ ︸

R, Γ

.

Using (4.34), (4.35) and (4.37), we end up with (setting Mp = 1):

V ∼
v

1
2

(λ+3(x−λf )−1)

f

V1+ 1
3

(λ−λf +x)



1 +
v

3/2
f

V1/3
+ . . .



 , (4.43)
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where the bracket encodes an expansion in powers of v
3/2
f /V1/3 and λmix drops out since

gaβ̄ ∼ gαβ̄ . Naively from (4.43) one may be worried that the reduction of the general

11D term (4.41) might give rise to divergent contributions in the F-theory limit vf → 0.

However our scaling analysis does not allow us to determine the coefficients of α′ corrections

to the 4D scalar potential arising from 11D higher derivative terms. We therefore assume

all apparently divergent terms in (4.43) come along with vanishing coefficients so that

M/F-theory duality holds at all orders in α′. Below we provide concrete evidence for this

assumption. Let us stress that the only input in (4.41) is parity invariance which constrains

all terms to be even in powers of G4. Moreover only particular kinematic structures are

expected to appear in the 11D action which is however not fully known yet, even at the

8-derivative level. The special nature of the compact geometry also plays a crucial rôle in

determining what terms survive after reduction.

For the above reasons, the terms in (4.43) that are amenable to give non-trivial con-

tributions to the 4D scalar potential are those independent of vf . This allows us to deduce

a critical value for the number of inverse fibre metrics λf . If a finite term in the F-theory

limit arises at order o in the expansion in v
3/2
f /V1/3, such a critical value is:

λcrit =
λ− 1

3
+ x+ o . (4.44)

This relation implies that (λ − 1) must be a multiple of 3 in order to have λcrit ∈ N,25

i.e. λ = 1 + 3n with n ∈ N. Given that the ℓlM order of the generic term (4.41) is counted

by l = 2(P + R + 2L), using (4.42) we can easily infer l = 6(n − R − L) which implies

that higher derivative corrections in M-theory should appear only at order ℓ6pM with p ∈ N

assuming they contribute in the F-theory limit. Remarkably, this is exactly what follows

from the general structure of M-theory higher derivative couplings conjectured by [58].

If we now plug (4.44) back into (4.43), we obtain:

V
vf →0−−−→







0 λf < λcrit

V−
2
3

(n+2) λf = λcrit n ∈ N

∞ λf > λcrit

(4.45)

Analogously to the type IIB result (3.1), corrections to the 4D scalar potential do not

depend on the detailed choice of contractions, but only on the net number of inverse metric

factors λ = 1 + 3n which is fixed for a given 11D term. Combining (4.45) with (2.32) for

q = 2
3(n + 2), we realise that the (α′)m order is:

m = 2 (n − r) =
2

3
(P +R+ 5L) , (4.46)

where we have used (4.42) and we have set r = R since the order F 2r or D2r of the F- or

D-term expansion of the 4D EFT is counted by the number of G4 powers in 11D, given

that F-term contributions arise when G4 reduces to G3 while D-term effects emerge when

G4 reduces to F2. The result (4.46) shows clearly that the classical KK reduction of the

25Here we take N = {0, 1, 2, . . .}.
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M-theory action can only give rise to (α′)even corrections to the 4D scalar potential at

different F- or D-term order. This is in agreement with [34, 35, 37, 88]. Notice the crucial

factor of 2/3 in (4.46) which implies an important difference in the counting of the (α′)m

order in comparison with the type IIB analysis performed in section 2.2 (setting L = 0):

Type IIB: m = p+ r F/M-theory: m =
2

3
(P +R) , (4.47)

where the only allowed values of P andR are those such that satisfy 4R+P = 3n with n ∈ N.

Primary examples of contributions to the α′ expansion of the 4D scalar potential

from the classical KK reduction of generic 11D terms are: (i) the tree-level 11D term G2
4

(P = −1, R = 1 and L = 0) which, according to (4.42) and (4.46), gives λ = 4, m = 0 and

V ∼ V−2, that corresponds to either the classical flux potential at order F 2 or to tree-level

moduli-dependent FI terms at order D2; (ii) the ℓ6M 11D term R4 (P = 3, R = 0 and

L = 0) which would yield λ = 4, m = 2 and V ∼ V−2, and so a potential (α′)2 correction

which however would not contribute to the 4D scalar potential since it is cancelled by the

self-dual part of the flux kinetic term [34, 43]; (iii) the ℓ6M 11D term R3G2
4 (P = 2, R = 1

and L = 0) which gives λ = 7, m = 2 and V ∼ V−8/3 corresponding to (α′)2 corrections at

O(F 2) (or potential (α′)2 corrections to FI-terms), in agreement with explicit reductions

performed in [35, 37, 88]. Whether these (α′)2 effects correct the scalar potential or give

rise just to moduli redefinitions is still an open issue. Interestingly (4.47) implies that the

10D higher derivative term R3G2
3 is not naively related to the corresponding 11D R3G2

4

term by a classical reduction since the first corresponds to (α′)3 effects while the second

would generate (α′)2 corrections. Results for different 11D terms are summarised in table 3.

Let us now comment on our metric ansatz (4.31). We worked with a general Kf which

is not necessarily flat. One might have assumed instead an ansatz for Kf like:26

Kf (ζ, z) = − vf

2 Im(τ(z))
(ζ − ζ̄)2 , (4.48)

which would yield a so-called semi-flat fourfold metric which is flat when restricted to the

fibre [111]. In particular, since Kf is only quadratic in ζ, it satisfies ∂cgab̄ = 0. Looking

at the expressions listed in appendix A, this implies that Rα
ac̄d, R

a
bc̄e, R

a
bc̄λ, R

a
bγ̄e are

suppressed by an additional factor of vf/v. Combined with (4.40), this suggests that

components of Ra
◦◦◦ and Rα

◦◦◦ with more than one fibre index downstairs scale with

a positive power of vf . Ultimately, restricting to the ansatz (4.48) causes all corrections

to the 3D scalar potential to vanish in the F-theory limit. However (4.48) is the correct

expression for Kf only away from singular fibres. Thus our analysis proves that the classical

reduction of 11D terms captures only effects due to 7-branes in F-theory compactifications

of M-theory. This is consistent with the discussion in section 3 where we argued that (α′)even

corrections are induced just by higher derivative couplings on D7-brane worldvolumes. On

the other hand, the type IIB closed string degrees of freedom are not captured in classical

reductions since they would generate (α′)odd corrections to the 4D scalar potential. This

raises the obvious question how the well-known (α′)3 effects in type IIB CY threefold

26This proposal has been used originally in [110] to describe elliptic K3 manifolds.
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ℓlM P R 11D term (λ− 1) λcrit (α′)m V (V)

ℓ0M -1 1 G2
4 3 1 0 V−2

ℓ6M 2 1 R3G2
4 6 2 2 V−8/3

ℓ6M 1 2 R2G4
4 9 3 2 V−10/3

ℓ6M 0 3 RG6
4 12 4 2 V−4

ℓ6M -1 4 G8
4 15 5 2 V−14/3

ℓ12
M 5 1 R6G2

4 9 3 4 V−10/3

Table 3. Summary of results for some (α′)even corrections to the 4D potential at different F- and

D-term order from classical reduction of higher derivative M-theory terms in the F-theory limit.

For simplicity, we set x = o = 0 in λcrit because the volume scaling in V (V) is independent on both.

compactifications [20] and orientifold generalisations thereof [29] can actually be recovered

from F/M-theory duality. We will discuss this issue in more detail in section 5.

Let us conclude with commenting on the limitations of our procedure. Here we are

only able to predict the α′ order of a given correction, and not whether this correction

actually appears in the 4D EFT or not. Clearly, some of these terms could be washed away

by applying field redefinitions [35, 36]. Finally, given that our analysis is only classical,

we are unable to account for possible loop effects in type IIB [112, 113] and F-theory [37]

which could generate ln V-type (α′)2 corrections in the 4D scalar potential.27

Absence of divergences in known kinematic structures. In the previous analysis

we assumed that all terms that naively would diverge in the vf → 0 limit, are actually

multiplied by vanishing coefficients which our analysis is insensitive to. This is essentially

the requirement that the M/F-theory duality makes sense beyond tree-level in α′. In this

section we give some evidence in this direction, following a logic that works for any Kähler

metric in the compact space.

The simplest higher derivative tensor structure is R4 which separates into two

pieces [67, 68, 116–119]:

SR4 =
1

ℓ3M

∫ (

J0 − 1

2
E8

)

⋆11 1 , (4.49)

where schematically (for definitions and conventions see appendix A):

J0 = t8t8R4 +
1

4
E8 with E8 =

1

3!
ǫ11ǫ11R4 . (4.50)

We now argue that, even though our analysis predicts divergent terms as vf → 0, they

cancel among each other in the 3D scalar potential (effectively due to Kählerity of Y4).

27Similar types of corrections at loop-level at order (α′)3 have been proposed in [33, 114, 115].
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First of all J0 can be expressed in terms of the Weyl tensor CM
NP Q as [120, 121]:

J0 = CU
MRV CUSQ

V
[

CMNP QCR
NP

S +
1

2
CMQP NCRS

P N

]

. (4.51)

We decompose J0 into an internal and an external part. As already noted in [43], the

external part vanishes because CM
NP Q = 0 in 3D. Furthermore the following integral

vanishes for Ricci-flat Kähler manifolds (see appendix A for details) [122, 123]:
∫

Y4

J0 ⋆8 1 = 0 . (4.52)

Nonetheless, within J0 there are contractions of the form:

RaāāaRāaa
aRā

ā
a

aR
aāāa ∼ (gaā)2 (gaā)5(Rā

āaā)2(Ra
aāa)2 , (4.53)

which would clearly be divergent from (4.45) since λf = 3 > 1 = λcrit. However the full

kinematics proves that this term must be multiplied by a vanishing coefficient. Therefore

from (4.49) we realise that the only contributions to the 3D potential are those associ-

ated with the 8D Euler density E8. Putting all legs along the internal directions, we

recover [34, 43]:
1

4
E8(Y4)⋆8 = 1536 c4(Y4) , (4.54)

in terms of the 4th Chern class defined in (A.8). By definition this quantity is topo-

logical and, in particular, finite in the vf → 0 limit. In fact, it contributes to the

M2-tadpole thereby cancelling the self-dual part of G4 in the tree-level scalar poten-

tial (4.4) [43, 105–108].

We next investigate the higher derivative term R3G2
4 whose 11D kinematics was de-

termined in [63, 124] as (see appendix A for definitions and conventions):

SR3G2
4

=
1

ℓ3M

∫ (

t8t8 +
1

96
ǫ11ǫ11

)

R3G2
4 ⋆11 1 . (4.55)

As before, we compactify both terms on Y4 and argue that there are no divergent terms

stemming from (4.55). The term ǫ11ǫ11R3G2
4 does not contribute to the 3D scalar potential

V (M) for dimensional reasons: ǫD vanishes identically when putting all indices along d < D

directions. This suggests that only terms within t8t8G
2
4R3 are potentially dangerous in the

F-theory limit. In appendix A we managed to show that a cancellation of divergent terms

does occur in a subset of terms within this kinematic structure. Full absence of divergences

is achieved through additional assumptions about the metric ansatz. For instance, it turns

out that imposing:28

Ra
aāa = 0 + O

(
vf

v

)

⇒ ∂ā ∂agaā = gaā (∂āgāa) (∂agaā) , (4.56)

guarantees that there are no divergent contractions stemming from R3G2
4 or R2(∇G4)2,

although there remain dangerous terms in e.g. R4 and R2G4
4. While (4.56) remains a

conjecture, we stress again that the absence of divergences should really hold true due to

M/F-theory duality.

28This condition is trivially satisfied for the ansatz (4.48).
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5 α
′ corrections from 11D loops

In the previous section we found convincing evidence that classical KK compactifications

on smooth elliptic fourfolds of the ℓM -corrected 11D supergravity action can lead, upon

F-theory limit, to only (α′)even corrections to the 4D scalar potential. This procedure

restricts however to zero-modes only, ignoring loops of non-zero KK and winding modes.

This implies that (α′)odd effects have to emerge from 11D loops, potentially together with

additional (α′)even corrections.

This agrees with the findings of [68, 71, 125] where it has been shown that closed

string degrees of freedom at higher order in the α′ expansion are encoded in non-zero

winding states on the T 2. For instance, the well-known coefficient of the type IIB R4

coupling is invisible to a classical T 2 reduction of M-theory, while it can be derived by a

1-loop calculation in the 11D superparticle formalism [68].29 A direct comparison to string

amplitudes in [117] led to the observation that such 1-loop amplitudes in 11D supergravity

contain complete information about both perturbative and non-perturbative corrections

in gs. This derivation takes into account the interplay between field theoretic loop effects

and stringy winding modes when compactifying to lower dimensions, as opposed to the

standard classical procedure of simply ignoring non-zero KK and winding states.

We will argue that generalising the computation of 11D loops to elliptic CY fourfold

compactifications of M-theory is a way to recover (α′)odd corrections in 4D upon F-theory

limit. Performing this computation explicitly is a difficult task since deriving corrections

to the 4D scalar potential would require to investigate purely internal 1-loop amplitudes in

a non-trivially curved background.30 As usual, this brings along all sorts of complications

such as the factor ordering in the Hamiltonian. In addition, the torus is now the elliptic

fibre over a base manifold, and so τ becomes a monodromic function of the base coordinates.

A complete evaluation of the amplitude is therefore beyond the scope of this paper.

Nevertheless determining the volume dependence of the 4D scalar potential is in prin-

ciple possible. For simplicity we shall focus on 8-derivative terms which arise at 1-loop

level for the simple case of trivial fibrations where all classical contributions vanish in the

F-theory limit, according to our findings in section 4.3. Recall that the fibre volume is

constant as a function of the base since the fibre itself is a Kähler submanifold of Y4 (ignor-

ing backreaction effects violating Kählerity) [50]. From the 3D EFT perspective, Q-point

effective vertices of the form (4.41) with Q = P + 1 + 2(R+ L) read schematically:

Γ(Q)(R, G4,∇G4) = KP RL
(

C + F (τ, τ̄) v
Q−

1
2

(11+pf )

f

)

+ · · · , (5.1)

where Q = 4 +R at the 8-derivative level. The first term is the contribution of zero-modes

associated with the classical KK reduction, and so generates the α′ corrections discussed

29Specifically, this is a Schwinger-type computation based on a string-inspired formalism [126] applied to

the 11D superparticle [68]. A famous example is the Brink-Schwarz superparticle [127, 128] as a zero-mode

approximation of the Green-Schwarz superstring [129, 130]. Rather than using covariant quantisation in

the pure spinor formulation [131, 132], the calculus is based on light cone quantisation [71]. The framework

of a Brink-Schwarz-like superparticle was shown to be equivalent to the 11D pure spinor formalism in [133]

(see also [134, 135] for discussions).
30See [126, 136] for brief discussions of backgrounds more intricate than T 2.
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in section 4.3. In the decompactification limit V4 → ∞, it leads back to the 11D M-theory

action.31 The non-zero modes are instead encoded in the second term in (5.1) where the

fibre volume dependence is partially due to the integral over Schwinger time. Moreover

pf = 2R is the number of KK momenta along the fibre appearing in the vertex operators,

while the functions F (τ, τ̄) are generalisations of the typical Eisenstein series appearing in

type IIB.32

The dots in formula (5.1) mean that in non-trivial fibrations we do not expect such

amplitudes to take a factorised form, like the term with KP RL multiplying the factor in

brackets (which is instead the full answer for trivial fibrations). Such a factorised structure

would also imply that in principle there might be divergent terms from contractions.33 This

is because we potentially multiply by additional negative powers of vf at the non-zero wind-

ing level. Similarly to section 4.3, we therefore assume that the coefficient of these terms has

to vanish. Moreover the base does not admit non-trivial 1-cycles, and so there is no obvious

counterpart for multiple windings of the superparticle worldline around internal directions.

Still, nothing prevents us from applying the techniques to trivial fibrations. The pro-

cedure then becomes a 2-stage process where we initially compute the 1-loop amplitude

for compactifications on a T 2, and subsequently reduce the 9D result on a CY threefold

before taking the vf → 0 limit. By the duality arguments presented in figure 1, the two

scenarios:

11D → 9D
Vol(T 2)→0−−−−−−−→ 10D → 4D and 11D → 9D → 3D

vf →0−−−→ 4D , (5.2)

are of course equivalent for trivial fibrations. Proceeding as with the classical reduction in

section 4.3, we identify the volume scaling of a generic higher derivative correction to the

4D scalar potential at the non-zero winding level as (setting again Mp = 1):

V ∼
v

Q−
1
2

(11+pf )

f

V2

∫

Y4

d8x
√

−g(8)KP RL ∼
v

1
2

(λ+3(x−λf )−12−pf )+Q

f

V1+ 1
3

(λ−λf +x)



1 +
v

3/2
f

V1/3
+ . . .



 ,

(5.3)

where we used (4.43). Focusing on pf = 2R, this gives rise to:

λcrit =
λ+ 2(Q−R)

3
− 4 + x+ o = P + 2R+ 3(L− 1) + x+ o . (5.4)

Non-zero contributions to the 4D scalar potential arise when λf = λcrit, implying from (5.3)

that they would scale as:

V
vf →0−−−→ V−

1
3

[7+2(R+L)] . (5.5)

31As explained in [68], the numerical coefficient of this term cannot be determined by the 11D loop

amplitude, and must be fixed by the UV completion of the theory, which is M-theory itself.
32Formula (3.7) in [29] should contain one such generalisation, implicitly given as an integral over the

base of the elliptic fibration. In that context, it pops up through a different (12D-inspired) derivation of

(α′)3 corrections of the 4D EFT which makes no use of M-theory.
33The factorised structure arises from tracing over fermionic zero modes which is independent of the

winding sector in T 2 compactifications. Since we are considering here internal contributions in 8D rather

than external ones in 9D as in [68], we expect this problem to be alleviated once we examine in more detail

the fermion and 11D vertex operators under their decomposition in SO(1, 10) → SO(1, 2) × SO(8).
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ℓlM P R L 11D term λcrit (α′)m V (V) F 2r

ℓ6M 2 1 0 R3G2
4 1 3 V−3 F 2

ℓ6M 1 0 1 R2(∇G4)2 1 3 V−3 F 2

ℓ6M 1 2 0 R2G4
4 2 3 V−11/3 F 4

ℓ6M -1 0 2 (∇G4)4 3 3 V−11/3 F 4

ℓ6M 0 3 0 RG6
4 3 3 V−13/3 F 6

ℓ6M -1 4 0 G8
4 4 3 V−5 F 8

Table 4. Summary of (α′)3 corrections to the 4D potential at different F-term order from quantum

reductions of M-theory compactified on trivially-fibred fourfolds. For convenience, we set x = o = 0

in λcrit because the volume behaviour in V (V) is independent on both.

Combining (5.5) with (2.32) for q = 1
3 [7+2(R+L)] and r = R+L, we find (α′)m corrections

with m = 3 at different F-term orders (counted by r), as expected for 8-derivative terms.

Some examples of these (α′)3 corrections to the 4D scalar potential emerging from 11D

loops are: (i) the ℓ6M 11D term R4 (P = 3, R = 0 and L = 0) which would yield m = 3

and V ∼ V−7/3, and so a potential (α′)3 correction which however does not contribute to

the 4D scalar potential since the contractions of R4 are in fact zero, similar to reducing the

10D R4 term on a 6D space [20] (as discussed in section 3, supersymmetry ensures that

all moduli remain massless at every order in α′ and gs in the absence of background flux);

(ii) the ℓ6M 11D term R3G2
4 (P = 2, R = 1 and L = 0) which gives m = 3 and V ∼ V−3

corresponding to the (α′)3 corrections at O(F 2) computed in [20]; (iii) the ℓ6M 11D term

R2(∇G4)2 (P = 1, R = 0 and L = 1) which gives m = 3 and V ∼ V−3 corresponding again

to (α′)3 corrections at O(F 2). Results for different 11D terms are summarised in table 4.

This analysis gives evidence that (α′)odd corrections to the 4D scalar potential at

different F- or D-term order should arise from the quantum reduction of the M-theory

action. Although these results look promising, this is certainly not the full picture since

we did not investigate higher loops and non-trivial fibrations. For instance, the results

of [24] suggest that (α′)2 corrections enjoy a non-trivial modular behaviour which can

only arise from a proper treatment of KK and winding modes on an elliptically-fibred K3

manifold. We therefore expect that 11D loops, when computed on non-trivial fibrations,

should generate also (α′)even effects. Moreover we have not yet considered the presence of

non-perturbative degrees of freedom from M2/M5-brane instantons which certainly raises

new challenges [137]. These are important questions for F-theory compactifications that

deserve further scrutiny.
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6 Conclusions

This paper provides a step towards a systematic understanding of the α′ expansion in F-

theory, with the final goal of classifying the moduli dependence of arbitrary perturbative

corrections to the 4D scalar potential of type IIB string theory, where moduli stabilisation

is best understood. Understanding at which order in α′ and gs the characteristic no-scale

structure of these compactifications gets broken, is fundamental for controlling moduli

stabilisation, which is the primary goal to connect string theory to low-energy particle

physics and cosmology.

The first part was concerned with the picture of type IIB CY orientifold compactifica-

tions. By exploiting the two approximate scaling symmetries of the underlying 10D theory,

combined with supersymmetry and shift symmetry, we managed to infer the dependence on

the dilaton and the CY volume of an arbitrary perturbative correction in α′ and gs to the

4D scalar potential at different orders in the low-energy superspace derivative expansion.

Due to the absence of (α′)1 corrections in 10D and 8D, and the fact that (α′)2 corrections

enjoy an extended no-scale cancellation [25], we deduced that the dominant no-scale break-

ing effects at string tree-level arise from known (α′)3 corrections [20, 29] modulo potential

logarithmic corrections.

However higher orders in gs require further scrutiny. This is because we reduce higher

dimensional theories with more than 16 supercharges on Kähler manifolds to 4D N = 1

supergravity theories with 4 supercharges by retaining only KK zero modes. At string tree-

level, all 4D corrections originate from the higher dimensional effective actions. Starting

from string 1-loop, however, additional states such as KK or winding states with non-

vanishing charge become relevant by participating in amplitudes with low-energy states.

Thus at the loop level it remains obscure whether the severe reduction of the number of

supercharges yields additional α′ corrections.

Such effects were for instance observed in [21] via loop corrections due to the exchange

of KK and winding modes in N = 2 and N = 1 toroidal orientifold compactifications.

Despite many efforts, their origin from the worldvolume theory of D7-branes wrapped on

4-cycles continues to be vague. A hint in this direction might come from analysing loop

amplitudes of 11D supergravity compactified on elliptically fibred CY fourfolds briefly

introduced in section 5. Such an undertaking would allow for an exact-in-gs statement

regarding (α′)1 corrections because these amplitudes efficiently capture string loop and

non-perturbative corrections. In appendix B we have however shown that (α′)1 loop effects,

if present at all, instead of destabilising known LVS vacua, can give rise to new dS minima

in a regime where the EFT can be under control.

In the second part of this paper we addressed instead the issue of α′ corrections in

the 4D F-theory effective action from compactifications of M-theory on elliptically fibred

CY fourfolds Y4. In the context of the F/M-theory duality, we derived scaling relations

between the variables in the two duality frames. We utilised a general ansatz for the metric

on Y4 depending only on integer powers of the fibre volume vf and of the 2-cycle volume

v on the base. The split of the metric components along base and fibre directions allowed

us to define the parametric volume scaling of various tensor components. Subsequently
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we performed an exhaustive dimensional analysis of a generic higher derivative 11D term

constructed from R, G4 and ∇G4. This investigation showed that, in conventional KK

reductions of M-theory on Y4, only (α′)even corrections survive in the 4D F-theory limit.

This procedure does not allow to make statements about possible cancellation effects, as

some surviving terms may be identically zero. However, we can state which contributions

vanish in the limit vf → 0. In particular, we found that all corrections in 4D necessarily

disappear for trivial fibrations and even for the semi-flat ansatz of [110] since they are killed

by the F-theory limit.

Overall these findings provide convincing evidence that our treatment of F-theory to

extract the low energy effective action needs to be revised in order to capture (α′)odd effects.

Historically this might not really come as a surprise given that the (α′)3-corrected 10D type

IIB action (2.20) cannot simply be recovered from classical KK reductions of M-theory on a

T 2, but only when winding modes along the torus are properly integrated out [68]. In other

words, the type IIB bulk or closed string degrees of freedom are associated with winding

states on the T 2 in the Vol(T 2) → 0 limit. Therefore we argued that incorporating KK

and winding states on the elliptic fibration is crucial in understanding the full range of

α′ corrections in F-theory compactifications. We hope to address some of these issues in

the future.
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A Compactifications on elliptically fibred Calabi-Yau manifolds

In this appendix we summarise useful definitions and identities relevant for the bulk of

this paper. We compute Riemann tensor components for an elliptic fibration in order to

determine their non-trivial volume scaling in section 4.2. Furthermore, we expand on the

discussion in section 4.3 about the absence of divergent terms in higher derivative structures

R4 and R3G2
4.

A.1 Definitions and conventions

We start by giving some definitions and conventions for the various tensor structures en-

countered in the bulk of the paper. For 11D coordinates, we use capital letters M,N,P, . . .

as indices. We mostly work with quantities along the internal direction of an elliptically

fibred CY manifold. We denote n-dimensional complex coordinates ZA with capital letters

A,B, . . . = 1, . . . , n. Similarly, complex coordinates on the base are defined as zα using

Greek indices α, β, . . . = 1, . . . , n− 1 and on the fibre as ζa with small letters a, b, . . . = 1.
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Hermitian, Kähler and Calabi-Yau manifolds. Let X be a compact Hermitian man-

ifold of complex dimension n with real coordinates {x1, . . . , x2n}. We define complex co-

ordinates ZA, A = 1, . . . , n, as:

(Z1, . . . , Zn) =

(
1√
2

(x1 + ix2), . . . ,
1√
2

(x2n−1 + ix2n)

)

. (A.1)

Then:

√
g dx1 ∧ . . . ∧ dx2n =

√
g(−1)

n(n−1)
2 in dZ1 ∧ dZn ∧ dZ̄1 ∧ . . . ∧ dZ̄n =

1

n!
Jn (A.2)

where
√
g = det(gAB̄) and J is the Kähler form:

J = igAB̄ dZA ∧ dZ̄B̄ . (A.3)

The non-vanishing connection coefficients and curvature tensor components are (together

with the corresponding complex conjugates):

ΓA
BC = gAD̄ ∂BgCD̄ , RA

BC̄D = ∂C̄ΓA
DB . (A.4)

Furthermore, the curvature 2-form is defined as:

RA
B = RA

BCD̄ dZC ∧ dZ̄D̄ . (A.5)

A Hermitian manifold X is Kähler if its Kähler form J is closed, dJ = 0. The

associated metric gAB̄ is referred to as Kähler metric. In local coordinates ZA, it is obtained

from a Kähler potential K via:

gAB̄ = ∂A ∂B̄K . (A.6)

Since dJ = 0 implies ∂AgBC̄ = ∂BgAC̄ , the connection coefficients and Riemann tensor

components enjoy the additional symmetries:

ΓA
BC = ΓA

CB , RA
BC̄D = RA

DC̄B . (A.7)

Finally, we call X CY if its canonical bundle is trivial. Then, the 4-th Chern class is

given in terms of the curvature 2-form by:

c4(Y4) =
1

8

(

Tr(R2)2 − 2Tr(R4)
)

, (A.8)

where:

Tr(R2) = RA
BC1D̄1

RB
AC2D̄2

dZC1 ∧ dZ̄D̄1 ∧ dZC2 ∧ dZ̄D̄2 , (A.9)

Tr(R4) = RA1
B1C1D̄1

RB1
A2C2D̄2

RA2
B2C3D̄3

RB2
A1C4D̄4

4∧

i=1

dZCi ∧ dZ̄D̄i . (A.10)
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Higher derivative structures. At the 8-derivative level, the M-theory action contains

higher derivative corrections of the schematic form summarised in (4.28). In the CP-even

sector, the corresponding index structures are nicely encoded in terms of the tensor t8 as

well as the totally anti-symmetric Levi-Civita symbol ǫD in D dimensions. The tensor t8
is defined as [123, 138]:

t8M
4 = 24

(

Tr(M4) − 1

4
Tr(M2)2

)

(A.11)

for an anti-symmetric matrix M . It further is symmetric under the exchange of pairs of

indices, while anti-symmetric within each pairs of indices, i.e.:

tM1M2M3M4M5...M8 = −tM2M1M3M4M5...M8 = tM3M4M1M2M5...M8 . (A.12)

In Lorentzian space, we use a convention for the totally anti-symmetric tensor in an or-

thonormal frame where ǫ0 1 2...10 = +1. In terms of the generalised Kronecker-δ, we write:

ǫM1...MD
ǫN1...ND = D! δ

[N1...ND]
M1...MD

(A.13)

as well as:

ǫM1...MD
ǫM1...MD−nND−n+1...ND = (−1)sn! (D − n)! δ

[ND−n+1...ND]
MD−n+1...MD

(A.14)

with s = 1 (s = 0) in Lorentzian (Euclidean) signature.

The higher derivative corrections (4.49) to the Einstein-Hilbert term are encoded in

the two quantities [67, 68, 116–119]:

t8t8R
4 = tM1...M8t

N1...N8RM1M2
N1N2R

M3M4
N3N4 . . . R

M7M8
N7N8 (A.15)

E8 =
1

3!
ǫM1...M11ǫ

M1M2M3N4...N11RM4M5
N4N5 . . . R

M10M11
N10N11

= −8!R[M1M2
M1M2 . . . R

M7M8]
M7M8 (A.16)

Furthermore, formula (4.55) expanded reads [63, 124]:

t8t8G
2
4R

3 = tM1...M8
8 tN1...N8

8 GN1M1P QGN2M2
P QRM3M4N3N4RM5M6N5N6RM7M8N7N8 (A.17)

ǫ11ǫ11G
2
4R

3 = ǫN0N1...N10ǫ
N0M1...M10GN1N2

M1M2G
N3N4

M3M4R
N5N6

M5M6R
N7N8

M7M8R
N9N10

M9M10

= −10!G[M1M2
M1M2G

M3M4
M3M4R

M5M6
M5M6R

M7M8
M7M8R

M9M10]
M9M10 .

(A.18)

A.2 Details on the dimensional analysis

In this appendix we present additional material in support of the analysis in section 4.

Curvature tensors for elliptic fibrations. We now compute the connection coeffi-

cients and curvature components (A.4) for the metric ansatz (4.31). Splitting the indices

along base and fibre leads to:

Γa
bc = gad̄ ∂bgcd̄ + gaδ̄ ∂bgcδ̄ , Γa

bµ = gad̄ ∂bgµd̄ + gaδ̄ ∂bgµδ̄ ,

Γa
αβ = gad̄ ∂αgβd̄ + gaδ̄ ∂αgβδ̄ , Γα

bc = gαδ̄ ∂bgcδ̄ + gαd̄ ∂bgcd̄ ,

Γα
βγ = gαd̄ ∂βgγd̄ + gαδ̄ ∂βgγδ̄ , Γα

bγ = gαd̄ ∂bgγd̄ + gαδ̄ ∂bgγδ̄ . (A.19)
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Then, we compute:

Rα
βγ̄λ =

(

∂γ̄g
αd̄
)

∂λgβd̄ + gαd̄ ∂γ̄ ∂λgβd̄ +
(

∂γ̄g
αδ̄
)

∂λgβδ̄ + gαδ̄ ∂γ̄ ∂λgβδ̄ ,

Rα
βc̄λ =

(

∂c̄g
αd̄
)

∂λgβd̄ + gαd̄ ∂c̄ ∂λgβd̄ +
(

∂c̄g
αδ̄
)

∂λgβδ̄ + gαδ̄ ∂c̄ ∂λgβδ̄ ,

Rα
aγ̄λ =

(

∂γ̄g
αd̄
)

∂λgad̄ + gαd̄ ∂γ̄ ∂λgad̄ +
(

∂γ̄g
αδ̄
)

∂λgaδ̄ + gαδ̄ ∂γ̄ ∂λgaδ̄ ,

Rα
aγ̄b =

(

∂γ̄g
αδ̄
)

∂bgaδ̄ + gαδ̄ ∂γ̄ ∂bgaδ̄ +
(

∂γ̄g
αd̄
)

∂bgad̄ + gαd̄ ∂γ̄ ∂bgad̄ ,

Rα
ac̄λ =

(

∂c̄g
αd̄
)

∂λgad̄ + gαd̄ ∂c̄ ∂λgad̄ +
(

∂c̄g
αδ̄
)

∂λgaδ̄ + gαδ̄ ∂c̄ ∂λgaδ̄ ,

Rα
ac̄b =

(

∂c̄g
αδ̄
)

∂bgaδ̄ + gαδ̄ ∂c̄ ∂bgaδ̄ +
(

∂c̄g
αd̄
)

∂bgad̄ + gαd̄ ∂c̄ ∂bgad̄ , (A.20)

as well as:

Ra
βγ̄α =

(

∂γ̄g
ad̄
)

∂αgβd̄ + gad̄ ∂γ̄ ∂αgβd̄ +
(

∂γ̄g
aδ̄
)

∂αgβδ̄ + gaδ̄ ∂γ̄ ∂αgβδ̄ ,

Ra
βc̄α =

(

∂c̄g
ad̄
)

∂αgβd̄ + gad̄ ∂c̄ ∂αgβd̄ +
(

∂c̄g
aδ̄
)

∂αgβδ̄ + gaδ̄ ∂c̄ ∂αgβδ̄ ,

Ra
bγ̄λ =

(

∂γ̄g
ad̄
)

∂λgbd̄ + gad̄ ∂γ̄ ∂λgbd̄ +
(

∂γ̄g
aδ̄
)

∂λgbδ̄ + gaδ̄ ∂γ̄ ∂λgbδ̄ ,

Ra
bγ̄e =

(

∂γ̄g
ad̄
)

∂egbd̄ + gad̄ ∂γ̄ ∂egbd̄ +
(

∂γ̄g
aδ̄
)

∂egbδ̄ + gaδ̄ ∂γ̄ ∂egbδ̄ ,

Ra
bc̄λ =

(

∂c̄g
ad̄
)

∂λgbd̄ + gad̄ ∂c̄ ∂λgbd̄ +
(

∂c̄g
aδ̄
)

∂λgbδ̄ + gaδ̄ ∂c̄ ∂λgbδ̄ ,

Ra
bc̄e =

(

∂c̄g
ad̄
)

∂egbd̄ + gad̄ ∂c̄ ∂egbd̄ +
(

∂c̄g
aδ̄
)

∂egbδ̄ + gaδ̄ ∂c̄ ∂egbδ̄ . (A.21)

All terms highlighted in red vanish for a quadratic Kähler potential Kf in the fibre coor-

dinates ζ (such as for the choice (4.48)). One can further simplify the above expressions

by using:

∂γ̄g
AB̄ = −gAC̄ (∂γ̄gC̄D) gDB̄ , ∂c̄g

AB̄ = −gAC̄ (∂c̄gC̄D) gDB̄ . (A.22)

From these expressions, one derives the volume scalings:

Rα
βγ̄λ,R

a
βγ̄α,R

a
βγ̄b,R

a
bγ̄λ = O (1) , Rα

βγ̄e,R
α

βc̄λ,R
α

aγ̄λ = O
(
vf

v

)

,

Rα
βc̄e,R

α
aγ̄b,R

α
ac̄λ = O

(
vf

v

)

+O
(
vf

v

)

, Rα
ac̄b = O

(
vf

v

)

+O
(

v2
f

v2

)

,

Ra
βc̄b,R

a
bγ̄e,R

a
bc̄λ,R

a
bc̄e = O (1)+O

(
vf

v

)

, Ra
βc̄α = O (1)+O (1) (A.23)

as summarised in (4.39) and (4.40). Again, we indicate scaling behaviours vanishing for

the ansatz (4.48) in red.

Absence of divergences. We now want to prove formula (4.52). This becomes clear

when considering the tensor:

ZUT = RUMRV RT SQ
V
(

RM
P

S
NR

QP RN − 1

2
RMQ

P NR
SRP N

)

, (A.24)
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which for Ricci-flat (but not necessarily Kähler) manifolds is related to J0 as J0 = gUTZUT .

The authors of [91] showed that ZUT ≡ 0 on Kähler spaces. This can easily be seen by

switching to complex coordinates where:34

ZAB̄ = RAC̄D̄ERB̄F G
E
(

RC̄
H̄

F
IR

GH̄D̄I −RC̄G
H̄IR

F D̄H̄I
)

. (A.25)

For Kähler manifolds, we can further use:

RC̄
H̄F̄ I = RC̄

F̄ H̄ I , RḠHDĪ = RḠDHĪ (A.26)

to rewrite the first term in (A.25) in such a way that:

ZAB̄ = 2RAC̄D̄
ĒRB̄F GĒR

C̄[F
H̄IR

G]D̄H̄I . (A.27)

Since for Kähler manifolds RB̄F GĒ = RB̄GF Ē is symmetric under the exchange of labels

G, F , we find:

ZAB̄ ≡ 0 . (A.28)

This implies that J0 vanishes in compactifications of both type IIB on CY threefolds and

M-theory on CY fourfolds.In the former case, J0 encodes the full R4 dependence of the

10D action which is why there is no contribution to the scalar potential from R4.

Now we turn our attention to the kinematic structure t8t8R3G2
4. We are going to

show that at least a specific subset of terms contained within this structure are free of

divergences when reduced on Y4. Indeed, starting from the definition (A.17) and switching

to complex coordinates as above one can show that on Kähler spaces:

t8t8R3G2
4

12
= 4G2

Ā4A5A6Ā7

{

−4RĀ8A1A2Ā7

[

RĀ8

Ā4
A2

A3RA1
A6

A3
A5 +RĀ8A1

Ā3A5RA2Ā3

A6Ā4

+RA1
A6

A2
A3RĀ8

Ā4
A3

A5

]

−8RA8Ā1Ā2

Ā4RA3
A6A5Ā7RA8Ā1Ā2A3

+RĀ8A1A2Ā3

[

RĀ4A6A5Ā7RĀ8A1A2Ā3
+2RĀ8

Ā4
Ā3

Ā7RA2
A6

A1
A5 (A.29)

+2RĀ8

Ā4
A2

A6RĀ3

Ā7
A1

A5 +2RĀ8

Ā4
A2

A5RA1
A6

Ā3

Ā7

]}

+16G2
Ā4Ā5A6A7

RĀ8A1Ā2A7

[

−RĀ8

Ā4
Ā2

Ā3RA1
A6

Ā3

Ā5 +RĀ8A1

A3Ā4RĀ2A3

A6Ā5

]

+c.c. .

Here, we defined the following two types of flux contractions:

G2
Ā4A5A6Ā7

=GĀ4A5

A9A10GA6Ā7A9A10
+2GĀ4A5

Ā9A10GA6Ā7Ā9A10
+GĀ4A5

Ā9Ā10GA6Ā7Ā9Ā10

= (1,3)(3,1)+(2,2)(2,2)+(3,1)(1,3) , (A.30)

G2
Ā4Ā5A6A7

=GĀ4Ā5

A9A10GA6A7A9A10 +2GĀ4Ā5

Ā9A10GA6A7Ā9A10
+GĀ4Ā5

Ā9Ā10GA6A7Ā9Ā10

= (0,4)(4,0)+(1,3)(3,1)+(2,2)(2,2) , (A.31)

where the second and fourth line indicate the (p, q)-type of the various components.

34Here, we make use of gMN = gĀB + gAB̄ and RMNP Q = RAB̄CD̄ + RĀBCD̄ + RAB̄C̄D + RĀBC̄D, which

holds on any Kähler manifold. In particular, one finds the useful identities RA
B̄MN = RĀ

BMN = 0.
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According to our scaling analysis, there are 14 types of contractions that diverge upon

taking the limit vf → 0 involving the following combinations of Riemann tensors:

(Ra
bc̄d)2Rα

βγ̄δ , (Ra
bc̄d)2Rα

bc̄δ , Ra
bc̄d (Rα

bc̄d)2 , Ra
bc̄dR

a
bc̄δR

α
bc̄d ,

(Ra
bc̄d)2Ra

bγ̄δ , Ra
bc̄d (Ra

bc̄δ)2 , (Ra
bc̄d)3 . (A.32)

The divergent contractions must have λf > 2, recall table 3. We claim that the absence of

divergences in (A.29) is mainly due to the following two reasons: a) the Kählerity of the

underlying CY fourfold and b) the dimension of the fibre itself.

Although proving this claim in full generality without making any further assumptions

about the metric seems out of reach, we may be able to provide clear evidence. We assume

that cancellation of divergences must be manifest for all (p, q)-types of fluxes independently.

Further, we observe that only (A.31) contains contributions from (4, 0)-flux for which (A.29)

reduces to:

t8t8R3G2
4

12

∣
∣
∣
∣
(4,0)

= 32G2
Ā4Ā5A6A7

RĀ8A1Ā2A7

[

−RĀ8

Ā4
Ā2

Ā3RA1
A6

Ā3

Ā5

+RĀ8A1

A3Ā4RĀ2A3

A6Ā5

]

. (A.33)

Each G4 has at most one index along the fibre such that:

t8t8R3G2
4

12

∣
∣
∣
∣
(4,0)

= 32

{

4G2
āᾱbβ g

ā[A14gA15]ᾱ gb[Ā16gĀ17]β +2G2
āᾱβγ g

ā[A14gA15]ᾱ gβĀ16gγĀ17

+2G2
ᾱβ̄bγ

gᾱA14gβ̄A15 gb[Ā16gĀ17]γ +G2
γ̄ᾱδβ g

γ̄A14gᾱA15 gδĀ16gβĀ17

}

(A.34)

[

−gĀ8A13
gĀ3A12gĀ2A11RĀ8

Ā1A11Ā17
RA13

A14Ā2A12
RĀ1

Ā16Ā3A15

+gĀ8A13
gA3Ā12gA1Ā11RĀ8

Ā11A2Ā17
RA13

A1Ā12A14
RA2

A3Ā16A15

]

where for the (4, 0)/(0, 4)-components:

G2
āᾱbβ = Gāᾱ

σρGbβσρ = gσλ̄gρµ̄Gāᾱλ̄µ̄Gbβσρ (A.35)

G2
āᾱβγ = 2Gāᾱ

λbGβγλb = 2gλµ̄gbν̄Gāᾱµ̄ν̄Gβγλb (A.36)

G2
γ̄ᾱδβ = Gγ̄ᾱ

aλGδβaλ = gab̄gλµ̄Gγ̄ᾱb̄µ̄Gδβaλ + gaµ̄gλb̄Gγ̄ᾱb̄µ̄Gδβaλ . (A.37)

Critically, only the last line involves at most a single inverse fibre metric. Hence, looking

at the way inverse metrics appear in the above expression we deduce that terms built from

G2
āᾱbβ have a total number of inverse fibre metrics λtot

f ≤ 4, whereas those built using G2
āᾱβγ

or G2
γ̄ᾱδβ have λtot

f ≤ 3. This eliminates 4 divergent contractions with λtot

f = 5 leaving us

with 10 dangerous index structures. In the case (Ra
bc̄d)3, gĀ8A13

→ gāa contributes positive

powers of vf . In addition, gā[A14gA15]ᾱ → gā[aga]ᾱ = 0 vanishes. Both arguments imply the

absence of 2 further divergent contractions.
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Next, we have to distinguish between the different types of flux contractions. In fact,

for G2
āᾱβγ or G2

γ̄ᾱδβ all inverse metrics in the last two lines of (A.34) have to be on the fibre

to find a divergent term in the limit vf → 0. Those terms are summarised as:

t8t8R3G2
4

12

∣
∣
∣
∣
(4,0)

⊃ 32gāa(gāa)2
{

+2G2
āᾱβγ g

ā[A14gA15]ᾱ gβĀ16gγĀ17 + 2G2
ᾱβ̄bγ

gᾱA14gβ̄A15 gb[Ā16gĀ17]γ

+G2
γ̄ᾱδβ g

γ̄A14gᾱA15 gδĀ16gβĀ17

}[

−Rā
āaĀ17

Ra
A14āaR

ā
Ā16āA15

+Rā
āaĀ17

Ra
aāA14R

a
aĀ16A15

]

. (A.38)

Given that there is a direct factor of the fibre metric and {. . .} involves at most a single

inverse fibre metric, this means that λf ≤ 2 and there are no dangerous contractions.

It remains to show the same for the flux contractions G2
āᾱbβ . Among the 8 potentially

dangerous terms, most can be excluded directly. Going through similar arguments as above

and working at leading order in the V expansion, one finds the following combination of

two divergent contractions:

t8t8R3G2
4

12

∣
∣
∣
∣
(4,0)

⊃ −64G2
āᾱbβ gāa(gāa)4gᾱδgβγ̄Ra

aāa

{

3Ra
aāaR

a
aγ̄δ −Rā

āaγ̄R
ā

āδā

}

.

(A.39)

This expression vanishes at leading order in the volume if either:

Ra
aāa = 0 + O

(
vf

v

)

⇒ ∂ā ∂agaā = gaā (∂āgāa) (∂agaā) (A.40)

or:

Ra
aγ̄δ = 0 + O

(
vf

v

)

⇒ ∂γ̄ ∂δgaā = gaā (∂γ̄gāa) (∂δgaā)

Rā
āδā = 0 + O

(
vf

v

)

⇒ ∂ā ∂δgaā = gaā (∂āgāa) (∂δgaā)

Rā
āaγ̄ = 0 + O

(
vf

v

)

⇒ ∂γ̄ ∂agaā = gaā (∂γ̄gāa) (∂agaā) . (A.41)

These are second order PDEs in the metric components which can in principle be solved

for. Notice that (A.40) and the last two conditions of (A.41) are trivially satisfied for the

ansatz (4.48). More generally, imposing (A.40) implies that there are no divergent terms

coming from R3G2
4 and R2(∇G4)2, although there are divergent contractions of R4 and

R2G4
4. If we add (A.41), then there are no divergent terms from R4, R3G2

4 and R2(∇G4)2,

but there remains one divergent term in R2G4
4.

B Vacua from potential (α
′)1 loop effects

In section 3 we have seen that the leading no-scale breaking effects at tree-level in gs should

arise from (α′)3 corrections. These effects scale as V−3 and are crucial to give rise to LVS

vacua [4, 40]. Interestingly, V−8/3 corrections cannot come from (α′)2 10D effects at any
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order in gs due to the extended no-scale structure [22, 23, 25, 40] (see however [112, 113]),

while they could emerge at tree-level from non-zero F-terms of matter fields, corresponding

to T-brane uplifting contributions [90]. Potentially dangerous V−7/3 corrections can instead

arise just at O((α′)1) at string loop level gn
s with n > 0. In this appendix we show that, if

present an any order n > 0, these corrections would not destroy LVS vacua but would lead

to a new class of vacua with potentially interesting phenomenological properties.

Scalar potentials with (α
′)1 loop corrections. We focus on the simple model X3 =

CP
4
[1,1,1,6,9][18] with 2 Kähler moduli and volume form:

V =
1

9
√

2

(

τ
3/2
b − τ3/2

s

)

. (B.1)

The Kähler potential including (α′)k F 2 corrections with k = 1, 2, 3 reads:

K = −2 ln V − α̂

V 1
3

− β̂

V 2
3

− 2ξ̂

V − ln

(
2

gs

)

, (B.2)

where, according to our previous discussion, α̂ = α gn
s /

√
gs with n > 0 (the other powers

of gs can be identified from the scaling arguments of section 2.2), β̂ = β/gs and ξ̂ = ξ/g
3/2
s

with:35

ξ = −ζ(3)χ(X3)

4(2π)3
= 0.654 for χ(X3) = −540 . (B.3)

The superpotential receives instead non-perturbative corrections associated with the blow-

up mode:

W = W0 +As e
−asTs with as = 2π/Ns . (B.4)

After setting the axion to its VEV, the scalar potential obtained from (2.29) and (B.2) in

the limit where α̂/V1/3 ≪ 1 and asτs ≫ 1 reads:

V = λ1

√
τs e

−2asτs

V − λ2W0
τs e

−asτs

V2
− λ3

α̂W 2
0

V7/3
+ λ4

ξ̃W 2
0

V3
, (B.5)

with (setting eKcs = 1):

λ1 =
3
√

2

gs
λ2

2 , λ2 = 2asAsgs , λ3 =
gs

8
, λ4 = 6λ3 , (B.6)

and:

ξ̃ = ξ̂ − 3

32
α̂3 +

5

18
α̂β̂ . (B.7)

Notice that the term ∼ β̂/V8/3 is absent due to the extended no-scale structure, which is

why β̂ appears at leading order only inside ξ̃. Clearly, if α̂ 6= 0, the usual balance of terms

in LVS is destroyed. Of course, this does not mean that all hope is lost as we now discuss.

35As discussed in [29], the value of ξ is corrected by contributions from O7-planes/D7-branes so that in

the weak coupling limit χ(X3) → χ(X3)+2
∫

X3

D3
O7. Since one typically works with Fano bases in F-theory

which have ample anti-canonical bundle, the integral contributes with a positive sign, see e.g. footnote 5

in [139]. Crucially, LVS requires ξ > 0 and hence χ(X3) < 0 which could be spoilt here, although this has

not been observed in most examples discussed in the literature [140–145].
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Minimisation. We can derive simple conditions for the existence of minima of (B.5) by

requiring ∂V/∂V = ∂V/∂τs = 0 which leads to (in the asτs ≫ 1 limit):

λ1V2√
τs e

−2asτs − 2λ2W0V τs e
−asτs − λ3W

2
0

3

(

7α̂V2/3 − ξ̃
)

= 0 , (B.8)

λ1V4/34e−asτs − 2λ2W0V1/3√
τs = 0 . (B.9)

The second equation is identical to the LVS condition:

V =
λ2W0

√
τs

2λ1
easτs . (B.10)

Plugging this back into (B.8) gives rise to:

7α̂V2/3 − 54ξ̃ + 3
√

2 τ3/2
s = 0 . (B.11)

In the α → 0 limit this relation reproduces the standard LVS result τs = (9
√

2ξ̂)2/3 ∼
1/gs [4], while for α 6= 0 we obtain:

V =

[
1

7α̂

(

54ξ̃ − 3
√

2 τ3/2
s

)]3/2

, (B.12)

showing that the volume at the minimum is not exponentially large anymore, unless α̂ ≪
1. The stationary points of the full potential (B.5) can be obtained by looking at the

intersection between (B.10) and (B.12). In the remainder of this appendix, we discuss two

classes of minima depending on the sign of α.

AdS vacua for α > 0. We begin our analysis with explicit examples for α > 0. To find

the values of V and τs at the minimum, we compute the intersection of (B.10) and (B.12)

numerically. For illustrative purposes, we focus on the following choice of underlying pa-

rameters:

gs = 0.1 W0 = 1 As = 1 Ns = 5 n = 1 α = 1 β = 0 , (B.13)

which yield the non-supersymmetric AdS minimum:

〈τs〉 = 8.95 〈V〉 = 1.0 · 104 VAdS = −4.09 · 10−11 . (B.14)

The potential is shown in figure 2. The fact that the vacuum energy has to be negative

can be easily inferred from the fact that the first 3 terms in (B.5) scale as V−3 after

substituting (B.10), while the last term scales as V−7/3. Hence for V → ∞ the potential

approaches zero from below since the V−7/3-term has a negative coefficient. Notice that the

minimum (B.14) satisfies our approximations since α̂/V1/3 ≃ 0.015 and (asτs)−1 ≃ 0.09.

dS vacua for α < 0. Let us now analyse the parameter regime α < 0. In this case

the minimum can be dS since the potential (B.5) approaches zero from above for V → ∞
given that the coefficient of the V−7/3-term is now positive. Hence different choices of

the microscopic parameters can give rise to either an AdS or a dS minimum followed by

a maximum (or better a saddle point from the 2-field perspective) at larger V-values.
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Figure 2. New AdS minimum from (α′)1 loop effects with α > 0 and parameters given by (B.13).

The presence of two stationary points can be verified numerically by the existence of two

intersections between (B.10) and (B.12) for α < 0. Let us illustrate this situation with two

choices of underlying parameters. In the first case we choose:

gs = 0.1 W0 = 1 As = 1 Ns = 30 n = 3 α = −2 β = 0 , (B.15)

which yield:

AdS minimum: 〈τs〉 = 43.47 〈V〉 = 1.53 · 104 VAdS = −2.16 · 10−12 (B.16)

Saddle point: 〈τs〉 = 69.64 〈V〉 = 4.8 · 106 . (B.17)

In the second case we instead set:

gs = 0.1 W0 = 1 As = 1 Ns = 30 n = 3 α = −8.38 β = 0 , (B.18)

which give a dS minimum at:

〈τs〉 = 47.80 〈V〉 = 4.0 · 104 VdS = 3.06 · 10−15 . (B.19)

The two minima are shown respectively in figure 3 and 4 and are both in the regime where

our approximations are trustable.

Finally it is worth stressing that this dS minimum exists only in a finely tuned regime

of values for α. Nonetheless, given the current debate about the existence of metastable

dS vacua in string compactifications [146, 147], it is important to find new examples of dS

vacua which do not rely on additional sources as anti-branes. We have therefore found that

potential (α′)1 loop effects, rather than being a danger for moduli stabilisation, can provide

new ways to achieve dS vacua at values of the CY volume which is not exponentially large,

but still large enough to keep the EFT under control. In fact, even if we are balancing

(α′)1 against (α′)3 corrections, the α′ expansion is still under control due to the fact that

(α′)1 effects arise at loop-level while (α′)3 terms are at tree-level in gs.
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Figure 3. New AdS minimum from (α′)1 loop effects with α < 0 and parameter choice (B.15).

Figure 4. New dS minimum from (α′)1 loop effects with α < 0 and parameter choice (B.18).
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