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1 Introduction

The landscape of string vacua encompasses an immensely rich and diverse structure of
Effective Field Theories (EFTs) arising from compactifications of critical superstring theory.
It is the result of a plethora of degeneracies involved in choosing compact geometries and
suitable backgrounds of generalised electromagnetic fluxes, D-branes and O-planes. In
recent years, investigations into the properties of EFTs from string compactifications have
brought enormous advances in our capacity to engineer realistic string models. However, it
is widely known that achieving arbitrary good control over quantum corrections in string
theory is impossible due to the absence of freely tunable parameters. This is the so-called
Dine-Seiberg problem [1] which complicates the construction of fully trustable string vacua.
Although it is an unavoidable string theory condition, computational control is fortunately
attainable through the presence of extra parameters such as the plenty of integer fluxes
and ranks of condensing gauge groups. Notwithstanding, a major challenge continues to
be a unifying framework for stabilising moduli in well-controlled de Sitter minima.1

In this context, we provide innovative methods to computing F -term scalar potentials
for type IIB orientifold compactifications with h1,1

− 6= 0 signalling the presence of odd
moduli Ga. To this day, they remain largely unexplored as compared to the simpler set-ups
with h1,1

− = 0 such as KKLT [4], LVS [5] and their plethora of variants. Notwithstanding,
these moduli are ubiquitous in the string landscape and play a prominent role in the context
of axion monodromy [6, 7]. Over the years, aspects of moduli stabilisation and inflationary
model building have for instance been discussed in [7–18]. Similarly, explicit constructions
including orientifold-odd 2-cycles in concrete Calabi-Yau (CY) threefolds are available in
the literature [19–24]. In addition, odd moduli appear in the tree-level superpotential from
generalised flux in (non-)geometric set-ups as analysed in [25–35].

This paper concerns a systematic treatment of the (α′)3-corrected F -term scalar po-
tential in 4D N = 1 supergravity (SUGRA) theories obtained from general type IIB CY
orientifold compactifications. We begin our endeavours by computing exact expressions for
derivatives of the Kähler potential for complex structure moduli U i, axio-dilaton S, Kähler
(or even) moduli Tα and odd moduli Ga = ca + Sba in terms of the NS-NS B2-axions ba
and R-R C2-axions ca. In particular, we prove explicitly that the no-scale identity2

KAK
ABKB = 4 , A,B ∈ {S, Tα, Ga} (1.1)

holds for the (α′)3-corrected Kähler potential derived by BBHL [38]. This can be antici-
pated from homogeneity arguments which hold not only at tree level [42], but also in the
presence of tree level (α′)3 corrections, while being broken at higher order in the loop expan-
sion. Indeed, we derive the precise coefficient from the breaking of the above no-scale result
from a partially SL(2,Z)-completed Kähler potential depending on the non-holomorphic
Eisenstein series of weight 3/2. In this way, we are able to write down the exact F -term
scalar potential including closed string loop and non-perturbative D-instanton corrections.

1See also [2, 3] for recent swampland conjectures.
2This identity was observed at tree level in [36] for A,B ∈ {S, Tα, Ga}, but already in [37–41] for models

without odd moduli.
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Our results lead us to the general master formula for the (α′)3-corrected N = 1 F -term
scalar potential

V = Vcs + eK
(
|W |2 +WAK

ABWB +
∑

A∈{S,Ga,Tα}
(A−A) (W WA −W WA)

)
(1.2)

where A,B ∈ {S,Ga, Tα} and where all quantities are known exactly without resorting to
any approximation in a large volume or small coupling expansion in 4D. This form of the
scalar potential is well suited for investigating moduli stabilisation aspects in (non-)SUSY
(A)dS4 minima in the presence of odd moduli. We illustrate its usefulness by analysing a
variety of superpotentials.

We begin with the simplest models with superpotentials W = W (U i, S) induced by
3-form fluxes [37, 43] for arbitrary numbers of (U i, Tα, Ga) moduli. Here, we show ex-
plicitly that the shift symmetry of NS-NS axions ba remains intact even after including
the BBHL correction, due to an exact cancellation of terms at sub-leading order in the
volume. This is clearly expected given that shift symmetries are protected against pertur-
bative corrections which makes them sensitive to non-perturbative effects only. However,
whenever the supersymmetric stabilisation of the axio-dilaton is enforced by hand, terms
of the form (tαbabb)2/V4 remain as traces in the effective scalar potential as observed e.g.
in [11, 16]. Although such pieces usually get nullified at the minimum 〈ba〉 = 0, they are
potentially misleading when studying fluctuations around the minimum such as in infla-
tionary model building. We argue that, in the presence of odd moduli, the stabilisation of
the axio-dilaton and the complex structure moduli U i should be treated together with the
Tα and Ga, especially since odd moduli may have masses heavier than the overall volume
modulus [13].

As another direct application of our results, we examine superpotentials of the form
W = W (U i, S, Tα) which are commonly studied in the context of even-sector moduli stabil-
isation with h1,1

− = 0. Due to the way the chiral fields Tα and Ga are coupled in the Kähler
potential, the B2-axions ba receive a potential, while the C2-axions ca remain flat. In this
context, we explicitly compute the exact Hessian for ba axions and general superpotentials
W (U i, S, Tα). At SUSY AdS4 minima, h1,1

− tachyons arise due to the unfixed axionic su-
perpartners ca, thereby reproducing the results of [44]. Further, we derive the Hessian for
non-SUSY vacua from non-perturbative D3/D7-brane superpotentials where the presence
and number of tachyons can be identified directly from properties of the model dependent
triple intersection numbers.

Lastly, we discuss superpotentials with explicit Ga dependences which induce a po-
tential for the R-R axions ca. We provide explicit formulae for the scalar potential from
D5-brane gaugino condensation [45, 46] as well as geometric fluxes [25–30]. These results
will lead to novel insights into full moduli stabilisation in N = 1 CY orientifold compacti-
fications. Indeed, previous investigations for set-ups with h1,1

− = 0 in [47] already obtained
hybrid vacua sharing certain characteristics with KKLT and LVS type solutions. Given
that cases with h1,1

− 6= 0 introduce additional axionic modulations to the potential, our
systematic framework gives rise to a much richer structure of string vacua which are highly
attractive for phenomenological model building.
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This paper is organised as follows. After defining our conventions in section 2, we
analyse the Kähler potential and its derivatives in section 3. The main results of this paper
are the three master formulae for the F -term scalar potential which are derived in section 4.
The remainder of the paper is devoted to successively including more and more moduli
couplings in the superpotential and applying the aforementioned formulae for advancing
our ability to stabilise moduli. We begin with the simple scenario of superpotentials induced
by 3-form flux in section 5. Subsequently, section 6 provides an extensive analysis for Tα-
dependent superpotentials where the scalar potential develops a dependence on the NS-
NS axions ba. To generate a scalar potential for R-R axions ca, we study superpotentials
depending on odd moduli Ga in section 7. Lastly, we briefly comment on phenomenological
implications in section 8 before summarising our results in section 9.

2 Preliminaries

We focus on type IIB string theory compactified on CY threefolds X3 which gives rise to
N = 2 SUGRA theories in 4D. Including D-branes and O-planes reduces the supersymme-
try of the EFTs to N = 1, see e.g. [42] for details. The massless states in the 4D effective
theory are in one-to-one correspondence with harmonic forms which are either even or
odd under the action of an isometric, holomorphic involution σ acting on the internal CY
threefold X3, thereby generating the equivariant cohomology groups Hp,q

± (X3).
We denote the bases of even/odd 2-forms as (µα, νa) and of 4-forms as (µ̃α, ν̃a) where

α ∈ h1,1
+ (X3) and a ∈ h1,1

− (X3). In addition, the bases for the even/odd cohomologies of
3-forms H3

±(X3) are denoted as the symplectic pairs (aK , bJ) and (AΛ,B∆) respectively.
Using the conventions of [26], we fix the normalisation in the various cohomology bases as∫

X3
µα ∧ µβ ∧ µγ = kαβγ ,

∫
X3

µα ∧ νa ∧ νb = k̂αab ,∫
X3

µα ∧ µ̃β = δ β
α ,

∫
X3

νa ∧ ν̃b = δ b
a , (2.1)∫

X3
aK ∧ bJ = δK

J ,

∫
X3
AΛ ∧ B∆ = δΛ

∆ .

Here, depending on the orientifold choice, we have two possibilities:

• O3/O7-planes: K ∈ {1, . . . , h2,1
+ (X3)} and Λ ∈ {0, . . . , h2,1

− (X3)},

• O5/O9-planes: K ∈ {0, . . . , h2,1
+ (X3)} and Λ ∈ {1, . . . , h2,1

− (X3)}.

Now, the various p-form fields can be expanded in appropriate bases of the equivariant
cohomologies. Specifically, the Kähler form J , the 2-forms3 B2, C2 and the R-R 4-form C4
can be expanded as [36]

J = tα µα , B2 = ba νa , C2 = ca νa ,

C4 = ρα µ̃
α + V K ∧ aK − VK ∧ bK +Dα

2 ∧ µα , (2.2)
3Note that the even component of the Kalb-Ramond field B+ = bα µα, though not a continuous modulus,

can take the two discrete values bα ∈ {0, 1/2}.

– 4 –



J
H
E
P
0
4
(
2
0
2
2
)
0
0
3

where tα denotes the 2-cycle volume moduli and ba, ca, ρα are various axions which inherit
their shift symmetry from 10D p-form gauge symmetries. Further, (V K , VK) forms a dual
pair of space-time 1-forms and Dα

2 are space-time 2-forms dual to the scalars ρα. Due to
the self-duality of C4, half of the degrees of freedom of C4 are removed.

Further, since σ∗ reflects the holomorphic three-form Ω3, there are h2,1
− (X3) complex

structure deformations parametrised by complex moduli U i, i = 1, . . . , h2,1
− . In fact, the

three-form Ω3 can be written as

Ω3 ≡ XΛAΛ − FΛ BΛ (2.3)

where the periods X λ, Fλ are obtained from

XΛ =
∫
X3

Ω3 ∧ BΛ , FΛ =
∫
X3

Ω3 ∧ AΛ . (2.4)

Since the complex structure moduli space is equipped with a special Kähler structure, we
can compute Kähler and superpotential from a pre-potential F = (X 0)2 f(X i), cf. sec-
tion 3.1.

Apart from the complex structure moduli, the spectrum of the 4D N = 1 effective
theory is encoded in the chiral variables (U i, S,Ga, Tα) defined as [25],

U i = vi + i ui , S = C0 + i e−φ = c0 + i s ,

Ga = ca + S ba , Tα =
(
ρα + k̂αabc

abb + 1
2 S k̂αabb

a bb
)
− i

2 kαβγt
βtγ . (2.5)

It will be convenient to also define

ĉa = ca + c0 b
a ,

ρ̃α = ρα + k̂αabc
abb + 1

2 c0 k̂αabb
a bb , σα = −1

2 s k̂αabb
a bb + 1

2 kαβγt
βtγ (2.6)

so that
Ga = ĉa + isba , Tα = ρ̃α − iσα . (2.7)

The sign in front of σα arises from the way the chiral variables Tα are defined in eq. (2.5)
which follows from consistently fixing the signs in various coordinates in a manifestly T -dual
manner [35].

The N = 1 F -term scalar potential is determined from the Kähler potential K and
superpotential W via

V = eK
(
KAB̄DAW DBW − 3 |W |2

)
, DAW = ∂AW +KAW , (2.8)

where the covariant derivatives are defined with respect to all the chiral variables A ∈
{U i, S, Tα, Ga}. At the perturbative level, the Kähler potential receives corrections from
the α′ and string-loop (gs) expansion. Using appropriate chiral variables and the leading
order α′ corrections of [38], the Kähler potential splits in two pieces from their underlying
N = 2 special Kähler and quaternionic structure such that

K = K(U i, U i) +K(S,Ga, Tα;S,Ga, Tα) (2.9)

– 5 –
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where

K(U i, U i) = − ln
(
i

∫
X

Ω3 ∧ Ω3

)
= − ln

[
i
(
XΛFΛ −XΛFΛ

)]
, (2.10)

K(S,Ga, Tα;S,Ga, Tα) = − ln
(
−i(S − S)

)
− 2 lnY . (2.11)

Here, Y denotes the α′-corrected volume of the CY threefold [38],

Y(S,Ga, Tα;S,Ga, Tα) ≡ V + ξ

2

(
S − S

2 i

)3/2

(2.12)

= 1
6 kαβγ t

α tβ tγ + ξ

2

(
S − S

2 i

)3/2

, ξ = −ζ(3)χ(X3)
2 (2π)3 ,

where the 2-cycle moduli tα are implicitly functions of all the complexified chiral variables
S,Ga and Tα and their complex conjugates. In the absence of any open-string moduli, the
additive structure within the Kähler potential (2.9) results in the block-diagonal nature of
the Kähler metric, and its inverse.

Throughout this paper, we investigate scalar potentials for a great variety of superpo-
tential couplings. A prominent example for non-trivial 3-form flux backgrounds is the tree
level Gukov-Vafa-Witten (GVW) flux superpotential [37, 43]

W0(U i, S) =
∫
X

(F3 + S H3) ∧ Ω3 = eΛXΛ +mΛFΛ . (2.13)

Here the periods are defined in (2.4) and the components of the symplectic vectors eΛ and
mΛ are

eΛ = (FΛ + S HΛ) , mΛ =
(
FΛ + S HΛ

)
, (2.14)

where the fluxes are obtained from integrals over 3-cycles, i.e., FΛ =
∫
X3

F3 ∧AΛ etc. Be-
yond 3-form fluxes,W is protected against perturbative corrections by non-renormalisation
theorems [48–51]. However, there can be other terms in the superpotential induced by
non-perturbative effects [52] or (non-)geometric fluxes [25–35, 53–57]. For example, non-
perturbative contributions can arise from Euclidean D3-instantons [52] or gaugino con-
densations effects on stacks of D7-branes [58–60] wrapping suitable 4-cycles. Introducing
fluxes on top of these corrections gives rise to “fluxed-instantons” or magnetised gaugino
condensation effects with a more intricate moduli dependence [46]. We are going to study
these choices of superpotentials in more detail throughout the paper.

3 No-scale properties, odd moduli and α′ corrections

In this section, we derive exact expressions for the Kähler metric in the presence of (α′)3

corrections [38]. We show that certain tree level identities hold even at this order in α′.
Beyond that, we argue that they are broken once 1-loop and D-instanton effects are taken
into account. These results will be applied in the subsequent section to deriving master
formulae for (α′)3-corrected F -term scalar potentials.

– 6 –
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3.1 Exact inverse Kähler metrics at order (α′)3

Given that the full Kähler potential K in (2.9) contains two decoupled pieces with K
depending only on the complex-structure moduli U i, and K on all other moduli S,Ga and
Tα, one arrives at a block-diagonal structure for the inverse Kähler metric,

KAB =

Kij O

O KAB

 , KAB =
[
Kij O
O KAB

]
. (3.1)

In the remainder of this subsection, we compute exact expressions for the inverse metric
in set-ups with arbitrary Hodge numbers hp,q± . They are subsequently utilised to compute
identities for KAK

AB and KAK
ABKB that dramatically facilitate the computation of

F -term scalar potentials in section 4.1.

Complex structure moduli sector. Let us first consider the complex structure moduli
sector where the periods (2.4) can be computed from solving Picard-Fuchs equations [61–63]
or using asymptotic Hodge theory [64]. Throughout this paper, we restrict to the large
complex structure regime where the pre-potential is given by [62, 65, 66],

F = lijk X iX j X k

6X 0 + 1
2 pij X

iX j + piX 0X i + i

2 ξ̃ (X 0)2 + (X 0)2Finst . (3.2)

This is a homogeneous function of degree two in the symplectic coordinates XΛ, and one
can use X 0 = 1 and X i = U i to write it in terms of the non-homogeneous complex variables
U i. Further, the parameters lijk are the triple intersection numbers on the mirror threefold
X̃3 which, along with the other real parameters, are defined as [67, 68]

lijk =
∫
X̃3

Ji ∧ Jj ∧ Jk , pij = −1
2

∫
X̃3

Ji ∧ Jj ∧ Jj modZ ,

pj = 1
4 3!

∫
X̃3

c2(X̃3) ∧ Jj , ξ̃ = − ζ(3)χ(X̃3)
(2π)3 . (3.3)

Let us note that ξ̃ = −2ξ as the Euler characteristics satisfy χ(X̃3) = −χ(X3). Finally,
the string worldsheet corrections on the mirror dual side give rise to [62, 66]

Finst(U i) =
∑

β∈H−2 (X̃3,Z)\{0}

nβ Li3(qβ) , Li3(x) =
∞∑
m=1

xm

m3 , qβ = e2πidiU i (3.4)

in terms of Gopakumar-Vafa invariants nβ [69, 70] which naively count the number of
rational (oriented) curves Σg of genus g and of class β = diβ

i that can be holomorphically
mapped into X̃3. Now, the first derivatives of the prepotential F are given by

F0 = − 1
6 lijk U

i U j Uk + pi U
i + i ξ̃ +

(
2Finst − U i ∂iFinst

)
, (3.5)

Fi = 1
2 lijk U

j Uk + pij U
j + pi + (∂iFinst)

For simplicity, we ignore Finst in the subsequent analysis which we will explore in the
future.

– 7 –
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Now using (2.10), the complex structure moduli dependent part of the Kähler potential
is simplified as,

K = − ln
[
− i6 lijk

(
U i − U i

) (
U j − U j

) (
Uk − Uk

)
− 2 ξ̃

]
. (3.6)

Further, we define U i = vi + i ui so that

Ki = 3 i li
2 l + 3 ξ̃

, Kij = 9
(2 l + 3 ξ̃)2

(
li lj −

2 l + 3 ξ̃
3 lij

)
(3.7)

in terms of the short hand notations

l = lijk u
i uj uk , li = lijk u

j uk , lij = lijk u
k , lik lk = ui . (3.8)

The inverse Kähler metric is thus given by

Kij = 2 l + 3 ξ̃
l − 3 ξ̃

(
ui uj − l − 3 ξ̃

3 lij
)
. (3.9)

Note that the setting ξ̃ = 0 leads to the following expressions arising from the classical
triple intersection number lijk on the mirror CY threefold,

Ki = 3 i li
2 l , Kij = 9

4 l2
(
li lj −

2 l
3 lij

)
, Kij = 2ui uj − 2 l

3 lij , (3.10)

which matches with the standard result for the CY threefold where l → 6V on the mirror
Kähler sector. Finally, one obtains the following useful identities

KiKij = i
2 l + 3 ξ̃
l − 3 ξ̃

uj = −KjiKi , KiKijKj = 3 + 9 ξ̃
l − 3 ξ̃

. (3.11)

This shows that in the absence of perturbative effects on the mirror-side, these identities
reduce to the following simpler forms,

KiKij = 2 i uj = (U − U)j = −KjiKi , KiKijKj = 3 . (3.12)

The breaking of the no-scale identity KiKijKj = 3 (on the mirror dual side) through ξ̃

in (3.11) is of course expected from simple homogeneity arguments.

Kähler moduli sector. Next, we compute the inverse Kähler metric for the S,Ga and
Tα moduli by considering the Kähler potential (2.11) with Y defined in (2.12). To this end,
we have to rewrite the overall volume V in terms of the chiral variables S,Ga, Tα and their
complex conjugates. The definition of the chiral variable Tα in eq. (2.5) allows us to write

kα ≡ kαβγtβ tγ = i
(
Tα − Tα

)
− i k̂αab (Ga −Ga) (Gb −Gb)

2 (S − S)
(3.13)

and hence we have

V ≡ 1
6 kα t

α = tα

6

[
i
(
Tα − Tα

)
− i k̂αab (Ga −Ga) (Gb −Gb)

2 (S − S)

]
. (3.14)

– 8 –
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Here tα is an implicit function of the chiral variables S,Ga, Tα. In addition, given that
there are two kinds of triple intersection numbers surviving under the orientifold action,
namely kαβγ and k̂αab defined in (2.1), we introduce the following shorthand notation to
simplify intermediate computations,

k0 = kαβγ t
α tβ tγ = 6V , kα = kαβ t

β , kαβ = kαβγ t
γ ,

k̂0 = k̂αab t
α ba bb , k̂α = k̂αab b

a bb , k̂ab = k̂αab t
α , (3.15)

ξ̂ = s3/2 ξ , k̂a = k̂αab t
α bb , k̂αa = k̂αab b

b .

Initially, we compute the relations, see eq. (A.1) in appendix A for details,

∂Y
∂S

= i k̂0
8 − 3 i ξ̂

8 s ,
∂Y
∂Ga

= − i k̂a4 ,
∂Y
∂Tα

= i tα

4 , (3.16)

which lead to the following derivatives of K,

KS = i

2 s + iGab ba bb + 3i ξ̂
4sY , KGa = −2 iGab bb , KTα = − i t

α

2Y . (3.17)

Here the α′-corrected moduli space metric and its inverse, G and G−1, are

Gαβ
36 = kα kβ

4Y (k0 − 2Y) −
kαβ
4Y , Gab = −4Y k̂ab (3.18)

36Gαβ = 2 tα tβ − 4Y kαβ , Gab = − k̂ab4Y .

From the above, we find that the various Kähler metric components can be written as

KSS = 1
4 s2

(
1− 3 ξ̂

4Y + 9 ξ̂2

8Y2

)
+ Gab b

a bb

s

(
1 + 3 ξ̂

4Y

)
+ 9Gαβ k̂α k̂β

16Y2 ,

KGa S = −Gab b
b

s

(
1 + 3 ξ̂

4Y

)
− 9Gαβ k̂αa k̂β

8Y2 = KS G
a ,

KTα S
= 9Gαβ k̂β

8Y2 − 3 ξ̂ tα

16 sY2 = KS Tα
, (3.19)

K
GaG

b = Gab
s

+ 9Gαβ k̂αa k̂βb
4Y2 ,

KTαG
a = − 9Gαβ k̂βa

4Y2 = KGa Tα
,

KTα Tβ
= 9

4Y2 G
αβ .
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This metric can be inverted to arrive at the inverse Kähler metric

KSS = γ1 ,

KGa S = γ1 b
a = KS G

a

,

KTα S = γ1 k̂α + γ2 kα
2 = KS Tα , (3.20)

KGaG
b

= sGab + γ1 b
abb ,

KTαG
a

= sGab k̂αb + (γ1 k̂α + γ2 kα) ba
2 = KGa Tα ,

KTα Tβ = 4
9 Y

2 Gαβ + sGab k̂αa k̂βb + (γ1 k̂α + γ2 kα) (γ1 k̂β + γ2 kβ)
4 γ1

,

where the γi are given by

γ1 = s2 (4V − ξ̂)
(V − ξ̂)

, γ2 = 3 s ξ̂
(V − ξ̂)

, γ1 − s γ2 = 4 s2 . (3.21)

Notice that, in the absence of the BBHL correction ξ̂ = 0, we find that the inverse metric
components collected in eq. (3.20) reduce to the standard results of [36] where γ1 = 4 s2

and γ2 = 0. Furthermore, in the absence of odd moduli, we recover the (α′)3-corrected
Kähler metric components of [71]. Moreover, the inverse Kähler metric components have
been computed in [11] in terms of rather lengthy expressions, whereas our results exhibit
a surprisingly simple and compact structure. This will come in handy in the subsequent
section when working out powerful identities that are quintessential for deriving the master
formulae in section 4.1.

3.2 No-scale structure and useful identities

Ultimately, our aim is to streamline the computation of the N = 1 F -term scalar po-
tential (2.8) for general CY orientifold compactifications in the presence of perturbative
quantum corrections. Expanding the covariant derivatives in (2.8), we find terms of the
form KAK

AB∂BW or KAK
ABKB for which certain tree level identities exist, see e.g. [42].

At higher order in α′, we can utilise our expressions (3.17), (3.19) and (3.20) to compute
equivalent relations. Due to the length of the corresponding individual terms, we listed
the intermediate steps in eqs. (A.2), (A.3) in appendix A. By applying appropriate sum-
mations, we confirm that the following identities, which have already been known for the
tree level Kähler potential (e.g. see [31]), still hold true even after including the BBHL
(α′)3-correction,

KAK
AS = (S − S) = −KSBKB ,

KAK
AG

a

= (Ga −Ga) = −KGaBKB , (3.22)

KAK
ATα = (Tα − Tα) = −KTαBKB .
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These relations significantly simplify the F -term scalar potential as we will demonstrate
below in section 4.1. Moreover, the above identities allow us to derive

KAK
ABKB = (KAK

AS)KS + (KAK
AG

a

)KG
a + (KAK

ATα)KTα
(3.23)

=
[
1 + 2 sGab ba bb + 3 ξ̂

2Y

]
+
[
−4 sGab ba bb

]
+
[
k0
2Y + 2 sGab ba bb

]
= 4 ,

where we used the relations k0 = kα t
α = 6V and k̂0 = k̂α t

α = −4Y Gab ba bb that follow
from eq. (3.18).

Let us note that this no-scale structure relation, KAK
ABKB = 4, can also be antic-

ipated, even after including tree level (α′)3-corrections, via homogeneity arguments [42].
That is, the Kähler potential (2.11) can be rewritten as

K = −4 ln g(s,V2/3) , g(s,V2/3) =
√
√

2
(
V
√
s+ ξ

2 s
2
)
, (3.24)

where g(s,V2/3) is a homogeneous function of degree one in the new coordinates xi ∈
{s,V2/3}. Indeed, we find that g(λxi) = λ g(xi) implies xi gi = g and xi gij = 0. Subse-
quently, one derives

Ki = −4 gi
g
, Kij = −4 gij

g
+ 4 gi gj

g2 (3.25)

so that the no-scale identity is recovered from

xi Kij = −Kj , Kij Kj = −xi , KiK
ij Kj = −xj Kj = 4xj gj

g
= 4 . (3.26)

To summarise, the explicit expression for the inverse Kähler metric together with the
identities (3.22) and (3.23) allows for a model independent reformulation of the F -term
scalar potential which we provide in section 4.1. This is particularly useful for moduli
stabilisation in generic CY orientifold compactifications with arbitrary numbers of Kähler
moduli Tα and odd moduli Ga.

3.3 No-scale breaking effects from SL(2,Z) invariance

A natural question is how the no-scale identity (3.23) is modified in the presence of further
quantum effects. Our previous homogeneity argument suggests that the no-scale structure
is broken at higher order in the string loop expansion. We can be even more precise by
repeating the above analysis for a partially4 SL(2,Z) completed Kähler potential where Y
in (2.12) is replaced by5

Y = V + ζ

4f0(S, S̄) , ζ = − χ

2(2π)3 . (3.27)

4Full modular invariance is only guaranteed by including also an additional G-dependent piece in (3.27)
as argued in [45], see (9.1) below.

5An F-theory analysis in [72] revealed that there exist further genuine N = 1 corrections. At tree
level, a single O7-plane wrapped on a divisor D results in a shift of the Euler characteristic in (2.12) by
χ → χ + 2

∫
X3

D3. More generally, f0 in (3.27) would need to be replaced by a non-topological integral.
We ignore such additional corrections subsequently.
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Here, f0(S, S̄) is the non-holomorphic Eisenstein series of weight 3/2. The modifica-
tion (3.27) is obtained from the 10D (α′)3 correction f0R

4 [73] as derived in N = 1 CY ori-
entifold compactifications [45] under the assumption that a discrete subgroup ΓS ⊂ SL(2,Z)
survives in the 4D theory.6 We focus here on the simpler case of the purely S-dependent
part of the modular completion, albeit D1-brane instanton corrections or, more precisely,
(p, q)-strings give rise to a further Ga-dependent modular form in (3.27) [45], cf. the dis-
cussion in section 9.7

For the subsequent analysis, we define the modular functions

fk(S, S̄) =
∑

(l̂1,l̂2) 6=(0,0)

s
3
2

(l̂1 + Sl̂2) 3
2 +k(l̂1 + S̄l̂2) 3

2−k
, f̄k = f−k . (3.28)

They transform covariantly under SL(2,Z)

fk

(
aS + b

cS + d
,
aS̄ + b

cS̄ + d

)
=
(
cS + d

cS̄ + d

)k
fk(S, S̄) . (3.29)

Further, these functions satisfy

(S − S̄) ∂
∂S

fk =
(
k + 3

2

)
fk+1 − kfk , (S − S̄) ∂

∂S̄
fk =

(
k − 3

2

)
fk−1 − kfk (3.30)

which allows us to derive the following identities

∂Sf0 = 3f1

2(S − S̄)
, ∂S̄f0 = − 3f−1

2(S − S̄)
, ∂S̄∂Sf0 = − 3f0

4(S − S̄)2 . (3.31)

This implies that

∂Y
∂S

= i k̂0
8 + 3ζ

8
f1

(S − S̄)
,

∂2Y
∂S̄∂S

= −3ζ
16

f0

(S − S̄)2 . (3.32)

We stress that ∂S∂S̄Y depends only on f0 instead of f±2 due to aforementioned identities
for fk. Last but not least, we expand fk in the large Im(S) � 1 (small string coupling)
regime where

fk(S, S̄) = aT + aL
(1− 4k2) +O

(
e−Im(S)

)
(3.33)

in terms of
aT = 2ζ(3)Im(S)

3
2 , aL = 2π2

3 Im(S)−
1
2 . (3.34)

The first term is associated with closed string tree level [77], whereas the second term with
1-loop effects [78]. The final piece encodes contributions from non-perturbative D-instanton
states [79]. For the lowest order modular functions, we can write

f0(S, S̄) = aT + aL +O(e−Im(S)) , f±1(S, S̄) = aT −
1
3aL +O(e−Im(S)) . (3.35)

6For N = 2 theories in 4D, it was conjectured in [74] that (3.27) together with (3.28) is the correct
modular completion.

7Another caveat in N = 1 setups concerns the breaking of the product structure of moduli space as
anticipated in [75]. Due to the extended no-scale structure [76], the effects of [75] appear at 1-loop at order
(α′)4 making them sub-leading for our purposes.

– 12 –



J
H
E
P
0
4
(
2
0
2
2
)
0
0
3

To recover the convention of the tree level computation in the previous section, we note
that ζaT = 2ξ̂.

We now would like to compute the Kähler metric for the Kähler potential (3.27) in CY
orientifold compactifications. In this context, the sum in (3.28) needs to be appropriately
restricted to orbits of ΓS [45] Proceeding as in section 3.1, we find that only the following
components of (3.19) are modified8

KSS = 1
4 s2

(
1− 3 ζ f0

8Y + 9 ζ2 f1 f−1
32Y2

)
+ Gab b

a bb

s

(
1 + 3 ζ

16Y (f1 + f−1)
)

+ 9Gαβ k̂α k̂β
16Y2 ,

KGa S = −Gab b
b

s

(
1 + 3 ζ

8Y f−1

)
− 9Gαβ k̂αa k̂β

8Y2 = KS G
a ,

KTα S
= 9Gαβ k̂β

8Y2 − 3 ζ tα

32 sY2 f−1 = KS Tα
. (3.36)

The presence of the modular functions f±1 in KGa S and KTα S
imply that the components

are complex. The inverse Kähler metric can still be written in the form (3.20) with the
only difference being that the γi are now defined as

γ1 = 8s2(8V − ζf0)
γ3

, γ2 = 24sζf−1
γ3

, γ̄2 = 24sζf1
γ3

,

γ3 = 8(2V − ζf0) + 9ζ2 f
2
0 − f1f−1
4V + ζf0

. (3.37)

In particular, γ2 is now complex due to the presence of f−1 in the numerator which requires
appropriate complex conjugation in (3.20). Interestingly, KGaS̄ = γ1b

a remains real.
Next, we derive the corrected expressions of section 3.2. First, the identities (3.22) are

modified as

KAK
AS = i

2sY

{
Y(γ1 − sγ2) + s(Y − 3V)(γ2 − γ̄2)

}
KAK

ATα = −i
128s2Y

{
64σα [Y(γ1 − sγ2) + s(γ2 − γ̄2)(Y − 3V)]

+ k̂α(γ2 − γ̄2) [γ3γ̄2 + 96sV]
}

KAK
AG

a

= iba

2sY

{
Y(γ1 − sγ2) + s(Y − 3V) (γ2 − γ̄2)

}
(3.38)

At tree level, we have9

(γ1 − sγ2)
∣∣
tree= 4s2 , (γ2 − γ̄2)

∣∣
tree= 0 (3.39)

and thus recover (3.22), while including the 1-loop coefficient aL in the expansion (3.35)
leads to

KAK
AS

S − S
= KAK

ATα

Tα − Tα
= KAK

AG
a

Ga −Ga
= 4V + ζ(aT + aL)

4V + ζ(aT − aL) . (3.40)

8We stress that (3.36) is not modular invariant due to combinations of the form f1 + f−1 or f−1. This
is expected because one would need to include also the G-dependent piece in (3.27), see (9.1) below.

9In fact, looking at (3.33), γ2 − γ̄2 = 0 remains true even at the loop level which implies that γ2 − γ̄2 is
associated with purely non-perturbative D-instanton corrections.
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Finally, we aim at computing the former no-scale identity (3.23) for the modified Kähler
metric. Overall, we obtain

KAK
ABKB − 4 = − 1

2s2

{
−γ1 + s

γ2 + γ̄2
2 + 4s2 + 3V

64Y2 γ3 (γ2 − γ̄2)2
}
. (3.41)

The right hand side is clearly real and vanishes at tree level due to (3.39). To gauge the
leading order breaking effect, we restrict to linear order in ζ (any higher power would be
modified by higher order α′ effects in 10D) where

KAK
ABKB = 4 + 3

8
ζ(2f0 − f1 − f−1)

V
= 4 + ζaL

V
+O

(
e−s/V

)
. (3.42)

Let us make the following two comments on these findings. First, the breaking of
the generalised no-scale identity can already be anticipated from the previous homogeneity
arguments. Using the fact that at large Im(S) the fk enjoy an expansion of the form (3.33),
we have to modify (3.24) in such a way that

K = −4 log(g) , g =

√√√√√2
(
V
√
s+ ξ

2s
2 + ζπ2

6 +O(
√
s e−s)

)
. (3.43)

Clearly, the 1-loop and D-instanton contributions break the previous homogeneity argu-
ment g(λxA) 6= λg(xA) which is why the no-scale identity must be broken.

Secondly and also more interestingly, this coefficient is directly related to 8-derivative
corrections in the 10D effective action involving the R-R 3-form flux of the form F 2

3R
3.

Computing the α′-corrected flux scalar potential to leading order in ζ gives rise to

Vflux = Vtree −
ζf0
2V Vtree + eK

2sVζ (3.44)

where the second term comes from the standard Weyl rescaling of the 4D metric. In
contrast, the third term encodes the non-trivial effects of the SL(2,Z)-completed (α′)3

corrections and reads10

Vζ = 3
8

ζ

V3

{
(2f0 − f1 − f−1)

∫
X3

G3 ∧ Ω
∫
X3

G3 ∧ Ω

+ 4e−2φ0 (2f0 + f1 + f−1)
∫
X3

H3 ∧ Ω
∫
X3

H3 ∧ Ω
}
. (3.45)

Notice that the R-R flux F3 appears only in the first line with the same coefficient ∼
(3/8)ζ(2f0− f1− f−1)/V as found in eq. (3.42). In the large Im(S) expansion of fk (3.35),
this then becomes

Vζ = 3
8

ζ

V3

{(8aL
3 + non-perturbative

)∫
X3

G3 ∧ Ω
∫
X3

G3 ∧ Ω (3.46)

+ 4e−2φ0

(
4aT + 4aL

3 + non-perturbative
)∫

X3
H3 ∧ Ω

∫
X3

H3 ∧ Ω
}
.

10The fact that the ba dependence drops out completely is shown explicitly in section 5.1.
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At tree level, the only contribution comes from the second line through NS-NS 3-form flux
as already observed in [38] which is the leading order no-scale breaking effect well-known
from LVS. Interestingly, the leading order contribution from F3-flux is determined precisely
by the coefficient derived in (3.42). This interesting because all contributions in Vζ are
solely determined by zero mode Kaluza-Klein reductions of higher derivative corrections
in the 10D effective action such as f0|G3|2R3 and f1G

2
3R

3 + f−1G
2
3R

3 which were recently
determined in [80]. In this way, the coefficient derived in (3.42) can in principle be directly
traced back to properties of the 10D theory.

4 Expressions for α′- and gs-corrected F -term scalar potentials

In this section, we apply the identities derived in the previous section to write down general
master formulae for the F -term scalar potential at higher order in string perturbation
theory. Afterwards, we briefly discuss moduli stabilisation in supersymmetric and non-
supersymmetric settings.

4.1 Three master formulae for general CY orientifold compactifications

The block diagonal nature of the total Kähler metric (and its inverse) facilitates the fol-
lowing splitting of the N = 1 F -term scalar potential

V = eK
[
KAB (DAW ) (DBW )− 3|W |2

]
≡ Vcs + Vk , (4.1)

where

Vcs = eKKU iUj (DU iW ) (D
Uj
W ), Vk = eK

(
KAB (DAW ) (DBW )− 3|W |2

)
. (4.2)

Recall that the indices (i, j) count complex structure moduli U i, while the remaining indices
(A,B) account for the rest of the chiral variables {S,Ga, Tα}. Given that our main focus
will be mostly on moduli S, Tα and Ga, let us begin by looking at the various pieces in Vk
obtained from the Kähler potential (2.12). We find that

Vk = eK
[(
KAK

ABKB − 3
)
|W |2 +WAK

ABWB +
(
W KAK

ABWB + c.c.
)]

= eK
(
|W |2 +WAK

ABWB +
∑

A∈{S,Ga,Tα}
(A−A) (W WA −W WA)

)
(4.3)

where we utilised the following two identities derived above (recall eqs. (3.22) and (3.23)),

KAK
ABKB = 4, KBK

BA = (A−A) = −KABKB. (4.4)

We stress again that these relations, while being naively true for the tree-level Kähler
potential [36], remain correct even after including the BBHL correction [38]. This gives
rise to our “first master formula” for the scalar potential,
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First master formula

V = Vcs + eK
(
|W |2 +WAK

ABWB +
∑

A∈{S,Ga,Tα}
(A−A) (W WA −W WA)

)
. (4.5)

Using the identities for the inverse metric in (3.20), the exact scalar potential is easily
computed for any given model. Contrary to commonly applied scenarios, none of the
moduli fields have been integrated out at this stage. In particular, it was imperative to treat
S on equal footing with {Ga, Tα} in deriving (4.5). The only undetermined input remains
the superpotential which is easily plugged into the above expression, thereby making (4.5)
highly attractive for moduli stabilisation purposes.

Although complex structure moduli are commonly studied separately from the remain-
ing fields in the established Kähler moduli stabilisation procedures [4, 5], our exact iden-
tities in section 3 allow for a compact expression for the complete F -term scalar potential
in CY orientifold compactifications. Indeed, using the Kähler derivatives in eq. (3.7) and
the inverse Kähler metric in eq. (3.9), the complex structure piece Vcs can be expressed as

Vcs = eK
[(

KU i KU iUj K
Uj

)
|W |2 +

(
KU i KU iUj W

Uj
W +W WU i KU iUj K

Uj

)
+WU i KU iUj W

Uj
)
]

= eK
[ 3 l

(l − 3 ξ̃)
|W |2 + i

(2 l + 3 ξ̃)
(l − 3 ξ̃)

ui (WW
U
i −WWU i)

+ (2 l + 3 ξ̃)
(l − 3 ξ̃)

(
ui uj − (l − 3 ξ̃)

3 lij
)
WU iWU

j

]
, (4.6)

where we have used the identities given in eq. (3.11). Thus the most generic scalar potential
for all moduli and axions can be read off from our “second master-formula” for the scalar
potential,

Second master formula

V = eK
[4 l − 3 ξ̃
l − 3 ξ̃

|W |2 +WAK
ABWB +

∑
A∈{U i,S,Tα,Ga}

(A−A) (W WA −W WA)

+ i
9 ξ̃ ui

l − 3 ξ̃
(WW

U
i −WWU i)

]
, (4.7)

where the summation A runs over all moduli {U i, S, Tα, Ga}. Notice that the last line arises
because perturbative effects on the mirror type IIA side break the no-scale identity given
in eq. (3.11) as compared to eq. (3.22). This is because ξ̂ comes with a dilaton dependence
in type IIB which ensures homogeneity of the α′-corrected Kähler potential, while this is
simply not the case for ξ̃. If this correction can be ignored via setting ξ̃ = 0 in the limit
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of “extremely” large complex structure, the master formula (4.7) reduces to an amazingly
simple form

V ' eK
[
4 |W |2 +WAK

ABWB +
∑

A∈{U i,S,Tα,Ga}
(A−A) (W WA −W WA)

]
. (4.8)

Before we continue, we wish to point out that, although both the master formulae (4.5)
and (4.7) of the scalar potential are general, they are not fully equivalent. The only slight
difference is the fact that the master formulae (4.5) is also applicable to “rigid” compact-
ifications in which complex structure moduli are frozen or simply absent. However, in
arriving at the master formula (4.7), one implicitly assumes that there is at least one com-
plex structure modulus present in the dynamics. For the so-called rigid compactification
case, one simply has the following simplifications in the Kähler potential (K) of the complex
structure sector [27],{

X 0 = 1, F0 = − i
}

=⇒ K = − ln
[
i
(
X 0F0 −X 0F0

)]
= − ln 2. (4.9)

In fact, one can choose a normalisation in the holomorphic three-form Ω3 by a factor of
√

2
to make K = 0 which, in turn, also needs to be incorporated in the superpotential, thereby
giving rise to eK = 1

4 sY2 . Thus, the rigid orientifold case leads to Vcs = 0 in the master
formula (4.5) making it V = Vk. In contrast, (4.8) will have a factor of 4|W |2 in the first
term instead of |W |2, and the U i moduli will not appear in the summation over A. Given
that we are interested in studying models with a complex structure moduli dependence,
for our purposes the two expressions are equivalent. Nevertheless it is worth to point out
this subtlety in case the reader wants to apply the above to rigid compactifications, see for
example [81].

A third Master formula for the SL(2,Z)-completed Kähler potential. As a final
step, we extend our toolkit by a third master formula that remains true even beyond string
tree level. Indeed, we have seen that the no-scale structure is broken once higher string
loop corrections are taken into account. This modification leads to another master formula
that is exact for general superpotentials and the Kähler metric derived from the Kähler
potential depending on the SL(2,Z)-completed volume (3.27).

Initially, we rewrite the identities (3.38) in the form

KAK
AS = KAK

AG
a

ba
= i

2sF1 , KAK
ATα = −i2s2

{
σαF1 + k̂αF2

}
, (4.10)

as well as (3.41) as
KAK

ABKB − 3 = 1− F3
2s2 (4.11)

where we introduced

F1 = (γ1 − sγ2) + s(Y − 3V)
Y

(γ2 − γ̄2) , F2 = γ2 − γ̄2
64Y [γ3γ̄2 + 96sV] ,

F3 = −γ1 + s
γ2 + γ̄2

2 + 4s2 + 3V
64Y2 γ3 (γ2 − γ̄2)2 . (4.12)
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Here, the γi are the ones defined in eq. (3.37). Following the same steps as in (4.3), we
arrive at a third master formula given by

Third master formula

V = Vcs + eK
((

1− F3
2s2

)
|W |2 + 1

4s2

∑
A∈{S,Ga,Tα}

(A−A) (F1W WA − F 1W WA)

+WAK
ABWB + −ik̂α2s

(
F2W W Tα

− F 2WTαW
))

. (4.13)

This expression provides the exact F -term scalar potential for N = 1 orientifold compact-
ifications including corrections from both string loop and D-instanton effects. Recall that
the combination (γ2 − γ̄2) vanishes at both string tree and 1-loop level which implies that
F2 contributes only non-perturbatively via D-instanton contributions ∼ e−s. By using the
tree level identities (3.39), one easily verifies that F1 = 4s2 and F2 = F3 = 0 leading us
back to our first master formula (4.5). At string 1-loop order, we find

F1 = 4s2 4V + ζ(aT + aL)
4V + ζ(aT − aL) , F2 = 0 , F3 = −8s2ζaL

4V + ζ(aT − aL) (4.14)

in terms of tree level and loop coefficient aT and aL defined in (3.34). Thus, ignoring
D-instanton effects, we arrive at the 1-loop expression

V
∣∣
1-loop= Vcs + eK

(4V + ζ(aT + 3aL)
4V + ζ(aT − aL) |W |

2 +WAK
ABWB (4.15)

+ 4V + ζ(aT + aL)
4V + ζ(aT − aL)

∑
A∈{S,Ga,Tα}

(A−A) (W WA −W WA)
)
.

In the remainder of this paper, we focus on the two master formulae (4.5) and (4.7)
for simplicity. Without too much effort, everything that has been computed is easily
generalisable by using (4.13) or (4.15).

4.2 Supersymmetric moduli stabilisation

The supersymmetric solutions can be obtained by imposing the vanishing of the covariant
derivatives with respect to the chiral varibales,

DU iW = 0 = D
Uj
W, DSW = 0 = DSW, (4.16)

DGaW = 0 = DG
aW, DTαW = 0 = DTα

W.

Using the Kähler derivatives in eqs. (3.7), (3.17) and (3.18), these conditions read explicitly

WU i = − 6 i li
4 l + ξ̃

W , WGa = − i k̂a2Y W , WTα = i tα

2Y W ,

WS = − i

2 s

(
1 + 2 sGab ba bb + 3 ξ̂

2Y

)
W . (4.17)
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For a supersymmetric minimum, these conditions (4.17) must be imposed for all the chiral
variables for a generic superpotential W = W (U i, S, Tα, Ga).

For a superpotential W = W (U i, S,Ga) which does not depend on the Tα coordinates,
the F -term conditions (4.17) yield

WTα = 0 = W Tα
=⇒ 〈W 〉 = 0 = 〈W 〉, (4.18)

since the tα cannot vanish altogether and the decompatfication limit Y → ∞ needs to be
avoided. This needs to be contrasted with the situation where the superpotential does not
depend on the Ga, i.e., W = W (U i, S, Tα). In this case, (4.17) implies

WGa = 0 = WG
a =⇒

〈
k̂a
Y

〉
= 0 =

〈
k̂αab t

α bb

Y

〉
for 〈W 〉 6= 0 6= 〈W 〉, (4.19)

which can be trivially satisfied for 〈k̂a〉 = 〈k̂αab tα bb〉 = 0, or in particular for 〈ba〉 = 0, ∀a.
This is because the saxionic partner of the R-R C2-axions ca in the odd moduli Ga are the
NS-NS axions ba themselves. For this reason, there are no issues with imposing 〈ba〉 = 0
at the extremum contrary to demanding the geometrical volume moduli to vanish 〈tα〉 = 0
in the previous case which would oppose the SUGRA approximation.

To illustrate this point, we look at the GVW superpotential W = W0(U i, S) in (2.13)
which is generated from NS-NS 3-form flux (H3) and the R-R 3-form flux (F3). Subse-
quently, we write

W0(U i, S) = wF (U i) + SwH(U i) (4.20)

where wF (U i) and wH(U i) are some cubic polynomials in complex structure moduli U i.
In this case, the tree level SUSY conditions in (4.17) with ξ̂ = 0 reduce to (ignoring the
condition for Tα)

WU i = − 3 i li
2 l + 3ξ̃

W , WS = − i

2 s
(
1 + 2 sGab ba bb

)
W , WGa = − i k̂a2V W = 0 .

These conditions are collectively solved for 〈W0〉 6= 0 leading to the following relations
determining the VEVs of the respective moduli/axions,

〈c0〉 = −〈m〉 〈n〉+ 〈m〉 〈n〉
|wH |2

, 〈s〉 = 〈m〉 〈n〉 − 〈m〉 〈n〉
|wH |2

, (4.21)

mi = 1
|wH |2

[
m (nni − n ni) + m (n ni + nni)−

12 li
4l + ξ̃

n (m n− nm)
]
∀ i,

mi = 1
|wH |2

[
m (n ni − nni) +m (n ni + nni)−

12 li
4l + ξ̃

n (m n− nm)
]
∀ i,

where the complex structure moduli {ui, vi} get their respective susy VEVs through the
last two set of conditions. Here we have defined,

m = Re(wF ) , m = Im(wF ) , mi = Re(∂U iwF ) , mi = Im(∂U iwF ) ,
n = Re(wH) , n = Im(wH) , ni = Re(∂U iwH) , ni = Im(∂U iwH) . (4.22)
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In particular, the SUSY minimum determines the h1,1
− conditions

〈k̂a〉 = 〈k̂αab tα bb〉 = 0 . (4.23)

That is, the point along the flat direction of the NS-NS axions ba at which SUSY is restored
is given by 〈ba〉 = 0, ∀ a. It turns out that the above minimum determined by (4.21)
and (4.23) is Minkowskian,

〈V tree
GVW 〉 = 0 (4.24)

which breaks SUSY because DTαW 6= 0.
We close this section with two comments. First, as we will show momentarily, stabil-

ising the NS-NS axions ba through fluxes is apparently misleading. The point is that, in
the absence of a Tα dependence in W , the scalar potential in the basis {tα, ba} is indepen-
dent of ba (and trivially ca). This becomes obvious from our second master formula (4.7)
where, setting W = W (U i, S), the only potential source of a ba dependence could arise
from WAK

ABWB. However, both KSS̄ and Ki̄ are independent of ba. This means that
the ba dependence arises implicitly from working in the basis of chiral variables.

Secondly, we notice that an explicit ba dependence in (4.7) arises as soon as the super-
potential also depends on Tα, W = W (U i, S, Tα). In this case, KTαTβ and KTαS induce
terms like k̂a etc. as can be seen from (3.20). In addition, the chiral fields Tα in (2.5)
include the ba explicitly. As it turns out, the minimum is still determined by 〈ba〉 = 0, ∀ a.
In this sense, the axionic solution in eq. (4.23) is a quite ‘special solution’ which reappears
in the subsequent scalar potential analysis in section 6. In fact, this can lead to signifi-
cant simplifications in the inverse Kähler metric, thereby generically restoring many well
known moduli stabilisation schemes, in particular (A)dS4 vacua realised in KKLT and LVS
models, from more general set-ups including the odd moduli.

4.3 Non-supersymmetric moduli stabilisation

For non-supersymmetric moduli stabilisation, one needs to consider the full scalar potential
V in eq. (4.1). Using the expressions in eq. (4.5) and eq. (4.7), we now analyse a variety of
scenarios by considering different forms of the superpotential. Occasionally, we will also use
the scalar potential formulation in eq. (4.8) which is valid in the large complex structure
regime. Having these so-called “master formulae” for the generic scalar potential applicable
for arbitrary numbers of S,U i, Tα and Ga moduli at hand allows us to easily read off the
various pieces using the inverse Kähler metric and ansatz for the superpotential.

Indeed, for a general superpotential, our first master formula (4.5) gives rise to

V = Vcs + eK
(
|W |2 +WAK

ABWB − 4 s Im(W WS)− 4 s ba Im(W WG
a)

+ 2 (kα − s k̂α) Im(W W Tα
)
)
. (4.25)
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Equivalently, the second master formula (4.7) gives rise to

V = eK
[

4 l − 3 ξ̃
l − 3 ξ̃

|W |2 +WAK
ABWB − 2ui

(
2 + 9ξ̃

l − 3 ξ̃

)
Im(W W

U
i)

− 4 s Im(W WS)− 4 s ba Im(W WG
a) + 2 (kα − s k̂α) Im(W W Tα

)
]
. (4.26)

Given that we will usually ignore any explicit complex structure moduli dependence, we
mostly work with variants of (4.25). Furthermore, it is straight forward to generalise (4.25)
to higher orders in the loop expansion by using our third master formula (4.13). Plugging
in the inverse Kähler metric components of eq. (3.20), we find

V = V0 + V1 + V2 (4.27)

in terms of

V0 = Vcs + eK
[
|W |2 − 4s Im

[
WWS

]
+ WS γ1WS

+ WTα

(
4Y2 Gαβ

9 + γ2
2 kα kβ
4 γ1

)
W Tβ

+ 2 kα Im
[
WW Tα

]
+ γ2 kα Re[WSW Tα

]
]
,

V1 = eK
[
γ1 k̂α Re[WSW Tα

]− 2 s k̂α Im
[
WW Tα

]
+
(
sGab k̂αa k̂βb + γ1

4 k̂α k̂β + γ2
4 (kα k̂β + kβ k̂α)

)
WTαW Tβ

]
, (4.28)

V2 = eK
[
2γ1 b

aRe(WSWG
a) +

(
sGab + γ1 b

abb
)
WGaWG

b − 4sba Im(W WG
a)

+ 2
(
sGab k̂αb + (γ1 k̂α + γ2 kα) ba

2

)
Re(WTαWG

a)
]
.

We will utilise this formula to study a variety of scenarios based on the form of the super-
potential. Subsequently, we separate our analysis into three steps:

• step-1: we study the GVW superpotential W = W (U i, S) = W0 defined in (2.13).

• step-2: we consider superpotentials of the formW = W (U i, S, Tα) which also depend
on the Tα moduli. Such corrections can be induced via the non-perturbative effects
and subsequently used for Kaehler moduli stabilisation along the lines of KKLT [4]
or LVS [5].

• step-3: in the final step, we examine a class of superpotentials which can generically
depend on all the moduli, namely W =W (U i, S, Tα, Ga). The various sources for in-
ducing such superpotential terms are for instance (non-)geometric flux [25–35, 55–57],
(fluxed)E3-instantons [45, 46] or D5-gaugino condensation [10, 16, 45, 82].
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In the following sections, we will show how our master formula in the form of eq. (4.28)
can help us “reading-off” the scalar potential pieces for the above three generic classes of
models, which can be subsequently utilised for moduli stabilisation purposes. Given that
our expressions are exact and compact, it facilitates the numerical implementation of both
the scalar potential and stationary point conditions. The problem of stabilising moduli is
thus reduced to finding minima for given choices of parameters which can be achieved via
sophisticated search optimisation algorithms [47, 83, 84].

Note. We stress that, after knowing the explicit form of the scalar potential V in terms
of the set of real moduli and axions, namely {s, c0, t

α, ρα, b
a, ca}, we plan to study moduli

stabilisation using the set of real variables and not the complexified chiral variables. This
is because converting the tα to τα might not necessarily be possible analytically, though
it is always defined implicitly. In particular, the map between the two choices is bijective
in the Käher cone where the Kähler cone conditions pick out the unique solution in the
quadratic equation relating the τi to the tk. The two choices are therefore equivalent and
we will henceforth assume that e.g. the 2-cycle volume moduli tα are independent variables
in the minimisation process, which are otherwise implicit functions of the chiral variables
tα ≡ tα(S, Tα, Ga;S, Tα, G

a). When re-deriving the supersymmetry solutions from extrema
of the scalar potential, one has to appropriately take this into account.

5 Analysing the scalar potential for W = W (U i, S)

In this section we illustrate the power of the master formulae we derived for the general
scalar potential. For example, an immediate result of the formula (4.7) is the case of
a constant superpotential W = w0, which does not depend on any of the moduli and
subsequently leads to a scalar potential of the following form,

V = eK 4 l − 3 ξ̃
l − 3 ξ̃

|w0|2
ξ̃→0−−−→ 4 eK |w0|2. (5.1)

Note that, in the large complex structure approximation, the ξ̃ → 0 limit on the mirror
side can generically be a reasonable assumption.

To begin with, we like to point out that in frequently studied set-ups of Kähler moduli
stabilisation one assumes the complex-structure moduli and axio-dilaton to be stabilised
supersymmetrically via 3-form fluxes. For that purpose, we consider the usual GVW flux
superpotential (2.13)

W (U i, S) = wF (U i) + S wH(U i) ≡W0 , (5.2)

where wF (U i) and wH(U i) are cubic polynomials in the complex structure moduli U i
induced by F3- and H3-flux respectively. Hence, the superpotential W is still independent
of any of the odd moduli Ga and the Tα moduli. It is convenient to impose the F -term
conditions

DU iW = 0 = D
U i
W, DSW = 0 = DSW . (5.3)
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However, we argue that this approach is actually misleading in the presence of odd moduli.
This is because of the fact that imposing the SUSY stabilisation for the axio-dilaton induces
some “fictitious” terms in the scalar potential which are absent when one directly computes
the full scalar potential.

5.1 An apparent mismatch in the standard approach

Let us first highlight the subtle issue that appears when considering moduli stabilisation
by imposing the SUSY stabilisation of the axio-dilaton via DSW = 0 = DSW . For this
purpose, we consider the F -term scalar potential in eq. (4.1) which for W ≡W0(U i, S) can
be expressed in the following way,

V = eK
[
KU iUj (DU iW0) (D

Uj
W0) +KSS (DSW0) (DSW0)

+
(
KSG

a

KG
a +KSTα KTα

)
(DSW0)W0 +

(
KGa K

GaS +KTα K
TαS

)
(DSW0)W0

+
(
KA′ K

A′B′ KB′ − 3
)
|W0|2

]
. (5.4)

Here, the indices {A′, B′} run only over Ga and Tα moduli, and do not include the axio-
dilaton. Now using the identities given in the appendix A leads to the simplified relations

KGa K
GaS +KTα K

TαS = − 9 i s ξ̂ V
(2V + ξ̂) (V − ξ̂)

+ i s2 k̂0 (4V − ξ̂)
2 (2V + ξ̂) (V − ξ̂)

(5.5)

KA′ K
A′B′ KB′ − 3 =

3 ξ̂
(
V2 + 7ξ̂ V + ξ̂2

)
(
V − ξ̂

) (
ξ̂ + 2V

)2 +
k̂2

0 s
2
(
4V − ξ̂

)
− 36 k̂0 ξ̂ sV

4
(
V − ξ̂

) (
ξ̂ + 2V

)2 ,

where the first pieces on the r.h.s. of the above two relations correspond to the case of
the absence of odd moduli. They can be precisely matched with the well known BBHL
scalar potential result, see for example eq. (3.31) of [38]. On the contrary, the second terms
involving k̂0 = k̂αabt

αbabb appear due to the presence of odd moduli.
At this point, if we enforce the SUSY stabilisation conditions (5.3) in the scalar po-

tential (5.4) and use the relations in eq. (5.5), the scalar potential reduces to

V = eK |W0|2
(
KA′ K

A′B′ KB′ − 3
)

(5.6)

= eK |W0|2

3 ξ̂
(
V2 + 7ξ̂ V + ξ̂2

)
(
V − ξ̂

) (
ξ̂ + 2V

)2 +
k̂2

0 s
2
(
4V − ξ̂

)
− 36 k̂0 ξ̂ sV

4
(
V − ξ̂

) (
ξ̂ + 2V

)2

 .

This form of scalar potential represents an odd moduli generalisation of the results of [38].
For the moment, let us consider the tree level case ξ̂ = 0 in the presence of odd moduli
which leads to

V = eK |W0|2
[
s2 (k̂αab tα ba bb)2

4V2

]
= s eK (k̂αab tα ba bb)2 |W0|2

8V4 . (5.7)

This result suggests that,
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• The axionic shift symmetry for the NS-NS axion ba is broken by a quartic potential
which is purely generated by the flux background which for instance has been observed
in [11, 16] in concrete set-ups. In fact, most of the odd moduli literature11 aiming
to perform moduli stabilisation automatically assumed the SUSY stabilisation for
the axio-dilaton which is why all those models suffer from this outcome. Moreover,
this also contradicts the general notion that continuous axionic shift symmetries are
broken, usually to a discrete subgroup, only through non-perturbative effects.

• However, we note that the non-trivial axionic potential V (ba) in eq. (5.7) appears at
the sub-leading order as compared to the usual KKLT and LVS potentials for the
Kähler moduli. This issue could remain hidden in the analysis where a large vol-
ume approximation is assumed before performing moduli stabilisation as, e.g. in the
analysis of [13] which keeps only terms of O(V−3). However, the term can explicitly
appear if one goes beyond this order, e.g. as in [16]. Even if the tα’s correspond
to, say, the ‘large’ 2-cycle volume moduli such that tα ∼ V1/3 as e.g. in the single
T -modulus case of KKLT models [4] or tα ∼ tb in the LVS models based on strong
swiss-cheese CY compactifications [5], the scalar potential for the ba axions scales as,

V (ba) = s eK (k̂αab tα ba bb)2 |W0|2

8V4 ∝ (ba)4

V10/3 , (5.8)

which is suppressed by additional volume factors as compared to the usual KKLT
and LVS potentials.

• Nevertheless, such a factor of 2-cycle volume moduli appearing in the numerator along
with ba dependence can be relevant for highly anisotropic compactifications. This is
for instance the case in the “large fibre” or “large base” limits of the K3-fibred CY
orientifold models [85], where the extra volume suppression might go away, making
the term compete with the LVS or KKLT potential. In such extreme scenarios, while
studying the dynamics away from the 〈ba〉 = 0 minimum, such fictitious b4-terms
may have some significant impact.

Next, we will show that such a quartic-term is purely an artefact of imposing the SUSY
extremisation conditions for the axio-dilaton, and it does not naturally arise in the scalar
potential. For that we consider our master formula in the expression (4.5), which gives us
the following scalar potential,

V = Vcs + eK
[
|wF + S wH |2 +KSS |wH |2 − 4 s2 |wH |2 − 4 s Im

(
wF wH

)]
. (5.9)

Given that wF (U i) and wH(U i) are cubic polynomials only in the U i, the only possible
source12 of a dependence on the Ga moduli (or the ba/ca odd-axions) can be the factor

11However, there are a couple of works in which the b4-term was not found in the generic scalar poten-
tial. For example, see [12] regarding axion-monodromy, and [27, 31, 32, 35] regarding non-geometric flux
compactifications where one needs to switch-off certain fluxes to make it manifest.

12One can easily verify that similar arguments are true for the metric derived in section 3.3 using the
modified Kähler potential (3.27) from SL(2,Z) invariance. This leads to the scalar potential given in
eq. (3.44).
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KSS̄ . However, we found this component to be given by (cf. eq. (3.20))

KSS = γ1 = s2 (4V − ξ̂)
(V − ξ̂)

, (5.10)

which is a surprisingly simple expression independent of the odd moduli despite having
complicated couplings in the original Kähler metric component KSS , recall (3.19). In
particular, in spite of the (α′)3 correction ξ̂ inducing a scalar potential dependence on the
overall volume V, both of the odd moduli remain flat directions at this level. Therefore,
we conclude that:

• Using the leading order tree level GVW flux superpotential (2.13) in the presence
of general 3-form fluxes, the shift symmetry in both of the odd moduli axionic com-
ponents ba and ca is unbroken, irrespective of the presence of the BBHL correction.
This is because of the no-scale structure (1.1) which holds in the presence of odd
moduli.

• Our general analysis shows that the observation of a quartic potential V (ba) in
eq. (5.8) is actually misleading and arises simply because the SUSY stabilisation
condition for the axio-dilaton (5.3) was enforced.

• This opposes the naive expectation because of the non-trivial dependence of the Käh-
ler potential on the odd moduli Ga when it is expressed in terms of the chiral variables
S,Ga and Tα. In such cases, one would naively expect that the shift symmetry for
the NS-NS axion ba would be broken, whereas the shift symmetry for the ca axion
remains intact.

Tracking the mismatch. Before we continue, we would like to explicitly track the main
cause for the mismatch between the two approaches; one is obtained directly from eq. (5.9),
whereas the other one is obtained after imposing the SUSY conditions (5.3) in the scalar
potential (5.4). This becomes evident by noting that eq. (5.4) can also be rewritten as

V = Vcs + eK
[
KSS (∂SW0) (∂SW0) +KSAKA (∂SW0)W0 + KAK

AS (∂SW0)W0

+
{(
KSK

SSKS +KSK
SG

a

KG
a +KSK

STαKTα
+KGaK

GaSKS +KTαK
TαSKS

)
+
(
KA′ K

A′B′ KB′ − 3
)}
|W0|2

]
, (5.11)

where summation indices are such that A = {S, Tα, Ga} while A′ = {Tα, Ga}. In this
expression, the terms in the second line arise from expanding the Kähler covariant deriva-
tive. Now, after using the explicit expressions for the inverse Kähler metric and the Kähler
derivatives and the identities (A.3), we find that the second line in eq. (5.11) sums up to
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the following pieces,

KSK
SSKS +KSK

SG
a

KG
a +KSK

STαKTα
+KGaK

GaSKS +KTαK
TαSKS

= 1−
3 ξ̂
(
V2 + 7ξ̂ V + ξ̂2

)
(
V − ξ̂

) (
ξ̂ + 2V

)2 −
k̂2

0 s
2
(
4V − ξ̂

)
− 36 k̂0 ξ̂ sV

4
(
V − ξ̂

) (
ξ̂ + 2V

)2

= 1−
(
KA′ K

A′B′ KB′ − 3
)
, (5.12)

which leads to a precise cancellation of moduli dependent terms in the third line of
eq. (5.11). In other words, this is simply due to the no-scale identity KAK

ABKB = 4
derived above, when A and B run in the set of closed string moduli S,Ga and Tα.

The punchline is that imposing the SUSY stabilisation condition may lead to mislead-
ing conclusions in the presence of odd moduli due to exact cancellations occurring at the
sub-leading order after breaking the no-scale structure through α′ corrections. In such
a case, if some moduli are stabilised by the leading-order no-scale breaking corrections,
then those results could still be consistent. However, the no-scale structure is usually not
completely broken leaving some moduli as flat directions which require next-to-subleading
effects. For example, any inflationary model realised within a LVS framework, the infla-
tionary potential is suppressed by volume factors V−a where a > 3, e.g., in fibre inflation
a = 10/3 [86]. Hence, when adding odd moduli in such a scenario, these sub-leading terms
become especially relevant. Nevertheless, as we said before, if axion VEVs are not shifted
too much from ba ' 0 after including all possible corrections to fix them, they may not
significantly affect the earlier minimum. This is not to say though that situations away
from the minimum e.g. in the regime where inflation occurs might be sensitive to our
aforementioned observation.

5.2 BBHL-corrected flux scalar potential

At this point, we present the explicit form of the (α′)3-corrected GVW scalar potential
which can be utilised to explore non-SUSY vacua. In this scenario, generically one can
hope to stabilise the complex structure moduli, namely the axions vi and their respective
saxions ui, as well as the universal axion c0 along with the dilaton s. Using the scalar
potential in eq. (4.8) for ξ̃ = 0 we have

VGVW ≡ VGVW (vi, ui, c0, s,V) ' eK
(
V

(1)
GVW + V

(2)
GVW + V

(3)
GVW

)
, (5.13)

where

V
(1)
GVW = 4

[
(m+ c0 n)2 + (m + c0 n)2 + s2 |wH |2 (4V − ξ̂)

4 (V − ξ̂)
+ s (mn−m n)

]
,

V
(2)
GVW = 4ui

[
(m+ c0 n)(mi + c0 ni)− (m + c0 n)(mi + c0 ni)

+ (mni −mi n+ mni −mi n) s+ (n ni − ni n) s2
]
, (5.14)

V
(3)
GVW =

(
2ui uj − 2 l lij

3

) [
(mi + c0 ni)2 + (mi + c0 ni)2 − 2 s (mini −mini)

+s2
(
(ni)2 + (ni)2)

) ]
.
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Here we have used the symbols for the real and imaginary parts of wF (U i), wH(U i) and
their respective derivatives as defined in eq. (4.22). This potential depends on the real fields
{vi, ui, c0, s,V}, albeit not on the fields ba, ca or any other tα. Moreover, in the absence of
the BBHL correction, the dependence on the overall volume V comes from eK.

Subsequently, we can separate out the tree level and the next sub-leading terms in the
scalar potential (5.13),

VGVW ' V tree
GVW + V α′

GVW , (5.15)

where

V tree
GVW = eK

2 sV2

[
4 |W |2 + 4 s (mn−m n) + V

(2)
GVW + V

(3)
GVW

]
,

V α′
GVW = − ξ̂

V

(
V tree
GVW −

eK

2 sV2 × 3 s2 |wH |2
)

+O
( 1
V4

)
. (5.16)

As expected from (3.44), V α′
GVW splits into a piece arising from the 4D Weyl rescaling of

V tree
GVW with the corrected volume V + ξ̂/2 and a non-trivial piece. The coefficient of the

latter matches the expectation from (3.46), see also (5.19) below.
Clearly, at the tree level SUSY minimum, we have 〈V tree

GVW 〉susy = 0 from eq. (4.24).
This can also be re-derived from the scalar potential given in eqs. (5.15)–(5.16) after im-
posing the conditions (4.21) in the three pieces of (5.14). To appreciate the non-trivial
cancellations among the various terms, we mention that

〈V (1)
GVW 〉 = 〈|W0|2〉

(
3 + 3 〈ξ̂〉

4(V − 〈ξ̂〉)

)
, 〈V (2)

GVW 〉 = −2〈V (3)
GVW 〉 = −6〈|W0|2〉 , (5.17)

where we used that at the leading order supersymmetric minimum

4 〈s〉2 〈|wH |2〉 = 4 〈s〉2
[
〈n〉2 + 〈n〉2

]
= 〈|W0|2〉 . (5.18)

Overall, this implies

〈V α′
GVW 〉 = 3 〈ξ̂〉 e〈K〉〈|W0|2〉

8 〈s〉 V3 +O
( 1
V4

)
≥ 0 . (5.19)

This positive semidefinite term is well-known from LVS models [5]. Thus, our master
formula for the generic treatment of the scalar potential can elegantly and efficiently re-
derive those results.

Note that given the form of the superpotenial, our generic formulation of the BBHL-
corrected GVW scalar potential in eqs. (5.13)–(5.14) enables one to not only perform the
analytic computations, but also to proceed with numerical implementations. Having such
a general form can help in directly exploring the non-supersymmetric vacua of the complex
structure moduli and the axio-dilaton which could result in subleading terms that can be
useful for uplifting purposes [87].
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5.3 Axio-dilaton mass splitting via the BBHL correction

In this subsection, we will first re-derive a well known no-go results of [88, 89] about the
obstacles in creating a mass splitting between the masses of the universal axion (mc0) and
the dilaton (ms) using the GVW superpotential. For that purpose, assuming the large
volume and large complex structure limit, we consider the GVW scalar potential given in
eqs. (5.15)–(5.16) by ignoring the BBHL correction, which leads to

V tree
GVW ≡ V (c0, s) = a1

s

(
1 + a2 c0 + a3 s+ a4 c

2
0 + a5 s

2
)
, (5.20)

where ai’s are some complex structure moduli dependent functions while a1, in addition,
has a dependence on the overall volume V as well. To be more specific, we have the
following explicit expressions for the ai coefficients,

a1 = eK

2V2 a0, (5.21)

a2 = 1
a0

[
8 (mn+ mn) + KU iU

j

(mi nj + nimj + mi nj + nimj)

+4ui (m ni −mi n + nmi − nim)
]
,

a3 = 1
a0

[
4(mn− nm) + 4ui (mni −mi n− mi n+mni) + 2KU iU

j

(mi nj −mi nj)
]
,

a4 = 1
a0

[
4 |wH |2 + 4ui (n ni − nni) + niKU iU

j

nj + niKU iU
j

nj
]

= a5,

where

a0 = 4 |wF |2 + 4ui (mmi − mmi) +miKU iU
j

mj + miKU iU
j

mj .

This tree level formulation of the scalar potential produces the results of [35] by consid-
ering F3/H3 fluxes only, and switching-off the (non-)geometric fluxes. Now, using the
scalar potential (5.20) for the two-field {c0, s} dynamics, the solutions of the extremisation
conditions, and scalar potential as well as the Hessian evaluated at the possible extrema
amounts to

〈c0〉 = − 〈a2〉
2 〈a4〉

, 〈s〉 = ±
√

4 〈a4〉 − 〈a2〉2

2
√
〈a4〉 〈a5〉

, 〈V 〉 = 〈a1〉 (〈a3〉 ± 2〈s〉〈a5〉) ,

〈Vij〉 = Diag
{
±2 〈a1〉 〈a4〉

〈s〉
, ±2 〈a1〉 〈a5〉

〈s〉

}
; 〈Vss〉

〈Vc0c0〉
= 〈a5〉
〈a4〉

= 1. (5.22)

Here although we do not discuss the complex structure moduli explicitly, we anticipate
that the two-field analysis will continue to hold after fixing those moduli. Now given that
dilaton s > 0, only the positive solution of (5.22) is physical.

Note that we have simply collected the coefficients (5.21) for the scalar potential in
eq. (5.20) where it automatically turned out that a4 = a5 for the quadratic coefficients of
c0 and s irrespective of whether the complex structure moduli are at their minimum or
not. This two-field analysis implies that masses of the universal axion c0 and the dilaton
s remain exactly the same. Moreover, given the fact that both fields are part of the same
chiral variable, namely S, and their source of potential is the same, it is not surprising
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that a mass hierarchy cannot be realised in this flux scenarios. This challenge was first
observed for 3-form flux backgrounds in [88] and was subsequently generalised for non-
geometric models having two pairs of the S-dual fluxes, namely the (F3, H3) fluxes and the
non-geometric (Q,P ) fluxes in [89].

Mass splitting via the BBHL correction. Thus far, we ignored the (α′)3-effects which
lead to a mass splitting between c0 and s. Indeed, we can consider our generic form for
the GVW scalar potential as given in eq. (5.13) with induced dilaton dependence through
Y(s) where Y(s) = V + 1

2 ξ̂ and ξ̂ = s3/2ξ. While the extremisation condition for c0 still
results in a linear polynomial, the one for the dilaton results in a degree 13 polynomial in s
which cannot be solved analytically. However, we can make progress by using the possible
expansions, for example in the large volume limit V � ξ̂.

Nevertheless it turns out that the generic BBHL corrected GVW potential (5.13) can
still be expressed in the form as given in eq. (5.20), where the coefficients ai’s will however
develop a dilaton dependence along with the complex structure moduli. The new set of ai
parameters are

a1(s) = eK a0

2
(
V + 1

2 ξ̂
)2 , a5(s) = a4 + 3 ξ̂ |wH |2

a0 (V − ξ̂)
, (5.23)

with all other ai as in (5.21). Now the extremisation of the c0 axion remains the same, the
dilaton VEV is changed giving rise to

〈c0〉 : 〈c0〉 = − 〈a2〉
2 〈a4〉

(5.24)

〈s〉 : 〈a1〉
(

1− 〈a2〉2

4〈a4〉
− 〈s〉2 〈a5〉

)

= 〈a1〉〈s〉3〈∂sa5〉+ 〈s〉
(

1− 〈a2〉2

4〈a4〉
+ 〈s〉 〈a3〉+ 〈s〉2〈a5〉

)
〈∂sa1〉,

〈V 〉 : 〈V 〉 = 〈a1〉
〈s〉

(
1− 〈a2〉2

4〈a4〉
+ 〈s〉〈a3〉+ 〈s〉2 〈a5〉

)
,

〈Vij〉 : 〈Vij〉 = Diag
{2 〈a1〉〈a4〉

〈s〉
,

2 〈a1〉〈a5〉
〈s〉

+ V corr
ss

}
,

where V corr
ss = 〈V 〉

(
2〈∂sa1〉
〈s〉〈a1〉

− 2〈∂sa1〉2

〈a1〉2
+ 〈∂ssa1〉
〈a1〉

)
+ 〈a1〉 (4〈∂sa5〉+ 〈s〉〈∂ssa5〉) .

For knowing the dilaton VEV one would need to solve the corresponding polynomial ex-
pressed in the second relation of (5.24). We notice immediately that now there is a possi-
bility of generating a mass-splitting between the masses of c0 and s due to a4 6= a5. The
ratio of the Hessian eigenvalues is

〈Vss〉
〈Vc0c0〉

= 〈a5〉
〈a4〉

+ 〈s〉
2 〈a1〉〈a4〉

〈V corr
ss 〉 (5.25)
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which can be expanded as

〈Vss〉
〈Vc0c0〉

= 1 +
{〈ξ̂〉
V
× 15

[
28 〈a4〉 〈s〉2 + 〈a0〉

(
〈a2〉2 − 4 〈a4〉(1 + 〈a3〉〈s〉+ 〈a4〉〈s〉2)

)]
32 〈a0〉〈a4〉2〈s〉2

}
+O

( 1
V2

)
. (5.26)

This shows the possibility of a mass-splitting being developed between the masses of the
universal axion (c0) and the dilaton (s) due to (α′)3 corrections. However, one has to
provide the VEVs of the complex structure moduli and the dilaton in order to get the
〈ai〉’s in the above estimates. Moreover, in realistic models, one also needs to take the
dynamics of all other moduli into account in order to gauge the effects of the off-diagonal
mixing terms in the mass matrix, especially for the cases when the superpotential depends
on the Tα-moduli. Nevertheless, given that we have evaded the no-go result of the two-field
analysis using (α′)3 corrections, this is quite a significant step via an analytical approach.

6 Analysing the scalar potential for W = W (U i, S, Tα)

In this section, we study different scenarios involving superpotentials of the form W =
W (U i, S, Tα). The associated scalar potentials explicitly depend on the NS-NS axions ba,
while the shift symmetry of the R-R axions ca remains intact. We derive an expression for
the Hessian of the ba which reduces to the results of [44] in the SUSY case, while improving
upon previous approximate estimates of [11] for non-SUSY minima.

6.1 General remarks on moduli stabilisation

From our above observations, one could be tempted to conclude that the axionic shift
symmetry of ba remains unbroken simply because the Ga are not explicitly featured in
the superpotential. In this section, we show that this is actually not the case, and after
including a Tα-moduli dependence in the superpotential, the ba axions can indeed receive a
contribution in the scalar potential. This makes odd moduli rather special13 as compared
to other moduli.

Let us consider a superpotential of the form

W = W0(U i, S) +W1(U i, S, Tα). (6.1)

The second piece of the superpotential can be generated by non-perturbative ef-
fects [52, 90–93] with an exponential Tα-moduli dependence or in the presence of S-dual
pair of (Q,P ) non-geometric fluxes [28, 29, 32, 33, 55] inducing a polynomial dependence
on the Tα-moduli. Subsequently, from eq. (4.5) we obtain,

V = Vcs + eK
[
|W |2 +WSK

SSWS + (W1)Tα K
TαTβ (W1)Tβ (6.2)

−4 s Im
[
W WS

]
− 4 (ImTα) Im

[
W (W1)Tα

]
+ 2KSTαRe[WS (W1)Tα ]

]
,

13Recall that usually the partners of the R-R axions in the complexified chiral variables are called ‘saxions’,
but the partner of R-R C2-axions ca appearing in the Ga multiplet are also axions, namely the ba axions.
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or equivalently using the master formula in eq. (4.7) this can be written as,

V = eK
[

4l − 3ξ̃
l − 3ξ̃

|W |2 +WU iK
U iUj W

Uj
+WSK

SSWS + (W1)Tα K
TαTβ (W1)Tβ

+ 2KSTαRe[WS (W1)Tα ]− 2ui
(

2 + 9ξ̃
l − 3ξ̃

)
Im
[
W W

Uj

]
(6.3)

−4 s Im
[
W WS

]
− 4 (ImTα) Im

[
W (W1)Tα

]]
,

From the inverse Kähler metric components in eq. (3.20), we find that, in contrast to the
previous case where KSS is independent of odd moduli, the components KSTα and KTαTβ

do indeed depend on the B2-axions ba, but not on the C2-axions ca. Also notice that with
our definition of the chiral variable we have Im[Tα] = 1

2(s k̂α − kα) (recall eq. (2.5)), and
therefore one can consider the following two approaches for odd moduli stabilisation:

• If we define a set of real moduli as τα = − Im[Tα] and try to eliminate all the
tα dependence in terms of τα and ba, then subsequently the scalar potential (6.2)
can receive ba dependence through the inverse Kähler metric components; e.g. via
replacing kα = 2τα+s k̂α. In this case, there would be no ba dependence arising from
the superpotential W ≡ W (U i,Re(Tα), Im(Tα)) = W (U i, τα, ρ̃α) where ρ̃α is the
collection of all R-R axions. Moreover due to the need for replacing kα = 2τα + s k̂α
in the inverse metric components, some additional ba dependences would also be
introduced in the scalar potential.

However after looking at the inverse Kähler metric components, one observes that,
apart from eliminating kα in favour of τα, there remain pieces of the type kαβ and
k̂ab with linear dependence on the 2-cycle volumes tα. This can be a key obstacle
when writing down the scalar potential as an explicit function of {τα, ba} only.

• If we define τα = 1
2kα = 1

2kαβγt
βtγ as the usual geometric volume of the four-

cycles of the CY threefold, then we need to replace Im[Tα] = s
2 k̂α − τα. Then, some

explicit ba dependence will be introduced through the Kähler potential as well as the
superpotential despite it not depending on the odd moduli Ga. However, in this case
one can stabilise moduli working in the basis {tα, ba} and therefore there would be
no need to make the conversion tα → τα.

Let us note that for both approaches, there is no scalar potential piece induced for the
ca axions through the superpotential.14 The second approach of working in the basis
{tα, ba} works well for arbitrary number of moduli, and hence is usually preferred. However,
limitations arise when computing the mass matrix for which a combination of Hessian
components and the inverse Kähler metric has to be considered. Thus, either of the two
approaches might not be always be applicable for generic CY orientifolds.

14In this statement, we use that the C4-axions only enter through the combination ρ̃α as defined in (2.6)
which serves as a single variable to avoid fictitious dependence on c0, b

a and ca axions.
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As the problem is inherited from the fact that it is hard to convert tα into the τα,
it is more convenient to consider the scalar potential as a function of the 2-cycle volumes
tα and the axions ba for many moduli stabilisation or minimisation purposes. While this
approach is not fully established yet in the literature, it has already been proposed in [47].
For that purpose, we rewrite the scalar potential (6.2) as

V = V0 + V1 , (6.4)

in terms of V0 and V1 defined in (4.28). Here V0 can have an explicit ba dependence only
through the superpotential piece W1 (recall that γ1, γ2, kα as well as the metric Gαβ are
independent of the ba axions). Further, the pieces V1 and V2 may have an explicit ba
dependence also through the Kähler metric.15 However, given that the moduli dependence
of the superpotential is

W1 ≡W1(U i, S, Tα) = W1(ui, vi, c0, s, kα, k̂α, ρ̃α) (6.5)

where ρ̃α is again some collection of all R-R axions, the form of (4.28) suggests that the ba
dependence of the scalar potential can always be collected as

V (ba) ≡ V (k̂α, Kαaβb) (6.6)

where
Kαaβb = k̂αak̂βb . (6.7)

6.2 Non-perturbative superpotentials

Another commonly studied scenario is that of a non-perturbative superpotential induced
by E3-instantons or D7 gaugino condensation. In this case, we write

W0 = wF (U i) + SwH(U i) , W1(U i, S, Tα) =
h1,1

+∑
α=1

Aα(U i, S)e−iaαTα . (6.8)

Here, the Pfaffian prefactors Aα(U i, S) is associated with the partition function of the
D3-brane wrapping a certain divisor D in the orientifold. As argued recently in [93], for
many CY orientifolds the Aα(U i, S) can be treated as constant numbers, so-called Pfaffian
numbers, since the divisor D becomes a pure rigid divisor in the F-theory uplift. Thus, we
set Aα(U i, S) = Aα in the subsequent discussion which is commonly used in the literature.
We note, however, that our general expressions in eq. (6.2) and eq. (6.3) make it straight
forward to include such corrections systematically.

Plugging (6.8) into (6.2), we write the scalar potential as

V = V pert + V np1 + V np2 (6.9)

15Recall that Gab only has an explicit dependence on the tα moduli, but not the ba axions.
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where the individual terms are given by

V pert = Vcs + eK
(
|W0|2 − 4s Im

[
W0wH

]
+ wH γ1wH

)
V np1 = eK

h1,1
+∑

α=1

[
2(1 + aα(kα − sk̂α))Re

[
(wF + c0wH)ĀαeiaαTα

]
+ (2s+ aα(kα(γ2 − 2s) + k̂α(γ1 + 2s2))) Im

[
wHĀαeiaαTα

]]
(6.10)

V np2 = eK
h1,1

+∑
α,β=1

AαĀβe−iaαTα+iaβTβ
[
1 + aα(kα − sk̂α) + aβ(kβ − sk̂β)

+ aαaβ
(4Y2 Gαβ

9 + γ2
2 kα kβ
4 γ1

+ sGab k̂αa k̂βb + γ1
4 k̂α k̂β + γ2

4 (kα k̂β + kβ k̂α)
)]

.

This generalises the master formula of [47] in the presence of odd moduli and without
enforcing the SUSY stabilisation of the axio-dilaton S. Clearly, the shift symmetry of ba
is broken by the presence of terms ∼ k̂α etc. due to the way the chiral variables Tα and Ga
are coupled in the Kähler potential eq. (3.14).

Finally, we solve the stationary point conditions for the axions in the exact scalar
potential.16 To this end, we set for the complex parameters

wF = |wF |eiλF , wH = |wH |eiλH , Aα = |Aα|eiλα (6.11)

which allows us to determine that a solution to ∂c0V = 0 and ∂ρ̃αV = 0 is

〈c0〉 = 0 , λF − λH = π

2 , aα〈ρ̃α〉 − λα + λF = π . (6.12)

At this minimum, we have

Re
[
(wF + c0wH)ĀγeiaγT γ

]
= −|wF ||Aγ |e−a

γσγ ,

Im
[
wHĀγeiaγT γ

]
= −|wH ||Aγ |e−a

γσγ ,

Re
[
AγAαe−iaγTγ+iaαTα

]
= |Aγ | |Aα| e−a

γσγ−aασα . (6.13)

Similarly, it is easy to see that ∂baV = 0 is solved by (see also section 6.4)

〈k̂αabbb〉 = 0 (6.14)

which is again solved for e.g. 〈ba〉 = 0 ∀a. Below, we derive an exact expression for the
Hessian at these non-SUSY minima for the NS-NS axions ba. By studying the simplest
LVS set-up with an arbitrary number of odd moduli, we show that tachyons can be avoided
in most instances which needs to be contrasted with the tachyonic no-go of [44] for SUSY
minima.

16While this is a self consistent class of solutions, there can be other sets of solutions for the axions ρ̃α.
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6.3 A tree level superpotential from the non-geometric fluxes

At tree level, there can be several possibilities to induce the Kähler moduli dependent pieces
in the scalar potential, especially after including non-geometric fluxes [25, 26, 29, 32, 33, 55].
To illustrate the form of the axionic potential V (ba) let us consider a superpotential of the
following form,

W0 = wF (U i) + S wH(U i) , W1 = Qα(U i)Tα , (6.15)

where Qα can generically depend on the complex structure or axio-dilaton moduli, but we
ignore this dependence subsequently. Such a superpotential with a linear dependence on
the Tα-moduli naturally arises in non-geometric flux compactifications [26, 29, 31, 55, 57],
and their S-dual completions can also induce some (S Tα)-type superpotential cou-
plings [27, 32, 55, 56, 89]. Plugging the superpotential into (6.2), the F -term scalar poten-
tial reads

V = Vcs + eK
[
|wF + S wH + TαQα|2 + γ1 |wH |2 + (γ1 k̂α + γ2 kα)Re[wH Q

α]

+Qα
(4

9 Y
2 Gαβ + sGab k̂αa k̂βb + (γ1 k̂α + γ2 kα) (γ1 k̂β + γ2 kβ)

4 γ1

)
Qβ (6.16)

− 4 s Im
[
(wF + S wH + TαQα)wH

]
− 4 Im(Tα) Im

[
(wF + S wH + TβQβ)Qα

]]
,

The extremisation conditions for the ba are given as,

∂V

∂bc
= eK

[
2(γ1 − 2s2) k̂αcRe[wH Q

α] +Qα
(
sGab (k̂αac k̂βb + k̂αa k̂βbc)

+ k̂αc(γ1 k̂β + γ2 kβ) + (γ1 k̂α + γ2 kα) k̂βc
2

)
Qβ

− 4s k̂αc Im
[
(wF + S wH + TβQβ)Qα

]
− 4s Im(Tα)k̂βc Re

[
Qβ Qα

]]
. (6.17)

Hence, k̂αa = 0 is always a solution and, in particular, ba = 0. Although there can be other
extrema, finding those analytically is a challenging task without specifying a particular
model. At the above stationary points, one finds that the Hessian17

e−K ∂bd∂bcV
∣∣
ba=0 = k̂γcd

(
2sIm

[
Qγ(wF + c0wH)

]
+2(γ1 − 3s2) Re

[
QγwH

]
+ (2s+ γ2) kα Re

[
QγQα

])
+ 2sk̂γec Gef k̂αfdQγQ

α
. (6.18)

From this expression, we deduce that the presence of tachyons is determined by the in-
tersection numbers k̂γcd which are highly model dependent. Once an explicit model is
specified, eq. (6.18) is readily applicable to derive the mass contribution to the ba axions.
Again, our analysis shows that, in order to (partially) fix the odd moduli, in particular the
ba axions, a superpotential dependence on Ga-moduli is no prerequisite and the presence
of Tα moduli could do the job.

17The expression (6.18) can easily be determined from our general expression (6.23) for the Hessian to
be derived below.
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6.4 Tachyons in SUSY and non-SUSY odd moduli stabilisation

An imperative question concerns the stabilisation of NS-NS axions ba in the absence of a
Ga-dependent superpotential. It is a well-known fact that each unfixed axion in a SUSY
AdS minimum comes with a tachyonic superpartner [44]. The situation for non-SUSY
minima is far from clear, see however [11] for earlier attempts. Below, we derive a general
expression for the Hessian for ba-axions for general Tα-dependent superpotentials which is
afterwards applied to two separate set-ups, namely SUSY AdS minima reproducing [44]
and non-SUSY minima from non-perturbative superpotentials of section 6.2.

In what follows, we work in the basis of {tα, ba, ρ̃α, ĉa} so that e.g. ∂baK = 0. Further,
we assume that the superpotential is of the form (6.1) ignoring the U i and S dependence in
W1 = W1(Tα) for simplicity. Since the ba dependence in V is given as in (6.6), we can write

∂bcV = 2k̂γc ∂k̂γV +
(
k̂γeck̂δf + k̂γek̂δfc

)
∂KγeδfV . (6.19)

Clearly, k̂γc = 0 is a solution of ∂bcV = 0 which can be solved for ba = 0. Then we obtain
for the Hessian

∂bd∂bcV = 2k̂γcd ∂k̂γV + 4k̂γck̂δd ∂k̂δ∂k̂γV + 2k̂γcd(∂bdKλeδf ) ∂k̂γ∂KλeδfV

+
(
k̂γeck̂δfd + k̂γedk̂δfc

)
∂KγeδfV + (∂bcKγeδf )(∂bdKλgρh)∂Kλgρh∂KγeδfV

+ 2k̂λd(∂bcKγeδf )(∂k̂λ∂KγeδfV ) (6.20)

At the minimum k̂αa = 0, we are left with

∂bd∂bcV
∣∣
k̂αa=0 = 2k̂γcd ∂k̂γV

∣∣
k̂αa=0+2seKk̂γe(c|k̂δf |d)Gef (W1)Tγ (W 1)T δ

∣∣
k̂αa=0 . (6.21)

To continue, we use (2.5) to find

Tα = ρ̃α + i

2
(
s k̂α − kα

)
⇒ ∂k̂γW = is

2 ∂TγW . (6.22)

Using our result (6.4), the Hessian can be written as

e−K ∂bd∂bcV
∣∣
k̂αa=0 = k̂γcd

{
2sIm

[
(W1)TγW

]
+2(γ1 − 2s2) Re

[
(W1)Tγ (W0)S

]
+ (2s+ γ2) kα Re

[
(W1)Tγ (W1)Tα

]
− 2s

(
4Y2 Gαβ

9 + γ2
2 kα kβ
4 γ1

)
Im
[
(W1)Tα Tγ (W1)Tβ

]
− 2s kα Re

[
W (W1)TαT γ

]
+ s γ2 kα Im

[
(W0)S (W1)TαT γ

]}
+ 2sk̂γe(c|k̂δf |d)Gef (W1)Tγ (W 1)T δ . (6.23)

Up to this point, we have not made any assumptions about the VEVs for the other moduli
which typically cannot be solved for analytically. Nonetheless, we can apply (6.23) to
special scenarios that allow us to fix certain subsets of fields exactly.
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SUSY minima. As a first test of our result, we look at the supersymmetric case where
for 〈W 〉 6= 0

WTα = −KTαW , WS = −KSW , KGa = 0 . (6.24)

Then, one verifies that

−2s
(

4Y2 Gαβ
9 + γ2

2 kα kβ
4 γ1

)
Im
[
(W1)Tα Tγ (W1)Tβ

]
= 2s kα Re

[
W (W1)TαT γ

]
(6.25)

− s γ2 kα Im
[
(W0)S (W1)TαT γ

]
The remaining terms in (6.23) simplify to

〈∂bd∂bcV 〉SUSY = 2|W |2eK
{
k̂cd

[ 3s
2Y − 3

(
1− ξ̂

2Y

)
γ2
4Y + γ2

3V
4Y2

]
+k̂eck̂fd

sGef

4Y2

}

= −16s
9 Gcd|mBF |2 (6.26)

in terms of the Breitenlohner-Freedman bound18 [94]

|mBF |2 = 9
4 |W |

2eK . (6.27)

Since Gcd is positive definite, we find h1,1
− tachyonic directions in agreement with [44].

This is because each unstabilised axion, here ĉa, comes with a tachyonic superpartner in a
SUSY AdS vacuum. Clearly, this no-go result is generically avoided once non-perturbative
effects in K are included that lift the flat directions. Similarly, explicit Ga-dependent
superpotentials lead to a potential for ĉa that break the continuous shift symmetry as
discussed in section 7.

Non-SUSY minima for non-perturbative superpotentials. For SUSY breaking
minima, making any statements for general superpotentials seems impossible. To continue,
we make the convenient ansatz (6.8) for non-perturbative E3/D7 superpotentials treating
the Aα again as constant numbers. In this case, we obtain

2k̂γcd ∂k̂γV
∣∣
k̂αa=0 = eKaγ k̂γcd

{
2s [−1 + aγ kγ ]Re

[
(wF + c0wH)ĀγeiaγT γ

]
(6.28)

−
(
2s2 (1 + aγkγ) + sγ2 (2 + aγ kγ)

)
Im
[
wHĀγeiaγT γ

]
+ 2saγaα

(
4Y2 Gγα

9 + γ2
2 kγ kα
4 γ1

)
Re
[
AγAαe−iaγTγ+iaαTα]

+
(
−2s (1 + aγkγ − aαkα) + γ2 kαa

α
)

Re
[
AαAγe−iaαTα+iaγT γ ]} .

18More generally, the Breitenlohner-Freedman bound asserts stability of the AdS vacuum provided fluc-
tuations of scalar fields satisfy

m2 >
D − 1

2(D − 2)κ
2
D〈V 〉

D=4−−−−−→ 3
4κ

2
4〈V 〉 = −9κ2

4
4 eK|W |2 .
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Using the VEVs (6.12) for the c0 and ρ̃α axions, the Hessian can be written as

〈e−K∂bd∂bcV 〉axions = −saγ k̂γcd|Aγ |e−a
γσγ
{

2 [−1 + aγ kγ ] |wF |

− (2s (1 + aγkγ) + γ2 (2 + aγ kγ)) |wH |
}

+ aγ
{

2k̂γcdsaγaα
(

4Y2 Gγα
9 + γ2

2 kγ kα
4 γ1

)

+ k̂γcd
(
− 2s (1 + aγkγ − aαkα) + γ2 kαa

α
)

+ 4saαk̂γe(c|Gef k̂αf |d)

}
|Aγ | |Aα| e−a

γσγ−aασα (6.29)

where 〈. . .〉axions implies setting the axions to their VEVs. This exact result determines the
Hessian for the ba-axions, thereby generalising the approximate expression in [11]. Notice
that we have not made any assumptions about the minimum of the tα or s which typically
need to be determined numerically.

Simplest LVS set-up with arbitrary h1,1
− . To extract more information from (6.29),

we look at the simplest set-up with h1,1
+ = 2 and arbitrary h1,1

− and restrict to the leading
order contributions in a volume expansion. For the volume at the minimum k̂αa = 0 for
the ba axions, we can write

V = 1
6
(
κ111(t1)3 + κ222(t2)3

)
= d1τ

3/2
1 − d2τ

3/2
2 (6.30)

in terms of

d1 =
√

2
3√κ111

, d2 =
√

2
3√κ222

. (6.31)

One then obtains the following relations

τ2 = ∂V
∂t2

= 1
2k2 , t2 = −

√
2τ2
κ222

, k22 = κ222t
2 = −2√τ2

3d2
. (6.32)

Recall from (5.18) that the leading order SUSY conditions for S imply

4 〈s〉2 |wH |2 = |W0|2 = 4|wF |2 . (6.33)

Clearly, 〈s〉 is corrected by terms suppressed in the volume which we ignore for the moment.
In the limit ε2 = 1

4a2τ2
� 1 and V � 1, the minimum for the Kähler moduli is determined

by [5]

V = 3d2
√
τ2 (1− 4ε2)

4a2(1− ε2)
|W0|
|A2|

ea2τ2 '
3d2
√
τ2

4a2

|W0|
|A2|

ea2τ2 , (6.34)

ξ̂

2 = d2(1− 4ε2)
(1− ε2)2 τ

3/2
2 ' d2τ

3/2
2 . (6.35)
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Altogether, (6.29) becomes, after ignoring terms ∼ γ2 as well as taking care of the last
term in the last line,19

∂bd∂bcV
∣∣
k̂αa=0 = k̂2cd

3d2
√
τ2|W0|2eK
4V3

2
[
1 + a2τ2

]
+O(V−1) k̂1ab = 0 ∀a, b[

1 + 2a2τ2
]
+O(V−1/3) k̂1ab 6= 0 .

(6.36)

To identify potential tachyons at the vacuum, we recall that

Gcd = − k̂1cdt
1 + k̂2cdt

2

4Y (6.37)

must be positive definite as a proper metric where t1 > 0 and t2 < 0. In general, we thus
expect:

• if k̂1cd = 0 for all c, d, then k̂2cd > 0 is positive definite and hence no tachyons.

• if k̂1cd 6= 0 for some c, d, then k̂2cd > 0 and k̂2cd < 0 are allowed since there is
no restriction coming from demanding Gcd > 0. In this case, tachyons can appear
depending on the model’s intersection structure with their number being determined
by the number of negative eigenvalues of k̂2cd.

As a final comment, we stress that the statements and results derived in this section are
applicable specifically to AdS4 vacua considering only F -term contributions. Thus far, we
neglected both uplifting contributions to dS4 minima as well as D-term scalar potentials.
Generically, at least the former are independent of odd axions ĉa and ba when written in
terms of volume moduli which is why we expect the above analysis to easily extend to
scenarios with de Sitter uplifts. In the presence of chiral matter on e.g. D7/D3-branes,
the associated D-term contributions [19, 95] can have an induced dependence on both Tα
and Ga, see e.g. [20]. Given that such effects are highly model dependent, we refrained
from adding them to our present considerations, albeit it should be straight forward once
a particular background configuration has been established.

7 Analysing the scalar potential for W = W (U i, S, Tα, G
a)

In our previous considerations, the R-R axions ca are never stabilised as no scalar poten-
tial is generated when the superpotential is independent of Ga. In such cases, the shift
symmetry of the ca axions protects the flatness. In this section, we discuss superpotentials
W ≡ W (Ga) which are suitable for stabilising all moduli simultaneously. We present a
form of the scalar potential which can be applied to specific models by merely giving the
inputs of a superpotential depend on all moduli.

We define the superpotential

W = W0(U i, S) +W1(U i, S, Tα, Ga) (7.1)
19Similar results for the Hessian for LVS models with h1,1

± = 2 were previously obtained in [16]. Notice
though that in the convention of [16] an additional minus sign is introduced in (6.36).
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whereW0 might be associated with the 3-form flux background, whereas W1 can arise from
D5-instantons or fluxed E3-instantons. Depending on the microscopic details, the Tα and
Ga dependence inW1 might decouple, at least at leading order in some instanton expansion.
From our master formula (4.5), we have already derived the most general expression for
the F -term scalar potential (4.28). In the remainder of this section, we apply this result
to explicit superpotentials.

7.1 Geometric flux superpotential

At the tree level, there can be several possibilities to induce the Kähler moduli dependence
along with the odd moduli in the scalar potential, especially after including (non-)geometric
fluxes [25, 26, 29, 32, 33, 55, 96]. We initially consider the following ansatz for the super-
potential with an explicit dependence on the odd moduli Ga,

W1(Ga) = faGa =⇒ ∂W1
∂Ga

= fa. (7.2)

where fa is quantity which depends on the metric flux,20 and can generically depend on
the complex structure moduli as well. However, we take fa to be some complex number
for now. Subsequently the scalar potential becomes,

V (ba, ca) = eK
(4l − 3ξ̃
l − 3ξ̃

|W |2 + fa
(
sGab + γ1 b

a bb
)
fb − 4 s baIm

[
Wfa

])
. (7.3)

Therefore, the simplified scalar potential is a quadratic function of ba and ca moduli taking
the following form,

V (ba, ĉa) = 4 eK
[
ĉaPab ĉb + ĉa Pa + 1

4 γ1 b
aPab bb − baQa + P0

]
, (7.4)

where we assume that complex structure is fixed (i.e., W0 = const.). We further use the
redefined combination of the ca axion ĉa = ca + c0 b

a (recall (2.6)), along with (setting
ξ̃ = 0 for convenience)

Pab = Re(fa)Re(fb) + Im(fa) Im(fb), (7.5)
Pa = 2Re(W0)Re(fa) + 2 Im(W0)Im(fa),
Qa = sRe(W0)Im(fa)− s Im(W0)Re(fa),
P0 = Re(W0)2 + Im(W0)2 + s

4 Re(fa)GabRe(fb) + s

4 Im(fa)Gab Im(fb).

All the quantities Pab,Pa,Qa and P0 are independent of the odd axions {ba, ca}. The
exremisation of the potential with respect to the {ba, ĉa} axions results in the following
conditions,

Pa + 2Pab ĉb = 0, Qa −
1
2 γ1Pab bb = 0, (7.6)

20Not all the components of geometric fluxes are allowed as the same are constrained by a set of quadratic
flux constraints coming from the NS-NS Bianchi identities [26, 96].

– 39 –



J
H
E
P
0
4
(
2
0
2
2
)
0
0
3

which leads to

〈
V (ba, ĉa)

〉
= −4 eK

[
−1

2〈ĉ
a〉 Pa + 1

2 〈b
a〉Qa − P0

]
. (7.7)

With the choice of variables {ba, ĉa}, the Hessian turns out to be block diagonal, and Vij
evaluated at the extremum reads〈

∂2V

∂ĉa∂ĉb

〉
= 8 eKPab,

〈
∂2V

∂ba∂bb

〉
= 2 γ1 eKPab. (7.8)

For the current “two-field” analysis using {ba, ca} let us have some leading order estimates
for the axion decay constants so that we could have some estimates for the axionic masses
as well. For that purpose we consider,

K
GaGb

∂µG
a ∂

µ
Gb = 1

2fab
(
∂µb̂

a∂µb̂b + ∂µĉ
a∂µĉb

)
(7.9)

where

b̂a = s ba, ĉa = ca + c0 b
a, fab = 2K

GaGb
= 2Gab

s
+ 9Gαβ k̂αak̂βb

2Y2 ' 2Gab
s
. (7.10)

This results in a leading order decay constant matrix of the following form,

fbabb = 2 sGab, fcacb = 2Gab
s

(7.11)

Using (7.8) and recall that for the tree level Kähler potential γ1 = 4 s2, and subsequently
the ba axions turn out to be the massive as compared to the ĉa axions,

m2
ba

m2
ĉa

= 〈s〉2 = 1
g2
s

(7.12)

However, if one works with a field b̂a = s ba, and then this two field dynamics shows that
the masses of ĉa and b̂a remain the same. This is well anticipated given that the source
of the shift symmetry breaking for both the axions {ba, ĉa} is the same coupling in the
superpotential, W1 = faGa. This observation about the “no mass-splitting” for the ĉa
and b̂a = s ba fields at tree level is on the same footing in the canonical normalisation, and
needs to be checked in generic scenarios when more moduli are part of the dynamics!

Similar to the two-field analysis of the axio-dilaton {c0, s} in section 5.3, the BBHL
correction can induce some mass-splitting among the odd axions which reads

m2
ba

m2
ĉa

= 1
4〈γ1〉 = 1

g2
s

(
1 + 3 ξ̂

4(V − ξ̂)

)
. (7.13)

Given that the deviation is suppressed by powers of the volume, this mechanism does not
allow for mass hierarchies between the ĉa and b̂a axions. Nevertheless, let us mention
that the ba axions are always heavier than the ca axions by the appearance of the string
coupling.

– 40 –



J
H
E
P
0
4
(
2
0
2
2
)
0
0
3

7.2 D5-brane gaugino condensates

A second source of Ga-dependent contributions to the superpotential is generated by gaug-
ino condensation on spacetime filling D5-branes or ED1-brane instantons wrapping internal
2-cycles [10, 16, 45, 82]. However, contrary to the case of D5/ED1-contributions to the
Kähler potential, it remains unclear whether such effects can actually be generated in the
superpotential since they survive the limits V → ∞ and gs → 0 contrary to general expec-
tations [52]. Nonetheless, let us assume that such effects from D5-branes are generated in
which case the superpotential is given by

W1(Ga) = B ei naGa (7.14)

where we treat B as well as W0 as some complex numbers. Then, the scalar potential
becomes (setting ξ̃ = 0)

V (ba, ca) = eK
(

4|W |2 + na nb
(
sGab + γ1 b

a bb
)
|W1|2 + 4 s banaRe(WW 1)

)
. (7.15)

Assuming that B = |B|eiλ and W0 = |W0|eiθ we have the following form of the scalar
potential,

V (ba, ĉa) = 4 eK
[
|W0|2 + |B| |W0| e−s nab

a(2 + sna b
a) cos[naĉa + λ− θ]

+ |B|2 e−2 s naba(1 + sna b
a) + |B|

2

4
(
sGab + γ1 b

a bb
)
na nb e−2 s naba

]
, (7.16)

where the ĉa axions appears as an oscillatory function, while the ba axions also have expo-
nentially suppressed contributions. Assuming |B| 6= 0, the two extremising conditions are
given as,

(i). na (2 + snb b
b) sin[nbĉb + λ− θ] = 0, (7.17)

(ii). na |W0|
|B| e− s nbbb

(1 + s nb b
b) cos[ncĉc + λ− θ] + na(1 + 2 snc bc)

+ na
2

(
s (Gbcnbnc) + γ1

s
(nbbb) (s ncbc − 1)

)
= 0 .

For na 6= 0, we find the solutions21

nb〈ĉb〉+ λ− θ = nπ (7.18)

so that

|B| e− s nbbb = −4|W0| (1 + s nb b
b)(−1)n

2(1 + 2 snc bc) + (sGab + γ1 ba bb) na nb −
γ1
s

(nbbb)
. (7.19)

21We can also have e.g. snb bb = −2 which however leads to 〈∂ĉc∂ĉdV 〉 = 0 which is not a proper minimum
of the potential.
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The Hessian is given by

∂ĉc∂ĉdV = −4ncnd eK |B| |W0| e−s nab
a(2 + sna b

a) cos[naĉa + λ− θ] ,

∂bc∂bdV = −s
3na b

a ∂ĉc∂ĉdV

2 + sna ba
+ 4s2ncnd eK|B|2

[
2− 4s bb nb

+
(
sGab + 4s2 ba bb

)
na nb

]
e−2 s naba . (7.20)

At leading order ignoring ξ̂, we set γ1 = 4s2 in (7.19) so that

〈∂ĉc∂ĉdV 〉 = ncnd eK 8|W0|2 (1 + s nb b
b)(2 + sna b

a)
2 + (sGab + 4s2 ba bb) na nb

,

〈∂bc∂bdV 〉 = s2 〈∂ĉc∂ĉdV 〉
[2 + (sGab + 4s2 ba bb) na nb] (2 + sna ba)

[
4 + 2sGabnanb

− 6sbana + sbana
(
4s2bbbc + sGbc

)
nbnc

]
(7.21)

where in both expressions 〈. . .〉 for the VEVs is implicitly used for s and ba. Hence

〈∂bc∂bdV 〉
〈∂ĉc∂ĉdV 〉

= s2
[
1− 8s bb nb(1 + sbana)

[2 + (sGab + 4s2 ba bb) na nb] (2 + sbana)

]
. (7.22)

At ba = 0, the r.h.s. reduces to s2 as expected, though ba = 0 generically does not solve
the condition (7.19). Away from ba = 0, the mass splitting is at most polynomial in ba.
Including the BBHL correction systematically as in section 5.3 leads to additional correc-
tions which are, however, suppressed by additional powers of the volume. For convenience,
we neglected any Tα-dependence in the superpotential which contributes further terms to
∂bc∂bdV as previously determined in (6.29). Even though this certainly induces a mass
splitting between the ba and ĉa axions, it is unclear whether this is always sufficient to
engineer mass hierarchies, though this has been observed in many instances via suitable
arrangements of the na [16, 82, 97].

Before we continue, we collect a final formula including an even moduli dependence as
in (6.8). Indeed, a general superpotential will include non-perturbative sources from D7-,
D5- and D3-branes in which case

W = wF + SwH +
h1,1

+∑
α=1

Aαe−iaαTα +
h1,1
−∑
a=1

BaeinaG
a (7.23)

As discussed in section 6.2, we ignore any U i or S dependence in both prefactors Aα and
Ba. Plugging (7.23) into (4.5), we find

V = V pert + V np1 + V np2 + V G (7.24)
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where V pert, V np1, V np2 are defined in (6.10) and where

V G = eK
h1,1
−∑
a=1

{
2 (1 + 2sbana)Re

[
(wF + c0wH)B̄ae−inaG

a]

− 2
[
s+ bana

(
2s2 + γ1

)]
Im
[
wHB̄ae−inaG

a]
(7.25)

+
h1,1
−∑
b=1

BaBbeinaG
a−inbG

b (
1 + 2s(bana + bbnb) + nanb

[
sGab + γ1 b

abb
])

+
h1,1

+∑
α=1

(
2(1 + aα(kα − sk̂α)) + 4sbana

− aαna
[
2 sGab k̂αb + (γ1 k̂α + γ2 kα) ba

] )
Re
[
AαBae−ia

αTα−inaG
a]}

.

Again, the scalar potential is known exactly without resorting to any small coupling or
large volume expansion. Given the way the ĉa enter the potential, we notice that (6.12)
still provides a solution of the stationary point conditions for c0 and ρ̃α provided

Ba = |Ba|eiθa , na〈ĉa〉+ θa + λF = π . (7.26)

However, solving the stationary point conditions for the NS-NS axions ba analytically is
challenging as can already be seen from the simplified situation (7.19) above. This is similar
to determining the VEVs for the 4-cycle volumes in LVS for which analytic solutions can
only be obtained in the large volume limit.

7.3 Fluxed E3-instanton superpotential

Another possibility to induce an explicit Ga dependence in the scalar potential is through
non-perturbative effects arising from the fluxed E3-instantons or via gaugino-condensation
effects with magnetised-branes [13, 45, 46]. By modularity arguments, the non-perturbative
superpotential from fluxed D3/D7-instantons wrapping divisors DE needs to have the fol-
lowing form [45]

Wnp(S,Ga, Tα) =
∑
E

AE ΘE(S,Ga) e−i nEα Tα . (7.27)

Here, AE denotes the 1-loop determinant for fluctuations around the instanton, which only
depends on the complex structure moduli and the D7-brane deformations. Further, we can
write the modular function as

ΘE(S,Ga) =
∑
FE

eiβES eiqEaGa (7.28)

in terms of the flux dependent quantities

qEa = k̂αab a
α
E F bE , βE = 1

2

[
qEcFcE + 2π

∫
DE

FvE ∧ FvE
]
. (7.29)
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The gauge flux FE is separated into the components FaE from pulling back bulk 2-forms onto
the brane and variable flux FvE supported only on 2-cycles inside DE [46]. The sum over
admissible gauge flux in (7.28) is such that the functions ΘE(S,Ga) become appropriate
holomorphic Jacobi forms which can be computed in particular limits in moduli space [45].

It is straight forward to plug the superpotential into the scalar potential (4.28) which
will be analysed in an upcoming publication [98]. Here, we simply point out that the form
of ΘE in (7.28) is such that contributions to the mass of R-R axions ĉa are exponentially
suppressed by e−βEs. At small string coupling gs = 〈s〉−1, one thus expects to obtain
mass hierarchies between the ĉa and ba axions since the later receive further mass contri-
butions from the inverse Kähler metric as computed in (6.29); a fact that has already been
appreciated in [10]. This observation motivates further exploring the phenomenological
implications of such scenarios which potentially open up new avenues towards inflation in
string theory.

8 Phenomenological implications

Axions are ubiquitous in string compactifications borrowing their shift symmetries from
the gauge redundancies of p-form fields in the higher-dimensional theories. Generic models
are expected to contain of O(10 − 100) axionic fields [24, 99–101] making them highly
attractive for model building purposes. In fact, the rich cosmology of axions [102] makes
them the perfect target for the study of phenomenological implications of string theory,
see e.g. [10, 103–108].

The results of the previous sections provide a systematic approach to computing the
exact F -term scalar potentials for general N = 1 CY orientifold compactifications and ar-
bitrary superpotentials. From a phenomenological point of view, this is desirable because
it enables us to derive simple conditions for stabilising moduli and for avoiding tachyonic
directions that, whenever analytic methods cease to work, can easily be implemented on a
computer. Further, the precise notion of sub-leading terms in the volume and string cou-
pling is necessary to have proper control over inflationary potentials. This is of particular
relevance for models of fibre inflation [86] or poly-instanton inflation [109, 110] where the
scalar potential pieces determining the minimum are suppressed by V−κ with κ > 3.

In our analysis, we were mostly concerned with the general dependence of scalar po-
tentials on odd axions ba and ĉa, especially due to their outstanding role in cosmological
model building such as in axion monodromy [6, 7]. The basic idea in axion monodromy is
the breaking of the discrete shift symmetry of axions by branes or fluxes in order to obtain a
sequence of non-periodic branches. Despite initial efforts in describing moduli stabilisation
in these set-ups [7], a systematic understanding still remains a key challenge where our re-
sults provide the golden opportunity to make significant progress in future endeavours [98].
More generally, a variety of inflationary models could benefit from our novel insights such
as those based on alignment and hierarchical mixing of odd axions [15, 16, 82, 97] or more
recent set-ups like harmonic hybrid inflation [18]. On top of that, the plethora of poten-
tially ultra-light axion-like particles in our set-ups may have direct applications to stringy
realisations of Dark Matter [111], Dark Radiation [112–115], Dark Energy [116–121], as well
as astrophysics [122, 123]. We hope to come back to these questions in the near future.
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9 Conclusions and future directions

The quest for fully reliable string constructions with all moduli stabilised in well-controlled
de Sitter minima in synergy with realistic particle phenomenology and cosmology remains
to large extent unfulfilled. A key obstacle is the systematic derivation of vacuum structures
from N = 1 scalar potentials including (non-)perturbative corrections as well as additional
discrete parameters such as fluxes and triple intersection numbers. In this article, we
made substantial progress in this direction by computing explicit and exact expressions for
α′- and gs-corrected F -term scalar potentials without having to utilise any additional 4D
approximation. Further, we revisited several issues pertaining to the stabilisation of odd
moduli for which our observations provide a much sought after unifying framework.

The main results of this paper are the three master formulae for N = 1 F -term scalar
potentials derived in section 4.1 which are perfectly suited for stabilising closed string mod-
uli in general type IIB CY orientifold compactifications. These were obtained from exact
identities for derivatives of the Kähler potential and, in particular, for the inverse Kähler
metric at higher order in the α′ expansion using the tree level (α′)3 effects of [38]. Further,
we touched upon higher order corrections in the closed string loop and non-perturbative D-
instanton expansion. Both are dictated by SL(2,Z) invariance of the 10D Einstein frame
action through appropriate modular forms where in orientifold backgrounds a subgroup
ΓS ⊂ SL(2,Z) is expected to survive as a symmetry of the 4D effective action [45]. We
showed that even in this case, closed expressions for the inverse Kähler metric can be
obtained giving rise to a compact formula for the F -term scalar potential.

The remainder of this paper was concerned with studying the nature of the scalar
potential for a variety of different superpotentials. In the simplest case of the GVW super-
potential W (U i, S) depending only on complex structure moduli U i and the axio-dilaton
S, we showed explicitly that the scalar potential is independent of the ba axions. This is of
course expected in the absence of non-perturbative effects where the axionic shift symme-
tries are left untouched. In addition, we briefly elaborated on splitting the masses of the
universal axion c0 and the dilaton s through the BBHL correction.

In the presence of an explicit Tα dependence in the superpotential W (U i, S, Tα), the
NS-NS axions ba are explicitly featured in the scalar potential. We derived a general form
of the F -term scalar potential for both non-perturbative effects from D3-/D7-branes gen-
eralising the results of [47] and non-geometric fluxes. We illustrated the effectiveness of
our results by deriving closed expressions for the Hessian for ba axions. For SUSY minima,
we reproduced the results of [44] where each unfixed R-R axion ĉa has an associated tachy-
onic superpartner ba. In the non-SUSY case, we formulated conditions on the intersection
structure determining the presence and number of potential tachyonic directions.

Subsequently, we provided all the necessary tools to extract the F -term scalar poten-
tial for arbitrary superpotentials W (U i, S, Tα, Ga). This is of paramount importance for
advancing our understanding of moduli stabilisation in generic set-ups with h1,1

− 6= 0. In
this context, our results have direct applications to inflationary models based on odd ax-
ions, in particular axion monodromy [6, 7]. We derived explicit expressions for geometric
flux and non-perturbative D5-gaugino superpotentials. A particularly promising class of
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superpotentials from fluxed D3/D7-branes capable of inducing mass hierarchies between
the NS-NS and R-R axions will be discussed in a forthcoming publication [98].

In the present work, we restricted mostly to perturbative corrections to the Kähler
potential arising from tree level (α′)3-effects in 10D. Hence, the stabilisation of the C2-
axions has been sourced by superpotential contributions only. However, there is another
possibility of stabilising odd moduli via worldsheet-instanton corrections to the Kähler
potential [124]. The modular completion of such corrections results in a modified expression
for the volume Y featured in the Kähler potential (2.11) given by [45]

Y = V + ζ

4 f0(S, S)− 4 g(S, S,Ga, Ga) . (9.1)

Here f0(S, S) is defined in (3.28) and

g(S, S,Ga, Ga) =
∑

β∈H−2 (X,Z)
(n,m) 6=(0,0)

n0
β

s3/2

|n+mS|3
cos
[
(n+ S m)k

β
a (Ga −Ga)
S − S

−mkβaGa
]

(9.2)

in terms of integer genus zero Gopakumar-Vafa invariants n0
β [69, 70] and kβa =

∫
β ν

a for
a basis νa ∈ H2

−(X,Z). Thus far, we limited ourselves to considering the f0(S, S) piece
without including the (modular completed version of the) worldsheet and D1-instanton
effects encoded in g(S, S,Ga, Ga). Similarly, given that worldsheet instantons such as the
one in (3.4) have received a lot of attention recently, see in particular [93, 125], it would be
desirable to add these corrections in our general formalism. As in the case of f0, there exist
closed expressions for the derivatives of polylogarithms which should allow for a straight
forward generalisation of our framework.

Further, we focussed on analysing large complex structure pre-potentials which are
commonly studied in the literature due their relevance in the context of mirror symmetry.
However, the precise structure of pre-potentials highly depends on the monodromy symme-
tries and the additional data of the asymptotic regime in moduli space around which the
periods are being expanded, see in particular [64]. Recently, it was also suggested in [126]
that other types of boundaries in moduli space can lead to small flux superpotentials with
large mass hierarchies. It would thus be instructive to extend our general results to other
classes of pre-potentials.

Finally, let us stress again that we studied mostly AdS4 vacua ignoring additional
uplifting sources, D-terms as well as open string moduli. Clearly, these effects are critical
for the construction of fully explicit models including Standard Model sectors [127] and de
Sitter vacua from e.g. T-brane backgrounds [128]. Along the lines of [129–132], it would also
be interesting to explore the option of getting de Sitter from the sources already discussed
throughout the paper. Treating such contributions notoriously remains challenging, but
our results build a solid foundation towards finding de Sitter minima with fully stabilised
moduli in string theory.
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A Useful relations for intermediate computations

In section 3, we use the following identities

∂St
α = i

4 k̂βk
αβ , ∂Gat

α = − i2k
αβ k̂βa , ∂Tβ t

α = i

2k
αβ (A.1)

to compute the derivatives of the Kähler potential. Using the explicit expressions of the
Kähler derivatives in eq. (3.17) and of the inverse Kähler metric in eqs. (3.20)–(3.21), we
find the following useful relations,

KSK
SS =

i s
(
4V − ξ̂

) (
2V + 4 ξ̂ − k̂0 s

)
2
(
V − ξ̂

) (
2V + ξ̂

) = −KSK
SS ,

KGa K
GaS =

i k̂0 s
2
(
4V − ξ̂

)
(
V − ξ̂

) (
2V + ξ̂

) = −KG
a KG

a
S ,

KTα K
TαS =

i s
(
k̂0 s

(
ξ̂ − 4V

)
− 18 ξ̂ V

)
2
(
V − ξ̂

) (
2V + ξ̂

) = −KTα
KTαS ,

KSK
SG

b

= −
i s bb

(
4V − ξ̂

) (
k̂0s− 2

(
2ξ̂ + V

))
2
(
V − ξ̂

) (
2V + ξ̂

) = −KSK
SGb ,

KGa K
GaG

b

=
i s bb

(
k̂0 s

(
4V − ξ̂

))
(V − ξ̂) (2V + ξ̂)

− 2 i s bb = −KG
a KG

a
Gb ,

KTα K
TαG

b

= −
i s bb

(
4ξ̂2 + k̂0s

(
4V − ξ̂

)
− 8V2 + 22ξ̂ V

)
2
(
V − ξ̂

) (
2V + ξ̂

) = −KTα
KTαGb ,

KSK
STβ =

i
(
4ξ̂ − k̂0s+ 2V

) (
ξ̂
(
3kβ − sk̂β

)
+ 4sV k̂β

)
4
(
V − ξ̂

) (
2V + ξ̂

) = −KSK
STβ ,

KGa K
GaTβ =

i s k̂0
(
ξ̂
(
3kβ − sk̂β

)
+ 4sV k̂β

)
2 (V − ξ̂)

(
2V + ξ̂

) − 2 i s k̂β = −KG
a KG

a
Tβ ,

KTα K
TαTβ = − i

4
(
V − ξ̂

) (
2V + ξ̂

)[kβ (8ξ̂2 + ξ̂
(
3k̂0s+ 2V

)
+ 8V2

)

+sk̂β
(
8ξ̂2 + k̂0s

(
4V − ξ̂

)
− 16V2 + 26 ξ̂ V

)]
= −KTα

KTαTβ . (A.2)
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In addition, one verifies that

KSK
SSKS =

(
4V − ξ̂

) (
4ξ̂ − k̂0s+ 2V

)2

4
(
V − ξ̂

) (
ξ̂ + 2V

)2 , (A.3)

KSK
SG

a

KG
a =

k̂0s
(
4V − ξ̂

) (
4ξ̂ − k̂0s+ 2V

)
2
(
V − ξ̂

) (
ξ̂ + 2V

)2 = KGa K
GaSKS ,

KSK
STα KTα

= −

(
4ξ̂ − k̂0s+ 2V

) (
k̂0s

(
4V − ξ̂

)
+ 18ξ̂ V

)
4
(
V − ξ̂

) (
ξ̂ + 2V

)2 = KTα K
TαSKS ,

KGa K
GaG

b

K
G
b =

k̂0s
(
k̂0 s

(
4V − ξ̂

)
− 4V2 + 2ξ̂

(
ξ̂ + V

))
(
V − ξ̂

) (
ξ̂ + 2V

)2 ,

KGa K
GaTα KTα

=
k̂0s

(
−4ξ̂2 + k̂0s

(
ξ̂ − 4V

)
+ 8V2 − 22ξ̂ V

)
2
(
V − ξ̂

) (
ξ̂ + 2V

)2 = KTα K
TαG

a

KG
a ,

KTα K
TαTβ KTβ

=
k̂2

0s
2
(
4V − ξ̂

)
+ 4k̂0s

(
2ξ̂2 − 4V2 + 11ξ̂ V

)
+12V

(
4ξ̂2 + 4V2 + ξ̂ V

)
4
(
V − ξ̂

) (
ξ̂ + 2V

)2 .

Note that we utilised the shorthand notations given in eq. (3.15). Also we used k0 =
kα t

α = 6V and k̂α tα = k̂0 = −4Y Gab ba bb following from the definitions of moduli space
metrics in eq. (3.18).

In the context of two-step moduli stabilisation schemes, like KKLT and LVS, in which
the complex structure moduli (U i) and the axio-dilaton (S) are stabilised at the leading
order, while the Kähler and odd moduli (Tα and Ga) are stabilised at subleading order,
the following identities are commonly used

KA′ K
A′B′ KB′ =

3V
(
4 ξ̂2 + 4V2 + ξ̂ V

)
(
V − ξ̂

) (
ξ̂ + 2V

)2 +
k̂2

0 s
2
(
4V − ξ̂

)
− 36 k̂0 ξ̂ sV

4
(
V − ξ̂

) (
ξ̂ + 2V

)2 ,

KA′ K
A′B′ KB′ − 3 =

3 ξ̂
(
V2 + 7ξ̂ V + ξ̂2

)
(
V − ξ̂

) (
ξ̂ + 2V

)2 +
k̂2

0 s
2
(
4V − ξ̂

)
− 36 k̂0 ξ̂ sV

4
(
V − ξ̂

) (
ξ̂ + 2V

)2 . (A.4)

Here, the sum over indices A′ and B′ runs over the {Tα, Ga} chiral variables without the
axio-dilaton (S).
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