
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2008, Article ID 902653, 10 pages
doi:10.1155/2008/902653

Research Article

SystemC Transaction-Level Modeling of
an MPSoC Platform Based on an Open Source ISS
by Using Interprocess Communication

Sami Boukhechem and El-Bay Bourennane

UMR CNRS 5158, University of Burgundy, 9 Avenue Alain Savary B.P: 47870, 21078 Dijon Cedex, France

Correspondence should be addressed to Sami Boukhechem, sami.boukhechem@u-bourgogne.fr

Received 29 February 2008; Revised 20 May 2008; Accepted 18 August 2008

Recommended by Michael Hubner

Transaction-level modeling (TLM) is a promising technique to deal with the increasing complexity of modern embedded systems.
This model allows a system designer to model a complete application, composed of hardware and software parts, at several levels
of abstraction. For this purpose, we use systemC, which is proposed as a standardized modeling language. This paper presents a
transaction-level modeling cosimulation methodology for modeling, validating, and verifying our embedded open architecture
platform. The proposed platform is an open source multiprocessor system-on-chip (MPSoC) platform, integrated under the
synthesis tool for adaptive and reconfigurable system-on-chip (STARSoC) environment. It relies on the integration between an
open source instruction set simulators (ISSs), OR1Ksim platform, and the systemC simulation environment which contains other
components (wishbone bus, memories, . . . , etc.). The aim of this work is to provide designers with the possibility of faster and
efficient architecture exploration at a higher level of abstractions, starting from an algorithmic description to implementation
details.

Copyright © 2008 S. Boukhechem and E.-B. Bourennane. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

It has recently become possible to create complex embedded
systems called the multiprocessor system on chip (MPSoC),
usually used for embedded applications. These systems
contain several microprocessors, memories (shared, private),
shared busses, and peripherals integrated in a single die [1].
As a consequence, the system designer is confronted with
new challenges and difficulties related to the integration
of such complex systems. So before any implementation,
it is necessary to validate by simulation the system to
be implemented. The chosen TLM simulation framework
permits rapid exploration of several solutions containing
different descriptions of the system components.

For this purpose, a hardware/software TLM cosimulation
is used to validate the behavior for both the hardware and
the software components of embedded systems, as well as
the interaction between them. Moreover, TLM cosimulation
also permits the performance evaluation of the whole system

at the earlier stages of the design flow before building a
prototype, which is faster than HDL register-transfer level
(RTL) simulation [2, 3].

Traditionally, mixed language cosimulators are used [4]
for simulation which generates a communication overhead
between different simulators, often resulting in a significant
degradation in the execution time [5]. It is thus necessary to
use the same language for modeling software and hardware,
and simulating these models at system level in a unified
systems design approach. Many research and commercial
products provide cosimulation environments which com-
bine ISS, HDL simulators, or systemC models [6, 7].

This motivated our choice of systemC as the modeling
and simulation environment for our MPSoC platform.
SystemC has become a standard in system level design; it is
one of the leading C/C++ design environments, and is an
open source, free simulation environment [8].

In addition, TLM cosimulation becomes easier and
more efficient, because the entire system can be simulated

mailto:sami.boukhechem@u-bourgogne.fr

2 International Journal of Reconfigurable Computing

Sy
st

em
C

si
gn

al
s

T
L

M
w

is
h

b
o

n
e

B
U

S
m

o
d

el

HW
(SystemC)

Shared
main

memory

Clock
generator

SystemC
signals

SystemC
signals

SystemC
signals

SystemC
signals

SystemC
wrapper

interface

SystemC
wrapper

interface

IPC

IPC

OR1200

OR1200

Arbiter

Private
local

memory

Private
local

memory

Two distinct Linux
processes SystemC environment

Figure 1: STARSoC platform.

within a single simulation engine (systemC). It permits the
simulation at different abstraction levels starting at a very
high level of functional description and continuing after
refining over time, to synthesizable Register-Transfer Level
style, and even combines different levels in one model. The
systemC simulation kernel also treats parallel execution and
provides functions required to model hardware timing and
concurrency [8].

The ISSs in our platform run as distinct UNIX processes
on the host system. They communicate between themselves
and with hardware components through their systemC inter-
face wrappers which communicate with the other platform
components via abstract systemC communication channels
[9, 10]. The instruction set simulators based on C language
communicate with their systemC interface wrappers via
interprocess communication (IPC) [11] primitives.

In this context, there are many related works, such as
[12]. The major contribution of this paper is to develop
the cosimulation environment between OR1Ksim [13] and
systemC. We used IPC (PIPE) in order to provide MPSoC
models for an OpenRISC processor at a higher level of
abstraction. These can be used in order to accelerate the
validation, performance analysis, and architecture explo-
ration for our project, called STARSoC. It is particularly
used for evaluating the hardware-software partitioning and
also for comparing the system modeled at a high level of
abstraction (TLM) with the register-transfer level during
software prototyping.

Our objective in this paper consists in comparing the
three abstraction levels which are traditional register-transfer
level modeling and transaction-level modeling at instruction
accurate level and cycle-accurate level.

In our case study, we have used an open source ISS
derived from the OR1Ksim simulation platform which is
designed for monoprocessor simulation. For the use in the
case of the simulation of multiprocessor systems, we connect
two ISSs with systemC communication platform models, by
using interprocess communication. Thus, it is very easy to
add or to remove a processor from the MPSoC design. The
interconnection models and other hardware components can
be modeled in systemC or any other hardware description
language. The interconnection is based on a standard Wish-
bone bus [13]. Our communication model uses the shared
memory communication mechanism. All processors are
simulated at the same abstraction level, for each TLM level
[14]. The rest of the paper is organized as follows. We begin
in Section 2 with a brief definition of STARSoC design flow
and transaction-level modeling. In Section 3, we discuss the
simulation platform used in this work. Section 4 describes
the bus architecture. Section 5 is devoted to the study of
our transaction-level modeling steps of the wishbone bus.
Section 6 introduces the communication model adopted in
our work. In Section 7, we provide some explanations for
the modified instruction set simulator based on OR1Ksim.
Section 8 presents some results of experiments we obtained
by simulation. We finish with a conclusion in Section 9.

2. STARSoC Design Flow Overview

An overview of the STARSoC design flow [15] is shown
in Figure 2. The input description consists of a set of
communicating parallel software and hardware processes
described in C-code [16]. We specify the number of reconfig-
urable processors (OpenRISC1200) and the list of peripheral

International Journal of Reconfigurable Computing 3

Specification model
C language

HW/SW
partitioning

SW
partition (∗.C)

HW
partition (∗.C)

PE-assembly model

Bus-arbitration
model

Cycle accurate
computation model

TLM
co-simulation

SW compilation HLS accelerators

Figure 2: STARSoC design flow.

input/output components connected to each processor.
After hardware-software partitioning, the hardware part is
synthesized into register-transfer level architecture, and the
software part is distributed to the available processors.

The hardware and software partitions are defined by
the user. The software part will be reinstrumented to make
appropriate calls to the hardware component synthesized via
the communication system bus. The bus-based communi-
cation architecture will be synthesized to interconnect the
software processor(s) and the hardware coprocessor(s). We
use the GCC compiler to synthesize the machine code of
the software processes and download it into the program
memory of each processor in the generated MPSoC platform.

In this work, we focus on TLM abstraction as defined in
the following.

2.1. Transaction-Level Modeling

Currently, transaction-level modeling is widely referred to
in system-level design literature. It permits a fast simulation
and performance evaluation of a complex System on Chips
(SoCs) earlier in the design flow, with a more modular and
efficient code. This reduces the time-to-market compared
with RTL and ensures practical gains for design, because

TLM is less detailed. Timing details can be incorporated
into these models to allow performance estimation and
architecture exploration before the RTL (HDL/systemC)
code is generated.

We have several definitions concerning the exact place of
TLM in the simulation level. TLM is not a single abstrac-
tion level but involves several abstraction levels (multilevel
model). We can refine the models over time to include more
information. In most cases, TLM is defined above the RTL
[17, 18]. Gai and Gajski [14] clearly define four transaction
level abstraction models, where the communication and
the computation are explicitly separated. The system is
represented as a set of communicating processes. These pro-
cesses perform computations and communicate with other
processes through an abstract channel. The different trans-
action levels defined by [14] are PE-assembly model, bus-
arbitration model, time-accurate communication model,
and cycle-accurate computation model. In our work, the use
of TLM in STARSoC platform (MPSoC platform) design
refers to a set of abstraction levels quoted in [14].

2.2. STARSoC TLM

In Figure 3, all levels belong to the TLM levels except the first
level. We provide below a brief description of all these levels.

(1) The first model is a specification model which is
described by a parallel process (c program) without
any architecture details.

(2) The second model is the PE-assembly model, imple-
mented by using ISSs (OR1Ksim) which commu-
nicates through interprocess communication. We
chose an implementation of IPC, called PIPE, for its
capacity of data and command transfer.

(3) The third model is the bus-arbitration model. In this
level, we have added two parameters: address (for
memory access) and bus arbiter (for bus access),
also by using IPC. In this level, STARSoC is a time
approximate computation. In each clock cycle, the
ISS performs one instruction. In our work, this level
can also be called an instruction accurate execution
model.

(4) The fourth model is the cycle-accurate computation
model. In this model, each ISS is cycle accurate.

The advantage of this model is that it allows designers to
exploit the platform at earlier stages of the design flow.

3. Proposed Architecture

The target architecture used in this work is a multiprocessor
system-on-chip (MPSoC) platform, whose communications
are performed via a shared memory, as shown in Figure 1.

Our reference platform consists in integrating several
ISSs wrapped under the systemC wrapper interface, the TLM
wishbone BUS model, private memories (associated with
each ISSs), and a shared memory used for communication
between the ISSs. Because we have a small set of processors

4 International Journal of Reconfigurable Computing

Algorithm

Specification model
The application is described

by parallel processes (C language)

IPC

Arbiter

PE-assembly model

ISSs communicate by IPC

R/W
+

addressSC interface

SC interface
R/W

address
commands

CA computation model

Arbiter

Bus-arbitration model
Two parameters are added

address & bus arbiter

Cycle-accurate computation model

The ISSs are cycle accurate

1

2

3

4

Refinement

Figure 3: STARSoC platform at different abstraction levels.

OpenRISC1200

POWERM IMMU

Debug

Tick timer

PIC DMMU

CPU/DSP

Icache
8 KB

Dcache
8 KB

Figure 4: ISS unit architecture.

in this work, we chose a shared bus as the interconnection
model instead of network-on-chip (NoC) and shared mem-
ory as the communication model instead of message passing.

The ISSs used in our platform are derived from the open
source simulator of the OpenRISC processor (OR1200),
written in C and called OR1Ksim (shown in Figure 4). Each
ISS contains its own cache memory, private local memory,
and the minimum set of units required to perform basic
functionality (see Figure 4). These ISSs can provide detailed
functional information, such as register values, the program
execution time, and other timing information, used among
them to carry out the comparison between three abstraction
levels: instruction accurate level (IA) which corresponds to
the third level in Figure 3, cycle-accurate (CA) level which
corresponds to fourth level in Figure 3 (owned to TLM), and
RTL during simulation.

or1ksim\cpu\or32\insnset.c
INSTRUCTION (1 sb)
{

· · ·

if (add s)
{

· · ·

write (fd sb data, &PARAM1, strlen (&PARAM1));
write (fd sb add, &add, strlen (&add));
· · ·

}

· · ·

}

· · ·

INSTRUCTION (1 1bz)
{

· · ·

if (add 1)
{

· · ·

write (fd 1bz add, &add, strlen (&add));
read (fd 1bz data, &data, strlen (&data))
· · ·

}

· · ·

}

Algorithm 1: Example of an IPC Call from the ISS.

The TLM wishbone bus model is used to connect the
ISSs with the rest of the system. These ISSs are executed
simultaneously and share the memory address space used for
inter processor communication.

The platform is entirely implemented in systemC lan-
guage, except for ISSs which are wrapped under systemC. All
these components are connected by the TLM wishbone BUS
model, also implemented in systemC. The TLM bus model
is based on the basic Wishbone communication protocol
functionality at a high-abstraction level. It executes the
Wishbone bus transaction without timing accuracy or pin
accuracy. Besides the private memories which are associated
with each ISS, our platform includes one main shared
memory used for communication.

In order to wrap ISS under systemC, a systemC wrapper
interface is added to the ISS C model. This process involves
defining a systemC module and adding input/output ports
that correspond to the ISS input/output arguments which
we have implemented in the load/store functions from the
OR1k CPU directory (see Algorithm 1). This can be done
by using interprocess communication as shown in Figure 5.
The systemC wrapper interface is made sensitive to a positive
clock edge. At every positive clock edge, the systemC wrapper
interface calls the corresponding C function inside the ISS via
IPC, such as PIPE (used in our example) and Sockets [19].
SystemC wrappers and ISSs C models are both run as distinct
Linux processes.

The communication between the components (soft-
ware-software/software-hardware) can be effected using this

International Journal of Reconfigurable Computing 5

Remaining
parts

of the system

(SystemC)

SystemC
signals

Read/write requests

SystemC wrapper

interface

Private
memory

SW
C program

Load & store
unit

ISS
IPC

(PIPE)

(Add, data,
command, . . .)

SC MODULE(interface)
{

SC in<bool> d in;
SC out<bool> d out;

.

.

.
decode
{

decode informations
}
void write(int add);
void read(char data, int add);

.

.

.
SC CTOR(interface)
{
SC thread(read);
SC thread(write);

.

.

.
}
}

. . .

int fd = open(“pipe”, O RDONLY/O WRONLY|O NONBLOCK);

. . .

read(pipe, &{data/add}, MAX BUF SIZE);

. . .

ADD = add;

DATA = data;

. . .

add.write(ADD);

. . .

data.write(DATA);

. . .

Figure 5: SystemC ISS wrapper interface.

shared memory, through systemC signals. In this case,
the multiprocessing environment synchronization must be
ensured by using the semaphore. Our simulation environ-
ment is configurable and allows specification of several
parameters, such as the type of interconnect (Wishbone,. . .,
etc.), the number of processing elements, and memory
parameters.

In our example, we have used two ISSs, the first one
writes data on the shared memory, the second ISS reads
the data written by the first one (see Figure 6), taking into
account the synchronization between them.

At the beginning, we wrapped each ISS under SystemC.
At every clock cycle, the ISSs execute one instruction, in
order to perform instruction accurate simulations. The
pipeline effects are not considered at all. In this case, we
have a systemC instruction accurate simulation. We then
refine the simulation to a cycle-accurate simulation; we
fully simulate the processor pipeline and we take into
account the number of cycles necessary for each instruction
(processor pipeline stage, memory access,. . ., etc.). We have
in this case a full systemC cycle-accurate computation
simulation.

ISS1 (producer)

while(full){;}

write data

ISS2 (consumer)

while(empty){;}

read data

Arbiter

Write x into
shared memory

via the shared bus

Read x from
shared memory

via the shared bus

Shared memory

BUS

Data

Figure 6: Our communication model using shared memory.

4. Bus Architecture

Most SoC designs are based on hardware blocks connected
together with bus signals which are classified as groups of
data, address, and control links. Several companies provide

6 International Journal of Reconfigurable Computing

the following SoC bus architectures so that designers can
easily integrate the IP blocks into a single silicon chip:
Core Connect, AMBA, CoreFrame, Wishbone, and Silicon
Backplane Network. Our architecture platform is designed
around the Wishbone bus, whose architecture was developed
by Silicore Corporation, Minn, USA [20]. In 2002, Silicore
placed the bus specification into the public domain via
OpenCores [13] which is an organization that promotes
the development of open IP cores. The Wishbone bus
architecture is very simple since it defines only one bus
protocol. However, the Wishbone bus architecture supports
various features depending on the desired bus operations:
multiple masters, single cycle read/write, block transfer cycles
that systematically perform a set of single read cycles and/or
a set of single write cycles.

However, in the case of TLM simulation, the wishbone
bus protocol needs to be redefined as transaction-level ports
of TLM. To the best of our knowledge, there has been no
TLM implementation for the wishbone bus to date, we have
only descriptions at signal level. It is, therefore, necessary
to map signals into TLM transaction level ports (not pin
accurate and not cycle accurate as only the computation
models are cycle accurate). These models (TLM) should
meet a few requirements including the following:

(i) speed,

(ii) flexibility,

(iii) the ability to model and evaluate several arbitration
schemes,

(iv) clarity and ease in integrating other component
models efficiently.

5. Transaction-Level Modeling of
the Wishbone Bus System

We implemented a transaction-level model of the wishbone
bus. This model accurately respects the wishbone bus
protocol.

Since the bus is modeled as an abstract channel without
including any specific details of the bus protocol, it enables
faster communication simulation models.

We present all the steps in our methodology to develop
a wishbone bus TLM architecture, by describing our
transaction-level modeling steps. We first used function calls
(performed by calling IPC functions) to model the wishbone
signals and we then used systemC signals to implement the
wishbone protocol.

In the first step, we modelize the behavior of each
transaction-level port. For example, in the RTL handshaking
protocol, a master can immediately get an ACK I (bus grant
signal) from the bus, after sending an STB O (bus request
signal) if the bus is ready (free). This step is implemented
as the port’s transaction of a master call Check bus Grant()
and receives true as a return value. The arbiter selects
a request from this master after applying an arbitration
strategy, decodes the destination address, and sends the
request to the slave destination. The arbiter calls read()
and write() functions implemented in the slave. The slave

receives the request from the arbiter, performs any required
computation, the read/write operation, and optionally waits
for a fixed number of cycles before sending a response back
to the arbiter. The arbiter ensures eventual completion of
the transaction. After that, the master (ISS) sends ADDR
(address) and DATA (read/write data). The transaction is a
single word/bytes read/write transfer and receives ACK.

In the second step, we implemented wishbone signals
by systemC signals. The translation into a systemC signal is
done by an SC Interface module associated to each ISSs.

The TLM wishbone bus model that we created is shown
in Figure 7, where the implementation of communication is
less detailed than register-transfer level.

The simulation speeds were measured at both TL model
and RTL. The TL model is about 300 times faster than the RT
level model.

6. Communication Model

An important aspect in the design of multiprocessor systems
is the exchange of data between SoC modules. Several
communication methodologies are possible, such as shared
memory and message passing. However, shared memory is
the most common type of interprocessor communication
paradigm, for multiprocessor system-on-chip (MPSoC) plat-
forms, where a small set of processors share a common
address space.

In this section, we present the model of communication
developed and implemented in our platform architecture,
which is based on the shared memory approach to perform
data exchange between ISSs. We thus have two different types
of memories.

A private memory space exists for each ISS which cannot
be seen by any other ISS in the system except for the owner.
We also have memory that is shared by all ISSs and used for
communication.

An example is illustrated in Figure 6 to demonstrate our
communication model, established between two processors
via the shared memory which is used for this purpose. The
platform architecture consists of two ISSs connected by a
TLM Wishbone bus model. Besides private memories, a
shared memory is used by the ISSs for data exchange. The
program running on ISS1 (producer) deposits data needed
by the program running on ISS2, into shared memory and
waits until this data is read by the program on ISS2 before
depositing other data and vice versa. But in this case, we
have a well-known problem which is synchronization; it is
a very critical issue in platforms based on shared memory
communication. This problem arises due to the fact that the
bus (in the case of a shared bus) as well as the memory is
shared between different ISSs. On the one hand, these ISSs
exchange data through this shared memory, on the other
hand, these data are sent and received via the TLM shared
bus. This situation generates shared resource access conflict
if we have several simultaneous requests.

Thus, we need to use a simpler arbitration scheme such
as round robin (RR) and the semaphore in order to ensure
synchronization. In the example shown in Figure 6, two
processors are involved. We used a round-robin arbitration

International Journal of Reconfigurable Computing 7

Slave(memory)

SystemC I/F

ACK

Read/write

Data

Add

SystemC environment

BUS (arbiter)

Master (OR1ksim)

. . .

Write

{
. . .

Bus request(1);
. . .

REG8(add BASE) = data;
. . .

}
. . .

Read
{
. . .

Bus request(1);
. . .

Read = REG8(add BASE);
. . .

}
. . .

. . .

write(add ,data)

{
. . .

add.write(add);
. . .

data.write(data);

Wait(1); // 1 cycle
. . .

Wait(1); // 1 cycle
. . .

Wait(1); // 1 cycle

}/∗ 3 cycles ∗/

read(add)

{
. . .

add.write(add);
. . .

wait(2); // 2 cycles;

var = data.read();

wait(1); // 1 cycle
. . .

Wait(1); // 1 cycle
return var;

}/∗ 4 cycles ∗/

Figure 7: TLM wishbone BUS.

policy for the bus access, and we used the semaphore for
shared memory access.

7. Processing Elements

The ISS used in our framework is based on OpenRISC archi-
tecture emulator, written in C and called OR1Ksim, licensed
under the GNU LGPL license. The goals are to emulate 32-
bit OpenRISC CPUs with a high level of abstraction capable
of running real operating systems, such as NetBSD [21],
RTEMS [22], eCos [23], and uClinux [24] and intended for
embedded, portable, and network applications.

OpenRISC 1200 is an open source IP-core freely available
from the OpenCores website [13]. This soft core is a MIPS-
based 32-bit scalar RISC with Harvard microarchitecture, a
5-stage integer pipeline, virtual memory support (MMU),
and basic DSP capabilities. The overview of the OR1200
architecture can be seen in Figure 4.

For this core, we have two descriptions at different
abstraction levels. The first is a free open-source description
written in a synthesizable Verilog code, with a low level of
abstraction (RTL abstraction) verified by several functional
tests and implemented into FPGAs and ASICs.

The second description is written in C code (OR1Ksim
simulator) and provides several features [25]:

Table 1: Simulation time results at different abstraction levels.

Number of iterations

10 100 1000

Abstraction levels Simulations times

Insruction accurate (IA) 0.97 (S) 1.5 (S) 8.4 (S)

Cycle accurate (CA) 1.38 (S) 2.3 (S) 12.32 (S)

RTL 3.4 (S) 12.56 (S) 62.24 (S)

(i) free, open source code,

(ii) high level and fast architecture simulation that allows
code analysis at an earlier stage and system perfor-
mance evaluation,

(iii) supports all major models of OpenCores peripheral
and system controller cores,

(iv) easy addition of new peripheral models,

(v) remote debugging through a network socket with the
GNU Debugger (GDB),

(vi) support for different environments (memory config-
urations and sizes, OR1K processor model, configu-
ration of peripheral devices).

The tools used for compilation and debugging are the
standard GNU toolchain, including the GCC compiler which

8 International Journal of Reconfigurable Computing

Figure 8: STARSoC IDE.

works well. The debugger is available through GDB, and
it is easy with DDD which provides a more user friendly
environment.

8. Results

In this section, we first describe the system architecture
example used in our experiments, and we then present results
that we carried out to validate the architecture generation
process of STARSoC and evaluate its performances. We
also compare performances among the different abstraction
levels.

In our experimental example, we used a shared-memory
MPSoC platform generated by a STARSoC generator tool in
which multiple OpenRISC processors can be integrated and
interconnected by a TLM wishbone bus model.

We performed experiments using the systemC design
environment which we applied to a system consisting of two
ISSs (wrapped under systemC) accessing a shared memory
through a TLM bus. The architecture of the system is
shown in Figure 6. All system components were specified in
systemC, except for the two ISSs.

The bus arbitration mechanism is managed by the
module labeled bus arbiter which is implemented by the
round robin arbitration policy. In each cycle, one of the
masters has the highest priority to access the shared resource.
If the token-holding master does not need the bus at this
cycle, the master with the next highest priority who sends
a request can be granted the resource.

The interface between the bus and the ISS interface
consists of four signals: a read/write signal rw, an address
addr, the data data, and an acknowledge signal ACK. Similar
signals exist between the bus and the shared memory thanks
to which the access is synchronized by a semaphore.

ISS was built by the GNU cross-compiler (GCC version
3.4) and cross-debugger (GDB version 5.0) with the Open-
RISC as a target.

The application executed by the two processors is stored
in their local memory and consists of a producer-consumer
(sends characters from one processor to the other) applica-
tion executed in parallel and synchronized by the same clock
signal. The application is loaded on the private memory of
the producer core (writer) which then writes those characters
into the shared memory at a given address. The consumer
core (reader) reads those data from the same address. If the
consumer is faster than the producer, the memory will be
empty and the consumer waits until the producer writes
data. Conversely, if the producer is faster, the memory will
be full, and the producer waits until the consumer reads the
data.

The same environment was employed for simulation
on different abstraction levels. The simulation results were
obtained by executing the platform on a Pentium IV at
3.0 GHz with a RAM memory size of 786 MB, based on
Linux Fedora Core 3. Table 1 shows three columns 10, 100,
and 1000, corresponding to the fixed number of iterations
(reads or writes to the memory) of the algorithm which
is performed by each ISS. The simulation times shown in

International Journal of Reconfigurable Computing 9

Table 1 correspond to the execution times of the programs
at the different simulation abstraction levels.

Three models were generated and simulated: an instruc-
tion accurate model (bus arbitration model), a cycle-accurate
system simulation model, and a synthesizable RTL model
(using Verilog and simulated with ModelSim). Generally,
the first two models are used to validate the software
and the system architecture (they include the ISSs, bus
model at transaction level, and functional models of other
components, all of which use systemC models).

All model descriptions were automatically generated
from the STARSoC generator tool shown in Figure 8. They
have also been validated by simulation using the same
testbenches.

After running the testbenches, we obtained some experi-
mental results.

(i) The instruction accurate model is about 7 times faster
than the RTL model.

(ii) It runs twice as fast as a full cycle-accurate system
simulation.

(iii) Our cycle-accurate model runs five times as fast as an
equivalent RTL simulation.

The simulation time analysis was used to compare the
efficiency obtained from the TLM description in systemC
and from the underlying RTL platform. The results reported
above demonstrate the advantage of using a higher level
of abstraction than RTL when carrying out architectural
exploration.

9. Conclusion

The availability of a fast high level simulation makes archi-
tecture exploration possible at different abstraction levels.

In this paper, we have presented and validated our
methodology for cosimulation at a high level of abstraction
(TLM) within a single simulation environment based on
systemC language.

Our environment is based on the use of open source ISSs
C models (OR1Ksim), wrapped under systemC language by
using UNIX interprocess communication.

Comparing three different abstraction levels, namely,
instruction accurate level, cycle-accurate level, and RTL level
(VHDL model), we have analyzed the STARSoC generated
multiprocessor SoC platform.

The experimental results show that the use of systemC as
a modeling language for the design of abstraction levels may
significantly reduce the design validation time, enabling the
development of very fast models. In addition, the simulation
results at higher levels of abstraction show that there are
no significant communication overheads between the ISS C
model and its systemC wrapper, due to the fact that we have a
small number of used cores. This model would be very useful
for functional HW/SW cosimulation of large SoCs based on
OpenRISC.

This motivates our choice for systemC as a system
design language, dedicated to architecture exploration in our
STARSoC project which is the main contribution of this

work. This gives the designer the possibility of exploring
the STARSoC platform at several levels, which represents a
notable advantage for STARSoC design flow.

In future work, we plan to add an embedded operating
system like eCos and to integrate heterogeneous IPs cores in
our platform.

References

[1] P. G. Paulin, C. Pilkington, M. Langevin, et al., “Parallel
programming models for a multiprocessor SoC platform
applied to networking and multimedia,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 14, no. 7, pp.
667–680, 2006.

[2] A. A. Jerraya, A. Bouchhima, and F. Pétrot, “Program-
ming models and HW-SW interfaces abstraction for multi-
processor SoC,” in Proceedings of the 43rd Annual Conference
on Design Automation (DAC ’06), pp. 280–285, San Francisco,
Calif, USA, July 2006.

[3] K. Hines and G. Borriello, “Dynamic communication models
in embedded system co-simulation,” in Proceedings of the
34th Design Automation Conference (DAC ’97), pp. 395–400,
Anaheim, Calif, USA, June 1997.

[4] I. Petkov, P. Amblard, M. Hristov, and A. Jerraya, “Systematic
design flow for fast hardware/software prototype generation
from bus functional model for MPSoC,” in Proceedings of the
16th IEEE International Workshop on Rapid System Prototyping
(RSP ’05), pp. 218–224, Montreal, Canada, June 2005.

[5] J. Jung, S. Yoo, and K. Choi, “Performance improvement of
multi-processor systems cosimulation based on SW analysis,”
in Proceedings of the Conference on Design, Automation and Test
in Europe (DATE ’01), pp. 749–753, Munich, Germany, March
2001.

[6] Coware.Inc., N2C3, http://www.coware.com/#cowareN2C
.html.

[7] Seamless, CVE, 2005, http://www.mentor.com/seamless.

[8] Open SystemC Initiative, SystemC Version 2.0, Users Guide,
2001, http://www.systemc.org/.

[9] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M.
Poncino, “Legacy SystemC co-simulation of multi-processor
systems-on-chip,” in Proceedings of the IEEE International Con-
ference on Computer Design: VLSI in Computers and Processors
(ICCD ’02), pp. 494–499, Freiburg, Germany, September 2002.

[10] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M.
Olivieri, “MPARM: exploring the multi-processor SoC design
space with systemC,” The Journal of VLSI Signal Processing
Systems for Signal, Image, and Video Technology, vol. 41, no.
2, pp. 169–182, 2005.

[11] W. R. Stevens, UNIX Network Programming, Volume 2: Inter-
process Communications, Prentice-Hall, Upper Saddle River,
NJ, USA, 2nd edition, 1998.

[12] N. Saint-Jean, G. Sassatelli, P. Benoit, L. Torres, and M. Robert,
“HS-scale: a hardware-software scalable MP-SOC architecture
for embedded systems,” in Proceedings of the IEEE Computer
Society Annual Symposium on VLSI (ISVLSI ’07), pp. 21–28,
Porto Alegre, Brazil, March 2007.

[13] OpenCores, http://www.opencores.org/projects/or1k.

[14] L. Gai and D. Gajski, “Transaction level modeling: an
overview,” in Proceedings of the 1st IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS ’03), pp. 19–24, Newport Beach,
Calif, USA, October 2003.

http://www.coware.com/#cowareN2C.html
http://www.coware.com/#cowareN2C.html
http://www.mentor.com/seamless
http://www.systemc.org/
http://www.opencores.org/projects/or1k

10 International Journal of Reconfigurable Computing

[15] A. Samahi and E.-B. Bourennane, “Automated integration
and communication synthesis of reconfigurable MPSoC plat-
form,” in Proceedings of the 2nd NASA/ESA Conference on
Adaptive Hardware and Systems (AHS ’07), pp. 379–385,
Edinburgh, UK, August 2007.

[16] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski,
“Stream-oriented FPGA computing in the Streams-C high
level language,” in Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM ’00), pp.
49–56, Napa Valley, Calif, USA, April 2000.

[17] Coware, http://www.coware.com/.

[18] Cadence, http://www.cadence.com/.

[19] W. R. Stevens, B. Fenner, and A. M. Rudoff, Unix Network
Programming, Volume 1: The Sockets Networking API, Addison
Wesley, Reading, Mass, USA, 3rd edition, 2003.

[20] Silicore, http://www.pldworld.com/ hdl/2/ ip/-silicore.net/
wishbone.htm.

[21] NetBSD, http://www.netbsd.org/.

[22] RTEMS, http://www.rtems.com/RTEMS.

[23] eCos, http://ecos.sourceware.org/.

[24] uClinux, http://www.uclinux.org/.

[25] OpenCores, http://pkgsrc.se/emulators/or1ksim.

http://www.coware.com/
http://www.cadence.com/
http://www.pldworld.com/_hdl/2/_ip/-silicore.net/wishbone.htm
http://www.pldworld.com/_hdl/2/_ip/-silicore.net/wishbone.htm
http://www.netbsd.org/
http://www.rtems.com/RTEMS
http://ecos.sourceware.org/
http://www.uclinux.org/
http://pkgsrc.se/emulators/or1ksim

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

