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Abstract -- The proliferation of system level
design methodologies and frameworks is a
direct result of the efforts in dealing with the
productivity gap. Consequentially, System Level
Design Languages such as SystemVerilog and
SystemC are particularly fit for high level design
methods such as design space exploration and
assisted design refinement. However, to draw
full benefit of these methods requires the
introduction of tools that promote a better design
experience by providing visual representation of
models, better debugging facilities, integrated
development environments, etc. In particular, we
experiment with SystemC and realize that the
foremost task in providing these tools
necessitates the parsing of SystemC source to
directly access the structural design information.
It is desirable to perform the parsing in an
unintrusive manner such that neither the model,
the SystemC source, nor the compiler require
alterations. In this paper, we present a front end
for SystemC called SystemCXML that uses an
XML-based approach to extract structural
information from SystemC models, which can be
easily exploited by back end passes for analysis,
visualization and other structural analysis
purposes. Our unique approach uses the
documentation system Doxygen and an Open
Source XML parser. We demonstrate its
extensibility by incorporating an automated
graph generator that visualizes the SystemC
module hierarchy, which is implemented in
merely 60 lines of code.
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Abstract

The proliferation of system level design methodologies and frameworks is a
direct result of the efforts in dealing with the productivity gap. Consequentially,
System Level Design Languages such as SystemVerilog and SystemC are partic-
ularly fit for high level design methods such as design space exploration and as-
sisted design refinement. However, to draw full benefit of these methods requires
the introduction of tools that promote a better design experience by providing vi-
sual representation of models, better debugging facilities, integrated development
environments, etc. In particular, we experiment with SystemC and realize that the
foremost task in providing these tools necessitates the parsing of SystemC source
to directly access the structural design information. It is desirable to perform
the parsing in an unintrusive manner such that neither the model, the SystemC
source, nor the compiler require alterations. In this paper, we present a front
end for SystemC called SystemCXML that uses an XML-based approach to ex-
tract structural information from SystemC models, which can be easily exploited
by back end passes for analysis, visualization and other structural analysis pur-
poses. Our unique approach uses the documentation system Doxygen and an
Open Source XML parser. We demonstrate its extensibility by incorporating an
automated graph generator that visualizes the SystemC module hierarchy, which
is implemented in merely 60 lines of code.
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1 Introduction

Industrial use of languages such as C/C++ for system level design are com-

mon for achieving fast simulation and realization of ideas and concepts. Many

times industries create their own C/C++ based simulation environments for just

this purpose. However, with the introduction of SystemC [14], the Open Source

Consortium Initiative (OSCI) proposed a standardization for a C++ based hard-

ware modeling language (HDL) with an extensive datatype library, free discrete

event simulator, and useable with most C++ compilers. In addition, the inherent

abstraction capabilities of C++ such as templates, classes, polymorphism, etc.,

further promote its use and improve design experience. For example, transaction

level modeling or communication refinements are not easily accomplished with

traditional HDLs such as Verilog [18] and VHDL [19]. The advantage of using

SystemC is that all capabilities of C/C++ are available for the designer to use,

in addition to the SystemC constructs. This allows intellectual property compo-

nents (IPs) written in C/C++ to be easily integrated into designs. However, the

proliferation of third party tools for visual modeling environments, debuggers, in-

tegrated development environments, call tracing etc. requires understanding the

SystemC syntax and the structure of the models. For this, it is necessary to parse

and understand the SystemC’s structural information. By structural we mean the

modules, their ports, signals that connect them and the structural hierarchy used

in connecting the entire model.

As SystemC continues to gain momentum as an HDL, this demand for graph-

ical user interface (GUI) based design approaches, integrated development en-

vironments (IDEs), and SystemC-specific debuggers, is rapidly growing. Some

industry tools such as ConvergenSC system verifier [4] and Incisive functional

verification [2] provide some of these functionalities. However, most tool ven-

dors provide SLD tools with varying usability. Most of them, do not yet exploit

all possibilities of system level design analysis and transformation. Furthermore,

SystemC is simply a library of C++ classes and thus it is heavily dependent on
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the C++ compiler, making the extraction of structural or behavioral information a

difficult task without altering the compiler and perhaps the SystemC source. Do-

ing this would, however, limit the choice of compilers that support SystemC. We

term any alteration to either the compiler, the SystemC libraries, or the SystemC

language as intrusive. Hence, we aspire the extraction of structural and be-

havioral information from a SystemC model using an unintrusive methodology

that is also made available to the public-domain community. As a step towards

providing an unintrusive approach for interpreting a SystemC model, we discuss

the use of extensible markup language (XML) based approach using Doxygen [5],

a public-domain documentation system, and XML parsers for extracting structural

information that we call SystemCXML.

Doxygen is a documentation system mainly for C/C++ projects with exten-

sions that can also handle other languages such as Java. We use the capability

of Doxygen to process C/C++ and generate documentation in the XML format.

A large part of the tagging is undertaken by Doxygen that recognizes class dec-

larations, class member variables, class member functions, global functions, and

also tags the original source code in XML format. We leverage the XML output

by employing XML parsers to generate an abstract system level design (ASLD)

XML representation of the SystemC design. This is then used as the input for an

internal representation (IR) to allow access to the extracted information.

In this paper, we describe a tool that simplifies SystemC parsing using the

following tools: XML, Apache XML parsers [17], and Doxygen. We also pro-

vide an IR to facilitate the access to the extracted information during the parsing

phase. However, our focus is primarily on extracting structural information. In

the current release version, we ignore behavioral information, disallowing to use

it for some applications such as synthesis. However, our approach provides a

lightweight and Open Source solution for source-to-source translations, struc-

tural information extraction, model visualization and documentation. The inter-

mediate XML data format makes it easy to extend this solution by plugging in a
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different front end or back-end passes, or even simpler, by just adding an addi-

tional passes to the back-end.

There is a variety of opportunities for using SystemCXML. So far we use it

for providing an introspective architecture for SystemC [13]. We also integrate

this into a validation framework in [13] and our current efforts are focused on au-

tomatically generating synchronous component type interfaces for Signal [1]. We

foresee the use of SystemCXML in visualization tools, graphical user interfaces

and design space exploration tools with other back-end passes including analysis

steps e.g. of the parallelism present in a design, or the re-scheduling of a com-

ponent to meet different performance constraints. Another important application

domain is the generation of visual information about a design, and in this docu-

ment we demonstrate a simple module hierarchy graph generator.

The remainder of this paper is organized as follows. In Section 2 we present

some related work and Section 3 explains the design-flow in terms of the different

tools we use and how they integrate. We then present a back-end pass for the

module hierarchy visualization in Section 4 and finally we draw some conclusion

in Section 5.

2 Related Work

SystemC SystemC [14, 12] is an Open Source hardware description language

(HDL) developed as a C++ class library. The purpose of SystemC is to allow for

modeling and simulation of models at the RTL and higher levels of abstraction.

Unlike many other HDLs such as Verilog [18] and VHDL [19], SystemC also

provides a free simulator for designers to download and experiment designing

models.

SystemPerl’s SystemC::Parser An alternative to EDG is SystemPerl’s SystemC::Parser

module [16] that implements a SystemC parser and netlist generator using Perl

scripts. Using the power of regular expressions, the task of recognizing SystemC
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constructs is made easy, and the Open Source nature of SystemPerl makes its use

much more attractive. However, one major distinction between EDG and System-

Perl is that SystemPerl only extracts structural information and not behavioral.

For most uses, structural information is sufficient, unless considering synthesis

from SystemC which requires all the behavioral information as well. To our un-

derstanding, SystemPerl has some limitations. One of them is that it requires

source-level hints in the model for the extraction of necessary information and the

IR of SystemPerl cannot be easily adapted to other environments and purposes.

EDG A popular commercial tool that enables SystemC parsing is EDG [7].

EDG is a C/C++ front end that parses C/C++ and represents the source using an

IR data structure. Multiple traversals through the data structure can be performed

to extract the required information. Therefore, the structure of SystemC models is

available for extraction from the IR along with the behavioral information of the

model as well. Unfortunately, EDG is a commercial tool, and requires licenses

for use and does not allow source code distribution.

Pinapa: A SystemC Front End A recent release of Pinapa [11], an Open

Source SystemC front end that uses GCC’s front end to parse all C++ constructs

and infer the structural information of the SystemC model by executing the elab-

oration phase is a very attractive solution. SystemC’s elaboration constructs all

the necessary objects and performs the bindings after which a regular SystemC

model begins simulation via the sc start function. Instead, Pinapa examines

the data structures of SystemC’s scheduler and creates its own IR. Once the IR is

constructed, the SystemC model executes. This is a very good solution for tack-

ling the SystemC parsing issue. However, Pinapa is a very intrusive approach.

It requires modifications of the GCC source code which makes it (i) dependent

on changes in the GCC codebase, and (ii) forbids the use of any other compiler.

Furthermore, the SystemC libraries also have to be changed for this to work.
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Doxygen A tool that we employ in our approach is Doxygen [5], which is an

Open Source documentation project for mainly C/C++ along with extensions for

Java and other languages. Though the main purpose of Doxygen is for docu-

menting large C/C++ projects in hyperlinked and organized HTML webpages, a

recent addition of an XML representation was introduced. The XML representa-

tion captures the classes declared, their private, and public data members as well

as member functions. It also transfers the entire source into an XML format. The

advantages of an XML representation are obvious in that XML is easily inter-

preted using XML parsers.

3 SystemCXML Toolchain

In this section, we describe the different phases of the parsing process and

the tools that are used. We also present our ASLD format and the structure of

the IR. Figure 3 shows the usage flow of SystemCXML. We begin by processing

the SystemC source through Doxygen that annotates the model using XML tags.

We take the XML output from Doxygen and employ it in our first phase that

extracts all the structural information from the SystemC model and generates the

ASLD. The ASLD itself is a complete representation of the structural information,

including representation of the structural hierarchy. However, for this to be usable,

we follow it up with the second phase that constructs a data structure allowing

access to this information through an API. We document our approach in detail in

the following subsections.

3.1 Parsing SystemC

In order to handle SystemC projects typically consisting of multiple files, we

flatten the entire SystemC project into a single file, containing all .cpp and header

files. This file is then processed with the Doxygen tool, to generate an XML

file. While Doxygen is a tool for automatically generating documentation for

projects that analyzes the structure of the source code and beautifies the internal
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Figure 1. Toolchain of the SystemCXML project

documentation such as comments, there is also an option to include the source

code in the output. The source code is then formatted using colors and markup

tags for beautification purposes. The standard output for Doxygen is HTML but it

also can generate XML code [6, 10]. The tags of the original source code in this

XML output can be recognized by any standard XML parsing library. We take

advantage of this functionality and therefore break down the problem of parsing

plain C++ into parsing XML. Listing 1 shows some raw XML output of Doxygen.

We can see that while most of the information is now delimited by tags, there is

still some intelligence needed to extract it correctly.

3.2 The Abstract System Level Description

Using Doxygen and the Xerces-C++ XML parser [17], we reflect the follow-

ing structural properties of the SystemC model: port names, signal names, sig-

nal/port types, signal/port sizes, modules, submodules, and entry functions. We

extract the sensitivity list of each module and the netlist describing the connec-

tions between submodules including the structural hierarchy of the model. We

represent this extracted information in an ASLD XML file. Listing 2 shows the
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Listing 1. Output from Doxygen
1 SC MODULE(<r e f r e f i d =” c l a s s f i r t o p ”> f i r t o p< / r e f>)<sp />{

<c o d e l i n e l i n e n o =” 315 ” r e f i d =” c l a s s f i r t o p 1 f i r t o p r 0 ”>
3 <sp />s c i n& l t ; boo l&g t ;<sp />

<sp />CLK;<c o d e l i n e l i n e n o =” 316 ” r e f i d =” c l a s s f i r t o p 1 f i r t o p r 1 ”>
5 <sp />s c i n& l t ; boo l&g t ;<sp />

<sp />RESET ;<c o d e l i n e l i n e n o =” 317 ” r e f i d =” c l a s s f i r t o p 1 f i r t o p r 2 ”>
7 <sp />s c i n& l t ; boo l&g t ;<sp />

<sp />IN VALID ;<c o d e l i n e l i n e n o =” 318 ” r e f i d =” c l a s s f i r t o p 1 f i r t o p r 3 ”>
9 <sp />s c i n& l t ; i n t&g t ;<sp />

<sp />SAMPLE;<c o d e l i n e l i n e n o =” 319 ” r e f i d =” c l a s s f i r t o p 1 f i r t o p r 4 ”>
11 <sp />s c o u t& l t ; boo l&g t ;<sp />

<sp />OUTPUT DATA READY;<sp />
13 <c o d e l i n e l i n e n o =” 320 ” r e f i d =” c l a s s f i r t o p 1 f i r t o p r 5 ”>

<sp />s c o u t& l t ; i n t&g t ;<sp />
15 <sp />RESULT ;<c o d e l i n e l i n e n o =” 322 ” r e f i d =” c l a s s f i r t o p 1 f i r t o p r 6 ”>

<sp />s c s i g n a l& l t ; u n s i g n e d&g t ;<sp />
17 <sp /> s t a t e o u t ;<c o d e l i n e l i n e n o =” 324 ” r e f i d =” c l a s s f i r t o p 1 f i r t o p r 7 ”>

<sp /><r e f r e f i d =” c l a s s f i r f s m ”>f i r f s m< / r e f><sp />
19 <sp />∗ f i r f s m 1 ;<c o d e l i n e l i n e n o =” 325 ” r e f i d =” c l a s s f i r t o p 1 f i r t o p r 8 ” >

<sp /><r e f r e f i d =” c l a s s f i r d a t a ”> f i r d a t a< / r e f>
21 <sp />∗ f i r d a t a 1 ;<c o d e l i n e l i n e n o =” 327 ” r e f i d =” c l a s s f i r t o p 1 f i r t o p d 0 ”>

<sp />SC CTOR (<r e f r e f i d =” c l a s s f i r t o p ”> f i r t o p< / r e f>)
23 <sp />f i r f s m 1<sp />=<sp /><r e f r e f i d =” c l a s s f i r f s m ”>f i r f s m< / r e f>

<c l a s s =” s t r i n g l i t e r a l ”>&quo t ; FirFSM&quo t ; ) ;<sp />f i r f s m 1−&g t ;
25 <r e f r e f i d =” c l a s s f i r f s m 1 f i r f s m r 0 ”>c l o c k< / r e f>(CLK ) ;< / c o d e l i n e>

part of an ASLD that corresponds to the Doxygen output shown in Listing 1. Dur-

ing processing, the ASLD is validated against a Document Type Definition (DTD)

that defines the legal building blocks of the structural information in a SystemC

model. Constraints that the DTD enforces are for example that two ports of a

module should have distinct names or that a signal has to carry a type. If the

ASLD validates successfully, it represents a valid interpretable SystemC model.

The main entities of the ASLD are shown in Listing 3. The ASLD is an abstract

representation that is easily extendible and is complete, since it does handle all

SystemC constructs that can be used to represent structural properties.

3.3 Building the Data Structure

The second phase is entirely independent from the first pass. The only input it

requires is an ASLD conforming to the DTD description. The goal of this phase is

to read in the generated ASLD, process the information and store it in an internal

structure that is both, easily accessible and does closely represent the structure of

SystemC code. As the structure of the IR is the basis for all data manipulations and
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Listing 2. Intermediate XML format
1 <module t y p e = ”SC MODULE” name = ” f i r t o p ”>

< i n p o r t t y p e = ” boo l ” name = ”CLK” />
3 < i n p o r t t y p e = ” boo l ” name = ”RESET” />

< i n p o r t t y p e = ” boo l ” name = ”IN VALID” />
5 < i n p o r t t y p e = ” i n t ” name = ”SAMPLE” />

<o u t p o r t t y p e = ” boo l ” name = ”OUTPUT DATA READY” />
7 <o u t p o r t t y p e = ” i n t ” name = ”RESULT” />

<s i g n a l t y p e = ” u n s i g n e d ” name = ” s t a t e o u t ” />
9 <submodule module=” f i r f s m ” name=” f i r f s m 1 ” />

<submodule module=” f i r d a t a ” name=” f i r d a t a 1 ” />
11 <c o n s t r u c t o r o f modulename = ” f i r t o p ”>

<c o n n e c t i o n i n s t a n c e =” f i r f s m 1 ” member=” c l o c k ” l o c a l s i g n a l =”CLK” />

Listing 3. Main Entities of the DTD
<!ELEMENT model ( module )∗ >

2 <!ATTLIST model name CDATA #REQUIRED>
<!ELEMENT module ( i n p o r t | o u t p o r t | i n o u t p o r t | s i g n a l | submodule )∗ >

4 <!ATTLIST module name CDATA #REQUIRED t y p e CDATA #REQUIRED >
<!ELEMENT submodule EMPTY >

6 <!ATTLIST submodule t y p e CDATA #REQUIRED name CDATA #REQUIRED
i n s t a n c e n a m e CDATA #REQUIRED >

8 <!ELEMENT s i g n a l EMPTY >
<!ATTLIST s i g n a l t y p e CDATA #REQUIRED b i t w i d t h CDATA #IMPLIED

10 name CDATA #REQUIRED >
<!ELEMENT i n p o r t EMPTY >

12 <!ATTLIST i n p o r t t y p e CDATA #REQUIRED b i t w i d t h CDATA #IMPLIED
name CDATA #REQUIRED >

14 <!ELEMENT c o n s t r u c t o r o f ( p r o c e s s ∗ | s e n s i t i v i t y l i s t ) >
<!ATTLIST c o n s t r u c t o r o f modulename CDATA #REQUIRED >

16 <!ELEMENT p r o c e s s EMPTY >
<!ATTLIST p r o c e s s t y p e CDATA #REQUIRED name CDATA #REQUIRED >

18 <!ELEMENT s e n s i t i v i t y l i s t ( t r i g g e r )∗ >
<!ELEMENT t r i g g e r EMPTY >

20 <!ATTLIST t r i g g e r name CDATA #REQUIRED edge CDATA #REQUIRED>
<!ELEMENT c o n n e c t i o n EMPTY>

22 <!ATTLIST c o n n e c t i o n i n s t a n c e CDATA #REQUIRED member CDATA #REQUIRED
l o c a l s i g n a l CDATA #REQUIRED>

back-end passes, it is important for it to be generic and to provide necessary acces-

sory functions to traverse the module hierarchy and extract the required structural

information. The UML class diagram in Figure 2 gives an overview of all con-

tainer classes of the data structure and how they are related. There are classes for

all constructs that we extract: Inport, Outport, Signal, Sensitivity, Process, Signal,

and Module.

Some information that is not readily available in the XML can be obtained

by analyzing the available data. For example one step is to determine a list of

toplevel modules. Toplevel modules are modules that are not used as a submodule
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Figure 2. UML class diagram of the internal data structure

in any other module. Typically this is sc main but also testbenches or additional

material can be found at the highest level of hierarchy. All processing passes start

from these toplevel modules and traverse the entire module hierarchy. Another

processing step is making the connections more accessible. In the XML file, we

only have connections connect a local signal with a single port of a module in-

stance. During processing, the connections for the same local signal are grouped

together such that it is clear which ports of the submodules are connected to each

other. The Connection class in the IR is designed to hold this information.

In a SystemC program, each module is only defined once but it can be used in

many places. In order to reflect this behavior, we add the class moduleinstance,

which has a unique instance name and holds a pointer to its module structure. This

way, when creating multiple instances of a module, the information about ports

and submodules is not replicated each time but we rather create another instance

that points to the module that is holding this information.
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3.4 Improvements

In previous sections, we explained how we used the XML output of the Sys-

temC source code to extract the required information. However, we can improve

on that by further helping Doxygen recognize some predefined macros. For ex-

ample, a commonly used macro in SystemC is the SC MODULE(arg) macro

that represents a class arg. For Doxygen to recognize this construct, we pro-

vide a macro expansion in the following manner:SC MODULE( arg )=class

arg: public sc module. However, to identify all the SystemC datatypes

without including the entire source code, we supply an include file that con-

tains the type definitions. For example, we define sc in in the following way:

template <typename T> class sc_in{}; and Doxygen is able to tag

instances of sc in as of type sc in class. Listing 4 shows a segment of the FIR

module declaration after configuring Doxygen to process the macro and the sup-

plemental header file. Notice, how the XML tag identifies the data members of the

class and also identifies the type such as sc in in Listing 4, Line 8. This makes

identification of data members, member functions and their types and arguments

much simpler than interpreting from the annotated source code.

4 Usage Example: A Visualization Back End Pass

One possible usage of SystemCXML is graphical visualization. Especially for

large projects, it is very intuitive to explore a design visually rather than trying to

understand the structure of the project by browsing through the code. There are

many different display possibilities that can help to better understand a design,

such as the module connection on one or multiple levels, the module hierarchy,

a map with blocks whose sizes corresponding to the code size of the modules.

For most of these the fact that we do not have information about the behavior is

no obstacle at all. As visualization can greatly improve productivity, it should be

an integral part of any SLDL tool suite. Design visualization tools are especially

helpful for design space exploration and semi-automated design refinements. In
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Listing 4. Improved Doxygen output
1 <t y p e>vo id< / t y p e>
<d e f i n i t i o n>vo id f i r : : e n t r y< / d e f i n i t i o n>

3 <a r g s s t r i n g> ( )< / a r g s s t r i n g><name>e n t r y< / name><t y p e>
<r e f r e f i d =” c l a s s s c i n ” k i n d r e f =” compound ”>s c i n< / r e f>& l t ; boo l&g t ;< / t y p e>

5 <d e f i n i t i o n>s c i n& l t ; boo l&g t ; f i r : : r e s e t< / d e f i n i t i o n>
<name> r e s e t< / name><t y p e>

7 <r e f r e f i d =” c l a s s s c i n ” k i n d r e f =” compound ”>s c i n< / r e f>& l t ; boo l&g t ;< / t y p e>
<d e f i n i t i o n>s c i n& l t ; boo l&g t ; f i r : : i n p u t v a l i d< / d e f i n i t i o n>

9 <name> i n p u t v a l i d< / name><t y p e>
<r e f r e f i d =” c l a s s s c i n ” k i n d r e f =” compound ”>s c i n< / r e f>& l t ; i n t&g t ;< / t y p e>

11 <d e f i n i t i o n>s c i n& l t ; i n t&g t ; f i r : : s a m p l e< / d e f i n i t i o n>
<name>sample< / name><t y p e>

13 <r e f r e f i d =” c l a s s s c o u t ” k i n d r e f =” compound ”>s c o u t< / r e f>& l t ; boo l&g t ;< / t y p e>
<d e f i n i t i o n>s c o u t& l t ; boo l&g t ; f i r : : o u t p u t d a t a r e a d y< / d e f i n i t i o n>

15 <name>o u t p u t d a t a r e a d y< / name><t y p e>
<r e f r e f i d =” c l a s s s c o u t ” k i n d r e f =” compound ”>s c o u t< / r e f>& l t ; i n t&g t ;< / t y p e>

17 <d e f i n i t i o n>s c o u t& l t ; i n t&g t ; f i r : : r e s u l t< / d e f i n i t i o n>
<name> r e s u l t< / name><t y p e>

19 <r e f r e f i d =” c l a s s s c i n c l k ” k i n d r e f =” compound ”>s c i n c l k< / r e f>< / t y p e>
<d e f i n i t i o n>s c i n c l k f i r : : C L K< / d e f i n i t i o n>

21 <name>CLK< / name><t y p e>
<r e f r e f i d =” c l a s s s c i n t ” k i n d r e f =” compound ”> s c i n t< / r e f>& l t ; 9 &g t ;< / t y p e>

23 <d e f i n i t i o n> s c i n t& l t ;9& g t ; f i r : : c o e f s [ 1 6 ]< / d e f i n i t i o n>
<a r g s s t r i n g>[ 1 6 ]< / a r g s s t r i n g><name>c o e f s< / name>

addition to that the automatic generation of graphs and diagrams visualizing the

design can be used documenting system components, a step often neglected, lead-

ing to better collaboration and easing component reuse.

In order to demonstrate the ease of creating such a visualization, we implement

a back-end pass that generates a graph of the SystemC module hierarchy. Since,

there are many free libraries available for graph rendering, we decided to use

the DOT format [8] from the graphviz [9] package to render our graphs. It is

a comprehensive and easy to use package, which is used in many Open Source

projects.

4.1 The DOT Format

Figure 3 shows the DOT code for the FIR filter example and the resulting

graph. We use a digraph layout and choose boxed nodes whose width automati-

cally adjusts to the length of the node label. The first occurrence of a node name

creates the node. Directed connections are indicated with the ”->” symbol.

There exist many programs to interactively view DOT files or convert them

12



digraph fir_top
{
node[shape=box];
ratio=fill;
sc_main;
sc_main->"stimulus1\nstimulus";
sc_main->"fir1\nfir";
sc_main->"display1\ndisplay";

}
(a) DOT code

sc_main

stimulus1
stimulus

fir1
fir

display1
display

(b) Resulting graph

Figure 3. DOT code and resulting graph for the FIR filter

into various picture formats. Dotty is the standard viewer and part of the Graphviz,

but there are better viewers such as [15].

4.2 Graph Generation

To generate the graph, we start at the list of toplevel modules, these are mod-

ules that are not a submodule of any other module. Then we call the recursive

function submod dot that writes out the relations to all submodules and succes-

sively calls itself for all the submodules. As a node label we give the module

name and the name of the instance. In order to keep a strict tree structure with

no rejoining branches, all instances have to have different names. However in the

SystemC code this is not the case. If for example, we have modules A and B and

C, and B1 is an instance of B and a submodule of A. Now if A1 and A2 are sub-

modules of C, we get 2 instances of B that have the name B1, namely in A1 and

A2. In order to avoid this we keep track of multiple instantiations of a module and

distinguish between the respective submodules.

Figure 4 shows part of the module hierarchy of a USB controller the code of

which was obtained from OpenCores [3]. In the lower right hand corner you can

see four instances of usb f i f o128x8, containing an instance of usb ram128x8.

These have been numbered in order to be able to distinguish them. The figure also

shows that there is not only one connected graph but multiple graphs. This is due

to the fact that we read in the whole SystemC project as one file containing all
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source and header files. Larger projects often contain multiple sc main functions,

used to individually simulate parts of the design in a separate testbench - like it is

the case in this example. The visualization of the hierarchy helps to see all these

parts of the design and understand their utility.

sc_main

i_fifo
usb_fifo64x8

i_test
test

i_ram
usb_ram64x8

sc_main_1

i_phy
usb_phy

i_test (2)
test

i_tx_phy
usb_tx_phy

i_rx_phy
usb_rx_phy

sc_main_2

i_rom
usb_rom

i_test (3)
test

sc_main_3

i_test (4)
test

sc_main_4

i_test (5)
test

sc_main_5

i_phy (2)
usb_phy

i_top
usb_top

i_test (6)
test

i_tx_phy (2)
usb_tx_phy

i_rx_phy (2)
usb_rx_phy

i_usb
usb

i_core
usb_core

i_ff_ep1
usb_fifo512x8

i_ff_ep2 (2)
usb_fifo512x8

i_ff_ep3
usb_fifo128x8

i_ff_ep4 (2)
usb_fifo128x8

i_ff_ep5 (3)
usb_fifo128x8

i_ff_ep6 (4)
usb_fifo128x8

i_phy (3)
usb_phy

i_sie
usb_sie

i_ep0
usb_ep0

i_rom (2)
usb_rom

i_ff_in (2)
usb_fifo64x8

i_ff_out (3)
usb_fifo64x8

i_tx_phy (3)
usb_tx_phy

i_rx_phy (3)
usb_rx_phy

i_pa_sie
usb_pa_sie

i_pd_sie
usb_pd_sie

i_pe_sie
usb_pe_sie

i_dma
usb_dma

i_crc16
usb_crc16

i_crc5
usb_crc5

i_crc16 (2)
usb_crc16

i_ff2
usb_fifo2

i_ram (2)
usb_ram64x8

i_ram (3)
usb_ram64x8

i_ram
usb_ram512x8

i_ram (2)
usb_ram512x8

i_ram
usb_ram128x8

i_ram (2)
usb_ram128x8

i_ram (3)
usb_ram128x8

i_ram (4)
usb_ram128x8

Figure 4. Visualization of the module hierarchy of a USB controller

The implementation of the module hierarchy graph generation back-end pass

took only about 60 lines of C++ code. This is small when considering the added

value. We assert that given the captured structural information other visualization

or transformation back-end passes can be added with comparable effort, lower-

ing the threshold effort to try new things or implement desired functionality. An

upgraded version of the visualization may allow a visualization of the module

connections, maybe with an adjustable number of displayed hierarchy levels. We

were looking into this option as well, but as Graphviz does not natively support

this kind of nested hierarchy the use of a different graph rendering library might

be necessary to render this kind of graph.

5 Conclusion

Structural SystemC extraction is needed by many problem domains. We present

SystemCXML that avoids the creation of a full fledged parser that handles the ex-

pressive power of C++ by the usage of Doxygen, breaking the problem down to

parsing XML with widely available libraries. To our knowledge there is no ex-

isting solution that utilizes a documentation system to facilitate the extraction of
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structural information targeted towards applications such as introspective archi-

tectures, test generators and visualizations. This is a very lightweight solution,

that employs C++ and does not restrict the use of the compiler or any modifica-

tions in the SystemC libraries remaining unintrusive. There are many applications

that can benefit from exploiting structural SystemC information, among them we

have looked into automated testbench generation, introspection, and we are cur-

rently working on the generation of synchronous component interfaces. In this

paper, we illustrate the creation of a back-end pass with the example of a module

hierarchy graph generator. Automated design visualization can also used to gen-

erate graphs and diagrams system component documentation, lowering obstacles

to component sharing and reuse.

As we judge the tool to be easily useable and very beneficial for other re-

search groups and companies, we made it available under an Open Source license

available at [13].
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