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Abstract

Background: Metabolic alterations, related to cerebral glucose metabolism, brain insulin resistance, and age-
induced mitochondrial dysfunction, play an important role in Alzheimer’s disease (AD) on both the systemic and
central nervous system level. To study the extent and significance of these alterations in AD, quantitative metabolomics
was applied to plasma and cerebrospinal fluid (CSF) from clinically well-characterized AD patients and cognitively
healthy control subjects. The observed metabolic alterations were associated with core pathological processes of AD to
investigate their relation with amyloid pathology and tau-related neurodegeneration.

Methods: In a case-control study of clinical and biomarker-confirmed AD patients (n = 40) and cognitively healthy
controls without cerebral AD pathology (n = 34) with paired plasma and CSF samples, we performed metabolic
profiling, i.e., untargeted metabolomics and targeted quantification. Targeted quantification focused on identified
deregulated pathways highlighted in the untargeted assay, i.e. the TCA cycle, and its anaplerotic pathways, as well as
the neuroactive tryptophan and kynurenine pathway.

Results: Concentrations of several TCA cycle and beta-oxidation intermediates were higher in plasma of AD patients,
whilst amino acid concentrations were significantly lower. Similar alterations in these energy metabolism intermediates
were observed in CSF, together with higher concentrations of creatinine, which were strongly correlated with blood-
brain barrier permeability. Alterations of several amino acids were associated with CSF Amyloidβ1–42. The tryptophan
catabolites, kynurenic acid and quinolinic acid, showed significantly higher concentrations in CSF of AD patients, which,
together with other tryptophan pathway intermediates, were correlated with either CSF Amyloidβ1–42, or tau and
phosphorylated Tau-181.

Conclusions: This study revealed AD-associated systemic dysregulation of nutrient sensing and oxidation and CNS-
specific alterations in the neuroactive tryptophan pathway and (phospho)creatine degradation. The specific association
of amino acids and tryptophan catabolites with AD CSF biomarkers suggests a close relationship with core
AD pathology.
Our findings warrant validation in independent, larger cohort studies as well as further investigation of factors
such as gender and APOE genotype, as well as of other groups, such as preclinical AD, to identify metabolic
alterations as potential intervention targets.
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Introduction
In Alzheimer’s disease (AD), glucose hypometabolism is con-

sidered a typical feature of the disease at clinical stages, indi-

cating the loss of neuronal function in specific brain regions

[1]. Cerebral glucose hypometabolism, characterized by im-

paired glucose uptake and utilization related to brain insulin

resistance [2, 3], and progressive mitochondrial dysfunction

with aging [4] have both been recently associated with AD

and suggest involvement of energy metabolism alterations in

AD pathophysiology. Importantly, these alterations in early

AD may occur both at the central nervous system (CNS)

and the systemic level and play a role in clinical disease pro-

gression [5, 6]. Despite these observations, the extent and sig-

nificance of CNS and systemic metabolic alterations in AD

remain poorly understood. Therefore, further and in-depth

characterization of metabolic alterations to unravel potential

new targets for therapeutic intervention is needed. Metabolo-

mics is a powerful phenotyping technology, which allows to

systematically identify and quantify the active small

molecule-metabolite complement of cells, tissues, or biofluids

and provide a sensitive and highly specific multiparametric

measure of disease phenotype at the molecular level [7–14].

A few recent metabolomics data-driven studies in subjects

with clinically defined AD support the view of AD as an en-

ergy metabolism and metabolic signaling disorder by describ-

ing metabolic alterations in amino acid, acylcarnitine,

sphingolipid, and lipid metabolism [6, 15–19]. While many

alterations were observed, the results of these studies are in-

consistent regarding the amplitude and direction of the alter-

ations and limited by the lack of quantitative data and

shortcomings in study design. Importantly, the link between

systemic and CNS changes and their relationships with the

AD core brain pathology, i.e., amyloid accumulation and tau

pathology, remain largely unexplored.

Here, we present a case-control study using paired plasma

and cerebrospinal fluid (CSF) samples from AD patients and

cognitively healthy controls characterized using combined

clinical and biomarker-based criteria [20] to which we applied

state-of-the-art metabolomic approaches. We used a thor-

ough stepwise approach from untargeted profiling and path-

way analysis to targeted absolute quantification to determine

the presence and magnitude of metabolic alterations and me-

tabolite concentration ranges. By linking systemic and CNS

metabolic alterations and by addressing relationships between

metabolites and markers of core AD pathology, i.e., amyloid

accumulation and tau-related neurodegeneration, this study

contributes to the functional understanding of AD

pathophysiology.

Methods
Subjects

Participants with AD were recruited among patients

with cognitive impairment attending the Memory Clinics

of the Department of Psychiatry and the Department of

Clinical Neurosciences at Lausanne University Hospital

for the diagnosis of their complaints [21]. Control sub-

jects were recruited by announcements and word of

mouth. All participants underwent a comprehensive

medical, neuropsychological, and psychosocial evalu-

ation, as well as brain MRI or CT scans, and venous and

lumbar punctures. The MRI and CT scans were used to

exclude cerebral pathologies possibly interfering with the

cognitive performance.

The AD group (n = 40) consisted of subjects with both

cognitive impairment established with a Clinical Dementia

Rating (CDR) of 0.5 or 1 and an AD CSF biomarker pro-

file (see Additional file 2: methods, section 1.3). The con-

trol group (n = 34) consisted of subjects without cognitive

impairment (CDR = 0) and with normal CSF biomarker

profile (Table 1). Subjects with cognitive impairment and

a non-AD CSF biomarker profile or with normal cogni-

tion and an AD CSF profile were not included.

AD diagnosis and cognitive assessments

The diagnosis of MCI or mild dementia of AD type was

based on neuropsychological and clinical evaluation

made by a consensus conference of neuropsychologists,

psychiatrists, and/or neurologists prior to inclusion into

the study, as described elsewhere [22] and detailed in

Additional file 2: methods (section 1.1) together with the

performed cognitive assessments.

Sample collection, APOE genotyping, and CSF AD

biomarker assessment

CSF and plasma samples were obtained as previously de-

scribed [22], and subsequently, CSF AD biomarkers

Aβ1–42, tau, and pTau-181 were measured using ELISA

(Fujirebio, Ghent, Belgium). The APOE genotype was

determined as previously described [21]. Brief details of

both procedures are outlined in the Additional file 2:

methods (section 1.2 and 1.3).

State-of-the-art untargeted and targeted metabolic

profiling

Materials and detailed methods are outlined in

Additional file 2: methods (section 1.4).

Untargeted profiling

Following the extraction with MeOH:ACN, plasma and

CSF sample extracts were subjected to LC-MS analysis

using the 6550 iFunnel Q-TOF MS interfaced with 1290

UHPLC (Agilent Technologies, Basel, CH) as previously

described [23]. The data were processed using XCMS

Online [24] and signal drift correction was applied and

metabolite features showing analytical variability > 30%

were removed. Putative identification was done in

XCMS Online linked to METLIN metabolite database

[25], and metabolite identities were further validated
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with tandem MS experiments as previously described

[23, 26].

Broad-scale targeted profiling

In parallel with untargeted profiling, broad-scale targeted

screening was performed with a focus on intermediates in-

volved in multiple central carbon pathways (242 metabolites)

using a 6495 iFunnel triple quadrupole system (QqQ, Agilent

Technologies, Basel, CH) interfaced with the 1290 UHPLC

system. Data was acquired in dynamic multiple reaction mon-

itoring mode (dMRM, cycle time 600ms). Data processing

was done using MassHunter Quantitative Analysis (for QqQ,

version B.07.01/ Build 7.1.524.0, Agilent Technologies). Signal

drift correction was applied on the QC samples [27], and

metabolites with CV > 20% were discarded.

Pathway analyses

Pathway analyses were performed using MetaboAnalyst 3.0

[28], and the human pathways from the Homo sapiens Kyoto

Encyclopedia of Genes and Genomes (KEGG) database were

used as the source of pathway topologies to deduce pathways

of interest for the absolute quantification method. Pathway

impact has been calculated as the sum of the importance

measures (i.e., centrality measure within a given metabolic

network) of the matched metabolites normalized by the sum

of the importance measures of all metabolites in each path-

way [29] (for further details, see Additional file 2: methods,

section 1.4.5).

Targeted quantification of tricarboxylic acid (TCA) cycle

intermediates, tryptophan breakdown products, and

other amino acids and acylcarnitines

Absolute quantification was performed using the 6495

QqQ mass spectrometer interfaced with the 1290

UHPLC, operated in the dMRM mode. In brief, aliquots

of calibrators, plasma, or CSF were extracted by the

addition of internal standard mixtures (in MeOH) after

which the sample was directly injected for LC-MS/MS

analysis (transitions are provided in Additional file 1:

Table S1). Stable isotope-labeled analogues were used as

internal standards to determine the response factor

while correcting for extraction yield and matrix effect.

Data processing was done using MassHunter Quantita-

tive Analysis.

Statistical analysis

Group comparison was performed with the absolute concen-

tration data, which was done using a parametric t-test with a

p value significance cut-off 0.05 (FDR < 0.25). Additional

testing was performed to assess (1) gender differences, (2)

the CSF/plasma ratio of metabolite concentrations, (3) the

influence of blood-brain barrier (BBB) permeability, and (4)

the potential confounding effect of age and ApoE4, for which

p < 0.05 was considered significant. Associations between

metabolite concentrations and single CSF AD biomarker

concentrations (t-tau, pTau-181, and Aβ1–42) were evalu-

ated using simple and multiple linear regression analysis for

the AD group only. Details of these analyses are outlined in

Additional file 2: methods (section 1.5).

Results
Clinical characteristics of controls and subjects with

Alzheimer’s disease

For this study, n = 40 well-characterized AD patients and

n = 34 cognitively healthy controls were selected

(Table 1). As about 20% of the patients with a clinical

criteria-based diagnosis of AD have no cerebral AD

pathology [30], we only included AD subjects with both

Table 1 Clinical characteristics of the cohort

Clinical characteristics AD (n = 40) Control (n = 34) P valuea

Female, n (%) 24 (60.00) 23 (67.65) 0.6098

BMI, kg/m2, mean ± SD 23.83 ± 3.06 24.60 ± 4.01 0.3637

Age, year, mean ± SD 74.88 ± 6.38 65.35 ± 6.17 < 0.0001

Cognitive function

MMSE, mean ± SD 24.40 ± 4.15 28.71 ± 1.29 < 0.0001

CDR, mean ± SD 0.65 ± 0.30 0.00 ± 0.00 < 0.0001

AD CSF biomarkers

Aβ1–42, pg/ml, mean ± SD 556.22 ± 115.39 979.12 ± 164.38 < 0.0001

Tau, pg/ml, mean ± SD 715.70 ± 300.05 196.18 ± 59.72 < 0.0001

pTau-181, pg/ml, mean ± SD 91.95 ± 23.84 42.91 ± 10.51 < 0.0001

Biochemical measures

ApoEε4, n (%ε4) 26 (65.00) 6 (17.64) < 0.0001

Qalb, mean ± SD 6.69 ± 3.76 5.27 ± 1.82 0.0474
aP value represents result of t-test comparing AD and control group for continuous variables and chi-square test for categorical variables (male/female frequency

and ApoEε4 distribution). MMSE Mini-Mental State Exam, CDR Clinical Dementia Rate, Qalb quotient albumin or plasma/CSF albumin ratio
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clinical signs of (prodromal) AD and a CSF AD bio-

marker profile (pTau-181/Aβ1–42 ratio > 0.078) [20].

Conversely, a significant percentage of elderly persons

without any clinical signs of AD have cerebral AD path-

ology [30]. In this study, we only included control sub-

jects who were cognitively healthy and had normal CSF

AD biomarker profiles. The AD patient and control

groups did not differ in male/female distribution and

BMI, but the AD patients were generally older. In

addition, the two populations had a different frequency

of the ApoEε4 allele, a known risk factor for AD, and a

marginally significant different CSF/serum albumin ratio

(Qalb), considered here as a marker of blood-brain bar-

rier permeability [31].

Metabolic profiling highlights disrupted core energy

metabolism and tryptophan pathway alterations in

Alzheimer’s disease

State-of-the-art metabolic profiling, including untargeted

profiling and quantitative targeted analysis, was applied

to identify changes at the metabolite and pathway level

in AD, to quantify their amplitude and to determine

their origin (systemic vs. CNS) and association with dis-

tinct AD pathological processes (Fig. 1).

Untargeted profiling pointed towards significant alter-

ations in the amino acid metabolism and energy-

producing fatty acid oxidation (i.e., acylcarnitine levels) in

plasma and in CSF of AD patients (Additional file 1: Table

S1). These differences were confirmed by further broad-

scale targeted screening that allowed us to reveal several

additional changes in the levels of glycolysis and trypto-

phan and kynurenine pathway intermediates (Add-

itional file 1: Table S2). Pathway over-representation

combined with topology analysis, which considers the pos-

ition and biological relevance of profiled metabolites

within their respective pathways, showed significantly

enriched tryptophan and histidine metabolism as well as

beta-oxidation pathway in plasma. In CSF, enriched tryp-

tophan and lysine metabolism were highlighted, as well as

glycolysis/gluconeogenesis, the pentose phosphate path-

way, and carnitine synthesis (P < 0.05, Additional file 1:

Table S3). Following these results, we quantified in an ab-

solute fashion different intermediates in the TCA cycle as

a hub of energy metabolism, and its anaplerotic pathways,

i.e., fatty acid oxidation and specific amino acid pathways.

The downstream products of tryptophan metabolism were

also quantified due to high enrichment and impact score

of tryptophan metabolism in both plasma and CSF in the

pathway analysis (P < 0.002, Impact > 0.22).

Following absolute quantification, intermediates from

the TCA cycle had higher concentrations in AD patients

compared to control subjects in both plasma and CSF.

Significantly higher concentrations of citrate were

observed in AD, in both plasma (%diffplasma = 17.2%,

Fig. 1 Study design and metabolic profiling workflow. Plasma and CSF samples were collected concomitantly, from the same subject. Metabolic
signatures acquired by the untargeted profiling were explored using the pathway enrichment and topology analysis to identify the biochemical
pathways affected in AD. Targeted quantification of metabolites implicated in these identified affected pathways was then performed to obtain
the accurate and precise measurement of metabolite concentrations. The clinical phenotype comparison was followed by paired blood plasma
vs. CSF comparison and correlation with QAlb to assign the origin of the observed changes. Finally, the associations with known CSF markers of
AD pathology were investigated to link the identified changes at the metabolite and pathway level with the clinical outcome. LC-HRMS – liquid
chromatography coupled to high-resolution mass spectrometry, LC-MS/MS – liquid chromatography coupled to tandem mass spectrometry,
KEGG – Kyoto Encyclopedia of Genes and Genomes, SMPDB – Small Molecule Pathway Data Base

van der Velpen et al. Alzheimer's Research & Therapy           (2019) 11:93 Page 4 of 12



P = 0.002) and in CSF (%diffCSF = 12.5%, P = 0.036). In

addition, cis-aconitate (%diff = 14.0%, P = 0.002) and α-

ketoglutarate (%diff = 13.0%, P = 0.020) were significantly

increased in AD in plasma and in CSF, respectively (Fig. 2,

Additional file 1: Table S5). The glucogenic and ketogenic

amino acids, producing intermediates that feed into the

TCA cycle, had lower concentrations in AD patients in

both plasma and CSF. Significantly lower concentrations

were observed for the basic amino acids, lysine

(%diffplasma = − 8.6%, Pplasma = − 0.032; %diffCSF = − 8.3%,

PCSF = 0.040) and histidine (%diffplasma = − 9.7%, Pplasma =

0.014; %diffCSF = − 10.1%, PCSF = 0.010), as well as trypto-

phan in plasma (%diff = − 14.2%, P = 0.009). Oppositely,

significantly higher concentrations of creatinine were ob-

served in CSF of AD patients (%diff = 15.4%, P = 0.00001).

Acylcarnitines, the transporter variants of fatty acid oxi-

dation intermediates that fuel the TCA cycle by generating

AcetylCoA via beta-oxidation, showed significantly higher

concentrations in plasma of AD patients compared to

control subjects (Fig. 2, Additional file 1: Table S5). These

were medium- and long-chain acylcarnitines with an acyl-

chain of C6 (%diff = 31.4%, P = 0.016), C8 (%diff = 34.8%,

P = 0.048), C10 (%diff = 37.0%, P = 0.029), C12 (%diff =

36.4%, P = 0.012), C14 (%diff = 34.4%, P = 0.0003), C16

(%diff = 14.2%, P = 0.009), and C18 (%diff = 21.1%, P =

0.002). In addition, the concentration of acetylcarnitine

(C2) was significantly higher (%diff = 19.2%, P = 0.025),

whilst the free pool of carnitine (C0) in plasma was signifi-

cantly lower (%diff = − 12.4%, P = 0.026) in AD patients. In

CSF, the same trend of accumulation in AD was observed

for acylcarnitines with a chain length between C6 and

C12, whereas the long-chain acylcarnitines were below the

limit of quantification.

It is worth noting that for the majority of measured

metabolites, the observed differences were more pro-

nounced in women than in men as illustrated in Add-

itional file 1: Figure S1.

Tryptophan pathway intermediates, including trypto-

phan itself (%diff = − 14.2%, P = 0.009), had generally

lower concentrations in plasma of AD patients. In CSF,

while tryptophan concentrations were lower, the down-

stream products of tryptophan degradation, i.e., kynure-

nic acid (%diff = 29.1%, P = 0.046) and quinolinic acid

(%diff = 45.5%, P = 0.040) were significantly higher in AD

patients compared to control subjects (Fig. 3), a

difference driven by females only (Pkynurenic acid = 0.0035,

Pquinolinic acid = 0.0069, Additional file 1: Figure S1).

Correlations of altered metabolites in CSF with BBB

permeability

Using the Qalb as a measure of blood-brain barrier integ-

rity, we found that amino acid and acylcarnitine concen-

trations in CSF showed a significant positive correlation

with Qalb in control subjects. This positive correlation

was even more pronounced and significant in AD patients

(for P < 0.001, r > 0.6, Fig. 4a, b, Additional file 1: Table

S6). While majority of amino acids and acylcarnitines

showed positive correlation with Qalb, kynurenic acid and

creatinine were negatively correlated with Qalb. Further-

more, both these metabolites, as well as tryptophan,

quinolinic acid, and two (acyl)carnitines (C0 and C3) had

significantly higher CSF/plasma ratios in AD patients

compared to control subjects (Fig. 4c).

Metabolite alterations associated with CSF biomarkers of

core AD pathology

The association of metabolite concentrations in both

plasma and CSF of AD patients with CSF biomarkers

(amyloidβ(Aβ)1–42, tau and pTau-181) was evaluated

using single and multiple regression modeling (age and

gender-corrected, Fig. 5 and Additional file 1: Table S7).

In CSF, concentrations of several aromatic (i.e., trypto-

phan and phenylalanine), branched-chain (i.e., isoleucine

and leucine) and urea cycle amino acids (i.e., citrulline

and ornithine) showed significant negative association

with CSF Aβ1–42 concentrations, which remained sig-

nificant after correction for age and gender. Conversely,

two breakdown products of tryptophan metabolism,

kynurenic acid and quinolinic acid, were significantly

positively associated with CSF Aβ1–42, and tau and

pTau-181, respectively (Fig. 5). For metabolites in

plasma, the associations with CSF AD biomarkers were

less pronounced; specifically, taurine and lysine were

positively associated with pTau-181. Finally, isocitrate

was found to be significantly associated with tau in

plasma, and pTau-181 in both plasma and CSF.

Discussion
Distinct systemic and CNS pathway alterations related

to AD were observed in this case-control study applying

a thorough stepwise metabolomics approach in con-

comitantly collected plasma and CSF samples from well-

characterized subjects with AD and cognitively healthy

controls. Amino acids were decreased, and fatty acid-

oxidation metabolites and TCA cycle intermediates were

increased in plasma of AD patients compared to control

subjects. In their CSF, the concentrations of tryptophan

pathway metabolites and creatinine were increased.

Specific alterations were related to amyloid while others

were associated with tau pathology and neuronal injury

as measured by CSF biomarkers.

The alternative angle of viewing AD as an energy me-

tabolism and metabolic signaling disorder has recently

evolved following advancements in analytical methods

and new findings on the disease’s pathophysiology [32,

33]. While decreased neuronal glucose metabolism and

associated altered bioenergetics are recognized as a com-

mon feature in AD, its extent and relationships with the
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“core” pathological processes of AD, i.e., amyloid path-

ology and tau-related neurodegeneration, necessitate fur-

ther investigation [1, 34–36]. Decreased glucose sensing

by the brain in AD could signal a fasted state to the

body and lead to compensatory activation of alternative

sources to fuel the TCA cycle, such as amino and fatty

Fig. 2 Systemic and central nervous system alterations in AD in the energy metabolism hub; the TCA cycle and its anaplerotic pathways (i.e.,
amino acid metabolism, glycolysis and beta-oxidation). For a direction of metabolite alterations in AD patients versus control in plasma (PL) and
CSF, ↑ higher concentrations in AD vs control, ↓ lower concentrations in AD vs control, “-“ indicates “not detected” or below limit of quantification, * statistically
significant higher or lower concentrations in AD vs control P<0.05 (T-test). For b to e, * statistically significant P<0.05 (T-test), **P<0.01, n.s. not significant
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acids [37]. In our study, global lower plasma concentra-

tions of amino acids in AD patients compared to con-

trols indeed suggest that readily available amino acids

could have been used to replenish the TCA cycle [38] ei-

ther by forming TCA cycle intermediates (glucogenic

pathway) or by forming acetylCoA (ketogenic pathway,

Fig. 2, [37]). In addition to the pool of free amino acids,

fatty acid oxidation can fuel the TCA cycle via produc-

tion of acetylCoA. Our results showed significantly

higher concentrations of the carnitine forms of main

fatty acid oxidation intermediates in plasma of AD pa-

tients compared to control subjects, i.e., long-chain acyl-

carnitines (LCACs, from C6 to C18) and acetylcarnitine

(C2). This increase could be related to incomplete oxida-

tion of acyl-CoA intermediates resulting in their retro-

conversion to acylcarnitine for the transport and release

to the plasma, to avoid adverse toxic effects of their

accumulation in mitochondria [39]. This fuel efflux (i.e.,

acetylcarnitine and LCACs) is assumed to occur when

the fuel delivery exceeds energy generation capacity of

the TCA cycle [39]. This is in accordance with our re-

sults showing higher concentrations of TCA cycle inter-

mediates in plasma and CSF of AD patients. Taken

together, the observed alterations in the energy metabol-

ism hub (TCA cycle) and its anaplerotic pathways,

amino acid, and fatty acid oxidation, both in plasma and

CSF, imply disrupted nutrient sensing and oxidation and

thus energy homeostasis in AD. These alterations appear

to be of systemic origin and are reflected in CSF depend-

ing on increased BBB permeability, which is supported

by the observed significant positive correlation between

the CSF concentrations of these metabolites and QAlb

in AD patients (Fig. 4). Moreover, several amino acids,

i.e., arginine, citrulline, isoleucine, leucine, ornithine,

phenylalanine, and tryptophan, were negatively associ-

ated with CSF Aβ1–42 concentrations, thus with higher

cerebral amyloid burden (Fig. 5). This is in line with pre-

vious literature where inclusion of CSF amino acids of

the one-carbon metabolism in a prediction-model im-

proved diagnostic accuracy [20, 40]. In comparison, the

associations of plasma levels of amino acids with the AD

CSF biomarkers were weaker, except for lysine and

taurine with CSF pTau-181.

Related to these energy metabolism alterations, creatin-

ine was significantly increased in CSF of AD patients,

negatively correlated with Qalb, and positively associated

with CSF Aβ1–42. As a by-product of the high energy

storage metabolite phosphocreatine [41], the observed

higher concentrations of creatinine in CSF in AD may be

a result of excessive phosphocreatine usage (followed by

degradation) and/or disrupted creatine-phosphocreatine

shuttle [42] in the conditions of inadequate glucose

supply. The negative correlation of creatinine with BBB

permeability (Fig. 4) implies that this process takes place

in the CNS. The potential dysregulation of this process is

further illustrated by the negative correlation between

creatine and creatinine in both plasma and CSF

(Spearman’s rho 0.46, p = 0.003 in plasma and − 0.33,

p = 0.037 in CSF) in AD patients, suggesting that creatin-

ine is produced at the expense of creatine.

Fig. 3 Systemic and central nervous system alterations in products of tryptophan breakdown in AD. Direction of metabolite alterations in AD
patients versus control in plasma (PL) and CSF; ↑ higher concentrations in AD vs control, ↓ lower concentrations in AD vs control, “-“ indicates
“not detected” or below limit of quantification, * statistically significant higher or lower concentrations in AD vs control P < 0.05 (T-test)
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Our results also highlighted the CNS-specific

deregulation of the tryptophan-kynurenine pathway,

with significantly higher concentrations of kynurenic

acid and quinolinic acid in CSF of AD patients

(Fig. 3). Both of these tryptophan metabolites were

previously reported to be specifically associated with

neuroinflammation in CNS diseases, including AD

[43–47]. While kynurenic acid was reported as puta-

tively neuroprotective [48], quinolinic acid is consid-

ered to be neurotoxic [47] and found to be increased

in AD in model systems [48], although this was not

consistently confirmed in humans [47]. Our results

showed that these tryptophan catabolites were also

significantly associated with core AD pathology, i.e.,

the putatively neuroprotective kynurenic acid was

associated with lower cerebral beta-amyloid burden

(higher CSF Aβ1–42 levels), whilst the neurotoxic

quinolinic acid was associated with increased tau

hyperphosphorylation and neuronal injury. Along with

our results, previous work [49, 50] suggested the

tryptophan pathway to be implicated in cerebral AD

pathology and might be a possible target for disease

modifying interventions.

Importantly, exploratory analysis in our study indicates

more significant metabolic alterations in female AD sub-

jects. The female susceptibility to AD has been

highlighted in a very recent study [51], although the

underlying mechanisms of how sex modifies AD risk are

poorly understood. Different findings suggest that the

profound age-related metabolic and hormonal changes

in female (i.e., estrogen loss) exacerbate the peripheral

and brain insulin signaling dysfunction leading to re-

duced glucose metabolism [52, 53]. In our study, age

was slightly unbalanced between the AD patients and

controls and we observed correlations of several meta-

bolites with age. However, correction for age did not

significantly change the observed difference between AD

patients and control subjects, except for the

Fig. 4 Correlations of metabolite concentrations in CSF with Qalb in control (a) and AD patients (b) and boxplots of metabolites with significantly different
CSF/plasma ratios between control and AD patients (c). For a and b, significantly different metabolites in dark blue with –logP value > 3 (represents P value
< 0.05). For c, *P< 0.05 and **P< 0.001
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acylcarnitines C14, C16, and cis-aconitate in plasma and

kynurenic acid in CSF (Additional file 1: Table S8).

Furthermore, the presence of the ApoE4 allele did not

influence our observations (no interaction effect) as

evaluated using ANOVA, except for creatinine in plasma

(Pinteraction = 0.02) and asparagine in CSF (Pinteraction =

0.005, Additional file 1: Table S9). No difference was

observed in fatty acid oxidation among individuals with

different APOE genotype.

In the present study, the quantitative metabolite data ac-

quired in paired plasma and CSF samples combined with

clinical diagnosis criteria, AD CSF biomarker data, and

clinical metadata allowed us to identify and quantify meta-

bolic alterations in AD and associate them with distinct

AD pathologies (amyloid pathology (Aβ1–42), neuronal

injury (tau), and tau hyperphosphorylation (pTau-181)),

whilst deriving information on the most likely origin of

these alterations (systemic or CNS). However, it is possible

that the observed metabolites are derived elsewhere, such

as in the gut microbiota, which is of particular importance

for tryptophan catabolism that is regulated via a highly

interconnected loop involving gut microbiota [54].

To our knowledge, only one other metabolomics-led study

in AD reported on both plasma and CSF [18] but relied only

on untargeted discovery approach and relative compari-

sons without targeted quantification (i.e., validation).

Although the relatively small sample size and the selec-

tion of subjects with both the clinical presentation and

the presence of AD pathology (as indicated by CSF bio-

markers) may be considered as limitations of this study,

its quantitative character and paired investigation of

plasma and CSF samples represent its asset when com-

pared to large and heterogenous multicentric studies.

Independent, larger cohort studies would allow for

validation of these findings and further addressing

relationships with factors such as gender and APOE

genotype. Furthermore, the inclusion of other groups,

in particular of subjects with normal cognition and an

AD CSF biomarker profile, i.e., with preclinical AD,

would enable the verification of early presence of the

observed metabolic dysregulations. In a longitudinal

setting, the relation between the energy metabolism al-

terations observed in this study and the known reduced

glucose metabolism in the presymptomatic stages of

AD, as well as its evolution with disease progression

can be studied. This would allow for the recommenda-

tion of a new set of potentially powerful small molecule

biomarkers for AD diagnosis and, more importantly,

Fig. 5 Associations of plasma (left) and CSF (right) metabolite concentrations with core AD pathology as measured by CSF biomarker concentrations. Results
from linear regression analysis are presented; colors represent beta-coefficients of the CSF biomarker estimate (red for positive association, blue for negative
association), circle size represents P value of the CSF biomarker estimate (P<0.01 or P<0.05, for large and small respectively). Figure depicts the results of linear
metabolite concentration ~ CSF biomarker model that remained significant after the correction for age and gender. Detailed results for age- and gender-
corrected models are given in Additional file 1: Table S7
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the identification of a potential target pathway(s) for

prevention interventions.

Conclusion
This metabolomics study performed using paired plasma

and CSF samples from two well-defined groups highlights

dysregulated systemic energy metabolism in AD and

CNS-specific tryptophan pathway and creatinine alter-

ations. In plasma of AD patients, we observed higher con-

centrations of TCA cycle intermediates and long-chain

acylcarnitines, and lower concentrations of amino acids.

These alterations appear to be of systemic origin and are

mirrored in the CNS as a function of BBB permeability.

The associations of specific amino acid creatinine in CSF

with CSF Aβ1–42 suggest their involvement in amyloid

pathology. Furthermore, our findings strongly suggest that

tryptophan pathway alteration in AD is CNS-specific

resulting in significantly higher concentrations of the neu-

roprotective kynurenic acid and neurotoxic quinolinic acid

in CSF. The quantified tryptophan pathway catabolites

appear to be closely related with core AD pathology, i.e.,

amyloid accumulation and tau-related neurodegeneration.

Our study demonstrates the translational potential of the

pathway-oriented quantitative approach to assess in-depth

systemic and CNS metabolic defects which are part of the

AD pathophysiology and represent possible targets for

new therapeutic interventions.
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