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Abstract

Background: Animal studies show that peripheral inflammatory stimuli may activate microglial cells in the brain
implicating an important role for microglia in sepsis-associated delirium. We systematically reviewed animal
experiments related to the effects of systemic inflammation on the microglial and inflammatory response in the brain.

Methods: We searched PubMed between January 1, 1950 and December 1, 2013 and Embase between January 1,
1988 and December 1, 2013 for animal studies on the influence of peripheral inflammatory stimuli on microglia and
the brain. Identified studies were systematically scored on methodological quality. Two investigators extracted
independently data on animal species, gender, age, and genetic background; number of animals; infectious stimulus;
microglial cells; and other inflammatory parameters in the brain, including methods, time points after inoculation, and
brain regions.

Results: Fifty-one studies were identified of which the majority was performed in mice (n = 30) or in rats (n = 19).
Lipopolysaccharide (LPS) (dose ranging between 0.33 and 200 mg/kg) was used as a peripheral infectious stimulus in 39
studies (76 %), and live or heat-killed pathogens were used in 12 studies (24 %). Information about animal characteristics
such as species, strain, sex, age, and weight were defined in 41 studies (80 %), and complete methods of the disease
model were described in 35 studies (68 %). Studies were also heterogeneous with respect to methods used to assess
microglial activation; markers used mostly were the ionized calcium binding adaptor molecule-1 (Iba-1), cluster of
differentiation 68 (CD68), and CD11b. After LPS challenge microglial activation was seen 6 h after challenge and
remained present for at least 3 days. Live Escherichia coli resulted in microglial activation after 2 days, and heat-killed
bacteria after 2 weeks. Concomitant with microglial response, inflammatory parameters in the brain were
reviewed in 23 of 51 studies (45 %). Microglial activation was associated with an increase in Toll-like receptor
(TLR-2 and TLR-4), tumor necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) messenger ribonucleic acid
(mRNA) expression or protein levels.

Interpretation: Animal experiments robustly showed that peripheral inflammatory stimuli cause microglial
activation. We observed distinct differences in microglial activation between systemic stimulation with
(supranatural doses) LPS and live or heat-killed bacteria.
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Introduction
The peripheral immune system has a strong effect on
the brain as exemplified by the high incidence of delir-
ium and the strongly increased risk for the development
of dementia after systemic infections [1, 2]. In rodent ex-
periments, peripheral challenge with lipopolysaccharide
(LPS) caused a steep increase of brain tumor necrosis
factor alpha (TNF-α) that can persist for months [3–9].
Peripheral (systemic) LPS challenge activates microglia,
the major active immune cells in the central nervous
system. Microglia can be in a resting state (morphologic-
ally “ramified”) or an activated state (morphologically
“amoeboid”) [10]. Resting microglia survey their envir-
onment for damage, ready to support endangered neu-
rons or to interfere with a potential threat to the tissue
integrity. Danger signals may trigger these surveying
microglia and cause transformation to activated states,
referred to as the M1 and M2 phenotypes [11]. M1 acti-
vated microglia produce pro-inflammatory mediators
and are assumed to act as neurotoxic cells [11, 12], while
M2 activation is induced by signals from apoptotic cells
and have a role in remodeling and repair [11–13].
Sepsis in humans has also been associated with micro-

glial activation [14]. Previously, we postulated that im-
paired cholinergic inhibitory control of microglia in elderly
people, and to a greater extent in patients with (incipient)
neurodegenerative disorders, contributes to uncontrolled
neuro-inflammation [15]. High concentrations of pro-
inflammatory mediators released by M1 activated microglia
are potentially neurotoxic and might not only cause acute,
reversible, behavioral effects, such as delirium, but also lead
to persistent detrimental effects through bystander damage
to neighboring neurons [16, 17]. The microglial response
drifts out of control and ultimately causes neurodegenera-
tion [1, 18]. This cycle might account for why neurobehav-
ioral occurrences can persist in elderly patients after
recovery from sepsis and after systemic cytokine produc-
tion has fallen. This information inspired the formulation
of a neuro-inflammatory hypothesis explaining the associ-
ation of systemic infection, chronic central nervous system
inflammation, and poor outcome, where microglial cells
play a key role. Animal studies on systemic inflamma-
tion and microglial reaction support this hypothesis,
but studies vary widely in setup and interpretation of
results. In this review, we summarize available evidence
on the effect of different systemic inflammatory stimuli
on timing and intensity of the microglial reaction.

Methods
Search strategy
We searched PubMed between January 1, 1950 and
December 1, 2013 and Embase between January 1, 1988
and December 1, 2013 for animal studies using peripheral
inflammatory stimuli and evaluating the effect of these
stimuli on microglia, using search terms “microglia” AND
“animal model” NOT “review”. We also searched the
reference lists of articles identified by this search strategy
and selected those that we judged to be relevant. Two
independent observers reviewed articles for inclusion and
exclusion criteria, and differences were resolved by
discussion.

Selection of articles
Studies were included if they fulfilled the following cri-
teria: (1) the study described an experiment where a per-
ipheral infectious stimulus was administrated in animals,
in vivo; (2) the study assessed the effects on microglia in
the brain; (3) the effects on microglia were determined
with specific microglial markers; (4) a group of control
animals was described; (5) the study was an original full
paper which presented unique data; and (6) the studies
were published in English, French, or German. Reasons
for exclusion of an article were as follows: (1) any ma-
nipulation in or around the brain before, during, or after
the peripheral infectious stimulus; (2) the use of a
neurotropic pathogen; (3) the use of a chemical synthetic
infectious stimulus; (4) animal models in which the in-
fectious stimulus reached the brain and caused second-
ary meningitis; (5) the use of transgenic animal models
for a specific (brain) disease; and (6) animal models
where the infectious stimulus was given intra-uterine.
Full text articles of selected studies were obtained for
further evaluation. Two independent observers extracted
data and resolved differences by discussion.

Data extraction
Each study was scored for key issues, such as animal
species, gender, age, and genetic background; number of
animals in treated and control groups; method of dos-
age, site of inoculation, and kind of infectious stimulus
that was administrated; the effect of peripheral infectious
stimulus on microglial cells in the brain; and methods of
how this effect was determined on which time point
after inoculation and in which region of the brain this
effect was examined. The quality of studies was judged
by a risk of bias assessment, scoring external and in-
ternal validity for each study [19].

Definition of microglial activation
Microglial cells were defined as activated based on the fol-
lowing criteria: (1) microglia showed an activated morph-
ology based on immunohistochemical staining; (2) there
was a significant increase in number and/or size of micro-
glia compared to the control group; and (3) there was a
significant increase in expression of a microglial marker.
When all three criteria were negative, microglia were in-
active. If one or more criteria were positive, microglia were
activated. If results were contradictory (e.g., increased
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expression of microglial marker but morphology was
negative) microglia were judged as moderately activated.

Results
Description of studies
In total, 2950 publications were identified and 149 were se-
lected for further review (Fig. 1); 29 publications met inclu-
sion criteria and 22 additional articles were identified in a
reference search, so 51 publications were included in this
systemic review. There was considerable variation in
animal species and stimuli. The majority of studies was
performed in mice (n = 30) or in rats (n = 19). LPS was
used as a peripheral infectious stimulus in 39 studies
(76 %), and live or heat-killed pathogens were used in
12 studies (24 %).
Information about animal characteristics such as

species, strain, sex, age, and weight was defined in 41
studies (80 %), and methods of the disease model were
described in 35 studies (68 %). Four studies lacked de-
scription of animal characteristics and disease model.
Just one study described treatment allocation as ran-
domized and evaluation in a blinded fashion [20].
None of the studies provided power calculations for
animal group sizes, reported baseline measurements of
animals between groups, or handling of outlined or
missing data.
Fig. 1 Study selection process
Outcome parameters
Microglial response was the main outcome parameter in
all studies; the state of microglia was defined by immuno-
histochemistry in 36 studies (70 %), by the combination of
immunohistochemistry, and respectively, quantitative
polymerase chain reaction (qPCR) in two studies (4 %),
Western blot in two studies (4 %), or in situ hybridization
in one study (2 %); six studies used qPCR (12 %), three
flow cytometry (6 %), and one study Western blot (2 %) to
define microglial activation.
The most commonly used marker of microglial activa-

tion was the ionized calcium-binding adaptor molecule 1
(Iba-1), either as sole marker (n = 20), or in combination
with cluster of differentiation 68 (CD68; n = 2), Griffonia
symplicifolia isolectin B4 (IB4; n = 1), or macrophage re-
ceptor with collagenous structure (MARCO; n = 1).
CD11b was used in 14 studies, and 5 of these studies
combined CD11b with CD68, major histocompatibility
complex II (MCHII), Toll-like receptors 2 and 4 (TLR-2,
TLR-4), and F4/80. In three other studies, TLR-2 was
stated as an activation marker of microglial cells after
identifying the cells with CD45 and CD11b antibodies by
flow cytometry or in combination with Iba-1. One study
used TLR-2 with qPCR while MHCII expression between
groups was similar [21]. The markers CD68 (n = 5), F4/80
(n = 2,) and IB4 (n = 2) were also used as sole markers.
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The brain region of interest in the majority of studies
was the hippocampus. Several studies restricted their
interest to the hippocampal area (n = 17). Eight studies
evaluated the hippocampal area in combination with other
brain regions: cortex (n = 8), substantia nigra (n = 2), cere-
bellum (n = 2), thalamus (n = 1), striatum (n = 1), mid-
brain (n = 1). Five studies were limited to the cortical
areas. Four studies homogenized the hemispheres for
flow cytometry analysis or qPCR. The remainder 16
studies (25 %) evaluated other brain regions, and brain
regions were not specified in one study.
Secondary outcomes were inflammatory mediators in

the brain, for example cytokines, chemokines, Toll-like
receptors (TLRs), or markers for damage or death, and
were evaluated in 37 studies (73 %). Behavioral studies
were performed in 14 studies (27 %).

Infectious stimuli
Lipopolysaccharide
A single-dose of LPS was evaluated in wild-type mice in
20 studies (Table 1). LPS was administered intraperito-
neally in 19 studies and subcutaneously in one study.
Mice were male in 16 of 20 studies (80 %) and varied
with respect to age and genetic background. The major-
ity of studies used LPS derived from Escherichia coli (E.
coli) (12 of 20 studies [60 %]), four studies used LPS
from Salmonella ssp., and four studies did not report the
LPS origin. The dose of LPS ranged between 0.33 and
200 mg/kg, with 1 and 5 mg/kg both used in seven stud-
ies. Microglial response was evaluated 1 h to 1 year after
LPS injection.
Two studies described activation of microglia 6 h after

inoculation, 11 of 12 studies (92 %) showed microglial ac-
tivation 1 day after inoculation, and three studies found
microglial activation 3 days after challenge. Findings impli-
cate that a single LPS challenge activates microglia 6 h
after challenge and that the activation remains for at least
3 days. Five studies evaluated microglial response after this
period: three studies showed no microglial activation after
1 week, 5 weeks, and 5 months, while another study re-
ported moderately activated microglia after 3 months.
One study showed microglial activation 1 year after LPS
challenge (Table 1). Importantly, overall, the interpret-
ation of the results was hampered by lack of informa-
tion. The number of animals was noted in only 13 of 20
studies (65 %), and a statistical test comparing microglial
response in LPS challenged and control groups were pro-
vided in 10 studies (50 %). LPS challenges in experiments
using knockout mice were described in four studies, all
using intraperitoneal injection, and are discussed below in
the separate sections (Appendix) [22–25].
A single LPS challenge in rats was evaluated in eight

studies. LPS was given intraperitoneally (63 %) or intra-
venously (37 %; Table 1), and seven studies used LPS
from E. coli. LPS origin was not mentioned in one study.
Dose of LPS ranged between 0.002 and 10 mg/kg. In
general, microglia start to become moderately active 3 h
after LPS challenge, reaching their activation state after
8 h to 2 days, and return to their normal resting state
after 7 days.
Sequential LPS challenges were evaluated in nine studies

(Table 2); seven studies used mice and two studies rats.
Five of nine studies (56 %) were done in mice with a
C57BL/6 genetic background, and age of these animals
varied between 5 weeks and 10 months. LPS from E. coli
was used in six of the nine studies; origin of LPS was not
mentioned in three studies. Dose of LPS ranged from 0.05
to 4 mg/kg. Animals were challenged between 2 and 48
times over a period of 1 day to 6 months with total LPS
dose ranging from 0.1 to 56 mg/kg. Eight of these nine
studies showed microglial activation (89 %); however, the
majority of time points evaluated after 1 month showed
only moderate or no microglial activation.
One study administered LPS 1 mg/kg intraperitoneally

in 6-month-old male gerbils, prompting a moderate
microglial response at day 4 [26]. Another study evaluated
the effect of serial intraperitoneal injections of 0.2 mg/kg
LPS at different stages of brain development in opossums
(on postnatal day [P] P14, P35, and P42) [27]. At day 10
after the first LPS injection, immunohistochemistry re-
vealed microglial activation in younger age groups (P14
and P35) but not in older animals (P42) [27].

Lipoteichoic acid
One study evaluated intravenous administration of 20
mg/kg lipoteichoic acid (LTA) from Staphylococcus aur-
eus (strain L2515) in rats [28]. Two days after challenge,
microglial cells were activated as shown by enhanced
immunoreactivity for CD11b and MHCII as compared
to the unchallenged group, 2 days after LTA challenge.
In these experiments, CD68 immunoreactivity of the
pineal microglia appeared unaltered, while challenge
with LPS (0.05 mg/kg) induced enhancement of CD68
immunoreactivity in addition to response for morph-
ology, CD11b, and MHCII expression.

Bacteria
Bacteria were used as systemic challenge in 12 of 51
studies (24 %; Table 3). Animal species were rats in the
majority of studies (75 %). Live bacteria were used in
seven studies (58 %) and heat-killed bacteria in five stud-
ies (42 %). E. coli (American Type Culture Collection
(ATCC) 15746) was most commonly used as systemic
challenge with live bacteria (86 %); other live bacteria
administered were Salmonella typhimurium. The heat-
killed bacteria that were used were Mycobacterium tu-
berculosis and Mycobacterium butyricum, also referred
to as complete Freund’s adjuvant (CFA).



Table 1 Single challenge with lipopolysaccharide (LPS) in mice and rats

Study Genetic
background

N Age/weight Sex Type of LPS Site of LPS Dose (mg/kg) Time of termination Microglial activation

Mice

Henry [33] BALB/c 6 3 m M E. coli (O127:B8) ip 0.33 1 day Yes

Henry [21] BALB/c 7 3–4 m M E. coli (O127:B8) ip 0.33 4 h Yes

18–20 m 4 h Yes

Carnavale [58] C57BL/6 4 12–15 w M S. equine abortus ip 0.5 1 day Yes

5 weeks No

Terrando [22] C57BL/6 4 12–14 w M E. coli (O111:B4) ip 1 1 day Yes

3 days Yes

1 week No

Chung [36] ICR 7 6 w M U ip 1 6 h Yes

12 h Yes

1 day Yes

Chen [25] C57BL/6 4 8–12 w M E. coli (O55:B5) ip 1 1 day No

Laflamme [3] CD1 U 20–25 gr M E. coli (O55:B5) ip 1 U Yes

Gao [59] B6C3F1/J U 7 m M E. coli (O111:B4) ip 1 1 day Yes

5 months No

Okuyama [41] ICR 10 6 w M S. typhimurium ip 1 3 days Yes

Kaushik [60] BALB/c U 6–8 w U S. enterica ip 5 1 day Yes

Hwang [61] C57BL/6 U 11 w M E. coli (O55:B5) ip 5 3 days Yes

Qin [7] B6:129SF2 U 8 w M E. coli (O111:B4) ip 5 2 h Yes

C57BL/6 U 3 h Yes

Sierra [6] p7.2fms-EGFP U 2 m B S. typhimurium ip 5 1 day Yes

Masocha [62] C57BL/6 8 8–12 w U E. coli (O111:B4) ip 5 4 h No

1 day Yes

1 year Yes

Ha [63] C57BL/6 5 7 w M U ip 5 3 h Yes

O’Callaghan [40] C57BL/6 4 8–10 w M E. coli (O111:B4) ip 5 1 day Yes

3 months Moderate

Bhaskar [23] C57BL/6 U 2 m U U ip 1 1 day Moderate

10 1 day Yes

Nishioku [45] ICR 4 8 w M E. coli (O55:B5) ip 20 1 h No

3 h No

6 h Yes

1 day Yes

Smithason [20] C57BL/6 6 10–12 w M U ip 200 2 days Moderate

Sehgal [8] C57BL/6 15 2–3 m M E. coli (O55:B5) sc 3 12 h Yes

Rats

Monje [64] Fisher 344 3 160–180 gr F U ip 1 1 week Yes

Fan [39] Sprangue-Dawley 6 5 d B E. coli (O55:B5) ip 2 1 day Yes

Wang [65] Sprangue-Dawley 3 280–300 gr M E. coli (O55:B5) ip 5 1 day Yes

Semmler [66] Wistar 4 250–300 gr M E. coli (O127:B8) ip 10 4 h No

8 h No

1 day Moderate
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Table 1 Single challenge with lipopolysaccharide (LPS) in mice and rats (Continued)

Semmler [5] Wistar 5 250–300 gr M E. coli (O127:B8) ip 10 1 day Yes

Garcia-Bueno [67] Sprangue-Dawley 5 260–340 gr M E. coli (O55:B5) iv 0.002 1–3 h Moderate*

Jiang-Shieh [28] Wistar 10 200–250 gr M E. coli (O55:B5) iv 0.05 2 days Yes

Buttini [44] Sprangue-Dawley 2 180–200 gr M E. coli (O55:B5) iv 1 1 day No*

2.5 and 5 1 h No*

3 h Moderate*

6 h Moderate*

8 h Yes*

1 day Yes*

3 day Moderate*

1 week No*

Column time of termination is the time from the (first) LPS challenge
Abbreviations: N number of animals per group, m months, wk weeks, d days, gr gram, U unknown, M male, F female, B both sexes, ip intraperitoneal, sc
subcutaneous, iv intravenous, iv intravenous
*Did not express data in statistical values, no statistical information
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Six studies from one research group focused on the ef-
fect of systemic infectious challenge in early life. In these
studies, infant rats (P4) were challenged with E. coli 1x
105 colony-forming units (CFU)/g subcutaneously. Im-
munohistochemistry with Iba-1 revealed activated
microglia in the hippocampus 2 days after challenge and
Table 2 Multiple intraperitoneal challenges with lipopolysaccharide

Study Genetic
background

N Age Sex Type of LPS

Mice

Frank-Cannon [38] C57BL/6 3 6–13 w U E. coli (O111:B4)

Katafuchi [68] C57BL/6 8 10 m M U

Lee [52] ICR 5 5 w M U

Nguyen [34] C57BL/6 U 6 m U E. coli (O55:B5)

Franciosi [46] FVB/N 5 5 m B U

8 m

Chen [25] C57BL/6 4 8–12 w M E. coli (O55:B5)

Shankaran [69] C57BL/6 5 10–15 w F E. coli (O111:B4)

Rats

Yin [70] Sprangue-Dawley 4 3 d M E. coli (O55:B5)

Wu [9] Sprangue-Dawley 8 10 w M E. coli (U)

Column time of termination is the time from the (first) LPS challenge. All challenges
Abbreviations: N number of animals per group, U unknown, M male, F female, B bo
2 weeks, q.wk once a week, q.a.d. every other day, b.i.w. 2 times a week
*Did not express data in statistical values, no statistical information
increased CD11b expression in the hippocampus area up
to 3 months after infection. Another study using S. typhi-
murium (SL3261; 106 CFU) showed increased expression
of CD11b and CD68 in the thalamus 7 days after the chal-
lenge. Interestingly, CD11b and CD68 expression returned
to baseline levels 3 weeks after challenge. At all time
(LPS) in mice and rats

Dose (mg/kg) Number of hits Total dose
(mg/kg)

Time of
termination

Microglial
activation

0.1 b.i.w. 16× 1.6 2 months No

0.1 b.i.w. 24× 2.4 3 months Yes*

0.1 b.i.w. 48× 4.8 6 months No

0.25 q.d. 7× 1.75 7 days Yes

0.25 q.d. 7× 1.75 18 days Yes

1 q.2wk. 6× 6 15 weeks No*

1 q.wk. 4× 4 4 weeks Yes

16× 16 17 weeks Yes

1 q.d. 2× 2 3 days Moderate*

4× 4 5 days Yes

0.3 q.a.d. 4× 1.2 7 days No

1 q.a.d. 4× 4 7 days Yes

4 q.a.d. 4× 16 7 days Yes

4 q.a.d. 14× 56 4 weeks Yes

0.05 q.a.d 2× 0.1 6 days Yes

18 days Yes

42 days No

1.2 q.d. 14× 16.8 1 week Yes

were intraperitoneal
th sexes, m months, w weeks, d days, gr gram, q.d. every day, q.2wk once every



Table 3 Challenge with pathogens in mice and rats

Study Genetic
background

N Age/weight Sex Pathogen Site of challenge Dose

Mice

Püntener [43] C57BL/6 3 >8 w F S. typhimurium (SL3261) ip 1 × 106 CFU 1 day No

7 days Moderate

21 days No

Rabchevsky [31] C57BL/6 6 6 w F CFA sc + ipl 150 ug 14 days No

21 days No

Di Filippo [32] Biozzi ABH 4 6–8 w F CFA sc + ipl 100 ug U Yes

Rats

Bland [71] Sprangue-Dawley 8 4 d M E. coli (ATCC 15746) sc 1 × 105 CFU/g 2 days Yes

70 days Yes

98 days Yes

Williamson [72] Sprangue-Dawley 9 4 d M E. coli (ATCC 15746) sc 1 × 105 CFU/g 2–3 months Yes

Bilbo [73] Sprangue-Dawley 6 4 d M E. coli (ATCC 15746) sc 1 × 105 CFU/gram 2 months No*

16 months Yes

Bilbo [42] Sprangue-Dawley 8 4 d M E. coli (ATCC 15746) sc 1 × 105 CFU/g 56 days Yes

Bilbo [35] Sprangue-Dawley 6 4 d M E. coli (ATCC 15746) sc 1 × 105 CFU/g 56 days No

Bilbo [37] Sprangue-Dawley 8 4 d M E. coli (ATCC 15746) sc 1 × 106 CFU 2 h No

8 h No

1 day Yes

2 days No

3 days Yes

2-3 months Yes

Raghavendra [4] Sprangue-Dawley 4 175–200 gr M CFA ipl 100 ul 4 h Moderate

4 days Yes

2 weeks Yes

Liu [30] Lewis 6 2 m F Heat-killed M. butyricum id 1.5 mg 3 weeks Moderate*

12 m Yes

Wu [29] Lewis 6 100–110 gr F Heat-killed M. butyricum id 25 mg/kg 2 weeks Yes

3 weeks Yes

4 weeks Yes

Column time of termination is the time from the (first) LPS challenge
Abbreviations: U unknown, F female, m months, d days, ip intraperitoneal, ipl intraplantar, M male, B both sexes, w weeks, gr gram, sc subcutaneous, id
intradermal, N number of animals per group, CFA complete Freund’s adjuvant
*Did not express data in statistical values, no statistical information
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points during this experiment, microglia were morpho-
logical ramified with fine processes.
Studies evaluating challenge with heat-killed bacteria

used CFA, a solution composed of heat-killed and dried
mycobacteria (usually M. butyricum and/or M. tubercu-
losis). Injecting CFA intradermal or intraplantar induces
adjuvant arthritis, a model of chronic peripheral inflam-
mation. One study showed CD11b messenger ribonucleic
acid (mRNA) expression in brainstem and forebrain 4 h, 4
days, and 2 weeks after CFA challenge [4]. Another study
challenging rats with 25 mg/kg CFA showed cortical
microglial activation immunohistochemistry with Iba-1 2,
3, and 4 weeks after inoculation [29]. One study evaluated
the role of age and compared rats of two and 12 months
old, using 1.5 mg challenge of CFA, showing morphologic-
ally activated microglia revealed in the CA1 region of the
hippocampus for both age groups, three weeks after chal-
lenge [30]. However, no CD68 or IL-1β-positive microglial
cells were detected in the brains of 2-month-old rats,
while the expression of CD68 and IL-1β was significantly
increased in hippocampal CA1 region of 12-month-old
rats compared to control rats.
CFA is also used to induce experimental allergic en-

cephalomyelitis (the EAE model), an animal model for
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multiple sclerosis (MS), by peripheral injections of CNS
tissue homogenized with these heat-inactivated myco-
bacteria. Only the control groups (CFA) could be in-
cluded in the current review. One mouse study showed
no microglial activation in the brainstem up to 3 weeks
after inoculation with 150 ug CFA [31]. Another mouse
study using 100 ug CFA on days 1 and 7 showed acti-
vated microglia in the CA1 region of the hippocampus
22 days after the last challenge [32].

Inflammatory parameters
Inflammatory parameters were reviewed if they were
evaluated concomitantly with the microglial response.
This was done in 23 of 51 studies (45 %).

Toll-like receptors
Seven studies evaluated TLRs on microglia, by qPCR,
immunohistochemistry, in situ hybridization, or flow cy-
tometry: four evaluated TLR-2 expression [3, 21, 33, 34]
and three TLR-4 expression [4, 35, 36]. Three studies de-
scribed TLR-2 upregulation [3, 21, 33] and two TLR-4
upregulation [4, 36]. Microglial activation was associated
with TLR upregulation independent of type of challenge
(LPS, E. coli, or CFA) or time point of evaluation. In
those studies showing resting microglia after challenge,
TLR expression was not different from the control
group. One study challenged TLR-4 knockout mice with
serial LPS injections of 1 mg/kg every day for 4 days,
showing decreased microglial activation in the knockout
mice as compared to wild-type animals (Appendix) [25].
Although TLR-2 is known for its recognition of lipopep-
tides, peptidoglycans (PGN), and LTA, all of which are
cell wall components of gram-positive bacteria, TLR-2
upregulation was found after LPS challenge [3, 21, 33].
One study using a head-to-head comparison between
LPS, PGN, and LTA challenges showed a profound tran-
scriptional activation of TLR-2 only after LPS.

Cytokines and chemokines
TNF-α protein levels or mRNA expression were deter-
mined in 14 studies [3–9, 29, 32, 34, 37–40], by qPCR,
ELISA, western blot, in situ hybridization, and immuno-
histochemistry, at 23 different time points after the chal-
lenge. Microglial activation was associated with increased
expression of TNF-α in the brain, as compared to con-
trols, at 12 time points: ranging from 3 h to 1 day after
single LPS (n = 5), after multiple LPS (n = 1), or after a
CFA challenge (n = 6). At four time points, microglial acti-
vation was described without increased TNF-α protein
levels: 1 day after single LPS (n = 1), 1 and 3 days after E.
coli (n = 2), or 22 h after CFA challenge (n = 1). One study
observed an elevation of TNF-α mRNA and protein levels
30 min after a single LPS challenge [7], and this effect
remained up to 10 months after the LPS administration.
Interestingly, the studies evaluating E. coli challenge
showed no differences in TNF-α concentration as com-
pared to the control group, independent of whether or not
microglia were activated [37].
Interleukin 1 beta (IL-1β) protein levels or mRNA ex-

pression were determined in 16 studies [4–6, 8, 9, 21, 22,
30, 32, 35, 37, 39–43], at 24 different time points after
challenge. At 13 time points microglial activation was
present in combination with increased IL-1β protein levels
or mRNA expression patterns, from 4 h to 1 week after
LPS challenge (n = 7), from 1 and 56 days after E. coli
challenge (n = 2), and from 4 h to 3 weeks after CFA chal-
lenge (n = 4). At three time points, microglia were acti-
vated but no IL-1β increase was measured; 1 day after LPS
(n = 1), 2 days after E. coli (n = 1), and 22 h after CFA
challenge (n = 1). In studies showing microglia in resting
or moderately activated states, brain IL-1β levels were
comparable to that of the control group (n = 7). IL-1 re-
ceptor (IL-1R) knockout mice were used in one study,
evaluating a single dose of 1 mg/kg of LPS (Appendix)
[22], and IL-1R knockouts had no microglial activation in
the CA1 region of the hippocampal area, in contrast to
the wild-type group. IL-1R antagonist (IL-1Ra) injection in
wild-type mice just before the LPS challenge also pre-
vented microglial activation, suggesting an important role
of IL-1 in the activation of microglia.
Interleukin 6 (IL-6) protein levels or mRNA expres-

sion were determined in seven studies [4–6, 8, 9, 22, 37],
at 17 different time points after challenge. At five time
points, microglial activation was present in combination
with increased protein levels or mRNA expression pat-
terns, at 12 h and 1 week after a single LPS (n = 2) and
at 4 h, 4 days, and 2 weeks after CFA challenge (n = 3).
At five time points, microglia were activated but brain IL-
6 levels were similar to controls: 1 day after single LPS
(n = 3) and 1 and 3 days after E. coli challenge (n = 2).
Animals challenged with E. coli had similar IL-6 con-
centration as compared to the controls, independent of
whether microglia were activated (n = 2) or not (n = 3).
Interleukin 10 (IL-10) protein levels or mRNA expres-

sion were determined in seven studies [5, 6, 8, 21, 29, 37],
at 12 different time points after challenge. At four time
points, microglia were activated in combination with in-
creased protein levels or mRNA expression patterns: 4 h
and 1 day after systemic LPS (n = 2) and 3 and 4 weeks
after CFA challenge (n = 2). At four time points, microglia
were activated but brain IL-10 levels were similar to
controls: 1 day after LPS (n = 1), 1 and 3 days after E.
coli (n = 2), and 2 weeks after CFA challenge (n = 1).
One study showed microglial activation after LPS chal-
lenge but decreased levels of IL-10 in the brain [8].
Two studies measured transforming growth factor beta

(TGF-β) mRNA expression with qPCR 1 day after a sin-
gle LPS challenge [5, 6]. Microglial cells were activated
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in both studies. One study measured brain TGF-β
mRNA expression and found increased concentrations
[5]. The other study measured TGF-β in isolated micro-
glia and found no differences between challenged and
control groups [6]. Two studies measured monocyte
chemotactic protein 1 (MCP-1) mRNA expression in the
brain [5, 8], showing that microglial activation was asso-
ciated with MCP-1 upregulation. Fractalkine receptor
(CX3CR1) knockout mice were used in two studies
evaluating a single dose of 10 mg/kg LPS [23] and mul-
tiple LPS challenges (20 ug for 4 days) (Appendix) [24].
One day after the (last) LPS challenge, immunohisto-
chemistry with Iba-1 revealed enhanced microglial acti-
vation in the hippocampal area of the CX3CR1
knockout mice as compared to wild-type animals.

Blood–brain barrier
The blood–brain barrier (BBB) was examined in eight
studies [27, 28, 31, 36, 37, 44–46]. Four studies showed
disruption of the BBB (challenge was LPS in two studies,
either intraperitoneal or intravenous, E. coli subcutane-
ously in one study and CFA intraperitoneal in the other
study) [28, 31, 37, 45], three studies showed intact BBB
(challenge was LPS in all three studies, either intraperito-
neal [n = 2] or intravenous [n = 1]) [36, 44, 46], and one
study showed inconclusive results (challenge was LPS)
[27]. Studies were highly variable with respect to methods
used to define the integrity of the BBB (fluorescent so-
dium, protein and fibrinogen extravasation, exogenous
horseradish peroxidase, Evans blue dye, ribosomal ribo-
nucleic acid (rRNA) of E. coli, fluorescent LPS, and the in-
vasion by blood monocytes or macrophages).

Discussion
Experimental studies have shown that peripheral inflam-
matory stimuli, such as LPS, cause a profound immuno-
logical response in the brain resulting in microglial
activation. After a single challenge of LPS, microglia were
moderately active within 3 h after administration, reaching
their profound activation state after 8 h to 2 days and sub-
sequently return to their normal resting state after 7 days.
Interestingly, cytokine expression levels in the brain and
activation markers may remain elevated for months after a
single LPS challenge. These experiments also showed that
systemic challenge with live bacteria, mainly the gram-
negative bacteria E. coli and S. typhimurium, causes
microglial activation. A gram-negative bacterium contains
approximately 10−15 g of LPS, which implicates that the
LPS dosages used in the included animal studies are
supernatural. Consequently, the microglial response of
challenge with bacteria is less profound as compared to
that found in the experiments using a challenge with
supernatural LPS doses. LPS as a peripheral inflammatory
challenge is much easier to use than live bacteria: there is
no waiting for bacteria to be cultured, no monitoring of
bacteria to grow in midlog phase, and no time is lost with
harvesting, wash and dilute the bacteria in the right
amount. In addition, there is no danger of contamination,
and therefore, the laboratory and animal facility do not
have to comply with special safety matters. However, be-
cause of the differences in microglial response between a
peripheral challenge with LPS or live bacteria, the clinical
relevance of using LPS in these animal models is question-
able. Experimental studies using live bacteria suggest an
important role of age in the process of microglial activa-
tion after systemic challenge, although further research is
needed to confirm this. The observed effects support the
central role of microglial response in the development of
sepsis-associated delirium and poor functional outcome
after sepsis, in particular in the elderly population [15].
The mechanisms connecting systemic inflammatory chal-

lenge and microglial activation remain unclear. Several
pathophysiological mechanisms have shown to play a role
in this process. Microglia may be activated through primary
autonomic afferents—in particular the vagal nerve—by ac-
tive BBB transport of pro-inflammatory chemo- and/or cy-
tokines, passive transport of pro-inflammatory products via
the circumventricular organs, or by signaling the epithelial
cells of the blood–brain barrier [47]. Microglial activation
was associated with upregulation of TLRs, independent of
type of challenge or time point of evaluation. In studies in
which microglial activation was not observed, TLR expres-
sion was not different from the control group [34, 35].
Moreover, microglia could not be activated in TLR re-
ceptor knocked-out mice [25]. Microglial activation
was associated with elevated levels of pro-inflammatory
mediators in the brain.
Age is an important intrinsic factor determining the

level of microglial activation after a systemic inflamma-
tory challenge. The normal aging process induces
changes in microglial phenotype, and these age-related
changes are also called “priming” [48]. Two studies com-
pared the effect of age on microglia after a peripheral
challenge [21, 30]. Systemic LPS challenges caused a
hyperactive microglial response in the brain of aged
mice, associated with higher induction of inflammatory
IL-1β and anti-inflammatory IL-10 [21]. Peripheral CFA
injection induced hippocampal microglial activation in
middle-aged rats and moderate activation in young rats.
In these experiments, microglial activation in middle-
aged rats was associated with neurocognitive deficits
[30]. Aging-induced immune senescence occurs in the
brain as age-associated microglial senescence, which
renders microglia to function abnormally and may even-
tually promote neurodegeneration.
Evidence suggests that microglia act neurotoxic when

fully activated (M1 phenotype) [49], whereas other stud-
ies show that activated microglia show more diversity



Table 4 Keypoints review

Keypoints

• Systemic challenge with LPS and live bacteria cause a profound
immunological response in the brain resulting in microglial activation.

• Microglial response after challenge with bacteria is less profound as
compared to challenge with LPS, which makes the clinical relevance of
using LPS in these animal models questionable.

• When defining microglial activation, researcher should not only focus on
proliferation and morphology, but also examine pro-and anti-inflammatory
markers indicating M1/M2 responses.

• Mechanisms connecting systemic inflammatory challenge and microglial
activation remain unclear, but age is an important intrinsic factor.

• Future experimental studies on studying systemic inflammation and
microglial response should do the following:
−use mouse models
−use live bacteria
−use standardized and quantitative measurements of microglial activation
−focus on the role of the aging brain
−apply with the current standards of animal experiments
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and can have a role in remodeling and repair as well
(M2 phenotype) [50, 51]. The M1 immune response of
microglia is triggered by the activation of TLRs via
pathogen-associated molecular patterns (PAMPs) or
intracellular proteins released from damaged neurons;
other M1 triggers are complement 1q (C1q) and adeno-
sine triphosphate (ATP) released from astrocytes in re-
sponse to neuronal injury [11, 12]. These activated M1
microglia produce the pro-inflammatory mediators
TNF-α, IL-1β, and IL-6 [11, 12]. M2 activation is in-
duced by signals from apoptotic cells that activate trig-
gering receptor expressed by myeloid cells-2 (TREM2)
such as heat shock protein 60 (Hsp60), or by anti-
inflammatory cytokines, such as interleukin 14 (IL-14) and
interleukin 13 (IL-13). M2-activated microglia have a role
in remodeling and repair, triggering anti-inflammatory re-
sponses via release of TGF-β and IL-10 [11–13]. While be-
yond the scope of this review, several studies show an
association between systemic LPS challenge, microglial ac-
tivation, and cognitive deficits in mice [52–55]. These
studies demonstrate that systemic LPS challenge causes
cyclooxygenase-1 (COX-1), COX-2, and inducible nitric
oxide synthase (iNOS) expression in the brain, which is
hypothesized to cause susceptibly to cognitive deficits in
mice [52, 53, 55]. Regarding these facts, it is imperative—
when it comes to defining microglial activation—to focus
not only on proliferation and morphology but also examine
pro- and anti-inflammatory markers on or around micro-
glia. If more homogeneous data on these inflammatory
markers, in relation to microglial activation, would be
available, then bigger steps can be made in understanding
the pathogenesis in why neuro-inflammation occurs when
a systemic challenge is administrated. However, less than
half of the studies (45 %) included in this review contain
data on inflammatory mediators. When microglia were ac-
tivated, an increase in TLR-2, TLR-4, TNF-α, and IL-1β
mRNA expression or protein levels in the brain was seen
in most studies. A few studies examined anti-inflammatory
markers IL-10 (n = 6), TGF-β (n = 2), and MCP-1 (n = 2).
Studies have shown that microglial cells express various

neurotransmitter receptors [56], and neurotransmitters
could also exert pro- and anti-inflammatory effects on
microglial cells. For example, ionotropic glutamate re-
ceptors (iGluRs) can modulate TNF-α release, gamma-
amino-butytric acid (GABA) receptors modulate IL
release (IL-6 and IL-12) and adrenergic, dopaminergic,
and cholintergic receptors exhibit anti-inflammatory
effects [57]. These receptors add another challenge on
the pathogenesis on neuro-inflammation and should
not be ignored.
Heterogeneity among the included 51 studies hampered

the opportunity for a synthesis, e.g., quantitatively, in this
systematic review. Studies investigated several animal spe-
cies and inflammatory stimuli at different time points. Lack
of adequate experimental description, power calculations
for animal group sizes, reported baseline measurements of
animals between groups, or handling of outlined or miss-
ing data further limited generalization of the results.
Nevertheless, this review provides a valuable overview of
current knowledge.
Conclusion
Experimental studies have shown that peripheral chal-
lenge with LPS causes a profound immunological re-
sponse in the brain resulting in microglial activation, but
systemic challenge with live bacteria causes microglial
activation as well. However, the microglial response of
challenge with bacteria is less profound as compared to
that found in the experiments using a challenge with
supernatural LPS doses. The mechanisms connecting
systemic inflammatory challenge and microglial activa-
tion remain unclear, but age is an important intrinsic
factor determining the level of microglial activation after
a systemic inflammatory challenge. Heterogeneity among
the included studies hampered the opportunity for a
synthesis, e.g. quantitatively, in this systematic review.
Future experimental studies should opt for mouse
models, use live bacteria as well as standardized and
quantitative measurements of microglial activation, for
example, with flow cytometry, and focus on the role of
the aging brain. These studies should apply with the
current standards of animal experiments [19]. For opti-
mal external validation, experimental studies should in-
vestigate the role of aging on microglial activation
following a systemic infection with live bacteria, analo-
gous to the human situation: the clinical problem of
long-term poor outcome of sepsis-associated delirium in
elderly patients (Table 4).
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Appendix
Table 5 Intraperitoneal challenge with lipopolysaccharide (LPS) in knock-out mice

Study Knock out
gene

N Age Sex Type of LPS Dose Time of termination Microglial activation Compared to wild-type

Bhaskar [23] CX3CR1−/− U 2 m U U 10 mg/kg 1 d Yes* More*

Terrando [22] IL-1R−/− 4 12–14 w M E. coli (O111:B4) 1 mg/kg 1 d No Less*

3 d No Less*

1 w No Same*

Cardona [24] CX3CR1−/− U U U U 20 ug q.d. 2× 4 d Yes* More*

Chen [25] TLR4−/− 4 8–12 w M E. coli (O55:B5) 1 mg/kg q.d. 2× 4 d No* Less*

Column time of termination is the time from the (first) LPS challenge. All challenges were intraperitoneal
Abbreviations: U unkown, m months, d days, M male, w weeks, q.a.d every other day, N number of animals per group
*Did not express data in statistical values, no statistical information
Abbreviations
ATCC: American Type Culture Collection; ATP: adenosine triphosphate;
BBB: blood–brain barrier; C1q: complement 1q; CD11b: cluster of
differentiation 11b; CD45: cluster of differentiation 45; CD68: cluster of
differentiation 68; CFA: complete Freund’s adjuvant; CFU: colony-forming
units; COX-1: cyclooxygenase-1; COX-2: cyclooxygenase-2; CX3CR1: fractalkine
receptor; E. coli: Escherichia coli; GABA: gamma-amino-butytric acid;
Hsp60: heat shock protein 60; IB4: Griffonia symplicifolia isolectin B4; Iba-
1: ionized calcium-binding adaptor molecule 1; iGluRs: ionotropic glutamate
receptors; IL-10: interleukin 10; IL-13: interleukin 13; IL-14: interleukin 14; IL-
1R: interleukin-1 receptor; IL-1Ra: interleukin-1 receptor antagonist; IL-
1β: interleukin 1 beta; IL-6: interleukin 6; iNOS: inducible nitric oxide synthase;
LPS: lipopolysaccharide; LTA: lipoteichoic acid; M. butyricum: Mycobacterium
butyricum; M. tuberculosis: Mycobacterium tuberculosis; MARCO: macrophage
receptor with collagenous structure; MHCII: major histocompatibility complex
II; MCP-1: monocyte chemotactic protein 1; mRNA: messenger ribonucleic
acid; MS: multiple sclerosis; P: postnatal day; PAMPs: pathogen-associated
molecular patterns; PGN: peptidoglycans; qPCR: quantitative polymerase
chain reaction; rRNA: ribosomal ribonucleic acid; S. typhimurium: Salmonella
typhimurium; TGF-β: transforming growth factor beta; TLR: Toll-like receptor;
TLR-2: Toll-like receptor 2; TLR-4: Toll-like receptor 4; TLRs: Toll-like receptors;
TNF-α: tumor necrosis factor alpha; TREM2: triggering receptor expressed by
myeloid cells-2.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ICMH and CH searched PubMed and Embase database, reviewed articles for
inclusion and exclusion criteria, and extracted and analyzed data. All authors
participated in its design and coordination. ICMH and DB wrote the first draft
of the manuscript. All authors read and approved the final manuscript.

Financial support
This work was supported by ZonMW (WAvG, TOP grant #40-00812-98-10017).
DvdB is supported by The European Research Council (ERC Starting Grant
#281156) and ZonMW (Vidi grant #016.116.358).

Author details
1Department of Neurology, Center of Infection and Immunity Amsterdam
(CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam,
The Netherlands. 2Intensive Care Medicine, Leiden University Medical Center,
Leiden, The Netherlands.

Received: 22 April 2015 Accepted: 26 May 2015

References
1. Cunningham C. Microglia and neurodegeneration: the role of systemic

inflammation. Glia. 2013;61(1):71–90.
2. Witlox J, Eurelings LS, de Jonghe JF, Kalisvaart KJ, Eikelenboom P,
van Gool WA. Delirium in elderly patients and the risk of postdischarge
mortality, institutionalization, and dementia: a meta-analysis. JAMA.
2010;304(4):443–51.

3. Laflamme N, Soucy G, Rivest S. Circulating cell wall components derived
from gram-negative, not gram-positive, bacteria cause a profound induction
of the gene-encoding Toll-like receptor 2 in the CNS. J Neurochem.
2001;79(3):648–57.

4. Raghavendra V, Tanga FY, DeLeo JA. Complete Freunds adjuvant-induced
peripheral inflammation evokes glial activation and proinflammatory
cytokine expression in the CNS. Eur J Neurosci. 2004;20(2):467–73.

5. Semmler A, Hermann S, Mormann F, Weberpals M, Paxian SA, Okulla T, et al.
Sepsis causes neuroinflammation and concomitant decrease of cerebral
metabolism. J Neuroinflammation. 2008;5:38.

6. Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K. Microglia derived from
aging mice exhibit an altered inflammatory profile. Glia. 2007;55(4):412–24.

7. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes
chronic neuroinflammation and progressive neurodegeneration. Glia.
2007;55(5):453–62.

8. Sehgal N, Agarwal V, Valli RK, Joshi SD, Antonovic L, Strobel HW, et al.
Cytochrome P4504f, a potential therapeutic target limiting
neuroinflammation. Biochem Pharmacol. 2011;82(1):53–64.

9. Wu KL, Chan SH, Chan JY. Neuroinflammation and oxidative stress in rostral
ventrolateral medulla contribute to neurogenic hypertension induced by
systemic inflammation. J Neuroinflammation. 2012;9(1):212.

10. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia.
Physiol Rev. 2011;91(2):461–553.

11. Tang Y, Le W. Differential roles of M1 and M2 microglia in
neurodegenerative diseases. Mol Neurobiol. 2015;20.

12. Moehle MS, West AB. M1 and M2 immune activation in Parkinson's disease:
foe and ally? Neuroscience. 2014. doi:10.1016/j.neuroscience.2014.11.018.

13. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector
cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–94.

14. Lemstra AW, Woud JCG. i't, Hoozemans JJ, van Haastert ES, Rozemuller AJ,
Eikelenboom P, et al. Microglia activation in sepsis: a case–control study. J
Neuroinflammation. 2007;4:4.

15. van Gool WA, van de Beek D, Eikelenboom P. Systemic infection and delirium:
when cytokines and acetylcholine collide. Lancet. 2010;375(9716):773–5.

16. Perry VH. The influence of systemic inflammation on inflammation in the
brain: implications for chronic neurodegenerative disease. Brain Behav
Immun. 2004;18(5):407–13.

17. Teeling JL, Perry VH. Systemic infection and inflammation in acute CNS
injury and chronic neurodegeneration: underlying mechanisms.
Neuroscience. 2009;158(3):1062–73.

18. MacLullich AM, Beaglehole A, Hall RJ, Meagher DJ. Delirium and long-term
cognitive impairment. Int Rev Psychiatry. 2009;21(1):30–42.

19. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M,
Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res
Methodol. 2014;14:43.

http://dx.doi.org/10.1016/j.neuroscience.2014.11.018


Hoogland et al. Journal of Neuroinflammation  (2015) 12:114 Page 12 of 13
20. Smithason S, Moore SK, Provencio JJ. Systemic administration of LPS
worsens delayed deterioration associated with vasospasm after
subarachnoid hemorrhage through a myeloid cell-dependent mechanism.
Neurocrit Care. 2012;16(2):327–34.

21. Henry CJ, Huang Y, Wynne AM, Godbout JP. Peripheral lipopolysaccharide
(LPS) challenge promotes microglial hyperactivity in aged mice that is
associated with exaggerated induction of both pro-inflammatory IL-1beta and
anti-inflammatory IL-10 cytokines. Brain Behav Immun. 2009;23(3):309–17.

22. Terrando N, Rei FA, Vizcaychipi M, Cibelli M, Ma D, Monaco C, et al. The impact
of IL-1 modulation on the development of lipopolysaccharide-induced
cognitive dysfunction. Crit Care. 2010;14(3):R88.

23. Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb
BT. Regulation of tau pathology by the microglial fractalkine receptor.
Neuron. 2010;68(1):19–31.

24. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al.
Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci.
2006;9(7):917–24.

25. Chen Z, Jalabi W, Shpargel KB, Farabaugh KT, Dutta R, Yin X, et al.
Lipopolysaccharide-induced microglial activation and neuroprotection
against experimental brain injury is independent of hematogenous TLR4. J
Neurosci. 2012;32(34):11706–15.

26. Yu JT, Lee CH, Yoo KY, Choi JH, Li H, Park OK, et al. Maintenance of anti-
inflammatory cytokines and reduction of glial activation in the ischemic
hippocampal CA1 region preconditioned with lipopolysaccharide. J
Neurol Sci. 2010;296(1–2):69–78.

27. Stolp HB, Ek CJ, Johansson PA, Dziegielewska KM, Bethge N, Wheaton BJ,
et al. Factors involved in inflammation-induced developmental white matter
damage. Neurosci Lett. 2009;451(3):232–6.

28. Jiang-Shieh YF, Wu CH, Chien HF, Wei IH, Chang ML, Shieh JY, et al.
Reactive changes of interstitial glia and pinealocytes in the rat pineal gland
challenged with cell wall components from gram-positive and -negative
bacteria. J Pineal Res. 2005;38(1):17–26.

29. Wu Z, Zhang J, Nakanishi H. Leptomeningeal cells activate microglia and
astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines
during systemic inflammation. J Neuroimmunol. 2005;167(1–2):90–8.

30. Liu X, Wu Z, Hayashi Y, Nakanishi H. Age-dependent neuroinflammatory
responses and deficits in long-term potentiation in the hippocampus during
systemic inflammation. Neuroscience. 2012;216:133–42.

31. Rabchevsky AG, Degos JD, Dreyfus PA. Peripheral injections of Freund’s
adjuvant in mice provoke leakage of serum proteins through the blood–brain
barrier without inducing reactive gliosis. Brain Res. 1999;832(1–2):84–96.

32. Di FM, Chiasserini D, Gardoni F, Viviani B, Tozzi A, Giampa C, et al. Effects of
central and peripheral inflammation on hippocampal synaptic plasticity.
Neurobiol Dis. 2013;52:229–36.

33. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, et al. Minocycline
attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness
behavior, and anhedonia. J Neuroinflammation. 2008;5:15.

34. Nguyen MD, D’Aigle T, Gowing G, Julien JP, Rivest S. Exacerbation of motor
neuron disease by chronic stimulation of innate immunity in a mouse
model of amyotrophic lateral sclerosis. J Neurosci. 2004;24(6):1340–9.

35. Bilbo SD, Wieseler JL, Barrientos RM, Tsang V, Watkins LR, Maier SF. Neonatal
bacterial infection alters fever to live and simulated infections in adulthood.
Psychoneuroendocrinology. 2010;35(3):369–81.

36. Chung DW, Yoo KY, Hwang IK, Kim DW, Chung JY, Lee CH, et al. Systemic
administration of lipopolysaccharide induces cyclooxygenase-2 immunoreactivity
in endothelium and increases microglia in the mouse hippocampus. Cell Mol
Neurobiol. 2010;30(4):531–41.

37. Bilbo SD, Biedenkapp JC, Der-Avakian A, Watkins LR, Rudy JW, Maier SF. Neonatal
infection-induced memory impairment after lipopolysaccharide in adulthood is
prevented via caspase-1 inhibition. J Neurosci. 2005;25(35):8000–9.

38. Frank-Cannon TC, Tran T, Ruhn KA, Martinez TN, Hong J, Marvin M, et al. Parkin
deficiency increases vulnerability to inflammation-related nigral degeneration. J
Neurosci. 2008;28(43):10825–34.

39. Fan LW, Kaizaki A, Tien LT, Pang Y, Tanaka S, Numazawa S, et al. Celecoxib
attenuates systemic lipopolysaccharide-induced brain inflammation and
white matter injury in the neonatal rats. Neuroscience. 2013;240:27–38.

40. O’Callaghan EK, Anderson ST, Moynagh PN, Coogan AN. Long-lasting effects
of sepsis on circadian rhythms in the mouse. PLoS One. 2012;7(10), e47087.

41. Okuyama S, Makihata N, Yoshimura M, Amakura Y, Yoshida T, Nakajima M,
et al. Oenothein B suppresses lipopolysaccharide (LPS)-induced
inflammation in the mouse brain. Int J Molecular Sci. 2013;14(5).
42. Bilbo SD, Newsum NJ, Sprunger DB, Watkins LR, Rudy JW, Maier SF. Differential
effects of neonatal handling on early life infection-induced alterations in
cognition in adulthood. Brain Behav Immun. 2007;21(3):332–42.

43. Puntener U, Booth SG, Perry VH, Teeling JL. Long-term impact of systemic
bacterial infection on the cerebral vasculature and microglia. J
Neuroinflammation. 2012;9:146.

44. Buttini M, Limonta S, Boddeke HW. Peripheral administration of
lipopolysaccharide induces activation of microglial cells in rat brain.
Neurochem Int. 1996;29(1):25–35.

45. Nishioku T, Dohgu S, Takata F, Eto T, Ishikawa N, Kodama KB, et al.
Detachment of brain pericytes from the basal lamina is involved in
disruption of the blood–brain barrier caused by lipopolysaccharide-induced
sepsis in mice. Cell Mol Neurobiol. 2009;29(3):309–16.

46. Franciosi S, Ryu JK, Shim Y, Hill A, Connolly C, Hayden MR, et al. Age-
dependent neurovascular abnormalities and altered microglial morphology
in the YAC128 mouse model of Huntington disease. Neurobiol Dis.
2012;45(1):438–49.

47. Quan N, Banks WA. Brain-immune communication pathways. Brain Behav
Immun. 2007;21(6):727–35.

48. Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be
activated and resistant to regulation. Neuropathol Appl Neurobiol.
2013;39(1):19–34.

49. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering
the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.

50. Glezer I, Simard AR, Rivest S. Neuroprotective role of the innate immune
system by microglia. Neuroscience. 2007;147(4):867–83.

51. Simard AR, Rivest S. Neuroprotective effects of resident microglia following
acute brain injury. J Comp Neurol. 2007;504(6):716–29.

52. Lee YJ, Choi DY, Choi IS, Kim KH, Kim YH, Kim HM, et al. Inhibitory effect of 4-O-
methylhonokiol on lipopolysaccharide-induced neuroinflammation,
amyloidogenesis and memory impairment via inhibition of nuclear factor-
kappaB in vitro and in vivo models. J Neuroinflammation. 2012;9:35.

53. Weberpals M, Hermes M, Hermann S, Kummer MP, Terwel D, Semmler A, et al.
NOS2 gene deficiency protects from sepsis-induced long-term cognitive
deficits. J Neurosci. 2009;29(45):14177–84.

54. Murray CL, Skelly DT, Cunningham C. Exacerbation of CNS inflammation
and neurodegeneration by systemic LPS treatment is independent of
circulating IL-1beta and IL-6. J Neuroinflammation. 2011;8:50.

55. Griffin EW, Skelly DT, Murray CL, Cunningham C. Cyclooxygenase-1-dependent
prostaglandins mediate susceptibility to systemic inflammation-induced acute
cognitive dysfunction. J Neurosci. 2013;33(38):15248–58.

56. Farber K, Kettenmann H. Purinergic signaling and microglia. Pflugers Arch.
2006;452(5):615–21.

57. Pocock JM, Kettenmann H. Neurotransmitter receptors on microglia. Trends
Neurosci. 2007;30(10):527–35.

58. Carnevale D, Mascio G, Ajmone-Cat MA, D’Andrea I, Cifelli G, Madonna M,
et al. Role of neuroinflammation in hypertension-induced brain amyloid
pathology. Neurobiol Aging. 2012;33(1):205–29.

59. Gao HM, Zhang F, Zhou H, Kam W, Wilson B, Hong JS. Neuroinflammation and
alpha-synuclein dysfunction potentiate each other, driving chronic progression
of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health
Perspect. 2011;119(6):807–14.

60. Kaushik DK, Mukhopadhyay R, Kumawat KL, Gupta M, Basu A. Therapeutic
targeting of Kruppel-like factor 4 abrogates microglial activation. J
Neuroinflammation. 2012;9:57.

61. Hwang J, Hwang H, Lee HW, Suk K. Microglia signaling as a target of
donepezil. Neuropharmacology. 2010;58(7):1122–9.

62. Masocha W. Systemic lipopolysaccharide (LPS)-induced microglial activation
results in different temporal reduction of CD200 and CD200 receptor gene
expression in the brain. J Neuroimmunol. 2009;214(1–2):78–82.

63. Ha SK, Moon E, Lee P, Ryu JH, Oh MS, Kim SY. Acacetin attenuates
neuroinflammation via regulation the response to LPS stimuli in vitro and
in vivo. Neurochem Res. 2012;37(7):1560–7.

64. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult
hippocampal neurogenesis. Science. 2003;302(5651):1760–5.

65. Wang Q, van Hoecke H, Tang XN, Lee H, Zheng Z, Swanson RA, et al.
Pyruvate protects against experimental stroke via an anti-inflammatory
mechanism. Neurobiol Dis. 2009;36(1):223–31.

66. Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT. Systemic
inflammation induces apoptosis with variable vulnerability of different brain
regions. J Chem Neuroanat. 2005;30(2–3):144–57.



Hoogland et al. Journal of Neuroinflammation  (2015) 12:114 Page 13 of 13
67. Garcia-Bueno B, Serrats J, Sawchenko PE. Cerebrovascular cyclooxygenase-1
expression, regulation, and role in hypothalamic-pituitary-adrenal axis
activation by inflammatory stimuli. J Neurosci. 2009;29(41):12970–81.

68. Katafuchi T, Ifuku M, Mawatari S, Noda M, Miake K, Sugiyama M, et al. Effects
of plasmalogens on systemic lipopolysaccharide-induced glial activation
and beta-amyloid accumulation in adult mice. Ann N Y Acad Sci.
2012;1262:85–92.

69. Shankaran M, Marino ME, Busch R, Keim C, King C, Lee J, et al. Measurement
of brain microglial proliferation rates in vivo in response to
neuroinflammatory stimuli: application to drug discovery. J Neurosci Res.
2007;85(11):2374–84.

70. Yin P, Li Z, Wang YY, Qiao NN, Huang SY, Sun RP, et al. Neonatal immune
challenge exacerbates seizure-induced hippocampus-dependent memory
impairment in adult rats. Epilepsy Behav. 2013;27(1):9–17.

71. Bland ST, Beckley JT, Young S, Tsang V, Watkins LR, Maier SF, et al. Enduring
consequences of early-life infection on glial and neural cell genesis within
cognitive regions of the brain. Brain Behav Immun. 2010;24(3):329–38.

72. Williamson LL, Sholar PW, Mistry RS, Smith SH, Bilbo SD. Microglia and memory:
modulation by early-life infection. J Neurosci. 2011;31(43):15511–21.

73. Bilbo SD. Early-life infection is a vulnerability factor for aging-related glial
alterations and cognitive decline. Neurobiol Learn Mem. 2010;94(1):57–64.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Interpretation

	Introduction
	Methods
	Search strategy
	Selection of articles
	Data extraction
	Definition of microglial activation

	Results
	Description of studies
	Outcome parameters
	Infectious stimuli
	Lipopolysaccharide
	Lipoteichoic acid
	Bacteria
	Inflammatory parameters
	Toll-like receptors
	Cytokines and chemokines
	Blood–brain barrier


	Discussion
	Conclusion
	Appendix
	Abbreviations
	Competing interests
	Authors’ contributions
	Financial support
	Author details
	References

