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ABSTRACT	

The	progression	of	chronic	obstructive	pulmonary	disease	(COPD)	is	associated	with	marked	alterations	in	

circulating	immune	cell	populations,	but	no	studies	have	characterized	alterations	in	these	cell	types	across	

the	full	spectrum	of	lung	function	impairment	in	current	and	former	smokers.	In	6,299	subjects	from	the	

COPDGene	and	ECLIPSE	studies,	we	related	Coulter	blood	counts	and	proportions	to	cross-sectional	FEV1	

adjusting	for	current	smoking	status.	We	also	related	cell	count	measures	to	three-year	change	in	FEV1	in	

ECLIPSE	subjects.	In	a	subset	of	subjects	with	blood	gene	expression	data,	we	used	cell	type	deconvolution	

methods	to	infer	the	proportions	of	immune	cell	subpopulations,	and	we	related	these	to	COPD	clinical	

status.	We	observed	that	FEV1	levels	are	positively	correlated	with	lymphocytes	and	negatively	correlated	

with	myeloid	populations	such	as	neutrophils	and	monocytes.	In	multivariate	models,	absolute	cell	counts	

and	proportions	were	associated	with	cross-sectional	FEV1,	and	lymphocytes,	monocytes,	and	eosinophil	

counts	were	predictive	of	three-year	change	in	lung	function.	Using	cell	type	deconvolution	to	study	

immune	cell	subpopulations,	we	observed	that	subjects	with	COPD	had	a	lower	proportion	of	CD4+	resting	

memory	cells	and	naive	B	cells	compared	to	non-COPD	smokers.	Alterations	in	circulating	immune	cells	in	

COPD	support	a	mixed	pattern	of	lymphocyte	suppression	and	an	enhanced	myeloid	cell	immune	response.	

Cell	counts	and	proportions	contribute	independent	information	to	models	predicting	lung	function	

suggesting	a	critical	role	for	immune	response	in	long-term	COPD	outcomes.	Cell	type	deconvolution	is	a	

promising	method	for	immunophenotyping	in	large	cohorts.		
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Background	1	

	 Chronic	obstructive	pulmonary	disease	(COPD)	is	associated	with	profound	alterations	in	immune	cells	2	

within	the	lung	and	in	the	systemic	circulation.	The	systemic	inflammation	may	reflect	“spill-over”	of	3	

inflammatory	processes	within	the	lung,	primary	alterations	in	the	extra-pulmonary	immune	response,	or	a	4	

combination	of	both	processes(1).	These	alterations	affect	cell	types	involved	in	both	the	innate(2-6)	and	5	

adaptive(7-15)	immune	response.	In	population	studies(16,	17)	and	a	systematic	review(18),	total	counts	of	6	

peripheral	leucocytes	were	associated	with	cross-sectional	and	prospective	changes	in	lung	function,	but	few	7	

studies	have	been	performed	in	large	cohorts	with	detailed	cell	count	data	to	observe	relationships	across	the	8	

full	spectrum	of	lung	function.	In	addition,	current	smoking	has	an	independent	effect	on	immune	cells(8,	19)	9	

and	often	serves	as	an	important	potential	confounder	of	immunologic	studies	of	current	and	former	smokers	10	

with	COPD.		11	

	 Cell	type	quantification	by	flow	cytometry	is	rarely	available	from	large,	population-based	studies	of	12	

COPD.	However,	novel,	cell-type	“deconvolution”	approaches	have	been	shown	to	infer	accurately	the	relative	13	

proportions	of	immune	cell	types	from	genome-wide	blood	gene	expression	data(20,	21).	Thus,	cell-type	14	

deconvolution	is	a	potentially	powerful	approach	to	enable	the	simultaneous	study	of	many	different	cell	types	15	

in	large	cohorts	of	subjects	with	available	blood	gene	expression,	but	it	has	not	yet	been	applied	to	cohorts	of	16	

subjects	with	COPD.	17	

	 We	hypothesized	that	1)	peripheral	immune	cell	types	quantified	through	Coulter	complete	blood	18	

counts	(CBC)	have	significant	associations	to	cross-sectional	FEV1	and	prospective	FEV1	decline;	and	that	2)	cell-19	

type	deconvolution	methods	can	enable	the	simultaneous	study	of	multiple	immune	cell	subpopulations	in	20	

cohorts	of	smokers	with	COPD	and	blood	gene	expression	data.	We	explored	the	first	hypothesis	in	two	large	21	

cohorts	of	smokers	enriched	for	COPD,	the	COPDGene	and	ECLIPSE	studies,	which	enabled	the	characterization	22	

of	immune	cell	profiles	across	the	full	spectrum	of	lung	function	impairment	while	accounting	for	current	23	

smoking	effects.	The	large	number	of	study	subjects	allowed	for	detailed	modeling	of	the	relationship	between	24	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2017. ; https://doi.org/10.1101/193920doi: bioRxiv preprint 

https://doi.org/10.1101/193920
http://creativecommons.org/licenses/by-nc-nd/4.0/


multiple	cell	types,	current	smoking	status,	and	lung	function.	To	explore	the	second	hypothesis,	we	used	two	25	

cell	type	deconvolution	methods	to	infer	immune	cell	subpopulation	proportions	in	a	subset	of	smokers	with	26	

blood	gene	expression	data	in	the	ECLIPSE	Study,	and	we	validated	these	inferred	cell	type	proportions	against	27	

measured	CBC	data.	We	then	compared	levels	of	inferred	circulating	immune	cell	subpopulations	by	COPD	28	

status,	confirming	that	inferred	estimates	of	circulating	immune	cell	types	such	as	monocytes,	naive	B	cells,	and	29	

resting	T	memory	cells	are	altered	in	the	COPD	state.	30	

	31	

Methods	32	

Study	Populations	

Recruitment	criteria	and	study	protocols	for	the	ECLIPSE	and	COPDGene	studies	have	been	previously	33	

reported.	COPDGene	enrolled	10,192	subjects	across	the	entire	GOLD	spectrum	between	the	ages	of	45	and	80	34	

with	at	least	a	10	pack-year	smoking	history(22).	These	subjects	completed	their	Phase	1	study	visit	between	35	

2007-2011.	As	of	September	24,	2016,	5000	subjects	had	completed	their	Phase	2	five-year	follow-up	visit	36	

which	included	all	of	the	data	items	collected	in	Phase	1	as	well	as	complete	blood	count	data,	which	was	not	37	

collected	at	the	Phase	1	visit.		38	

The	Evaluation	of	COPD	Longitudinally	to	Identify	Predictive	Surrogate	Endpoints	(ECLIPSE)	study	was	a	39	

multicenter	study	that	enrolled	subjects	aged	40-75	with	COPD	and	at	least	a	10-year	smoking	history	(COPD	40	

defined	by	FEV1<	80%	of	predicted	and	FEV1/FVC	<=	0.7)	or	who	were	smokers	without	COPD	(FEV1>85%	and	41	

FEV1/FVC	>	0.7).	Details	of	this	study	have	been	previously	published(23).	Gene	expression	analyses	were	42	

performed	in	a	subset	of	subjects	in	this	study	from	whom	genome-wide	gene	expression	data	were	generated	43	

on	the	Affymetrix	Human	U133	Plus2	chip	as	previously	reported(24).	For	both	COPDGene	and	ECLIPSE,	the	44	

institutional	review	boards	of	all	participating	centers	approved	these	studies,	and	written	informed	consent	45	

was	obtained	from	all	subjects.		46	

	47	
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Phenotype	and	Covariate	Definitions	48	

In	COPDGene	and	ECLIPSE,	spirometry	was	performed	before	and	after	administration	of	180	mcg	of	49	

albuterol	according	to	international	guidelines(25).	COPD	cases	and	GOLD	stages	were	defined	according	to	50	

GOLD	spirometric	criteria	(FEV1	%	of	predicted	<	80%	and	FEV1/FVC	<	0.7)	(26).	Subjects	with	preserved	ratio	51	

impaired	spirometry	(PRISm)	were	defined	by	post-bronchodilator	FEV1	%	of	predicted	<80%	and	FEV1/FVC	>	52	

0.7(27).	COPD	blood	gene	expression	subtypes	were	previously	defined	by	Chang	et	al.	using	network-based	53	

stratification	(NBS)(24).	Of	the	four	NBS	subtypes	identified	in	the	original	publication,	the	two	most	prevalent	54	

subtypes	were	analyzed.	These	subtypes	are	referred	to	as	the	less	impaired	lung	function	(LI-NBS)	and	the	55	

more	impaired	lung	function	(MI-NBS)	subtypes.	Current	smoking	status,	inhaled	corticosteroid	use,	and	oral	56	

corticosteroid	use	were	ascertained	by	questionnaire.	In	ECLIPSE,	only	8	subjects	reported	using	oral	steroids	at	57	

baseline,	and	these	were	removed	from	subsequent	analyses.			58	

	59	

Association	of	CBC	Cell	Types	with	COPD	GOLD	Stage,	Cross-Sectional	FEV1,	and	Prospective	Change	in	FEV1	60	

	 Using	4,558	subjects	with	complete	CBC	and	spirometric	data	from	the	COPDGene	Phase	2	visit,	we	61	

plotted	the	distribution	of	neutrophil	and	lymphocyte	counts	and	proportions	against	GOLD	Stage	after	62	

removing	outlying	cell	count	observations	greater	than	+/-	4	SD	from	the	mean.	We	tested	for	univariate	63	

association	between	individual	cell	counts	and	proportions	with	post-bronchodilator	FEV1	%	of	predicted	using	64	

Wald	tests	from	linear	regression	models,	and	we	constructed	multivariate	regression	models	relating	cell	65	

counts	and	proportions	to	FEV1	adjusting	for	current	smoking	status	and	oral	and	inhaled	steroid	use	reported	66	

at	baseline.		67	

	 In		1,741	smokers	from	the	ECLIPSE	Study	with	complete	covariate,	CBC,	baseline	and	prospective	FEV1	68	

measurements,	we	related	absolute	cell	counts	and	proportions	to	post-bronchodilator	FEV1	%	of	predicted	69	

levels	as	above.	For	the	analysis	of	three-year	change	in	FEV1	%	of	predicted	levels,	we	calculated	the	difference	70	

between	the	first	and	last	available	post-bronchodilator	FEV1	%	of	predicted	measurement	in	all	study	subjects	71	
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(calculated	as	last	measurement	-	first	measurement,	i.e.	negative	values	represent	decline	in	lung	function).	To	72	

determine	the	association	between	CBC	measurements	and	change	in	FEV1,	we	used	multivariate	linear	73	

regression	models	with	change	in	FEV1	as	the	response	variable	adjusting	for	baseline	FEV1,	days	of	follow	up,	74	

inhaled	corticosteroid	use	at	baseline,	and	smoking	status	at	the	first	and	last	study	visit.	Smoking	status	was	75	

represented	in	four	groups,	i.e.	current	smokers	at	first	and	last	visit,	former	smokers	at	first	and	last	visit,	76	

current	smoker	at	first	visit	and	former	smoker	at	last	visit,	and	former	smoker	at	first	visit	and	current	smoker	77	

at	last	visit.	Models	were	constructed	to	analyze	cell	types	individually	as	well	as	in	the	presence	of	other	cell	78	

types	in	the	same	model.	Subjects	with	less	than	1000	days	between	their	first	and	last	spirometric	79	

measurements	were	excluded	from	analysis.	80	

		81	

Gene	Expression	82	

Sample	preparation	and	quality	control	procedures	for	genome-wide	gene	expression	data	in	ECLIPSE	83	

have	been	previously	described(28).	Standard	quality	control	and	quantile	normalization	were	performed.	Gene	84	

expression	data	are	accessible	via	GEO	[ECLIPSE	GSE76705].	85	

	86	

Cell	Type	Deconvolution	and	Association	of	Inferred	Cell	Types	with	COPD	Status	87	

Cell	type	deconvolution	was	performed	in	221	ECLIPSE	subjects	with	complete	genome-wide	gene	88	

expression	and	covariate	data.	Cell	type	proportions	were	inferred	using	two	methods	-	CIBERSORT(21)	and	the	89	

method	of	Abbas	et	al.	using	linear	least	squares	regression	(LR)(20).	Cell	type	reference	expression	profiles	90	

were	used	from	the	LM22	pure-cell	dataset	obtained	on	12/21/2015	from	the	CIBERSORT	website	91	

(https://cibersort.stanford.edu).	Detailed	description	is	provided	in	the	Online	Supplement.	92	

	 After	obtaining	cell	type	estimates	of	the	22	cell	types	from	both	methods,	we	organized	groups	of	93	

similar	cell	types	into	broader	categories	to	create	estimates	of	an	additional	9	aggregated	groups:	CD4+	cells,	T	94	

cells,	B	cells,	lymphocytes,	and	monocytes/macrophages.	We	performed	this	aggregation	by	summing	95	
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individual	cell	type	values	for	cell	types	within	each	category.	The	22	inferred	cell	type	proportions	and	96	

aggregated	cell	type	estimates	were	tested	for	association	with	COPD	status	and	COPD	molecular	subtypes	97	

using	the	Wilcoxon-Mann-Whitney	test.	Significant	cell	type	associations	were	considered	to	be	those	with	a	98	

Wilcoxon-Mann-Whitney	test	p-val	<	0.05	for	both	CIBERSORT	and	LR.	99	

	100	

Prediction	Models	for	COPD	Status	and	COPD	Molecular	Subtypes	101	

	 Classification	of	subjects	according	to	COPD	status	or	NBS	molecular	subtype	using	estimated	cell-type	102	

quantities,	CBC	quantities,	and	clinical	covariates	was	performed	in	221	subjects	from	ECLIPSE	using	the	support	103	

vector	machine	implementation	in	the	e1071	package(29).	Validation	within	ECLIPSE	involved	performing	one	104	

round	of	partitioning	in	which	half	of	the	subjects	were	used	in	the	training	set	and	the	other	half	were	used	in	105	

the	validation	set.	Probabilities	were	returned	from	the	SVM	and	used	with	the	R	package	ROCR	to	generate	106	

ROC	plots	and	calculate	AUCs(30).	107	

		 Additional	details	regarding	study	cohorts	and	statistical	methods	are	included	in	the	Supplemental	108	

Materials.	109	

	110	

Results	111	

Relating	Circulating	Immune	Cells	to	Cross-sectional	FEV1	and	Current	Smoking	112	

	 We	examined	complete	blood	count	(CBC)	data	from	4,558	smokers	from	the	COPDGene	phase	2	visit	113	

and	an	additional	1,741	smokers	with	>1000	days	of	spirometric	follow-up	data	in	the	ECLIPSE	Study.	The	114	

clinical	characteristics	and	cell	type	distributions	of	analyzed	subjects	in	both	studies	are	shown	in	Table	1.	The	115	

CONSORT	diagram	for	the	analyses	of	cross-sectional	and	longitudinal	data	in	ECLIPSE	is	shown	in	Supplemental	116	

Figure	1,	and	comparison	of	characteristics	of	ECLIPSE	analyzed	and	excluded	subjects	is	shown	in	Table	E1.			117	

	 Linear	regression	relating	the	absolute	amount	and	percentage	of	five	cell	types	to	FEV1	%	of	predicted	118	

indicated	that	neutrophils,	lymphocytes,	monocytes,	and	eosinophils	are	strongly	correlated	with	FEV1,	and	119	
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there	are	differences	in	the	pattern	of	association	between	absolute	counts	and	cell	proportions	with	COPD	120	

severity	(Tables	2	and	E2).	Boxplots	showing	the	amount	of	each	cell	type	by	GOLD	stage	for	COPDGene	and	121	

ECLIPSE	are	shown	in	Supplemental	Figures	2	and	3.	122	

	 Given	the	predominance	of	neutrophils	and	lymphocytes	in	blood,	we	examined	the	absolute	counts	123	

and	percentages	of	these	cell	types	across	GOLD	stages,	and	we	observed	two	phenomena.	First,	with	124	

increasing	COPD	severity,	the	proportion	of	neutrophils	increases	and	lymphocytes	decreases.	However,	in	125	

terms	of	absolute	cell	counts	the	number	of	neutrophils	increases	while	the	total	number	of	lymphocytes	126	

remains	relatively	stable	(Figure	1,	Panels	A	and	C),	suggesting	that	the	observed	changes	in	neutrophil	and	127	

lymphocyte	proportions	associated	with	COPD	severity	are	primarily	driven	by	an	increase	in	the	number	of	128	

circulating	neutrophils.	The	same	pattern	is	present	in	ECLIPSE	subjects	(Figure	1,	Panels	B	and	D).	129	

	 We	evaluated	these	relationships	in	a	series	of	models	in	COPDGene	relating	cell	count,	cell	proportion,	130	

and	current	smoking	(CS)	to	FEV1	%	of	predicted	while	adjusting	for	inhaled	and	oral	steroid	use	(Table	3).	The	131	

models	explaining	the	largest	proportion	of	variance	in	FEV1,	after	adjusting	for	model	complexity,	included	132	

both	cell	counts	and	proportions	demonstrating	that	both	measures	have	independent	association	to	FEV1.	133	

Both	lymphocyte	and	neutrophil	absolute	counts	and	percentages	were	significantly	associated	with	FEV1	134	

across	most	models.	The	addition	of	monocyte	counts	and	proportions	to	the	models	did	not	affect	the	135	

association	between	neutrophil	quantifications	and	FEV1	(data	not	shown).	136	

	137	

Relating	Circulating	Immune	Cells	to	Prospective,	Three-Year	Change	in	Lung	Function	138	

	 Since	the	CBC	data	in	COPDGene	were	obtained	at	visit	2,	longitudinal	FEV1	analysis	measures	for	this	139	

cohort	were	not	available.	We	performed	longitudinal	analysis	for	three-year	change	in	FEV1	%	of	predicted	in	140	

1,741	smokers	from	the	ECLIPSE	Study	who	were	not	taking	oral	steroids	at	baseline.	In	an	analysis	of	single	cell	141	

type	measures,	lymphocyte,	monocyte,	and	eosinophil	counts	and	proportions	were	significantly	associated	142	

with	change	in	FEV1	(Table	4).	Higher	monocyte	levels	at	baseline	were	associated	with	greater	FEV1	decline,	143	
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and	the	opposite	pattern	was	observed	for	eosinophils.	Neutrophil	proportions,	but	not	counts,	were	144	

significantly	associated	with	lung	function	decline.	Larger	neutrophil	proportions	were	associated	with	more	145	

lung	function	decline,	with	the	opposite	relationship	observed	for	lymphocyte	proportion.		146	

	 Table	5	demonstrates	that	for	multivariate	models	including	counts	and	proportions	of	these	four	cell	147	

types,	cell	counts,	but	not	proportions,	showed	significant	associations	to	change	in	FEV1.	Absolute	counts	of	148	

monocytes,	eosinophils,	and	lymphocytes	were	significantly	associated	with	FEV1	decline	(p=0.0003,	0.0004,	149	

and	p=0.02,	respectively).	Higher	levels	of	monocytes	were	associated	with	larger	amounts	of	FEV1	decline,	and	150	

the	opposite	pattern	was	present	for	lymphocytes	and	eosinophils.	151	

	152	

Association	of	Inferred	Lymphocyte	Subpopulations	to	COPD	and	COPD	Subtypes	153	

	 In	a	subset	of	221	subjects	from	ECLIPSE	with	complete	genome-wide	blood	gene	expression	and	154	

covariate	data	(subject	characteristics	shown	in	Table	E3),	we	used	cell	type	deconvolution	to	estimate	the	155	

proportion	of	immune	cell	subpopulations	in	each	study	subject,	and	we	related	these	proportions	to	COPD	156	

case-control	status.		157	

To	first	assess	the	performance	of	cell	type	deconvolution	in	blood	gene	expression	from	smokers,	we	158	

examined	results	from	applying	two	methods	that	have	been	previously	validated	for	the	detection	of	immune	159	

cell	types,	CIBERSORT	and	the	linear	regression	(LR)	method	of	Abbas	(20,	21).	To	benchmark	these	algorithms	160	

against	known	cell	type	quantifications,	we	compared	their	neutrophil,	aggregated	lymphocyte,	aggregated	161	

monocyte,	eosinophil,	and	basophil	quantifications	against	concurrently	drawn	CBC	counts	(Figure	2).	Both	162	

methods	showed	high	correlation	to	neutrophils	and	lymphocytes	(Spearman	r	ranges	from	0.7-0.8,	p<0.001),	163	

with	weaker	correlations	for	eosinophils	and	monocytes.	Correlation	with	basophils	was	low	for	both	methods.	164	

For	the	inferred	proportions	of	neutrophils	and	lymphocytes,	the	correlation	between	methods	was	high	(0.86	165	

and	0.83,	respectively).	166	
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We	compared	the	inferred	cell	type	proportions	by	COPD	case/control	status	and	observed	that,	167	

relative	to	smoker	controls,	subjects	with	COPD	had	significantly	lower	levels	of	aggregated	lymphocytes,	168	

aggregated	T-cells,	CD4+	resting	memory	cells,	naive	B-cells,	and	increased	levels	of	monocytes	(Table	6).		169	

	170	

Inferred	Cell	Type	Proportions	Predict	COPD	Blood	Gene	Expression	Subtypes	171	

	 In	a	previous	publication,	the	ECLIPSE	blood	gene	expression	data	had	been	used	to	define	COPD	172	

molecular	subtypes	that	differed	in	clinical	characteristics	and	blood	gene	expression	patterns,	and	we	173	

previously	demonstrated	that	these	subtypes	could	not	be	recovered	using	CBC	data	alone(24).	To	determine	174	

whether	these	molecular	subgroups	can	be	accurately	predicted	from	inferred	cell	count	proportions,	we	175	

trained	support	vector	machine	classifiers	to	predict	NBS	subtype	and	COPD	case/control	status	using	CBC	data,	176	

clinical	covariates,	or	inferred	cell	type	proportions.	Figure	3	demonstrates	that	predictive	models	for	NBS	177	

subtypes	using	inferred	cell	type	proportions	classified	subjects	by	COPD	molecular	subtype	with	high	accuracy	178	

(AUC	=	0.95)	and	demonstrated	better	performance	than	models	using	only	CBC	cell-type	quantities	(AUC	=	179	

0.53)	or	clinical	covariates	(AUC	=	0.65).	Predictive	models	for	COPD	case/control	status	using	inferred	cell	type	180	

proportions	also	showed	statistically	significant,	but	less	powerful,	predictive	performance	(AUC	=	0.71),	with	181	

the	cell	type	subpopulation	models	still	outperforming	the	models	using	CBC	data	(Table	E4).	182	

We	compared	levels	of	the	inferred	cell	type	proportions	between	the	NBS-MI	and	NBS-LI	COPD	183	

molecular	subtypes	and	observed	that	the	list	of	immune	cell	types	that	were	significantly	different	between	184	

COPD	molecular	subtypes	was	more	extensive	than	between	COPD	cases	and	controls.	This	list	included	T-185	

regulatory	cells,	CD4	resting	and	activated	memory	T-cells,	memory	B-cells,	aggregated	T-cells,	aggregated	B-186	

cells,	dendritic	cells,	and	monocytes.	(Table	E5,	Figures	E4	and	E5).	187	

	188	

Discussion	189	
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	 Using	two	large	cohorts	enriched	for	subjects	with	COPD,	we	characterized	alterations	in	circulating	190	

immune	cell	types	associated	with	cross-sectional	FEV1	and	longitudinal	FEV1	decline.	The	main	findings	are:	1)	191	

the	predominant	peripheral	immune	cell	type	alteration	associated	with	increasing	COPD	severity	is	an	increase	192	

in	the	absolute	count	of	neutrophils,	2)	monocytes	and	eosinophils	have	strong	multivariate	associations	to	193	

prospective	change	in	FEV1,	and	3)	cell-type	estimates	from	gene	expression	deconvolution	methods	show	good	194	

accuracy	for	some	cell	types.		195	

	 Prior	immunologic	studies	of	COPD	have	identified	important	associations	with	increased	innate	196	

immune	activation	and	progression	of	COPD	including	neutrophil	stimulation(31,	32),	alveolar	macrophage	197	

immune	surveillance(33),	protease/matrikine	activation(34),	and	activation	of	the	dendritic	cell/macrophage	198	

axis(35).	Most	of	these	studies	have	been	performed	in	murine	models	or	small	to	moderate	sized	study	199	

samples	with	limited	ability	to	control	for	the	effects	of	current	smoking.	Our	findings	complement	and	extend	200	

previous	results	by	demonstrating	that	1)	the	decrease	in	overall	lymphocyte	proportion	in	COPD	is	primarily	201	

driven	by	an	increase	in	absolute	neutrophil	counts,	2)	absolute	counts	and	proportions	of	immune	cell	types	202	

have	independent,	statistically	significant	associations	to	lung	function,	and	3)	absolute	monocyte	and	203	

eosinophil	counts	are	predictive	of	COPD	disease	progression.	This	point	extends	previous	observations	relating	204	

total	peripheral	leucocyte	count	to	cross-sectional	and	longitudinal	lung	function(16-18)	by	implicating	specific	205	

myeloid	cell	types.	The	fact	that	monocytes	were	associated	with	cross-sectional	FEV1	and	prospective	FEV1	206	

decline,	whereas	neutrophils	only	showed	multivariate	association	to	cross-section	FEV1	is	an	interesting	207	

finding.	This	suggests	that	increased	circulating	monocytes	may	play	an	important	role	in	initiating	or	208	

maintaining	the	inflammatory	processes	responsible	for	ongoing	lung	destruction.	While	circulating	neutrophils	209	

are	clearly	associated	with	COPD	severity,	they	were	not	an	independent	predictor	of	decline	after	accounting	210	

for	other	cell	types	and	covariates.	However,	precise	mechanistic	hypotheses	are	beyond	the	scope	of	this	211	

epidemiologic	study	and	would	require	detailed	assessment	of	both	the	lung	and	systemic	compartments.	212	
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	 To	study	immune	cell	subpopulations	not	quantified	by	CBC,	we	explored	the	use	of	cell	type	213	

deconvolution	to	quantify	22	distinct	cell	subpopulations	in	a	subset	of	ECLIPSE	subjects	with	blood	genome-214	

wide	gene	expression	data.	These	methods	are	a	promising	alternative	for	estimating	cell	type	proportions	in	215	

large	study	samples	with	available	expression	data.	However,	these	approaches	have	not	been	widely	applied	in	216	

smokers	with	COPD.	Our	findings	demonstrate	that	in	smokers	enriched	for	COPD,	the	deconvolution	217	

approaches	studied	yielded	consistent	and	reasonably	reliable	estimates	of	neutrophil	and	lymphocyte	cell	218	

proportions	with	mixed	performance	for	other	cell	types.	Inferred	cell	type	proportions	enabled	significantly	219	

better	prediction	of	externally	defined	COPD	molecular	subtypes	than	CBC	and	clinical	data	alone,	providing	220	

indirect	evidence	that	these	inferred	proportions	capture	meaningful	information	on	the	cell	type	composition	221	

of	bulk	blood	expression	samples.	These	data	provide	proof-of-concept	of	the	feasibility	of	using	cell	type	222	

deconvolution	to	study	immune	cell	subpopulations	in	large	cohorts	of	smokers	with	available	blood	gene	223	

expression	data.	224	

	 Analysis	of	the	cell	type	deconvolution	data	supports	previous	observations	of	an	overall	decrease	in	225	

lymphocytes	and	T-cells	in	the	COPD	state,	coupled	with	an	increase	in	monocytes.	When	we	studied	226	

deconvolved	cell	types	in	previously	defined	COPD	molecular	subtypes,	differences	in	cell	type	proportions	227	

were	more	pronounced,	with	the	more	severely	affected	subtype	characterized	by	increased	monocytes,	T-228	

regulatory	cells,	memory	T-cells,	and	memory	B-cells	as	well	as	decreased	total	lymphocytes.	This	pattern	is	229	

consistent	with	the	expected	behavior	of	T-regulatory	cells,	which	play	a	critical	immunomodulatory	role	by	230	

suppressing	other	lymphocyte	populations	in	part	through	IL-10	and	TGF-β	signalling(36).	Overall,	these	findings	231	

provide	additional	support	for	the	model	that	the	circulating	immune	response	to	CS	and	COPD	is	characterized	232	

by	distinct	aspects	of	suppression	of	the	adaptive	immune	response	and	a	chronic	increase	in	myeloid	cell	233	

types,	and	it	suggests	that	within	smokers	there	are	patterns	of	coordinated	immune	response	that	can	be	used	234	

to	identify	clinically	distinct	subgroups	of	subjects.		235	
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	 The	main	strength	of	this	study	is	that	peripheral	cell	type	quantifications	were	available	from	a	large	236	

number	of	smokers	with	a	broad	range	of	lung	function	from	two	independent	studies.	The	study	design	also	237	

enabled	the	study	of	immune	cell	alterations	adjusting	for	CS,	a	major	confounder	of	the	relationship	between	238	

immune	cell	alterations	and	COPD	severity.	The	use	of	cell	type	deconvolution	to	study	the	immune	response	in	239	

COPD	is	novel	and	enabled	the	simultaneous	study	of	a	large	number	of	lymphocyte	subpopulations.	Because	240	

CBC	quantifications	and	blood	gene	expression	were	available	in	the	same	ECLIPSE	subjects	from	the	same	time	241	

point,	we	could	benchmark	our	deconvolution	approaches	against	a	known	standard.	242	

	 This	study	also	has	important	limitations.	We	did	not	have	access	to	immune	cells	in	the	lung	or	specific	243	

lung	compartments	in	our	study	subjects,	thus	we	could	not	relate	the	blood	observations	to	the	lung	244	

compartment.	We	also	were	not	able	to	characterize	immune	cell	functional	states	through	cytokine	profiling	245	

or	quantification	of	response	to	antigenic	stimulation.	While	we	observed	significant	associations	between	246	

circulating	immune	cell	subpopulations	and	COPD,	further	study	is	required	to	determine	the	247	

pathophysiological	significance	of	these	observations.	We	did	not	have	flow	cytometry	values	against	which	we	248	

could	benchmark	our	cell	type	deconvolution	estimates,	but	we	did	have	Coulter	counter	data	available,	and	249	

our	deconvolution	results	were	generated	using	methods	that	has	been	previously	validated	against	flow	250	

cytometry	for	immune	cell	populations(20,	21).		251	

		 In	conclusion,	analysis	of	CBC	counts	and	proportions	in	>6,000	subjects	from	the	COPDGene	and	252	

ECLIPSE	studies	demonstrated	that	cross-sectional	FEV1	is	associated	with	alterations	in	multiple	circulating	253	

immune	cell	types,	including	total	neutrophil	count.	COPD	disease	progression,	as	quantified	by	decline	in	FEV1,	254	

is	associated	with	increased	absolute	monocyte	counts	and	decreased	lymphocyte	and	eosinophil	counts	at	255	

baseline.	Cell	type	deconvolution	is	a	viable	approach	to	simultaneously	study	multiple	immune	cell	populations	256	

in	smokers	with	COPD.	Future	studies	to	characterize	COPD-related	alterations	in	more	fine-grained	immune	257	

cell	types	will	benefit	from	quantification	of	both	cell	type	proportions	and	absolute	counts.	258	

	259	
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	260	

Abbreviations	261	

AUC	–	area	under	the	curve	262	

CBC	–	complete	blood	count	263	

COPD	–	chronic	obstructive	pulmonary	disease	264	

CT	–	computed	tomography	265	

FEV1	–	forced	expiratory	volume	in	one	second	266	

GOLD	–	Global	Initiative	for	Obstructive	Lung	Disease	267	

LAA950	–	low	attenuation	area	less	than	950	Hounsfield	units	(computed	tomorgraphy	based	emphysema	268	

measure)	269	

LR	–	linear	regression	270	

NBS	–	network-based	stratification	271	

ROC	–	receiver	operating	characteristic	272	

SVM	–	support	vector	machine	273	
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Table	1.	Characteristics	of	Analyzed	Subjects	in	COPDGene	and	ECLIPSE	

		 COPDGene	 ECLIPSE	

N	 4,558	 1741	

Age	 65.5	(8.7)	 61.9	(7.9)	

Gender,	%	Female	 50	 36	

Race,	%	African-American	 27	 0	

FEV1	%	of	predicted	 78.3	(24.9)	 55.0	(26.1)	

FEV1/FVC	 0.67	(0.15)	 0.66	(0.21)	

COPD,	%	GOLD	2-4	 35	 84	

Pack	Years	 44.0	(24.0)	 45.4	(26.5)	

Current	Smoking,	%	 37	 39	

BMI	 28.9	(6.3)	 26.6	(5.3)	

Oral	Steroids,	%	 2	 0	

Inhaled	Steroids,	%	 24	 59	

neutrophil	,	%	 59.4	(10.0)	 63.9	(8.2)	

neutrophil	,	1000	cells/ul	 4.3	(1.6)	 5.0	(1.6)	

lymphocyte	,	%	 29.4	(9.4)	 26.8	(7.6)	

lymphocyte	,	1000	cells/ul	 2.0	(0.7)	 2.0	(0.6)	

monocyte	,	%	 8.1	(2.4)	 6.2	(2.1)	

monocyte	,	1000	cells/ul	 0.6	(0.2)	 0.5	(0.2)	

eosinophil	,	%	 2.6	(1.7)	 2.8	(1.7)	

eosinophil	,	1000	cells/ul	 0.2	(0.1)	 0.2	(0.1)	

basophil	,	%	 0.6	(0.5)	 0.3	(0.2)	

basophil	,	1000	cells/ul	 0.03	(0.04)	 0.03	(0.02)	

Data	are	mean	(SE)	unless	otherwise	indicated.	

	

Table	2.	Relationship	of	Cell	Type	Counts	and	Proportions	to	FEV1	%	of	Predicted	in	4,558	Smokers	

in	COPDGene	

		

Cell	Type	Count	(1000	cells/uL)	 Cell	Type	Proportion	

Beta	 P	value	 Beta	 P	value	

Neutrophils	 -3.53	(0.22)	 <0.001	 -0.48	(0.04)	 <0.001	

Lymphocytes	 2.34	(0.51)	 <0.001	 0.58	(0.04)	 <0.001	

Monocytes	 -21.84	(1.88)	 <0.001	 -0.29	(0.16)	 0.06	

Eosinophils	 -21.25	(3.06)	 <0.001	 -0.54	(0.22)	 0.02	

Basophils	 -33.28	(9.81)	 0.001	 0.09	(0.7)	 0.89	

Beta	-	change	in	FEV1	per	unit	change	in	cell	count	or	proportion.	

Each	row	corresponds	to	a	separate	univariate	model.	
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Table	3.	Multivariate	Models	of	the	Relationship	between	FEV1	%	of	Predicted	and	Neutrophil	and	Lymphocyte	Quantifications	

		
Neutrophil	

Count	

Neutrophil	

%	

Lymphocyte	

Count	

Lymphocyte	

%	

Current	

Smoking	

Neutrophil	

Count	x	

Current	

Smoking	

Neutrophil	%	x	

Current	Smoking	

Lymphocyte	

Count	x	

Current	

Smoking	

Lymphocyte	

%	x	Current	

Smoking	

Adjusted	

R2	

Cell	Proportions	 ---	 0.39	(0.10)	*	 ---	 0.75	(0.11)	*	 ---	 ---	 ---	 ---	 ---	 0.274	

Cell	Counts	 -2.19	(0.20)	*	 ---	 1.72	(0.44)	*	 ---	 ---	 ---	 ---	 ---	 ---	 0.275	

Cell	Counts	+	

Current	Smoking	
-2.73	(0.27)	*	 ---	 1.79	(0.58)	*	 ---	 -5.74	(2.48)	*	 1.21	(0.40)	*	 ---	 -0.06	(0.90)		 ---	 0.276	

Cell	Proportions	+	

Counts	+	Current	

Smoking	

-2.47	(0.62)	*	 0.74	(0.14)	*	 -0.41	(1.32)		 0.94	(0.16)	*	 -10.99	(18.91)		 0.24	(1.03)		 0.13	(0.23)		 1.85	(2.07)		 -0.1	(0.27)		 0.285	

*	p<0.05	

Adjusted	R2	-	variance	explained	adjusted	for	model	complexity.	Cell	counts	are	in	units	of	1000	cells/ul.	

Each	row	corresponds	to	a	separate	multivariate	model.	Each	model	is	also	adjusted	for	oral	and	inhaled	steroid	use.	
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Table	4.	Relationship	of	Cell	Type	Counts	and	Proportions	at	Baseline	to	Three-Year	Change	in	

FEV1	%	of	Predicted	in	1,741	Smokers	in	ECLIPSE	

		

Cell	Type	Count	(1000	cells/uL)	 Cell	Type	Proportion	

Beta	 P	value	 Beta	 P	value	

Neutrophils	 -0.09	(0.12)	 0.48	 -0.05	(0.02)	 0.031	

Lymphocytes	 0.63	(0.32)	 0.05	 0.07	(0.03)	 0.008	

Monocytes	 -3.41	(1.08)	 0.002	 -0.32	(0.09)	 0.001	

Eosinophils	 4.16	(1.43)	 0.004	 0.34	(0.11)	 0.003	

Basophils	 -8.65	(12.8)	 0.50	 -0.50	(1.00)	 0.62	

Beta	-	change	in	FEV1	over	three	years	per	unit	change	in	cell	count	or	proportion.	

Change	in	FEV1	calculated	as	(last	visit	value	-	first	visit	value),	i.e.	negative	values	

indicate	decline	in	FEV1	

Models	analyze	one	cell	type	at	a	time.	All	models	are	adjusted	for	FEV1	%	of	

predicted	at	baseline,	number	of	days	of	follow-up,	inhaled	corticosteroid	use	at	

baseline,	and	smoking	status	at	baseline	and	at	last	study	visit.	
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Table	5.	Multivariate	Models	Relating	Cell	Type	Counts	and	Proportions	at	Baseline	to	Three-Year	Change	in	FEV1	%	of	Predicted	in	

1,741	Smokers	in	ECLIPSE	

		
Neutrophil	

Count	

Neutrophil	

%	

Lymphocyte	

Count	

Lymphocyte	

%	

Monocyte	

Count	

Monocyte	

%	

Eosinophil	

Count	
Eosinophil	%	

Cell	Proportions	 ---	 1.03	(1.03)		 ---	 1.11	(1.03)		 ---	 0.69	(1.04)		 ---	 1.43	(1.05)		

Cell	Counts	 0	(0.13)		 ---	 0.76	(0.32)	*	 ---	 -4.64	(1.18)	*	 ---	 4.98	(1.46)	*	 ---	

*	p<0.05	

Cell	counts	are	in	units	of	1000	cells/ul.	

Each	row	corresponds	to	a	separate	multivariate	regression	model.		

Models	adjusted	for	baseline	FEV1	%	of	predicted,	number	of	days	of	follow-up,	inhaled	corticosteroid	use	at	baseline,	and	current	

smoking	status	at	baseline	and	last	measurement.	
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Table	6.	Inferred	Immune	Cell	Types	Significantly	Associated	with	COPD	Status	

		 Linear	Regression	 CIBERSORT	

		 Controls	 Cases	 pvalue	 Controls	 Cases	 pvalue	

Aggregated	monocytes	 -0.41	(0.93)	 0.25	(0.96)	 5.4E-07	 -0.35	(0.98)	 0.20	(0.94)	 6.3E-05	

Monocytes	 -0.33	(0.99)	 0.21	(0.95)	 4.9E-05	 -0.32	(0.97)	 0.19	(0.94)	 2.1E-04	

Naive	B	cells	 0.21	(0.89)	 -0.13	(1.06)	 2.4E-03	 0.15	(0.92)	 -0.11	(1.04)	 1.5E-03	

Aggregated	T	cells	 0.24	(0.99)	 -0.15	(0.99)	 5.1E-03	 0.40	(0.98)	 -0.22	(0.94)	 3.7E-05	

CD4	memory	resting	T	cells	 0.25	(1.05)	 -0.16	(0.95)	 6.4E-03	 0.23	(1.25)	 -0.15	(0.79)	 0.01	

Aggregated	lymphocytes	 0.24	(0.94)	 -0.13	(1.01)	 0.02	 0.25	(0.97)	 -0.13	(0.98)	 0.02	

Cell	count	values	correspond	to	the	estimated	cell	proportions	normalized	to	a	mean	of	0	and	standard	error	of	1.	

See	Figures	E4	and	E5	for	boxplot	distributions.	

Values	are	mean	(SD)	unless	otherwise	indicated.	

P-values	calculated	using	Wilcoxon	rank	sum	test.	

The	following	cell	types	were	not	analyzed	because	they	were	detected	in	less	than	10%	of	samples:	M1	

Macrophages,	activated	dendritic	cells,	activated	Mast	cells,	gamma-delta	T-cells,	and	T	follicular	helper	cells.	
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Figure	1:	Neutrophil	and	Lymphocyte	Counts	and	Proportions	Stratified	by	GOLD	Spirometric	Stage.	As	GOLD	

Stage	increases,	the	relative	proportions	of	peripheral	neutrophils	and	lymphocytes	increase	and	decrease,	

respectively	(Panel	A,	COPDGene	and	Panel	C,	ECLIPSE).	This	phenomenon	is	driven	by	an	increase	in	absolute	

neutrophil	count,	while	the	absolute	amount	of	lymphocytes	remains	relatively	stable	across	GOLD	Stages	

(Panel	B,	COPDGene	and	Panel	D,	ECLIPSE).	NS	=	non-smoker.	PRISm	=	Preserved	ratio	impaired	spirometry,	i.e.	

subjects	with	FEV1/FVC	>	0.7	but	FEV1	%	predicted	<	80%.	
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Figure	2.	Correlation	Between	Inferred	Cell	Subpopulation	Proportions	and	Complete	Blood	Count	Cell	Type	

Proportions.	Spearman	correlation	between	estimated	cell	subpopulations	proportions	from	two	

deconvolution	methods	and	CBC	proportions.	Abbreviations:	LR-	Linear	Regression.		CI-	CIBERSORT.	CBC-	

Complete	Blood	Count.	Neuts-	Neutrophils.	Lymph-	Lymphocytes.	Eos-	Eosinophils.	Mons-	Monocytes.	Basos-	

Basophils.	
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Figure	3.	Performance	of	Predictive	Models	for	COPD	Molecular	Subtypes	Using	Complete	Blood	Counts,	

Inferred	cell	Subpopulation	Proportions,	and	Clinical	Covariates.	Receiver	operating	characteristic	curves	

demonstrate	the	predictive	performance	of	SVM	classifiers	using	complete	blood	count	data,	inferred	cell	

subpopulation	data,	and	clinical	covariates	for	COPD	molecular	subtypes	in	221	ECLIPSE	subjects.	Clinical	

covariates	are	age,	sex,	and	pack-years.		
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