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Abstract

Returns on international equities are characterized by jumps; moreover, these jumps tend
to occur at the same time across countries leading to systemic risk. In this paper, we evaluate
whether systemic risk reduces substantially the gains from international diversification. First,
in order to capture these stylized facts, we develop a model of international equity returns
using a multivariate system of jump-diffusion processes where the arrival of jumps is simul-
taneous across assets. Second, we determine an investor’s optimal portfolio for this model
of returns. Third, we show how one can estimate the model using the method of moments.
Finally, we illustrate our portfolio optimization and estimation procedure by analyzing port-
folio choice across a riskless asset, the US equity index, and five international indexes. Our
main finding is that, while systemic risk affects the allocation of wealth between the riskless
and risky assets, it has a small effect on the composition of the portfolio of only-risky assets,
and reduces marginally the gains to a US investor from international diversification: for an
investor with a relative risk aversion of 3 and a horizon of one year, the certainty-equivalent
cost of ignoring systemic risk is of the order $1 for every $1000 of initial investment. These re-
sults are robust to whether the international indexes are for developed or emerging countries,
to constraints on borrowing and shortselling, and to reasonable deviations in the value of the
parameters around their point estimates; the cost increases with the investment horizon and
decreases with risk aversion.

JEL codes: G11, G15, F31.
Keywords: asset allocation, contagion, emerging markets, skewness, jump-diffusion processes.
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1 Introduction

Returns on international equities are characterized by jumps; moreover, these jumps tend to

occur at the same time across countries. Our objective in this paper is to evaluate the gains

from international diversification in the presence of systemic risk, defined as the risk from

infrequent events that are highly correlated across a large number of assets.

Evidence on jumps in international equity returns is provided by Jorion (1988), Akgiray

and Booth (1988), Bates (1996), and Bekaert, Erb, Harvey and Viskanta (1998). In addition,

Duffee, Kupiec and White (1992) report that the incidence of abnormally high daily returns

has increased in the recent past: twenty of the fifty largest postwar daily percentage movements

occurred in the past decade, compared with only five in the 60s and nine in the 70s.

More importantly, these price drops are highly correlated across countries.1 Work doc-

umenting that the correlations between international equity returns tend to be higher in

periods of high market volatility or following large downside moves includes Speidell and

Sappenfield (1992), Odier and Solnik (1993), Erb, Harvey and Viskanta (1994), Longin and

Solnik (1995), Longin and Solnik (1998), Karolyi and Stulz (1996), De Santis and Gerard

(1997), Bekaert, Erb, Harvey and Viskanta (1998), Ang and Bekaert (2000), and Ang and

Chen (2000). However, the finding of large gains from international portfolio diversification in

the early literature, for instance, Grubel (1968), Levy and Sarnat (1970), Lessard (1973), and

Solnik (1974), relies on these correlations being low. The focus of our work is to understand

whether the benefit from international diversification implied by traditional models has been

reduced substantially because of systemic risk.2

A variety of explanations have been offered for systemic risk and contagion.3 Engle, Ito

and Lin (1990) provide evidence that connected shocks across international stock markets are

largely the result of information transmission. They test for whether changes in volatility in

one market cause changes in volatility in other markets, too. They liken this to a “meteor

1For example, on March 12, 2001, Nasdaq dropped by 6.3%, S&P 500 by 4.3%, Nikkei by 3%, and FTSE
by 2%. Similarly, world equity markets fell in lockstep on October 27, 1997, when the drop from the 12-month
peak was 9.2% in Britain, 35.4% in Hong Kong, 21.3% in Japan, 12.1% in Australia, 10.7% in Mexico, 27.9 %
in Brazil, and 9.1% in the United States (BusinessWeek, November 10, 1997; Economist, November 1st-7th,
1997, p. 84). Other events with large correlated price drops include the Debt crises of 1982 , the Mexican crisis
in December 1994, and the Russian crisis in August 1998. See Rigobon (2000) for a more complete list of dates
with large market moves.

2The aim of our paper is not to explain the observed bias in portfolios towards home assets; for a review of
the “home-bias” literature, see Stulz (1995) and Lewis (1999).

3For papers on the measurement of contagion in financial markets, we refer the reader to Forbes and Rigobon
(1998), Rigobon (2000) and Bae, Karolyi and Stulz (2000).
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shower” as opposed to localized volatility persistence within a market, which they call a “heat

wave.” Their paper finds strong evidence in favor of the meteor shower hypothesis, and the

model for asset returns that we specify is consistent with their findings. King and Wadhwani

(1990) investigate the October 1987 crash to determine why all the markets moved together

despite dissimilar economic circumstances. The paper argues that a “mistake” in one market

can be transmitted to other markets by means of contagion. Harvey and Huang (1991) find

that large shocks in the foreign exchange futures markets are caused by macro-economic

news announcements, with announcements regarding the US economy appearing to be the

most influential. Other models have proposed shocks to liquidity (for instance, Allen and

Gale (2000)) and the cross-hedging of macroeconomic risks (Kodres and Pritsker (1998)) as

explanations for financial contagion.4

Systemic risk has become a matter of serious concern to policymakers, regulators of fi-

nancial institutions and managers of mutual-funds and hedge-funds. One measure of its

importance in the portfolio context is the large amount invested in international assets: for

example, US investment in international equity funds is about 360 billion dollars (Economist,

November 1st-7th, 1997), international equity flows are in excess of $1.5 trillion per year, and,

cross-border equity flows exceed 20 percent of total world equity trading (Sorensen, Mezrich

and Thadani (1993)). The existing literature has typically studied two aspects of systemic

risk. First, there are papers trying to understand the causes of systemic risk events. The sec-

ond area of study is the regulation of banking institutions in order to manage this risk.5 The

focus of our work on portfolio choice distinguishes it from these two strands of the literature

on systemic risk.

One can also distinguish our work from the literature on portfolio choice with idiosyn-

cratic jumps in returns, for example, Aase (1984), Jeanblanc-Picque and Pontier (1990), and

Shirakawa (1990). In contrast to these theoretical models, our motivation is to understand

the effect of systemic jumps on portfolio selection, and we provide a method for estimating

the returns-model empirically, and for implementing the model based on these estimates. In

contrast to the static model in Chunhachinda, Dandapani, Hamid and Prakash (1997), where

polynomial goal programming is used to examine the effect of skewness on portfolio choice by

4Calomiris (1995) provides a survey of the literature on crises; Bandt and Hartmann (2000) and Dow (2000)
survey the literature on systemic risk. See also Claessens (2000) and the papers for a World Bank conference on
contagion at the web site: http://www.worldbank.org/research/interest/confs/past/papersfeb3-4/papers.htm.

5The Group of Ten working committee (1992) underscored the importance of managing systemic risk given
the increasing concentration of deals amongst a few traders, and the impact of price, credit and liquidity risk
on the stability of the banking system in the U.S.
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assuming a utility function defined over the moments of the distribution of returns, our model

is dynamic with preferences given by a standard constant relative risk averse utility function,

and in our model the effect of skewness (and higher moments) arises because of jumps in the

returns process rather than being introduced explicitly through the utility function.6

Our work is also related to two portfolio selection models with regime switching. In the

first paper, Chow, Jacquier, Kritzman and Lowry (1999) discuss in a static setting how one can

extend the Markowitz mean-variance analysis to allow for outliers in returns. They propose

estimating two covariance matrixes, one for “good” times and another for “bad” times. Then,

the optimal portfolio is selected on the basis of a blend of these covariance matrixes for the

two regimes, where the weight attached to each covariance matrix reflects the investor’s view

about the likelihood of each regime. The second paper, Ang and Bekaert (2000), embeds

an international portfolio choice problem in a dynamic model with a regime-switching data-

generating process. Two regimes are considered, which correspond to a “normal” regime with

low correlations and a “down-turn” regime with higher correlations. In their setup regimes can

be persistent and their paper includes an analysis of portfolio choice when the short interest

rate and earnings yields predict returns. The framework in Ang and Bekaert, however, cannot

accommodate intermediate consumption, admits only a numerical solution even in the absence

of intermediate consumption, and is difficult to estimate when there are more than two regimes

or three risky assets.

In contrast to Ang and Bekaert, we develop a theoretical framework along the lines of

Merton (1971); because our model nests the well-understood Merton model as a special case,

it allows one to interpret cleanly the effect of systemic jumps. Also, we provide explicit

analytic (though approximate) expressions for the optimal portfolio weights that allow for

comparative statics with respect to the parameters driving systemic jumps. Moreover, our

model can handle intermediate consumption (the solution to the portfolio problem stays the

same), and can be estimated and implemented for any number of assets. While in the main

text of the paper we consider only a simple IID environment, (i) we argue in Section 5.2.6

that this is sufficient to show that the effect of systemic jumps will not be large even in the

presence of regime shifts, and (ii) we show in Section A.2 of the appendix how our model can

be extended to allow for persistence in jumps. Our framework can also allow for predictability

6For early work on how skewness influences portfolio choice, see Samulelson (1970), Tsiang (1972) and Kane
(1982); Kraus and Litzenberger (1976) shows the implications for equilibrium prices of a preference for positive
skewness, while Kraus and Litzenberger (1983) derives the sufficient conditions on return distributions to get
a three moment (mean, variance, skewness) capital asset pricing model; Harvey and Siddique (2000) provides
an empirical test of the effect of skewness on asset prices.
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in returns and for other state variables, just as they are incorporated in Merton (1971), but

since this is tangential to our main objective, we do not include these features in the model

we present.7

We now discuss the literature related to the estimation of jump-diffusion processes. The

estimation approach we use relies on exploiting the link between the characteristic function

and the Kolmogorov backward differential equation to obtain the moments and the cross-

moments of the returns processes. Because it allows us to obtain the moments of returns

in closed form, this estimation technique is both simple and easy to implement. The link

between the characteristic function and the Kolmogorov backward differential has also been

exploited in Chacko and Viceira (1999) and Singleton (1999), where they express the mo-

ments themselves in terms of the characteristic function. A brief discussion of some of the
alternative approaches for estimating jump-diffusion processes follows, and a more extensive

comparison of in the broader context of estimating continuous time processes is contained

in Chacko (1999). Honore (1998) discusses the problems of using maximum-likelihood tech-

niques to estimate jump-diffusion processes, in particular, that in the absence of restrictions

on parameter estimates the likelihood function is unbounded and hence the MLE does not

exist. Restricting the mean size of jumps in returns to be zero, Andersen, Benzoni and Lund

(1998) and Chernov, Gallant, Ghysels and Tauchen (2000) use the Efficient Method of Mo-

ments, which combines Simulated Method of Moments, where simulated sample moments are

matched to the theoretical moments, with a preliminary step where the unknown transition

function is approximated using a semi-non-parametric Hermite expansion with a Gaussian

leading term to generate moment conditions. Schaumburg (2000) extends to Levy processes

the approach of Ait-Sahalia (1998), where a fully parameteric approximation of the transition

function is used to alleviate the numerical problems encountered in solving for the transition

density function which, typically, does not have an explicit form. Johannes, Kumar and Pol-

son (1998), on the other hand, estimate also the jump times and sizes by treating these as

latent variables in order to create a hierarchical model which is then estimated using Monte

Carlo Markov Chain Methods; Eraker, Johannes and Polson (2000) extends this to account

for estimation risk and to incorporates prior information.8

7Liu (1998) considers the Merton portfolio problem when the investment opportunity set is stochastic and
provides closed-form solutions in several instances; when a closed-form solution is not available, one can use
the perturbation method advocated in Kogan and Uppal (2000) to get closed-form approximate solutions or
numerical methods as proposed in Brandt (1998).

8Comon (2000), on the other hand, studies the problem of estimating the parameters of rare events in
financial markets in the context of a Bayesian model where the investor “learns” about these events over time
using a continuous-time filter.
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We conclude this section by summarizing the major contributions of our work. On the

theoretical front, we provide a mathematical model of security returns that captures the

stylized facts about international equity returns described above. We do this by modeling

security returns as jump-diffusion processes where jumps across assets are systemic (occur

simultaneously), though the size of the jump is allowed to differ across assets. Next, we derive

the optimal portfolio weights for this model of returns. On the application side, we show

how one can use the method of moments to estimate the model. Then, we illustrate the

portfolio optimization and estimation procedure by analyzing a portfolio allocated across a

riskfree asset, the US equity index, and five international equity indexes. We consider two

sets of international indexes: the first for developed countries, and the second for emerging

countries. We find that while systemic risk leads to a shift in the allocation of wealth from

risky assets to the riskless asset, it has only a small effect on the allocation across the different

risky assets, and it reduces only marginally the benefits to a US investor from international

diversification. Moreover, the effect of systemic risk, measured as the increase in wealth

required to compensate an agent who ignores this risk and is investing $1000 for one year, is

$1 for the developed-country indexes and $0.06 for the emerging-country indexes. This cost

increases with horizon and risk tolerance. These results are robust to the choice of data set,

to constraints on borrowing and shortselling, and to reasonable deviations in the parameter

values around their point estimates.

The rest of the paper is organized as follows. In Section 2, we develop a model of asset

returns that captures systemic risk. In Section 3, we derive the optimal portfolio weights

when asset returns have a systemic-jump component. In Section 4, we describe our data,

show how one can derive the moments for the returns in the presence of systemic risk, and use

the method of moments to estimate the parameters of the returns processes. In Section 5, we

calibrate the portfolio model to the estimated parameters in order to compare the portfolio

weights of an investor who accounts for systemic risk and an investor who ignores systemic

risk. We conclude in Section 6. The major results of the paper are given in propositions and

the proofs for these propositions, along with extensions of the model, are presented in the

appendix.

2 Asset returns with systemic risk

In this section, we develop a model of asset prices that allows for systemic jumps, and compare

it to a pure-diffusion model without jumps. The two features of the data that we wish
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our returns-model to capture are (i) large changes in asset prices, and (ii) a high degree of

correlation across these changes. To allow for large changes in returns we introduce a jump

component in prices; to model these jumps as being systemic, we assume that this jump is

common across all assets, though the distribution of the jump size is allowed to vary across

assets.

We start by describing the standard continuous-time process that is typically assumed for

asset returns:

dSn
Sn

= α̂ndt + σ̂ndzn, n = 1, . . . , N, (1)

with

Et

[
dSn
Sn

]
= α̂ndt (2)

Et

[(
dSn
Sn

)
×

(
dSm
Sm

)]
= σ̂nmdt = σ̂nσ̂mρ̂nmdt, (3)

where Sn is the price of asset n, N is the total number of risky assets being considered for the

portfolio, and the correlation between the shocks dzn and dzm is denoted by ρ̂nmdt = E(dzn×
dzm). We will denote the N × N matrix of the covariance terms arising from the diffusion

components by Σ̂, with its typical element being σ̂nm ≡ σ̂nσ̂mρ̂nm. We adopt the convention

of denoting vectors and matrices with boldface characters in order to distinguish them from

scalar quantities; parameters of the pure-diffusion returns process, and other quantities related

to the pure-diffusion model, are denoted with a “hat” over the variable.

To allow for the possibility of infrequent but large changes in asset returns,9 we extend

the specification in equation (1) by introducing a jump-component to the process for returns,

as in Merton (1976):

dSn
Sn

= αndt + σndzn + (J̃n − 1) dQn(λn), n = 1, . . . , N, (4)

where Qn is a Poisson process with intensity λn, and (J̃n − 1) is the random jump amplitude

that determines the percentage change in the asset price if the Poisson event occurs. We

assume that the diffusion shock, the Poisson jump, and the random variable Jn are independent

and that Jn ≡ ln(J̃n) has a a normal distribution with mean µn and variance γ2
n implying

9In contrast to systemic risk, systematic risk refers to correlation between assets and a common factor, but
does not require that the size of this correlation be large or that the correlated changes be infrequent.
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that the distribution of the jump-size is asset specific. These assumptions imply that the price

of the asset cannot be negative, and this can be seen explicitly from the stochastic process

written in integral form:

Sn(t) = Sn(0) exp


yn(t) +

Qn(t)∑
k=1

Jnk


 ,

where yn(t) ∼ N
[
(αn − 1

2σ
2
n)t, σ

2
nt

]
, Jnk ∼ N

[
µn, γ

2
n

]
, and Qn(t) ∼ Poisson (λnt).

Given our desire to model the large changes in prices as occurring at the same time

across the risky assets, we specialize the above model by assuming that the arrival of jumps is

coincident across all assets: dQn(λn) = dQm(λm) = dQ(λ), ∀n = {1, . . . , N}, m = {1, . . . , N},
so that:

dSn
Sn

= αndt + σndzn + (J̃n − 1) dQ(λ), n = 1, . . . , N, (5)

with

Et

[
dSn
Sn

]
= αndt + αJ

ndt, (6)

Et

[(
dSn
Sn

)
×

(
dSm
Sm

)]
= σnmdt + σJ

nmdt, (7)

Thus, for the process in (5), the total expected return in equation (6) has two components:

one part coming from the diffusion process, αn and the other, denoted αJ
n, from the jump

process. The total covariance between dSn and dSm, given in (7), also arises from two sources:

the covariance between the diffusion components of the returns, σnm ≡ σnσmρnm, and the

covariance between the jump components, σJ
nm.

We denote the N×N matrix of the covariance terms arising from the diffusion components

by Σ, with its typical element being σnm ≡ σnσmρnm. We assume that the jump-size is

perfectly correlated across assets; as we shall see in Section 5, this turns out to be a conservative

assumption, and it has the further advantage that it reduces the number of parameters to

be estimated. The N × N matrix containing the covariation arising from the jump terms

is denoted by ΣJ. Explicit expressions for αJ
nm and σJ

nm in terms of the parameters of the

underlying returns processes, {λ, µn, γn}, are derived in Section 4.1 and are given in (32) and

(33).
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In our experiment, we wish to compare the portfolio of an investor who models security

returns using the pure-diffusion process in (1), with that of an investor who accounts for

systemic risk by using the jump-diffusion process in (5) but matches the first two moments

of returns. Thus, we need to choose the parameters of the jump-diffusion processes in such a

way that the first two moments for this process given in equations (6)–(7) match exactly the

first two moments of the pure-diffusion returns process in equations (2)–(3). Even though it is

straightforward to see how one can do this, because this result is important for understanding

our experiment we highlight it in a proposition.

Proposition 1 In order that the first and second moments from the jump-diffusion pro-

cess match the corresponding moments from the pure-diffusion process, we set, for n,m =

{1, . . . , N},

αn = α̂n − αJ
n, (8)

σnm = σ̂nm − σJ
nm. (9)

One interpretation of the above compensation of the parameters is that the investor using

the jump-diffusion returns process takes the total expected return on the asset, α̂n, and the

covariance, σ̂nm, and subtracts from them αJ
n and σJ

nm respectively, with the understanding

that this will be added back through the jump term, (J̃n − 1)dQ(λ). In this way, she reduces

the expected return and covariance coming from the diffusion terms in order to offset exactly

the contribution of the jump.

Even though the unconditional expected return and covariance under the compensated

jump-diffusion process will match those from the pure-diffusion process, the two processes

will not lead to identical portfolios. This is because the jump also introduces skewness and

kurtosis into the returns process (see equations (30) and (31) on page 17). In the next section,

we analyze the difference between the portfolio of an investor who allows for systemic jumps

in returns and an investor who ignores this effect.

3 Portfolio selection in the presence of systemic risk

In this section, we formulate and solve the portfolio selection problem when returns are given

by the jump-diffusion process in (5). Given that financial markets are incomplete in the
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presence of jumps of random size, we determine the optimal portfolio weights using stochastic

dynamic programming rather than the martingale pricing approach.

Our modeling choices are driven by the desire to develop the simplest possible framework

in which one can examine the portfolio selection problem in the presence of systemic risk.

Hence, we work with a model that has a constant investment opportunity set; an extension of

this model to the case where the investment opportunity set is changing over time, via shifts

in the likelihood of systemic jumps, is discussed in the appendix. Also, we choose to model

the portfolio problem in continuous time because of the analytical convenience this affords,

the results would be very similar if one considered a discrete-time setting, as can be seen by

the expression for the optimal portfolio below, and from the fact that in our simple setting

the portfolio policy is constant over time. Finally, we describe the model in the context of

international portfolio selection, but the model applies to any set of securities with appropriate

returns processes.

3.1 Optimal portfolio weights

We consider a US investor who wishes to maximize the expected utility from terminal wealth,10

WT , with utility being given by: U(W ) = W η

η , where η < 1, η 	= 0, so that constant relative

risk aversion is equal to 1 − η.11 The investor can allocate funds across n = {0, 1, . . . , N}
assets: a riskless asset denominated in US dollars (n = 0), a risky US equity index (n = 1),

and risky foreign equity indexes, n = {2, . . . , N}.

The price process for the riskless asset, S0, is

dS0 = rS0dt, (10)

where r is the instantaneous riskless rate of interest, which is assumed to be constant over

time. The stochastic process for the price of each equity index (in dollar terms),12 with a

common jump term is as given in equation (5), which is restated below:

dSn
Sn

= αndt + σndzn + (J̃n − 1) dQ(λ), n = 1, . . . , N,

10We do not consider intermediate consumption since it has no effect on the optimal portfolio weights in our
model.

11For the case where η = 0, the utility function is given by lnW .
12The dollar return on a foreign equity index includes the return on currency and the return on the interna-

tional equity index in local-currency terms. For the process for international equity returns, one could model
separately the equity return in local-currency terms and the return on currency. We do not do this because it
complicates the notation without adding any insights.
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with αn and σnm defined in equations (8) and (9).

Denoting the proportion of wealth invested in asset n by wn, n = {1, . . . , N}, the investor’s

problem at t can be written as:

V (Wt, t) ≡ max
{wn}

E

[
W η
T

η

]
, (11)

subject to the dynamics of wealth

dWt

Wt
=

[
w′R + r

]
dt + w′σdZt + w′JtdQ(λ), W0 = 1, (12)

where w is the N×1 vector of portfolio weights for the N risky assets, R ≡ {α1−r, . . . , αN−r}′

is the excess-returns vector, σσ′ ≡ Σ, dZ is the vector of diffusion shocks, and J is the vector

of random jump amplitudes for the N assets.

Using the standard approach to stochastic dynamic programming and the appropriate

form of Ito’s Lemma for jump-diffusion processes, one can obtain the following Hamilton-

Jacobi-Bellman equation:

0 = max
{w}

{
∂V (Wt, t)

∂t
+

∂V (Wt, t)
∂W

Wt
[
w′R + r

]
+

1
2
∂2V (Wt, t)

∂W 2
W 2
t w′Σw

+ λE
[
V

(
Wt + Wtw′J, t

)
− V (Wt, t)

] }
, (13)

where the terms on the first line are the standard terms when the processes for returns are

continuous, and the term on the second line accounts for jumps in returns.

We guess (and verify) that the solution to the value function is of the following form:

V (Wt, t) = A(t)
W η
t

η
. (14)

Expressing the jump term using this guess for the value function (details are in the proof for

the proposition), and simplifying the resulting differential equation, we get an equation that

is independent of wealth:

0 = max
{w}

{
1

A(t)
dA(t)
dt

+ η
[
w′R + r

]
+

1
2
η(η − 1)w′Σw + λE

[(
1 + w′J

)η − 1
]}

. (15)

Differentiating the above with respect to w, one gets the following result.
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Proposition 2 The optimal portfolio weights, in the presence of systemic risk, are given by

the solution to the following system of N nonlinear equations:

0 = R + (η − 1)Σw + λE

[
J

(
1 + w′J

)η−1
]
,∀t. (16)

Note that (16) gives only an implicit equation for the portfolio weights, w. Thus, to

determine the magnitude of the optimal portfolio weights one needs to solve this equation

numerically, which we do in Section 5. But one can understand many of the essential insights

of the systemic-risk portfolio model by considering a series expansion of the non-linear term

in (16):13

(1 + w′J)η−1 
 1 + (η − 1)w′J +
(η − 1)(η − 2)

2
(w′J)2. (17)

Using the above expansion to simplify the nonlinear term in (16) leads to a quadratic equation

for the portfolio weights, whose solution is given in the following proposition. In the propo-

sition, we also present the solution for the case where there is a single risky asset (N = 1),

which is simpler than that for the case where N > 1 and allows us to understand the effect of

systemic jumps on portfolio weights.

Proposition 3 The explicit (but approximate) expression for the vector of portfolio weights

for an investor modeling returns using a jump-diffusion model is:

w 

(

(1− η)Σ̂ +
{
(1− η)

(
2(η − 2)λR̂E[J′JJ′] + (1− η)Σ̂2

) }1/2
)−1

2R̂.

For the case where there is a single risky asset (N = 1), the above simplifies to:

w 
 2 R̂

(1− η) σ̂2 +
√

(1− η)
(
2 (η − 2) λµ (3 γ2 + µ2) R̂ + (1− η) σ̂4

) . (18)

In contrast to the above solution, an investor who ignores the possibility of systemic jumps

and assumes the standard model where price processes are multivariate diffusions without

jumps will choose the portfolio weights given by the familiar Merton (1971) expression below.

13We employ the Taylor series expansion of the form: f(a + x) = f(a) + f ′(a) x
1!

+ f ′′(a)x
2

2!
+ . . ., where

f(1 + w′J) = (1 + w′J)η−1. Note that w′J is a scalar. These derivations, and all those that follow, were
done using Mathematica; all the numerical work and also the estimation was done in Mathematica and verified
independently in Matlab. The computer code in both languages is available upon request.
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Corollary 1 The weights chosen by an investor who assumes that returns are described by

the pure-diffusion process in equation (1) are

ŵ =
1

1− η
Σ̂−1R̂. (19)

or, in the univariate case

ŵ =
R̂

(1− η)σ̂2 . (20)

The difference between the portfolio of the investor who accounts for systemic jumps, w,

and that of an investor who ignores this feature of the data and chooses portfolio ŵ can be

understood by comparing the expression in (18) to that in (20). First, we note that w in

(18) reduces to ŵ in (20) when there are no jumps (λ = 0). Second, the term λµ
(
3 γ2 + µ2

)
in the denominator of w represents the skewness of the returns process (this is derived in

Proposition 5). This term is not present in the expression for ŵ because this portfolio weight

is derived assuming a pure-diffusion returns process which has no skewness (or kurtosis).

Third, the sign of w − ŵ depends on the sign of µ, which indicates whether skewness is

negative or positive. For the case where µ < 0 implying that skewness is negative, w < ŵ

indicating that the investor who accounts for systemic risk will invest less in the risky asset

relative to the investor who ignores systemic risk.

Thus, the difference between w and ŵ arises from the higher moments ignored in (20).

Because we have considered only the first three terms in the Taylor’s expansion of the nonlinear

term, only skewness appears explicitly in the approximate expression for the optimal portfolio

weight; if one included higher order terms in the expansion, then the expression would also

reflect the higher moments of the distribution.14

The above discussion shows also how our model is related to that of Chunhachinda, Dan-

dapani, Hamid and Prakash (1997), who use polynomial goal programming in a single-period

model to examine the effect of skewness on portfolio choice by assuming a utility function de-

fined over the moments of the distribution of returns. In contrast, we work with the standard

constant relative risk averse utility function that is commonly used to examine optimal port-

folio selection and instead modify the returns process to allow for the possibility of skewness

and higher moments.
14The expression in (18) also seems to suggest that when µ = 0 the portfolio weight w reduces to ŵ; this

is only because we are considering just the first three terms of the expansion; it is not true when additional
terms are included, in particular the fourth term, which captures the kurtosis of the distribution.
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3.2 Comparative statics for the portfolio weights

In this section, we describe the comparative static results for the portfolio weights with respect

to the three parameters controlling the systemic-jump component of returns.

Proposition 4 The comparative static results with respect to {λ, µ, γ} are as follows. Defin-

ing a as,

a ≡ (1− η)
[
2 (η − 2) λµ

(
3 γ2 + µ2

)
R̂ + (1− η) σ̂4

]
, (21)

we have:

• The relation between the portfolio weight w and the jump-intensity parameter, λ, depends

on the sign of µ; if µ is negative (indicating that returns are negatively skewed), then

the investment in the risky asset declines with λ:

∂w

∂λ
=

2 (−2 + η) (−1 + η) µ
(
3 γ2 + µ2

)
R̂2

√
a

(√
a + (1− η) σ̂2

)2 (22)

• The portfolio weight w is positively related to µ, the parameter that controls skewness;

hence, as µ becomes more negative, investment in the risky asset declines:

∂w

∂µ
=

6 (−2 + η) (−1 + η) λ
(
γ2 + µ2

)
R̂2

√
a

(√
a + (1− η) σ̂2

)2 (23)

• The relation between w and γ, the volatility of the jump, depends on the sign of µ; if µ

is negative, then the investment in the risky asset declines with γ:

∂w

∂γ
=

12 γ (−2 + η) (−1 + η) λµ R̂2

√
a

(√
a + (1− η) σ̂2

)2 . (24)

These comparative static results are illustrated in Figures 1 and 2. Both figures are drawn

for the case where there are two risky assets with equal α̂n and σ̂n. Each figure plots four

quantities: (i) the total investment in the two risky assets by an investor using a pure diffusion

process; (ii) the total investment in the two risky assets by an investor who recognizes the

possibility of systemic jumps; (iii) the investment in the first risky asset as a percentage of the
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total investment in risky assets for the systemic investor, and (iv) the investment in the second

risky asset as a percentage of the total investment in risky assets for the systemic investor.

Note that because α̂n and σ̂n are the same for the two risky assets, the diffusion investor holds

each one in equal proportion. Also, by construction, the portfolio of the diffusion investor is

independent of the parameters for the systemic jump, {λ, {µ1, µ2}, {γ1, γ2}}. In the figures,

these parameters are assigned values which match the average of the values estimated for

the six indexes in the developed-country dataset, reported in the last column of Panel A of

Table 3.15

Figures 1 provides the comparative static results with respect to the jump-intensity pa-

rameter, λ. In the top panel of this figure, µ2 = 2µ1 < 0, implying that the second asset is

more negatively skewed than the first, while γ1 = γ2 > 0. In the lower panel, µ1 = µ2 < 0,

while γ2 = 2γ1 > 0, implying that the second asset has a higher kurtosis than the first. In

both panels, as systemic jumps are more frequent (an increase in λ), the investor reduces

her total investment in risky assets, which is always less than that of the diffusion investor.

Moreover, there is a shift in the composition of the risky-asset portfolio away from the asset

that is more strongly affected by the systemic jump either because of a more negative µ (upper

panel) or because of a larger γ (lower panel).

Figure 2 illustrates the effect of the expected jump size parameter, µ2 < 0 in the first

panel, while the second panel studies the effect of γ2 > 0, the parameter for the volatility

of the jump size. From the upper panel, we see that the total investment in the risky assets

is always less than what it is for the pure-diffusion case, and this difference increases as µ2

becomes more negative. Also, the relative investment in the two assets is the same when

µ2 = µ1 (where the two dashed lines cross) but the asset with the more negative µ has less

invested in it.

The lower panel of Figure 2 shows the effect of the parameter for the volatility of the jump

size for the second asset, γ2. Again, the investor who accounts for systemic risk always invests

less in risky assets relative to an investor who ignores this risk, and the relative investment in

the two risky assets depends on the relative magnitude of γ: when γ2 = γ1 = 0.10, then each

asset is held in equal proportion; for γ2 > γ1, the relative weight in the second asset is less

than that in the first asset.

15The parameters for these figures are described in detail in Section 4.
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3.3 Certainty equivalent cost of ignoring systemic risk

Above, we have compared the optimal portfolio weights for an investor who accounts for

systemic jumps in returns and the investor who ignores this feature of the data. In this section,

we compare the certainty equivalent cost of following the sub-optimal portfolio strategy. The

objective of this exercise is to express in dollar terms the cost of ignoring systemic risk.

In order to quantify the cost of ignoring systemic jumps, we compute the additional wealth

needed to raise the expected utility of terminal wealth under the suboptimal portfolio strategy

to that under the optimal strategy. In this comparison, we denote by CEQ the additional

wealth that makes lifetime expected utility under ŵ, the portfolio policy that ignores systemic

risk, equal to that under the optimal policy, w. Using the notation V (Wt, t;wi), wi = {w, ŵ},
to denote explicitly which portfolio weights are used to compute the value function, the

compensating wealth, CEQ, is computed as follows:

V
(
(1 + CEQ)Wt, t; ŵ

)
= V

(
Wt, t;w

)
. (25)

Then, from equations (14) and (25), we have

A(t; ŵ)
[
1
η

(
(1 + CEQ)Wt

)η]
= A(t;w)

[
1
η
W η
t

]
,

which implies that

CEQ =
[
A(t;w)
A(t; ŵ)

]1/η

− 1, (26)

where, from the proof for Proposition 2,

A(t;wi) ≡ e(η[w
′
iR+r]+ 1

2
η(η−1)w′iΣwi+λE[(1+w′iJ)

η−1])(T−t). (27)

The effect of systemic risk on portfolio weights and lifetime expected utility is studied in

Section 5, after the estimation of the parameters for the returns processes, which we describe

in the section below.

4 Estimating the model parameters

In order to evaluate the effect of systemic risk on portfolio choice, we would like to calibrate

the jump-diffusion returns model to reasonable parameter values. We explain our estimation
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procedure in this section, which is divided into three parts. In the first part we derive the

moments for security returns in the presence of systemic risk, in the second part we describe

the data, and in the third, we use the method of moments to estimate the parameters of the

returns processes.

4.1 Deriving the unconditional moments for returns

To derive the unconditional moments of the returns processes in (5) we exploit the relation

between the characteristic function and the Kolmogorov backward equation.

Start by defining the continuously compounded return on a particular asset by dxn ≡
d lnSnt, α∗n ≡ αn − (1/2)σ2

n, n = {1, . . . , N}. Let the characteristic function be denoted by

F (x1, . . . , xN , τ ; s1, . . . , sN ), where sn, are the Fourier-transform parameters for each stock

index. The stochastic process for which the moments are derived is as follows:

dxn = α∗ndt + σndzn + (J̃n − 1)dQ(λ).

The Kolmogorov backward differential equation for F (x1, . . . , xN , τ ; s1, . . . , sN ) is

∂F

∂t
=

1
2

N∑
n=1

N∑
m=1

ρnmσnσm
∂2F

∂xn∂xm
+

N∑
n=1

α∗n
∂F

∂xn

+λE
[
F (x1 + J1, . . . , xN + JN , τ ; s1, . . . , sN )− F (x1, . . . , xN , τ ; s1, . . . , sN )

]
.

The solution to the above differential equation leads to the following characteristic function.

Lemma 1 The characteristic function for the returns process with systemic jumps is

F (x1, . . . , xN , τ ; s1, . . . , sN ) = exp

[
i
N∑
n=1

snxn + C(τ)

]
,

where

C(τ) =


−1

2

N∑
n=1

σ2
ns

2
n −

∑
n�=m

ρnmσnσmsnsm +
N∑
n=1

α∗nisn + λM


 τ ,

M ≡ E

(
exp

[
i
N∑
n=1

snJn

]
− 1

)

= exp


i N∑

n=1

µnsn −
1
2

N∑
n=1

s2
nγ

2
n −

∑
n�=m

snsmγnγm


− 1.
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Then, to get the kth (non-central) moment for asset n, we use: 1
ik

(
∂kF
∂skn

)
s=0

, from which

one can get the central moments using the standard relation between central and non-central

moments. Cross-moments such as covariance and co-skewness are also obtained from the
characteristic function by taking partial derivatives with respect to both assets in the cross-

moment.

Proposition 5 The expressions for the moments of the continuously compounded returns are

the following: for n,m = {1, . . . , N},

Mean = t

(
αn −

1
2
σ2
n + λµn

)
, (28)

Co-variance = t
[
σnm + λ

(
µnµm + γnγm

)]
(29)

Co-skewness =
t λ

[
2µnγnγm + µm

(
µ2
n + γ2

n

)]
VariancenVariance1/2

m

, (30)

Excess kurtosis =
t λ

(
3γn4 + 6γn2µn

2 + µn
4
)

Variance2
n

. (31)

Comparing the mean and covariance for the jump-diffusion processes considered above,

with those for the pure-diffusion processes (λ = 0), one gets the following:

αJ
n = λµn, (32)

σJ
nm = λ (µnµm + γnγm) . (33)

With this compensation in equations (8) and (9), the expected returns and covariances will

be the same under the jump-diffusion and pure-diffusion processes.

4.2 Description of the data

The analysis in this paper is from the point of view of a US investor. To ensure that our

results are not sensitive to the choice of data, we consider two data sets—one for developed

countries and the other for emerging economies. Both sets of data are from Datastream Inc.

The data for the developed countries consists of the month-end US$ values of the equity

indexes for the period January 1982 to February 1997 for the United States (US), United

Kingdom (UK), Switzerland (SW), Germany (GE), France (FR), and Japan (JP). The data
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for emerging economies is for the period January 1980 to December 1998, and consists of

the beginning-of-month value of the equity index for the USA, Argentina (ARG), Hong Kong

(HKG), Mexico (MEX), Singapore (SNG), and Thailand (THA). To distinguish the two sets

of data, we abbreviate the countries in the developed-economy dataset with two characters

and the emerging-economy dataset with three characters.

Table 1 reports the descriptive statistics for the continuously compounded monthly return

on index j in U.S. dollars, rit, which is defined as the ratio of the log of the index value at

time t and its lagged value:

rjt = ln

[
Vjt

Vj,t−h

]
,

where Vjt is the US$ value of the index at time t. Examining first the moments for developed

economies, we observe from Panel A of Table 1 that the excess kurtosis of returns is substan-

tially greater than that for normal distributions (in the table, we report kurtosis in excess of

3, which is the kurtosis for the normal distribution). The excess kurtosis in the data ranges

from 0.87 for France to 7.22 for the US. For the data on emerging economies, as one would

expect, the excess kurtosis is much greater, ranging from 3.77 for Thailand to 9.18 for Mexico.

All twelve kurtosis estimates are significant. There are two possible reasons for the kurtosis:

(i) when the multivariate return series is not stationary, the mixture of distributions results in

kurtosis; (ii) if the returns are characterized by large shocks, then the outliers inject kurtosis.

The second feature of the data is that skewness of the return for all the developed-market

indexes is negative, and for the emerging-country indexes it is more strongly negative, except

for Argentina, where it is insignificantly different from zero. The negative skewness is a well-

known feature of equity index time series over this time period (1982-97). Within this period,

there were several large negative shocks to the markets contributing to the negative skewness:

for instance, the market crash of October 1987, and the outbreak of the Gulf war in August

1990, the Mexican crisis in December 1994, and the Russian crisis in August 1998.16

Table 2 reports the covariances and correlations between the returns on the international

equity indexes. The correlations for the developed countries range from a low of 0.33 between

the US and Japan, to a high of 0.68 between Germany and Switzerland. The average correla-

tion between the equity markets for developed countries is 0.51. For the emerging countries,

the correlations range from the very low 0.05 between Hong Kong and Argentina to 0.55 be-

16The negative skewness is also a consequence of the fact that volatility tends to be higher when returns are
negative than when they are positive.



Systemic risk and international portfolio choice 19

tween Singapore and the US. The average correlation for the emerging countries is only 0.31

which, as one would expect, is much lower than that for the developed countries.

4.3 Estimating the parameters using the method of moments

For the benchmark case of pure-diffusion process in equation (1), the parameters to be esti-

mated are {α̂, Σ̂}, with the moment conditions available being the ones in equations (2) and

(3). From these moment conditions we see that {α̂, Σ̂} can be estimated directly from the

means and the covariances of the data series.

For the jump-diffusion process, the parameters to be estimated are {λ,α,Σ,µ,γ}, from

the moment conditions in equations (28)–(31). In our experiment we wish to match the means

and covariances of the jump-diffusion processes to those from the pure-diffusion process; that

is, we want to set α = α̂−λµ and Σ = Σ̂−λ(µµ′+γγ ′). Thus, we need to estimate only λ,

and the 6×1 vectors µ and γ (a total of 13 parameters) to match the 6×1 kurtosis and 6×6

co-skewness conditions for a total of 42 moment conditions.17 We choose these 13 parameters

to minimize the squared deviation of the 42 moment conditions from their values implied by

the data. Once we have these parameters, we can obtain α by subtracting λµ from α̂ and Σ

by subtracting λ(µµ′ + γγ ′) from Σ̂.

Table 3 reports the parameter estimates obtained using the method of moments. From

Panel A of this table we see that for the developed countries, the estimated value of λ = 0.0501,

and this is significantly different from 0. The estimated λ of 0.0501 indicates that on average

the chance of a jump in any month is about 5%, or one jump is expected every 20 months.

Our estimate of λ is lower than that in studies estimating the likelihood of a jump in the

returns series of a single index, which is typically of the order 0.20; the reason is that in our

model λ measures the likelihood of a systemic jump rather than an idiosyncratic jump. The

average expected jump size across countries is −0.0483 while the volatility of the jump size is

0.1006.

From Panel B of Table 3, we see that the estimated value of λ in the data for emerging

markets is 0.0138, lower than that for the return indexes of developed countries. This is not

surprising given that linkages between emerging countries are much weaker than those for

the developed countries considered in our sample. Observe, however, from the comparison of

17Note that coskewness between asset n and m is different from that between m and n; thus, the co-skewness
matrix contains 6 skewness terms on the diagonal, and 30 unique co-skewness terms.
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parameter estimates in Panel A for the developed countries to those for emerging markets in

Panel B, that the average jump size (µ) is more than double for emerging markets—which

reflects the higher skewness in this data set. Also, the average volatility of jumps (γ) is

three times higher for emerging markets, and this reflects the higher kurtosis in this data.

Thus, even though systemic jumps are less frequent for emerging countries than for developed

countries, their expected (absolute) size and volatility are much larger.

To measure how well the estimated parameters do at matching the moments of the data,

we use the estimated parameters and the moment conditions in (30)–(31) to reconstruct

the skewness and kurtosis measures.18 Comparing these reconstructed moments with the

estimated moments, we see that the model does quite well in matching the kurtosis in the

data but is less successful in matching the skewness. Looking at the averages, the kurtosis is

matched almost exactly for both developed and emerging countries while the magnitude of

skewness from the model is greater than that in the data for the developed countries (Panel A),

and smaller for emerging countries (Panel B). Because the moments are not matched exactly,

we will evaluate in Section 5.2 the sensitivity of our results to these parameter estimates .

5 Calibrating the effect of systemic risk

In this section, we evaluate the effect of systemic risk using the estimated values for the pa-

rameters of the returns process. In the first part of this section, we determine the optimal

portfolio weights, w, by calibrating the portfolio model described in Section 2 to the parame-

ters reported in Table 3. We then compare these weights to those of an investor who ignores

systemic risk, ŵ. To evaluate whether the difference in these portfolio policies are substantial,

we compute CEQ, which is the additional wealth required to raise the lifetime utility of the

investor who ignores systemic risk to the level of the investor who accounts for this. In the

second part of the section, we evaluate the robustness of our results to the choices we have

made in undertaking our experiment.

5.1 Portfolio weights and certainty-equivalent cost

In our calibration exercise, the parameters we use for the returns process are those reported

in Table 3. In addition to this, we need to specify the riskfree rate and the agent’s relative
18The means and covariances are matched exactly by construction. The results on the comparison of coskew-

ness from the model to that in the data are not reported but are similar to those for skewness.
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risk aversion. We assume that the monthly riskless interest rate for the US investor is 0.005,

which is the close to the average US one-month riskless interest rate in our data, and we set

the parameter of relative risk aversion 1− η to be 3.0.

With these parameter values, we solve numerically the first-order conditions in Proposi-

tion 2 to obtain the optimal portfolio weights for an investor who accounts for systemic risk,

w. We also compute ŵ, the weights of the investor who ignores systemic jumps and models

returns as a pure-diffusion process. In addition to these portfolio weights, we also report the

composition of the portfolio consisting of only risky assets, which can be obtained by dividing

each individual weight by the total investment in risky assets. These weights are given by

w/(w′1) for the systemic-jump case and ŵ/(ŵ′1) for the pure-diffusion case.

Table 4 reports the weights for developed-country indexes in Panel A and for the emerging

countries in Panel B. Observe that for both developed and emerging countries, the total

investment in risky assets (last row, columns 2 and 3) is larger for the investor who ignores

systemic risk: for developed countries the investment in risky assets is 1.1409 for the investor

who ignores systemic risk as opposed to only 0.9857 for the investor who accounts for this;

for emerging countries, the investment in risky assets for the pure-diffusion case is 1.0477

instead of the optimal 1.0190. Thus, as one would expect, accounting for systemic risk leads

an investor to reduce the overall investment in risky assets.

To address the question of whether systemic risk implies that US investors should hold

a greater proportion of US assets and diversify less internationally, we study the last two

columns of the first row, which report the percentage of total risky-asset investment that is

in US assets. For the developed countries (Panel A), we see that the US share in risky assets

for the investor who accounts for systemic jumps is 0.7892 versus 0.7700 for the investor who

ignores this effect; for the emerging-country returns (Panel B), the share of the USA in the

risky-asset portfolio is again higher for the investor who accounts for systemic risk: 1.4619 as

opposed to 1.4516. Hence, while systemic risk induces the investor to hold relatively more of

the US asset in the risky-asset portfolio, the effect is not large.

That the effect of systemic jumps on foreign investment is not substantial can also be

observed from the weights for the individual countries. Examining first Panel B of Table 4,

we see that the individual weights in the last two columns are not very different for any of the

emerging countries. In the case of developed countries, the weights for US, Japan, and France

differ very little across the last two columns, while the difference is larger in the weights for

Germany, Switzerland and the UK.
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To evaluate whether the effect on lifetime utility of the portfolio strategy that accounts

for systemic risk relative to the strategy that ignores this effect, we compute the quantity

CEQ, defined in equation (26), which measures the additional wealth required at t = 0 to

raise the lifetime utility of the investor following the sub-optimal portfolio strategy, ŵ, to the

level of the investor choosing the portfolio w, which accounts for systemic risk. This quantity

depends on the time-horizon of the investor and we report it for horizons of one to five years.

From Panel A of Table 5, we see that for the case of developed economies, and for the base

case relative risk aversion of 3 that was considered in Table 4, CEQ is equal to 0.001 for a

horizon of one year, and increases to 0.005 for a horizon of five years. That is, for an investor

with an initial wealth of $1000, the cost of ignoring systemic risk is $1 if the horizon is 1 year

and $5 for a horizon of five years. For the case of emerging economies, reported in Panel B

of Table 5, the CEQ is even smaller: for an initial wealth of $1000, and relative risk aversion

of 3, the cost of ignoring systemic risk ranges from $0.06 for a horizon of one year to $0.32

for a five-year horizon. The magnitude of CEQ indicates that the effect of systemic risk on

the lifetime utility of the investor is not large. The other numbers in this table are discussed

below, in Section 5.2.2.

5.2 Verifying the robustness of results

In this subsection, we examine whether the results reported above are sensitive to (i) the choice

of data, (ii) the assumed degree of relative risk aversion (1−η = 3); (iii) the assumption about

unrestricted borrowing and shortselling, (iv) the estimates of expected returns (α̂), which are

notoriously difficult to estimate precisely, and (v) the estimates for {λ, µ, γ}, the parameters

driving the systemic jump. The main conclusion of this robustness exercise is that none of

these factors materially change the conclusions drawn from Table 4 or the CEQ cost implied

by these portfolio weights. We discuss each robustness check below.

5.2.1 Sensitivity to choice of dataset

In our discussion, we have considered two datasets: one for developed countries and the other

for emerging countries. Comparing the parameter estimates for the returns process for these

two sets of data, we see that systemic jumps are more likely across developed markets than for

the emerging markets considered in our sample, though the expected jump size and volatility

are larger for emerging countries. Our results on portfolio choice are broadly similar across
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these two datasets: the effect of systemic risk on portfolio weights is not large, and thus, the

initial wealth required to compensate for systemic risk is also small, especially in the case of

emerging countries.

5.2.2 Sensitivity to level of risk aversion

The conclusions we have drawn so far rely on the portfolio weights reported in Table 4, where

the investor was assumed to have a relative risk aversion (1 − η) equal to 3. There is a

large literature trying to evaluate the appropriate level of risk aversion for the representative

investor, and the suggestions for the appropriate level of this parameter range from 2 to 60.

In Table 5, we report the CEQ for risk aversion ranging from 1 to 10, and we see that as risk

aversion increases the effect of systemic risk decreases. Thus, the base case value of 3 that we

have considered is a conservative one, and our results would be even stronger for higher levels

of risk aversion. The intuition for why the impact of systemic risk drops with risk aversion is

straightforward: as risk aversion increases, the investor holds a smaller proportion of wealth

in the risky assets; hence, the exposure to systemic risk, and its effect on CEQ, is smaller.

To get an idea about the rate of change in the CEQ as risk aversion and the horizon change,

in Figure 3 also plot CEQ against relative risk aversion (RRA) and the investment horizon.

The figure confirms that as RRA increases beyond 1, CEQ drops very quickly. Thus, the CEQ

is large only for very low values of risk aversion; while these low values of risk aversion may

be inappropriate for individual investors, perhaps they are less unreasonable for hedge funds.

5.2.3 Sensitivity to constraints on shortselling and borrowing

The portfolios we have examined in Table 4 were unconstrained, but in practice an investor

may face constraints on borrowing or shortselling risky assets. There are two ways we could

incorporate these constraints. One approach would be to constrain the numerical optimization

program. Alternatively, one could extend the theoretical results in Proposition 2 to explicitly

allow for constraints; this is done in Section A.1.7 of the appendix.

In Table 6, we report the optimal portfolio when borrowing and shortsales are prohibited.

As in the unconstrained case, we find that there is only a small difference between the optimal

portfolio w that accounts for systemic jumps, and ŵ, the portfolio where this risk is ignored.

For both developed and emerging countries, the difference is smaller than it was for the case

where portfolios were unconstrained. Thus, with constraints on shortsales, the result of which
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is to reduce extreme portfolio positions, the effect of systemic jumps on portfolio weights is

marginal. The CEQ is also significantly smaller: at the five-year horizon, it is 0.00001 for

developed economies and 0.00060 for emerging economies.

5.2.4 Sensitivity to estimates of expected returns

Another concern is that the portfolio weights computed in Table 4 could potentially be sensi-

tive to the estimate of the expected return, leading to large imbalances in the weights assigned

to risky assets. There is a large literature discussing the problems in estimating expected re-

turns, the extreme portfolios generated by this, and ways to reduce it.19 To examine the

sensitivity of our results to the estimates of expected returns, we recompute the portfolio

weights by averaging the estimates of expected returns across all assets and using this average

as a proxy for the expected return on all the assets. Thus, all assets have the same expected

return so that the weights are no longer driven by differences in expected returns.

In Table 7, we report the portfolio weights when the expected return is set to be equal

across all risky assets. As in Table 4, we find that the total investment in risky assets is

smaller for the investor who accounts for systemic risk: 0.9726 rather than 1.1096 in the case

of developed countries and 0.0673 instead of 0.0676 for emerging countries. Moreover, the

individual country weights show the same pattern as in Table 4: for the developed-country

portfolio, the biggest difference is in the US weight followed by that for Switzerland. For the

emerging-market portfolio, the difference in weights across w and ŵ is even smaller than in

the case of developed countries. The CEQ numbers are smaller than those for the weights

corresponding to Table 4: for the developed countries they range from 0.0002 for a one-year

horizon to 0.0011 for a five-year horizon. Hence, these results suggests that it is unlikely that

our results are an artifact of imprecise estimation of expected returns.

5.2.5 Sensitivity to estimates of the parameters for the jump processes

Above, we have examined the robustness of our results to the estimates of expected returns.

In this section, we explore the effect of the estimates for the three new parameters introduced

by our jump-diffusion model (relative to the standard diffusion model): λ, which dictates the

19An early reference to this this problem is given in Jorion (1985) and Dumas and Jacquillat (1990). Green
and Hollifield (1992) provide a good discussion of this problem, and Connor (1997) proposes a nice solution to
it. Pástor (1999) proposes using information on the asset pricing framework to improve the portfolio selection
process. The implications of this for bias in international portfolios towards domestic assets is explored in
Gorman and Jorgensen (1997) and Britten-Jones (1999). A general discussion of small sample problems and
proposed solutions, in the context of portfolio selection, can be found in Michaud (1998).
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frequency of jumps, µ, which measures the expected size of jumps, and γ, which measures the

variance of the jump size. In this analysis, relative risk aversion is assumed to be 3 and the

riskfree rate is equal to 0.005 per month, which matches the assumptions for the base case

considered in Table 4.

In order to make it possible to use figures so that we can report the weights for a wide

range of parameter values, we consider a situation where an investor has to choose across one

riskfree asset and only two risky assets. Moreover, the two risky assets are assumed to be

symmetric, with parameter values for their returns process being the average of the values

estimated for the six developed-country indexes given in Panel A of Table 3. Using these

averages as the base case, in our experiment we evaluate in Figures 4-6 the portfolio weights

and CEQ cost for a range of values for λ, µ and γ. Each of these figures has two panels: in the

first, we report the optimal portfolio weights of an investor who accounts for systemic jumps

(solid line in figure) and an investor who ignores this (flat dotted line in figure), and in the

second panel we plot the CEQ corresponding to these portfolio weights.

In Figure 4, we vary the jump-intensity parameter from 0 to 0.25, which is five times

its estimate value of 0.05. To gauge whether this range is broad enough, note that a λ of

0.25 implies that there are about 3 systemic jumps each year, and corresponds to skewness

and kurtosis that are five times their value in the data. The figure shows that as λ increase,

the difference between the two portfolio strategies increases. For λ = 0.10, which is double

its estimated value, the difference in portfolio weights is 0.03 and the CEQ for an initial

investment of $1000 is only $1 for an investor with a horizon of 5 years, and even smaller for

shorter horizons. For the extreme value of λ = 0.25, the difference in the two portfolio weights

is 0.06; that is, a pure-diffusion investor would invest 0.34 in each of the risky assets and 0.32

(= 1− 2× 0.34) in the riskfree asset, while an investor who accounts for systemic risk would

invest only 0.28 in the risky assets and 0.44 (= 1− 2× 0.28) in the riskfree asset. The CEQ

in this extreme case, for an investor with a horizon of one year is $1, and for a horizon of

five years is $5. Thus, we conclude that small deviations from the estimated value of λ will

not have a large effect on our conclusions about portfolio weights and the corresponding CEQ

cost.20

Figure 5 considers the effect of µ, the parameter for the expected jump size that determines

the sign for the skewness of returns. The average of this parameter in the data for developed

20This also allows one to get an idea of the effect on portfolios in a regime-switching model, where λ is
stochastic and fluctuates between a high value and a low value. In such a model, if for instance λ in the high
state is 0.1 and in the low state is 0, then the effect on the unconditional portfolio and CEQ will not be large.
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countries is about −0.05 (Panel A of Table 3) and we allow this to vary from 0 to −0.15,

three times its estimated value. A µ = −0.15 implies that skewness is 4.8 times its estimated

magnitude and kurtosis is 7.1 times what it is in the data. For µ = −0.10, the difference in

portfolio weights is about 0.03, and for µ = −0.15, we find that the difference in the portfolio

weights is 0.06; The effect on the CEQ is more sensitive to µ than it was to λ: for the extreme

case where µ = −0.15 and the investor has a horizon of 5 years, CEQ = $6 for an initial

investment of $1000; for a more reasonable level of µ = −0.10, CEQ is equal to $1.80 for an

investor with a 5-year horizon and only $0.40 for an investor with a 1-year horizon.

Finally, in Figure 6 we vary the volatility of the jump size, γ, from 0 to 0.20, which is

twice its estimated value and corresponds to 3.8 times the estimated value of skewness and

11.8 times the estimate of kurtosis. The effect of this parameter on the portfolio weights and

CEQ cost is smaller than that of λ and µ. For γ = 0.20, the difference in the portfolio weights

of a systemic and pure-diffusion investors is about 0.05, and the CEQ is $5 for an investor

with a five-year horizon and $0.90 for an investor with a one-year horizon.

We conclude that our findings about the effect of systemic risk on the optimal portfolio

composition and on CEQ are robust to reasonable deviations from the estimated values of the

parameters. However, for parameter values that are very different from the estimated ones

and for horizons much longer than the ones considered the effect of systemic risk could be

important.

5.2.6 Sensitivity to assumption about IID returns

The returns process that we have developed in the paper is one that is IID; in particular, there

is no persistence in jumps. We could extend this model to allow for persistence in systemic

jumps, and we show in Section A.2 of the appendix how one can do this by making the arrival

rate of jumps, λ, stochastic. For instance, the arrival rate of jumps could be either high (λH)

or low (λL), and the persistence in jumps can then be captured by varying the rate at which

λ switches from one state to another.

The reason why we have chosen to describe the simpler model in the main text of the

paper is because persistence in jumps does not have a major effect on our results. To see this,

denote the optimal portfolio in the regime where the likelihood of jumps is high by w(λH) and

in the regime where jumps are low by w(λL). Assume also that λH and λL are such that the

value in the current model assumed for λ is equal to (λH + λL)/2. Now, from the sensitivity
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results with respect to λ reported in Figure 4 and discussed in Section 5.2.5, we know that

increasing the value of λ does not change substantially the CEQ; that is, if λL = 0 so that

λH = 2λ, then the CEQ computed for the case where returns are always in state λH = 0.10

is not very different from that considered in the base case with λ = 0.05. Thus, even if the

high-jump regime had extreme persistence, the effect of systemic risk on CEQ would not be

very different from that reported for the base case.21

6 Conclusion

Returns on international equities are characterized by jumps occurring at the same time across

countries leading to return distributions that are fat-tailed and negatively skewed. We develop

a model of asset returns to capture these empirical properties, and then show how an investor

would choose an optimal portfolio when returns have these features. We also describe how

one can estimate such a model using the method of moments. We apply the proposed method

to determine the weights for a portfolio allocated over a riskless asset, an equity index for the

US, and five international equity indexes. We consider two sets of international indexes: one

for developed countries and the other for emerging countries.

The main result from our analysis is that the portfolio of an investor who ignores systemic

risk and matches only the first two moments of the returns process to the data is close to

that of an investor who explicitly accounts for systemic jumps. For the case where the model

is calibrated to returns on stock indexes of developed countries the economic cost of ignoring

systemic risk, measured as the additional amount of wealth needed to make an investor who

ignores this risk as well off as an investor who accounts for it, is about $1 for every $1000

invested. This cost is even smaller when we calibrate our model to returns on stock indexes
for emerging countries. Thus, systemic risk reduces only slightly the gains from international

diversification implied by the standard portfolio models.

21Of course, it is true that portfolio weights will differ across regimes; that is, there will be large differences
between w(λH) and w(λL). However, the source of this difference is not the increased likelihood of systemic
jumps, but rather that in the λH regime the overall volatility of returns is higher than that in the λL regime.
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A Appendix

This first part of this appendix contains the proofs for all the propositions in the paper. The

second part of the appendix presents extensions of the basic model considered in the main

text of the paper.

A.1 Proofs for main results

A.1.1 Proof for Proposition 1

Equating the expressions in (6) and (7) to those for the pure-diffusion returns process in

equations (2) and (3) gives the result.

A.1.2 Proof for Proposition 2

Simplifying the jump term in the Bellman equation (13) using the conjecture that the value

function is of the form V (Wt, t) = A(t)W
η

η , we get:

λE
[
V (Wt + Wtw′J, t)− V (Wt, t)

]
= λE

[
V (Wt

[
1 + w′J

]
, t)− V (Wt, t)

]

= λ
A(t)W η

t

η
E

[(
1 + w′J

)η − 1
]

= λV (Wt, t)E
[(

1 + w′J
)η − 1

]
. (A1)

After substituting (A1) into (13), one obtains the following:

0 = max
{w}

{
∂V (Wt, t)

∂t
+

∂V (Wt, t)
∂W

Wt
[
w′R + r

]
+

1
2
∂2V (Wt, t)

∂W 2
W 2
t w
′Σw

+ λV (Wt, t)E
[(

1 + w′J
)η − 1

] }
. (A2)

Substituting the functional form of the value function into (A2) gives equation (15). Differ-

entiating this equation gives the result in the proposition.

To identify A(t), we start by evaluating (15) at the optimal portfolio weights, w, which

implies:

1
A(t)

dA(t)
dt

= −κ, (A3)
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where

κ ≡ η
[
w′R + r

]
+

1
2
η(η − 1)w′Σw + λE

[(
1 + w′J

)η − 1
]
. (A4)

Integrating then gives

A(t) = ae−κt,

where a is the constant of integration. Using the boundary condition that

A(T ) = ae−κT = 1

then implies that

a = eκT

so that

A(t) = eκ(T−t)

and the value function is

V (Wt, t) = eκ(T−t)
W η
t

η
, (A5)

with κ defined in equation (A4).

A.1.3 Proof for Proposition 3

Using the expansion in (17), the nonlinear term in (16) reduces to:

λE
[
J(1 + w′J)η−1

]

 λE[J] + (η − 1)λE[J(w′J)] + λ

(η − 1)(η − 2)
2

E[J(w′J)2]. (A6)

Substituting (A6) in (16) leads to the following (system of) quadratic equations for the port-

folio weights:

0 = R + (η − 1)Σw + λE[J] + (η − 1)λE[J(w′J)] + λ
(η − 1)(η − 2)

2
E[J(w′J)2]. (A7)

Solving the quadratic equation (A7), and eliminating one root by noting that it does not

reduce to the solution in Corollary 1 in the absence of jumps (λ = 0), leads to the expression

for the portfolio weight in the proposition.
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A.1.4 Proof for Proposition 4

The comparative static results follow from differentiating the expression for portfolio weights

in equation (18), and noting that η < 1, and λ > 0.

A.1.5 Proof for Lemma 1

The characteristic function, F (x1, . . . , xN , τ ; s1, . . . , sN ), is identified from the Kolmogorov

backward equation which is:

∂F

∂t
=

1
2

N∑
n=1

N∑
m=1

ρnmσ2
nσ

2
m

∂2F

∂xn∂xm
+

N∑
n=1

α∗n
∂F

∂xn

+λE [F (x1 + J1, . . . , xN + JN , τ ; s1, . . . , sN )− F (x1, . . . , xN , τ ; s1, . . . , sN )] .

We guess that the solution is of the form:

F (x1, . . . , xN , τ ; s1, . . . , sN ) = exp

[
i
N∑
n=1

snxn + C(τ)

]
. (A8)

This guess can be verified by substituting the conjecture into the differential equation, which

gives:

∂C

∂τ
= −1

2

N∑
n=1

σ2
ns

2 −
∑
n�=m

ρnmσnσmsnsm +
N∑
n=1

α∗nisn + λM,

where

M = E

(
exp

[
i
N∑
n=1

snJn

]
− 1

)
,

with the boundary condition: exp[i
∑N
n=1 snxn] = F (x1, . . . , xN , 0; s1, . . . , sN ). Solving the

ordinary differential equation for C(τ) by integrating proves the result.

A.1.6 Proof for Proposition 5

Using the characteristic function identified in Lemma 1, we get the kth (non-central) moment

for asset n, by evaluating the following:

1
ik

(
∂kF

∂skn

)
s=0

.
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Central moments are then derived using the standard relation between central and non-central

moments. Cross-moments, such as covariance and co-skewness, are also obtained from the

characteristic function by taking partial derivatives with respect to the two assets in the

cross-moment.

A.1.7 The optimal portfolio in the presence of constraints

In this section, we consider the portfolio selection problem in the presence of constraints: the

standard constraints on short-selling and borrowing

1. Short-selling constraint restricts short positions in any of the portfolio choice assets:

w ≥ 0,∀t.

2. Borrowing constraint imposed to prevent leveraging the portfolio:

w′t1 ≤ 1,∀t,

which implies that the investment in the riskless asset will always be greater than or

equal to zero.

With these constraints added on, the objective function is:

max
w

{
η

(
w′R + r − 1

2
w′Σw

)
+

1
2
η2w′Σw + λtE

[(
1 + w′J

)η − 1
]

+
(
1−w′1

)
φ + w′ξ

}
, (A9)

where {φ, ξ} are Lagrange multipliers, with the standard complimentary slackness conditions:

1−w′1 ≥ 0, φ = 0 or 1−w′1 = 0, φ ≥ 0 (A10)

wi ≥ 0, ξi = 0 or wi = 0, ξi ≥ 0, ∀i = {1, . . . , N}. (A11)

The first-order condition for the above problem give us the following result.

Proposition A1 In the presence of borrowing and shortselling constraints, the optimal port-

folio is given by the solution to:

0 = R + (η − 1)Σw + λE
[
J(1 + w′J)η−1

]
− 1φ + ξ,

subject to the complimentary slackness conditions in equations (A10) and (A11).
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Proof: To solve the portfolio problem when the investor is constrained from borrowing and

shortselling, we will work directly with the objective function in (11) along with the result

in (A12), rather than using stochastic dynamic programming Merton (1971).22 We start by

considering the problem in the absence of constraints, and then in the second step analyze

the effect of the constraints.

Step 1: The unconstrained problem reformulated

The solution to the stochastic differential equation in (12) is

WT = W0 exp

{∫ T

0

(
w′R + r − 1

2
w′Σw

)
dt +

∫ T

0
w′ΣdZt+

∫ T

0
w′J dQ(λ)

}
. (A12)

In the lemma below, we show that the optimization problem in (11) is equivalent to

maximizing the expression in (A13), which is in a much more convenient form. The equivalence

is shown by exploiting the independence of the jump and the diffusion innovations and using

results on moment generating functions. The expression in (A13) is independent of time

because of our assumption that the parameters of the return distribution are constant over

time, and the assumption of power utility, which makes the optimal weights independent of

the level of wealth.23

Lemma A1 The problem in (11) subject to (12) can be restated as:

max
w

E0

[
W η
T

η

]

= max
w

[
η

(
wt
′R + r − 1

2
w′Σw

)
+

1
2
η2w′Σw + λE

[(
1 + w′J

)η − 1
]]

,∀t. (A13)

Proof: Using the result in equation (A12), the objective function can be re-expressed as:

max
w

E0

[
W η
T

η

]
= max

w
E

1
η
{exp(ηYD)}E {exp(ηYJ)} , (A14)

22For the analysis of leverage constraints in a more general setting, see Cvitanic and Karatzas (1992), Tepla
(1999), and Xu and Shreve (1992a,b).

23The stationarity of the problem can be seen directly also from the dynamic programming formulation given
in the text.
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where YD and YJ are defined as

YD ≡
∫ T

0

[
w′R + r − 1

2
w′Σw

]
dt +

∫ T

0
w′ΣdZ,

YJ ≡
∫ T

0
w′JdQ(λ).

We now simplify the above expression in two steps: first, we consider the diffusion terms,

and then the jump terms. Considering only the diffusion terms, the maximand reduces to:

E {exp(ηYD)} =

{
exp

[
η

{∫ T

0

(
w′R + r − 1

2
w′Σw

)
dt +

∫ T

0
w′ΣdZ

}]}
.

Given our assumption of power utility and a constant investment opportunity set,24 the max-

imand is independent of the level of wealth and can be solved instant-by-instant. Moreover,

because the diffusion terms are distributed normally, we get:

E {exp(ηYD)} =
{

exp
(
ηE(YD) +

1
2
η2Var(YD)

)}

= exp
[
η

(
w′R + r − 1

2
w′Σw

)
+

1
2
η2w′Σw

]
. (A15)

Considering the jump term, E {exp(ηYJ)}, in (A14), notice that this is just the moment-

generating function for the random variable YJ with parameter η. Define a random variable

Xk = w′kJk, for k = 1, . . . , n. Thus, YJ is a sum of iid random variables X1 + . . . + Xn

where n follows a Poisson distribution. Hence, YJ at each point in time can be described by a

compound Poisson process. Using results on generating functions in Karlin and Taylor (1975)

we see that the generating function E {exp(ηYJ)} can be written as the generating function of a

Poisson distributed random variable with a parameter that itself is the generating function for

random variable Xk. Writing the generating function of a random variable x with parameter

η as gx(η) = E[exp(ηx)], we have:

E {exp(ηYJ)} = exp[−λ + λgx(η)]

= exp[−λ + λE[exp(ηx)]]

= exp[−λ + λE[(ex)η]]

≈ exp[−λ + λE[(1 + x)η]]
24This can be seen explicitly in the dynamic programming formulation presented above.
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= exp[λ(E[(1 + w′J)η]− 1)]

= exp[λE[(1 + w′J)η − 1]]. (A16)

Combining this with the pure-diffusion terms in (A15), gives the jump-diffusion problem at

each point in time:

max
w

1
η

exp
[
η

(
w′R + r − 1

2
w′Σw

)
+

1
2
η2w′Σw + λE

[(
1 + w′J

)η − 1
]]

. (A17)

Optimizing this is equivalent to maximizing the expression in the lemma.

Differentiating the expression obtained in Lemma A1 with respect to w allows us to obtain

the optimal portfolio weights, which are the same as those from solving equation (16).

Step 2: The constrained problem

With the constraints on shortselling and borrowing added on, the objective function in (A13)

is equivalent to a Lagrangian problem, with the simplifying steps being the same as the ones for

Lemma A1. This objective function is given in (A9), along with the standard complimentary

slackness conditions: (A10) and (A11). Differentiating (A9) with respect to w, subject to

equations (A10) and (A11), gives the result.
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A.2 Extended model with regime shifts in jump intensity

In the framework developed in the main text, jumps in returns are transitory. However, if

one wanted a model where the likelihood of jumps was stochastic over time, one could extend

the basic model to allow for regimes in the intensity of jumps. This model, similar in flavor

to that of Ang and Bekaert (2000), would improve the fit of the returns process; however,

the essential insight that systemic risk has only a small effect on the gains from international

diversification does not change. Thus, we have chosen to present the simpler model in the

text, and the model with regimes is presented in this appendix.

In a model where λt is stochastic rather than constant, stock returns are given by:

dSn
Sn

= αndt + σndzn + (J̃n − 1) dQ(λt), n = 1, . . . , N. (A18)

We will restrict attention to the case where there are only two regimes for λ, {λL = 0, λH =

2λ̄}, equally spaced around the value λ̄. This implies that in one regime there are no jumps

at all (a pure-diffusion world), and in the other jumps arrive with intensity 2λ̄. The process

for λ is assumed to be given by:

dλt = 2
(
λ̄− λt

)
dQλ(ν), (A19)

where Qλ is a Poisson process (distinct from Q), ν is the intensity of Qλ, and λ̄ is the mean

of λ, which in our setting is equal to
(
λH+λL

2

)
.

The investor’s problem at t can be written as:

V (Wt, λt, t) ≡ max
{wn}

E

[
W η
T

η

]
, (A20)

subject to the dynamics of wealth

dWt

Wt
=

[
w′tR + r

]
dt + w′tσdZt + w′tJtdQ(λt), W0 = 1, (A21)

The Hamilton-Jacobi-Bellman equation.

0 = max
{w}

{
∂V (Wt, λt, t)

∂t
+

∂V (Wt, λt, t)
∂W

Wt
[
w′tR + r

]
+

1
2
∂2V (Wt, λt, t)

∂W 2
W 2
t w′tΣwt
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+ λtE
[
V

(
Wt + Wtw′tJ, λt, t

)
− V (Wt, λt, t)

]

+ ν
[
V

(
Wt, λt + 2(λ̄− λt), t

)
− V (Wt, λt, t)

] }
, (A22)

where the terms on the first line are the standard terms when the processes for returns are

continuous, the term on the second line accounts for jumps in returns, and the term on the

last line accounts for jumps in λ.

We guess (and verify below) that the solution to the value function is of the following form:

V (Wt, λt, t) = A(λt, t)W
η

η . Expressing the jump terms using this guess for the value function

and simplifying the resulting differential equation, we get an equation that is independent of

wealth:

0 = max
{wt}

{
1

A(λt, t)
∂A(λt, t)

∂t
+ η

[
w′tR + r

]
+

1
2
η(η − 1)w′tΣwt

+ λtE
[(

1 + w′tJ
)η − 1

]
+ ν

[
A(2λ̄− λt, t)−A(λt, t)

A(λt, t)

]}
. (A23)

Differentiating the above with respect to wt, one gets the following result (proof not included).

Proposition A2 The optimal portfolio weights, in the presence of systemic risk, are given

by the solution to the following system of N nonlinear equations:

0 = R + (η − 1)Σw(λt) + λtE

[
J

(
1 + w′(λt)J

)η−1
]
,∀t, (A24)

where, to indicate the dependence on λ, the portfolio weight is expressed as a function of λt.

Observe that ν does not appear in the above equation; this is because the change in λ

is not correlated with changes in stock returns. Note also that now the difference between

the optimal weights, w(λt), and the weights of an investor who uses a pure-diffusion process

for returns, ŵ(λ̄) arises from two sources: one, the pure-diffusion investor does not condition

her portfolio on the current value of λt = {λH , λL}; two, the pure-diffusion investor ignores

the effect of systemic jumps. As discussed in Section 5.2.6, the unconditional portfolio w(λ̄)

is quite close to that of the pure-diffusion investor, ŵ; however, the conditional portfolios,

w(λH) and w(λL), are quite different from one another.
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Table 1: Descriptive statistics for equity returns—univariate
Panel A of this table gives the first four moments of the monthly returns in US dollar terms for the
developed-country indexes and Panel B gives the same information for the US and five emerging
markets. The data for the developed countries is for the period January 1982 to February 1997,
and comprises of 182 observations of month-end values of the equity indexes for the US, UK, Japan
(JP), Germany (GE), Switzerland (SW) and France (FR). The data for emerging economies consists
of 227 observations of the beginning-of-month value of the equity indexed for the USA, Argentina
(ARG), Hong Kong (HKG), Mexico (MEX), Singapore (SNG), and Thailand (THA) for the period
January 1980 to December 1998. The numbers in the table are discussed in Section 4.2 on page 17.

Panel A: Developed countries—Moments

US UK JP GE SW FR Avg.
Mean 0.0102 0.0084 0.0080 0.0120 0.0102 0.0113 0.0100
Standard Deviation 0.0420 0.0567 0.0697 0.0576 0.0515 0.0611 0.0564
Variance 0.0018 0.0032 0.0049 0.0033 0.0027 0.0037 0.0033
Skewness -1.1648 -0.4623 -0.0508 -0.2308 -0.6382 -0.4325 -0.4966
significance level 0.0000 0.0115 0.7815 0.2074 0.0004 0.0181

Excess Kurtosis 7.2236 1.9212 0.8754 2.9546 5.5405 1.5780 3.3489
significance level 0.0000 0.0000 0.0180 0.0000 0.0000 0.0000

Panel B: Emerging countries—Moments

USA ARG HKG MEX SNG THA Avg.
Mean 0.0104 0.0040 0.0076 0.0034 0.0065 0.00004 0.0053
Standard Deviation 0.0414 0.2153 0.1026 0.1437 0.0772 0.1037 0.1140
Variance 0.0017 0.0464 0.0105 0.0206 0.0060 0.0108 0.0160
Skewness -1.1353 0.1187 -1.4163 -2.0224 -0.7684 -0.6077 -0.9719
significance level 0.0000 0.4681 0.0000 0.0000 0.0000 0.0002

Excess Kurtosis 6.1823 6.2377 6.9388 9.1851 4.8603 3.7800 6.1974
significance level 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 2: Descriptive statistics for equity returns—multivariate
Panel A give the covariances and the correlations between US dollar returns for the the developed-
country indexes and Panel B gives this for the emerging-country indexes. The data for the devel-
oped countries is for the period January 1982 to February 1997, and comprises of 182 observations
of month-end values of the equity indexes for the US, UK, Japan (JP), Germany (GE), Switzer-
land (SW) and France (FR). The data for emerging economies consists of 227 observations of the
beginning-of-month value of the equity indexed for the USA, Argentina (ARG), Hong Kong (HKG),
Mexico (MEX), Singapore (SNG), and Thailand (THA) for the period January 1980 to December
1998. The numbers in the table are discussed in Section 4.2 on page 17.

Panel A: Developed countries—Covariances (normal) and Correlations (italics)

US UK JP GE SW FR Avg. correl.
US 0.0018 0.5750 0.3348 0.4274 0.5472 0.5173
UK 0.0013 0.0032 0.4468 0.4916 0.5593 0.5507
JP 0.0009 0.0017 0.0049 0.3815 0.4442 0.4765
GE 0.0010 0.0016 0.0015 0.0033 0.6873 0.6593
SW 0.0011 0.0016 0.0015 0.0020 0.0027 0.6161 0.5142
FR 0.0013 0.0019 0.0020 0.0023 0.0019 0.0037

Panel B: Emerging countries—Covariances (normal) and Correlations (italics)

USA ARG HKG MEX SNG THA Avg. correl.
USA 0.0017 0.1039 0.4051 0.3586 0.5519 0.3445
ARG 0.0009 0.0464 0.0580 0.2167 0.0842 0.1286
HKG 0.0017 0.0012 0.0105 0.2475 0.5479 0.4347
MEX 0.0021 0.0067 0.0036 0.0206 0.3543 0.2972
SNG 0.0017 0.0014 0.0043 0.0039 0.0060 0.5291 0.3109
THA 0.0014 0.0028 0.0046 0.0044 0.0042 0.0108
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Table 3: Parameter estimates for the returns processes
This table reports estimates of the parameters for the multivariate system of jump-diffusion asset
returns, {λ,µ,γ} obtained by minimizing the square of the difference between the moment conditions
in equations (30)–(31) and the moments implied by the data. Panel A gives the estimates for
developed-country return indexes and Panel B gives the estimates for emerging economies. In
addition to the parameter estimates, the table reports the reconstructed moments which are obtained
by substituting the parameters estimated into equations (30)–(31), which are then compared to the
moments of the data. The numbers in the table are discussed in Section 4.3 on page 19.

Panel A: Developed countries

US UK JP GE SW FR Avg.
λ 0.0501 0.0501
µ -0.0660 -0.0797 0.0043 -0.0344 -0.0466 -0.0675 -0.0483
γ 0.0914 0.0792 0.1075 0.1167 0.1185 0.0902 0.1006

Skewness: reconstructed -1.3160 -0.5496 0.0222 -0.3782 -0.7567 -0.4291 -0.5679
Skewness: in data -1.1648 -0.4623 -0.0508 -0.2308 -0.6382 -0.4325 -0.4966
Ex. kurtosis: reconstructed 7.2148 1.9182 0.8540 2.9662 5.5474 1.5872 3.3480
Ex. kurtosis: in data 7.2236 1.9212 0.8754 2.9546 5.5405 1.5780 3.3489

Panel B: Emerging countries

USA ARG HKG MEX SNG THA Avg.
λ 0.0138 0.0138
µ -0.1280 0.2292 -0.2295 -0.2631 -0.1576 -0.1107 -0.1099
γ 0.0919 0.7179 0.3001 0.4929 0.2068 0.3009 0.3518

Skewness: reconstructed -1.0434 0.5085 -0.9507 -0.9806 -0.7272 -0.3903 -0.5973
Skewness: in data -1.1353 0.1187 -1.4163 -2.0224 -0.7684 -0.6077 -0.9719
Ex. kurtosis: reconstructed 6.1980 6.2009 6.9511 9.1905 4.8729 3.7623 6.1960
Ex. kurtosis: in data 6.1823 6.2377 6.9388 9.1851 4.8603 3.7800 6.1974
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Table 4: Portfolio weights—base case
This table gives the portfolio weights for an investor who chooses investments in six equity indexes
and the riskless asset to maximize expected utility of terminal wealth. The first two columns of
weights give (a) the optimal weights, w, for an investor who accounts for systemic jumps; and,
(b) the weights ŵ, for an investor who ignores systemic jumps and assumes a pure-diffusion process
for returns. For these two sets of weights, the last two columns of the table give the composition
of the risky-asset portfolio, which is obtained by dividing the weight for each index by the total
investment in risky assets. We assume that η = −2 implying that the investor’s parameter of
relative risk aversion, 1 − η, is 3. The riskless interest rate is 0.005 per month. The weights are
reported for two cases: in Panel A, for a portfolio diversified across equity indexes of developed
countries; in Panel B for a portfolio diversifies across indexes for emerging countries. The weights
reported in the table are discussed in Section 5.1 on page 20.

Panel A: Developed countries

Country Systemic Diffusion Risky-asset portfolio
w ŵ w

w′1
ŵ

ŵ′1

US 0.7779 0.8784 0.7892 0.7700
UK -0.3424 -0.3255 -0.3474 -0.2853
JP -0.0598 -0.0726 -0.0607 -0.0637
GE 0.5319 0.5417 0.5396 0.4748
SW -0.0346 0.0028 -0.0351 0.0025
FR 0.1128 0.1161 0.1144 0.1018
Riskless 0.0143 -0.1409 0 0

Total in risky assets 0.9857 1.1409 1 1

Panel B: Emerging countries

Country Systemic Diffusion Risky-asset portfolio
w ŵ w

w′1
ŵ

ŵ′1

USA 1.4896 1.5209 1.4619 1.4516
ARG 0.0033 -0.0019 0.0032 -0.0018
HKG 0.0474 0.0519 0.0465 0.0495
MEX -0.1070 -0.1046 -0.1050 -0.0999
SNG -0.1258 -0.1267 -0.1235 -0.1209
THA -0.2885 -0.2919 -0.2831 -0.2786
Riskless -0.0190 -0.0477 0 0

Total in risky assets 1.0190 1.0477 1 1
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Table 5: Certainty equivalent (CEQ) cost of ignoring systemic risk
This table gives the CEQ for an investor who chooses investments in six equity indexes and the
riskless asset to maximize expected utility of terminal wealth. The CEQ measures the additional
initial wealth, per dollar of investment, in order to raise the utility of an investor who ignores systemic
risk to the level of an investor who recognizes this risk. The table reports the CEQ for different
investment horizons and for different levels of relative risk aversion, RRA, which is equal to 1 − η.
The CEQ are reported for two cases: in Panel A, for a portfolio diversified across equity indexes of
developed countries; in Panel B for a portfolio diversifies across indexes for emerging countries. The
riskless interest rate is assumed to be 0.005 per month. Details of how this CEQ is computed are
given in Section 3.3; a discussion of the numbers reported in the table can be found in Section 5.1
on page 20.

Panel A: Developed countries
Investment horizon

RRA (1− η) 1 year 2 years 3 years 4 years 5 years
1 0.010765 0.021645 0.032643 0.043759 0.054995
2 0.002126 0.004257 0.006392 0.008531 0.010675
3 (base case) 0.001013 0.002027 0.003043 0.004059 0.005076
4 0.000637 0.001274 0.001912 0.002550 0.003188
5 0.000457 0.000913 0.001370 0.001827 0.002285
6 0.000353 0.000706 0.001060 0.001413 0.001767
7 0.000287 0.000573 0.000860 0.001147 0.001434
8 0.000241 0.000481 0.000722 0.000963 0.001204
9 0.000207 0.000414 0.000622 0.000829 0.001036
10 0.000182 0.000363 0.000545 0.000727 0.000909

Panel B: Emerging countries
Investment horizon

RRA (1− η) 1 year 2 years 3 years 4 years 5 years
1 0.000639 0.001278 0.001918 0.002558 0.003198
2 0.000133 0.000265 0.000398 0.000531 0.000664
3 (base case) 0.000064 0.000128 0.000192 0.000256 0.000320
4 0.000040 0.000081 0.000121 0.000161 0.000202
5 0.000029 0.000058 0.000087 0.000116 0.000145
6 0.000022 0.000045 0.000067 0.000090 0.000112
7 0.000018 0.000037 0.000055 0.000073 0.000091
8 0.000015 0.000031 0.000046 0.000061 0.000077
9 0.000013 0.000026 0.000040 0.000053 0.000066
10 0.000012 0.000023 0.000035 0.000046 0.000058
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Table 6: Portfolio weights with borrowing and shortsales constraints
This table gives the portfolio weights for an investor facing borrowing and short-sale constraints and
who chooses investments in six equity indexes and the riskless asset to maximize expected utility of
terminal wealth. The first two columns of weights give (a) the optimal weights, w, for an investor
who accounts for systemic jumps; and, (b) the weights ŵ, for an investor who ignores systemic jumps
and assumes a pure-diffusion process for returns. For these two sets of weights, the last two columns
of the table give the composition of the risky-asset portfolio, which is obtained by dividing the weight
for each index by the total investment in risky assets. We assume that η = −2 implying that the
investor’s parameter of relative risk aversion, 1−η, is 3. The riskless interest rate is 0.005 per month.
The weights are reported for two cases: in Panel A, for a portfolio diversified across equity indexes
of developed countries; in Panel B for a portfolio diversifies across indexes for emerging countries.
The weights reported below are discussed in Section 5.2.3 on page 23.

Panel A: Developed countries

Country Systemic Diffusion Risky-asset portfolio
w ŵ w

w′1
ŵ

ŵ′1

US 0.5515 0.5547 0.5515 0.5547
UK 0 0 0 0
JP 0 0 0 0
GE 0.4425 0.4338 0.4425 0.4338
SW 0 0 0 0
FR 0.0059 0.0115 0.0059 0.0115
Riskless 0 0 0 0

Total in risky assets 1.0000 1.0000 1 1

Panel B: Emerging countries

Country Systemic Diffusion Risky-asset portfolio
w ŵ w

w′1
ŵ

ŵ′1

USA 0.9442 1.0000 1.0000 1.0000
ARG 0 0 0 0
HKG 0 0 0 0
MEX 0 0 0 0
SNG 0 0 0 0
THA 0 0 0 0
Riskless 0.0558 0 0 0

Total in risky assets 0.9442 1.0000 1 1
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Table 7: Portfolio weights assuming identical expected returns
In order to account for estimation error, in this table the expected return is set to be the same across
all assets—based on the average reported in Table 1. As before, the portfolio weights reported are for
an investor who chooses investments in six equity indexes and the riskless asset to maximize expected
utility of terminal wealth. The first two columns of weights give (a) the optimal weights, w, for
an investor who accounts for systemic jumps; and, (b) the weights ŵ, for an investor who ignores
systemic jumps and assumes a pure-diffusion process for returns. For these two sets of weights, the
last two columns of the table give the composition of the risky-asset portfolio, which is obtained by
dividing the weight for each index by the total investment in risky assets. We assume that η = −2
implying that the investor’s parameter of relative risk aversion, 1− η, is 3. The riskless interest rate
is 0.005 per month. The weights are reported for two cases: in Panel A, for a portfolio diversified
across equity indexes of developed countries; in Panel B for a portfolio diversifies across indexes
for emerging countries. The weights reported in the table below are discussed in Section 5.2.4 on
page 24.

Panel A: Developed countries

Country Systemic Diffusion Risky-asset portfolio
w ŵ w

w′1
ŵ

ŵ′1

US 0.6258 0.7145 0.6435 0.6439
UK 0.0219 0.0362 0.0225 0.0326
JP 0.1267 0.1159 0.1303 0.1045
GE 0.1641 0.1732 0.1688 0.1561
SW 0.1008 0.1342 0.1037 0.1209
FR -0.0668 -0.0643 -0.0687 -0.0580
Riskless 0.0274 -0.1096 0 0

Total in risky assets 0.9726 1.1096 1 1

Panel B: Emerging countries

Country Systemic Diffusion Risky-asset portfolio
w ŵ w

w′1
ŵ

ŵ′1

USA 0.0676 0.0677 1.0043 1.0016
ARG 0.0013 0.0013 0.0191 0.0192
HKG -0.0002 -0.0002 -0.0036 -0.0024
MEX -0.0022 -0.0021 -0.0326 -0.0315
SNG -0.0015 -0.0015 -0.0230 -0.0228
THA 0.0024 0.0024 0.0357 0.0358
Riskless 0.9327 0.9324 0 0

Total in risky assets 0.0673 0.0676 1 1
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Figure 1: Relative weights with respect to jump intensity

This figure shows the total proportion of wealth invested in risky assets by an investor who accounts
for “systemic jumps” (solid line) and an investor who ignores this and models returns as a “pure
diffusion” (dotted line), and the proportion invested in the risky assets relative to the total investment
in risky assets (the two dashed lines). The model considered is one where there are only two risky
assets. The parameters for the returns processes for both assets are calibrated to the average of
the estimates for developed countries, reported in the last column of Panel A of Table 3, with the
following exceptions: λ, is allowed to range from 0 to 0.25, and in the first panel the mean jump
size of the second asset is set equal to twice the average in the data, and in the second panel, the
variance of the jumps size for the second asset is set to be twice the average in the data. As before,
we assume that η = −2 implying that the investor’s parameter of relative risk aversion, 1− η, is 3.
The riskless interest rate is 0.005 per month. This figure is discussed in Section 3.2 on page 13.
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Figure 2: Relative weights with respect to mean and volatility of jump size

This figure shows the total proportion of wealth invested in risky assets by an investor who accounts
for “systemic jumps” (solid line) and an investor who ignores this and models returns as a “pure
diffusion” (dotted line), and the proportion invested in the risky assets relative to the total investment
in risky assets (the two dashed lines). The model considered is one where there are only two risky
assets. The parameters for the returns processes for both assets are calibrated to the average of
the estimates for developed countries, reported in the last column of Panel A of Table 3 with the
following exceptions: in the first panel the mean jump size of the second asset is allowed to range
from 0 to -0.15, and in the second panel the volatility of the jumps size for the second asset is allowed
to range from 0 to 0.20. As before, we assume that η = −2 implying that the investor’s parameter
of relative risk aversion, 1 − η, is 3. The riskless interest rate is 0.005 per month. This figure is
discussed in Section 3.2 on page 13.
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Figure 3: CEQ cost for different time horizons and levels of risk aversion

In this figure, we plot the certainty equivalent (CEQ) cost for different levels of relative risk aversion
(1−η) and time horizon, measured in years. The CEQ measures the percentage of initial wealth that
needs to be given to the investor who ignores systemic risk to make her as well off as the investor
who accounts for systemic risk. The CEQ reported in this figure is for portfolios diversified across
developed countries This figure is discussed in Section 5.2.2 on page 23.
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Figure 4: Portfolio weights and CEQ with respect to jump intensity

The first panel of the figure gives the portfolio of an investor who accounts for “systemic jumps”
(solid line) and an investor who ignores this and models returns as a “pure diffusion” (dotted line).
The case considered is one where there are only two risky assets. The parameters for the returns
processes for both assets are calibrated to the average of the estimates for developed countries,
reported in the last column of Panel A of Table 3, with the exception of λ, which is allowed to range
from 0 to 0.25, corresponding to skewness and kurtosis ranging from 0 to 5 times their estimates
in the data. The second panel shows the corresponding CEQ for these two portfolios, where CEQ
measures the percentage of initial wealth that needs to be given to the investor who ignores systemic
risk to make him as well off as the investor who accounts for systemic risk. As before, we assume
that η = −2 implying that the investor’s parameter of relative risk aversion, 1− η, is 3. The riskless
interest rate is 0.005 per month. This figure is discussed in Section 5.2.5 on page 24.
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Figure 5: Portfolio weights and CEQ with respect to mean of jump size

The first panel of the figure gives the portfolio of an investor who accounts for “systemic jumps”
(solid line) and an investor who ignores this and models returns as a “pure diffusion” (dotted line).
The case considered is one where there are only two risky assets. The parameters for the returns
processes on both assets are calibrated to the average of the estimates for developed countries,
reported in the last column of Panel A of Table 3, with the exception of µ, which is allowed to range
from 0 to −0.15, corresponding to skewness ranging from 0 to 4.8 times its estimate in the data, and
kurtosis ranging from 0 to 7.1 times its estimated value. The lower plot shows the corresponding
CEQ for these two portfolios, where CEQ measures the percentage of initial wealth that needs to be
given to the investor who ignores systemic risk to make him as well off as the investor who accounts
for systemic risk. As before, we assume that η = −2 implying that the investor’s parameter of
relative risk aversion, 1 − η, is 3. The riskless interest rate is 0.005 per month. This figure is
discussed in Section 5.2.5 on page 24.
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Figure 6: Portfolio weights and CEQ with respect to variance of jump size

The first panel of the figure gives the portfolio of an investor who accounts for “systemic jumps”
(solid line) and an investor who ignores this and models returns as a “pure diffusion” (dotted line).
The case considered is one where there are only two risky assets. The parameters for the returns
processes for both assets are calibrated to the average of the estimates for developed countries,
reported in the last column of Panel A of Table 3, with the exception of γ, which is allowed to range
from 0 to 0.20, corresponding to skewness ranging from 0 to 3.8 times its estimate in the data, and
kurtosis ranging from 0 to 11.8 times its estimated value. The lower plot shows the corresponding
CEQ for these two portfolios, where CEQ measures the percentage of initial wealth that needs to be
given to the investor who ignores systemic risk to make him as well off as the investor who accounts
for systemic risk. As before, we assume that η = −2 implying that the investor’s parameter of
relative risk aversion, 1 − η, is 3. The riskless interest rate is 0.005 per month. This figure is
discussed in Section 5.2.5 on page 24.
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