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Abstract

Background: Inflammation is associated with perinatal brain injury but the underlying mechanisms are not completely
characterized. Stimulation of Toll-like receptors (TLRs) through specific agonists induces inflammatory responses that trigger
both innate and adaptive immune responses. The impact of engagement of TLR2 signaling pathways on the neonatal brain
is still unclear. The aim of this study was to investigate the potential effect of a TLR2 agonist on neonatal brain development.

Methodology/Principal Findings: Mice were injected intraperitoneally (i.p.) once a day from postnatal day (PND) 3 to
PND11 with endotoxin-free saline, a TLR2 agonist Pam3CSK4 (5 mg/kg) or Lipopolysaccharide (LPS, 0.3 mg/kg). Pups were
sacrificed at PND12 or PND53 and brain, spleen and liver were collected and weighed. Brain sections were stained for brain
injury markers. Long-term effects on memory function were assessed using the Trace Fear Conditioning test at PND50. After
9 days of Pam3CSK4 administration, we found a decreased volume of cerebral gray matter, white matter in the forebrain and
cerebellar molecular layer that was accompanied by an increase in spleen and liver weight at PND12. Such effects were not
observed in Pam3CSK4-treated TLR 2-deficient mice. Pam3CSK4-treated mice also displayed decreased hippocampus
neuronal density, and increased cerebral microglia density, while there was no effect on caspase-3 or general cell
proliferation at PND12. Significantly elevated levels of IL-1b, IL-6, KC, and MCP-1 were detected after the first Pam3CSK4
injection in brain homogenates of PND3 mice. Pam3CSK4 administration did not affect long-term memory function nor the
volume of gray or white matter.

Conclusions/Significance: Repeated systemic exposure to the TLR2 agonist Pam3CSK4 can have a short-term negative
impact on the neonatal mouse brain.
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Introduction

Improved neonatal and intensive care has enabled the survival

of preterm infants with very low birth weights. These infants are at

increased risk for nosocomial infection, and Staphylococcus epider-

midis is the predominant pathogen isolated from blood cultures

obtained in the neonatal intensive care unit [1,2,3,4,5]. Increasing

evidence suggests that neonatal brain injury is associated with

infection/inflammation, but the underlying mechanisms are

incompletely characterized [6,7,8]. Preterm infants in particular

have an increased risk of brain injury, which is predominantly

located in the cerebral white matter, although recently a high

frequency of grey matter injury has also been reported [9].

Moreover, very low birth weight premature infants manifest

cerebellar abnormalities [6].

Infection/inflammation stimulates innate and subsequent adap-

tive immune responses via the Toll-like Receptor (TLR) family of

pattern-recognition receptors that can be stimulated with specific

agonists. TLRs exist in a wide range of tissues outside the immune

system, including the central nervous system (CNS). TLR2 forms

heterodimers with TLR1 and TLR6, and these receptor

complexes recognize molecules expressed on Gram-positive
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bacteria, such as peptidoglycan, lipopeptides, and lipoproteins,

and they also mediate recognition of whole bacteria such as

Staphylococcus epidermidis [10,11,12]. Of note, TLR2 is selectively

up-regulated in the peripheral blood mononuclear cells of human

newborns infected with Gram-positive bacteria [13]. With respect

to the CNS, a role for TLR2 signaling in adult mouse brain injury

has been suggested, as summarized by a most recent review [14]

but there are few reports that define the role of TLR2 signaling in

neonatal brain injury. However, there are studies that suggest that

TLR2 and TLR4 are the principal TLRs present on microglia

which are involved in the innate immune response to infection/

hypoxia-ischemia; for a most recent review, please see [15]. Of

note, neonates demonstrate a distinct functional expression of the

TLR system [16,17], and therefore studies of outcome in adult

models cannot be directly extrapolated to newborns. In the present

study, we hypothesized that stimulation of TLR2 during a critical

period of neonatal brain development would have a detrimental

effect on the immature brain, which may be measurable as

changes in adult behavior. We used a synthetic lipopeptide,

Pam3CysSerLys4 (Pam3CSK4), as a specific TLR2 agonist [18],

that was administrated systemically to newborn wild-type and

TLR2 deficient mice from postnatal day (PND) 3 to PND11 to

evaluate short and long-term effects on the developing mouse

brain.

Methods

Ethics statement
The animal experiments were approved by the local Animal

Ethics Committee at the University of Gothenburg (Ethical

approval 350-2009).

Animals
Time-mated pregnant C57BL/6 wild-type mice were pur-

chased from Charles River Laboratories (Sulzfeld, Germany) and

gave birth in the animal facility (Experimental Biomedicine,

University of Gothenburg, Gothenburg, Sweden). B6.129-

Tlr2tm1Kir/J (TLR2 –deficient) mice were purchased from the

Jackson Laboratory (US) and bred in the animal facility. The day

of birth was defined as postnatal day (PND) 0. Mice were housed

with a 12-hour light/dark cycle with ad libidium access to a

standard laboratory chow diet (B&K, Solna, Sweden) and drinking

water was provided.

Drug administration
Offspring of both genders of C57BL/6 wild type mice were

randomly divided into three groups. i) Negative control mice

treated with endotoxin-free saline (10 ml/g, sb776, Sigma, USA,

n= 12); ii) Pam3CSK4 (5 mg/kg, Invitrogen, n = 11) treated

mice; and iii) Lipopolysaccharide, (LPS, 0.3 mg/kg, Escherichia

coli 055:B5; Sigma, Stockholm, Sweden) injected mice (n = 13).

LPS animals were used for comparison, as we have previously

shown that repeated administration of this dose of LPS from

PND3 to PND11 induces neonatal brain white/gray matter

injury [19]. Offspring of both genders of TLR2-deficient mice

were randomly divided into two treatment groups: i) Pam3CSK4,

treated (5 mg/kg, n = 8) mice; ii) endotoxin-free saline treated

(10 ml/g, sb776, Sigma, USA, n = 10). Mice were injected

intraperitoneally (i.p.) once a day from PND3 to PND11. Pups

were sacrificed at PND12 and PND53 and brain (including

cerebrum and cerebellum), spleen, and liver were collected and

weighed.

Immunohistochemical staining
Mice at PND12 and PND53 were deeply anesthetized and

perfused intracardially with saline followed by 5% buffered

formaldehyde (Histofix; Histolab, Gothenburg, Sweden). Brains

were removed and fixed in 5% buffered formaldehyde for 18–

24 hours and processed to paraffin. The cerebrum was cut into 10-

mm coronal sections and collected at 50-section intervals. Serial

sections were used for histologic stains, as previously described

[20]. Briefly, nonspecific binding was blocked for 30 minutes with

Figure 1. Pam3CSK4 alters brain, spleen and liver weights in neonatal mice. Quantitative analysis of the cerebral weight (A), spleen weight
(B), liver weight (C), body weight (D) at PND12 and PND53 after Pam3CSK4 administration from PND 3 to 11 in while type mice. *p,0.05; ***p,0.001.
doi:10.1371/journal.pone.0019583.g001

TLR2 and Neonatal Brain Development
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4% horse serum or 4% goat serum in phosphate-buffered saline.

The following primary antibodies were used: microtubule

associated protein-2 (MAP-2; clone HM-2, Sigma), rabbit anti-

myelin basic protein (MBP, Sternberger Monoclonal Incorporat-

ed, SMI 94, Lutherville, Massachusetts), active form of caspase-3

(557038, BD Bioscience Pharmingen); anti-neuronal nuclear

antigen (NeuN) (MAB377B, Chemicon), anti-Ki67 (NCL-KI-67-

MMI, Novocasta), and anti-Iba-1 (019-19741 Wako). Primary

antibodies were incubated for 60 minutes at room temperature

followed by the corresponding biotinylated secondary antibodies

(all from Vector, Burlingame, California) also for 60 minutes at

room temperature. Visualization was performed using Vectastain

ABC Elite with 0.5 mg/mL 30-diaminobenzidine enhanced with

15 mg/mL ammonium nickel sulfate, 2 mg/mL b-D-glucose,

0.4 mg/mL ammonium chloride, and 0.01 mg/mL b-glucose

oxidase (all from Sigma).

Figure 2. Pam3CSK4 alters brain development. Representative microphotographs of MBP staining in the subcortical area (A), Quantitative
analysis of subcortical white matter volume (B) cerebral gray matter volume (C) and the number of NeuN positive cells in both DG and CA of
hippocampus(D), at PND 12 after Pam3CSK4 administration from PND3 to PND11 in while type mice. *p,0.05; ** p,0.01.
doi:10.1371/journal.pone.0019583.g002

TLR2 and Neonatal Brain Development
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The cerebellum from PND12 mice was cut into 10 mm sagittal

sections and collected at 50-section intervals. Serial sections were

used for thionin/fuchsin acid staining as described previously [21].

Gray and white matter volume measurement
The forebrain gray matter area was determined by measuring

the MAP-2 immunoreactive area from 6 serial sections per animal.

The cerebral subcortical white matter area was determined by

measuring MBP immunoreactive area in 6 serial sections per

animal. The area of the molecular cell layer and granule cell layer

of the cerebellum were measured in thionin/fuchsin acid stained

sections in 8 serial sections. Micro Image, version 4.0 (Micro-

Macro AB, Gothenburg, Sweden) was used for all the above

measurements. The volume was calculated from area measure-

ments according to the Cavalieri’s Principal as described

previously [20], using the following formula: V=SA ? p ? T,

where V is the total volume, SA is the sum of the areas measured,

p is the inverse of the section sampling fraction, and T is the

section thickness.

Cell counting
NeuN-positive cells were counted in all cornu ammonis (CA) fields

and dentate gyrus (DG) in 2 sections through the anterior

hippocampus and Iba-1 positive cells in the right hemisphere in 4

sections, using stereological principles (Stereo investigator 7,

System Inc, Magdeburg, Germany), with a counting frame of

40640 mm per section for NeuN, and 1506150 mm per section for

Iba-1. Ki67-positive cells were counted within the area of the

granule cell layer (GCL), including the subgranular zone (SGZ) in

the DG and CA of the hippocampus. Caspase-3 positive cells were

counted in the right hemisphere (4 levels) and subcortical white

matter (4 levels) and Purkinje cells in the posterior lobes in all 8

serial sections of the cerebellum. The average number of positive

cells/mm2 was calculated.

Cytokine/chemokine assay
Cytokine/chemokines were measured in whole brain homogenate

supernatants from PND3 wild type mice sacrificed 6 hours

after i.p. treatment with endotoxin-free saline (10 ml/g, n=6), LPS

Figure 3. Pam3CSK4 does not affect brain development in TLR2 deficient mice. Quantitative analysis of subcortical white matter volume
(A) cerebral gray matter volume (B) cerebral weight (C), body weight (D) spleen weight (E), and liver weight (F) at PND12 after Pam3CSK4
administration from PND 3 to 11 in TLR2 deficient mice.
doi:10.1371/journal.pone.0019583.g003

TLR2 and Neonatal Brain Development
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(0.3 mg/kg; n=7) or Pam3CSK4 (5 mg/kg; n=7). Mice were

deeply anesthetized and perfused intracardially with saline and

brains were removed and snap frozen. Brains were homogenized by

sonication in ice-cold homogenization buffer containing 1% protease

inhibitor cocktail (P8340, Sigma-Aldrich) and 3% EDTA in 0.1 M

phosphate buffered saline, centrifuged at 4uC once at 9006g for

10 minutes and then at 10,0006g for 15 minutes, supernatants were

collected and stored at 280uC until use. Concentrations of IL-1b,

IL-6, KC,MCP1, IL-10, IL-17 and TNFawere measured using Bio-

plexMultiplex Cytokine Assay (Bio-Rad laboratories, Hercules, CA).

Results were normalized to the amount of protein per well, as

determined using a Bio-Rad DC protein assay.

Trace Fear Conditioning test
Long term memory function was measured via Trace Fear

Conditioning test at PND50, in an Automatic Reflex Conditioner

7531 (inside dimensions 3906956165 mm; Cat No: 7530, Ugo

Basile, Italy) as previously described [22,23] with some modifica-

tions. Animals were timed for freezing within a 2 min time period

recorded by digital video cameras. Freezing was defined as

absence of movement except for respiration. The procedure was

conducted over 2 days. On day 1 freezing was scored prior to mice

receiving a pairing of a tone (20 seconds, 80 dB, 670 kHz) and a

shock (2 seconds, 0.5 mA). The time interval between the tone

and the shock was 2 seconds. On day 2, freezing was scored pre-

tone and the tone was then presented once for 30 seconds, 80 dB,

670 kHz. No shock was administered and freezing was scored for

2 minutes after the tone presentation (tone-elicited freezing, post-

tone freezing).

Statistics
Statistical Package for the Social Sciences (SPSS 17.0) and

StatView (5.0.1) were used for all analyses. One-way ANOVA

followed by LSD post hoc test was used for comparison of data

from more than two groups. For all other analysis, Student’s

unpaired t-test was used for comparison. Results are presented as

mean 6 standard error of the mean (SEM). P,0.05 was

considered statistically significant.

Results

Brain, liver, and spleen weight changes at PND12
After repeated administration of 5 mg/kg Pam3CSK4 once a

day from PND3 to PND11, brain weight was decreased compared

with endotoxin-free saline-treated animals at PND12. In contrast,

there was no difference between endotoxin-free saline-treated

animals and LPS-treated animals (Figure 1A). We found no

infarctions, dilatation of the cerebral ventricles, or morphological

signs of cell death in any of the brain regions examined after

administration of Pam3CSK4 or LPS.

There was a significant increase in both the absolute spleen and

liver weights in animals treated with Pam3CSK4 and LPS

compared with those treated with endotoxin-free saline at

PND12 (Fig. 1B, 1C) as well as the relative spleen and liver

weight to body weight ratio (data not shown). The whole body

weight was not different between groups at PND12 (Fig. 1D). No

mortality or other signs of morbidity were found during the entire

study period.

Gray and white matter changes in the cerebrum at
PND12
To examine the gray matter and white matter changes after

Pam3CSK4 treatment, the cerebral gray matter volume was

measured using immunohistochemical staining for the neuronal

marker MAP-2, and subcortical white matter volume was

measured using the myelin marker MBP (Fig. 2A). At PND12,

Figure 4. Pam3CSK4 has no effect on proliferation or apoptosis. Representative photomicrographs and quantitative analysis of Ki67 (A), and
active Caspase-3(B) at PND 12 after Pam3CSK4 administration from PND 3 to PND11 in while type mice. ** p,0.01. The pictures show representative
positive staining of Ki67 (A) and caspase-3 (B).
doi:10.1371/journal.pone.0019583.g004

TLR2 and Neonatal Brain Development
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significantly decreased cerebral white matter (Fig. 2B) and gray

matter volume (Fig. 2C) were found both in the Pam3CSK4 and

LPS-treated mice compared with saline-treated mice. In contrast,

Pam3CSK4 administration to TLR 2 -deficient mice from PND3

to PND11 once a day did not result in any significant differences

between the Pam3CSK4 treatment group and saline controls, with

respect to both the white (Fig. 3A) and gray (Fig. 3B) matter

volume. Similarly, brain weight (Fig. 3C), body weight (Fig. 3D),

spleen weight (Fig. 3E) and liver weight (Fig. 3F) also did not

change in the Pam3CSK4-injected TLR2-deficient animals

compared to endotoxin-free saline-treated animals. These findings

further confirm that the observed white/gray matter changes

following Pam3CSK4 administration in wild type mice are TLR2-

dependent.

LPS-induced inflammation reduces hippocampal neurogenesis

in adult rats [24]. To investigate the specific impact of Pam3CSK4-

exposure on post-mitotic neurons in the hippocampus, NeuN

positive cells were counted in the dentate gyrus (DG) and the CA

fields. The density of NeuN-positive cells in the CA fields was

significantly decreased both in Pam3CSK4 and LPS-treated mice

compared with endotoxin-free saline-treated animals at PND12

(Fig. 2D). There was no difference in the density of NeuN positive

cells in the DG between groups (Fig. 2D). Cell proliferation and

apoptosis at PND12 were examined by staining brain sections with

cell proliferation marker Ki67, and the apoptosis marker active

caspase-3. There were no significant differences in number of

Ki67 positive cells (Fig. 4A) or number of active caspase-3 positive

cells in either the cerebral gray matter or the subcortical white

matter among the three groups (Fig. 4B).

Inflammation after Pam3CSK4 administration
To characterize the inflammatory response after Pam3CSK4

treatment, we first analyzed the cytokine/chemokine production

by multiplex ELISA in brain homogenate samples at 6 hours after

the first Pam3CSK4 treatment at PND3, in comparison with saline

and LPS treated mice. It was found that 5 mg/kg Pam3CSK4

treatment induced elevated levels of IL-1ß, IL-6, KC, MCP-1,

similar to those cytokines and chemokines induced by 0.3 mg/kg

LPS (Fig. 5). IL-1ß was an exception in that a significant increase

was noted in Pam3CSK4-treated pups compared with LPS-treated

pups. Of note, IL-6 was significantly increased by Pam3CSK4 but

not by LPS. TNF-a levels did not change in either of the two

treatment groups. IL-10 and IL-17 levels were below the limits of

detection in all brain homogenate samples tested.

To further examine the inflammatory response, we stained

brain sections for the microglia marker Iba-1 (Fig. 6A). There was

a significant increase of Iba-1 positive cells in the Pam3CSK4-

treated group compared with endotoxin-free saline treated

Figure 5. Pam3CSK4 induces brain cytokine production. Cytokine/chemokine changes in brain homogenates at 6 hours after the first
Pam3CSK4 administration at PND3 in while type mice. *, p,0.05; **, p,0.01; ***, p,0.001.
doi:10.1371/journal.pone.0019583.g005

TLR2 and Neonatal Brain Development
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animals, while there was no difference between the LPS-treated

group and endotoxin-free saline group (Fig. 6B).

Cerebellar changes at PND12
To investigate the effect of Pam3CSK4 administration on the

neonatal cerebellum, molecular cell layer and granule cell layer

volumes were measured and the density of Purkinje cells was

counted (Fig. 7A). There was a significant decrease in the

molecular cell layer volume in Pam3CSK4-treated mice but not

LPS treated mice compared with saline-treated pups (Fig. 7B),

while there were no differences in the granule cell layer volume

(Fig. 7C) or the number of Purkinje cells between the three groups

(Fig. 7D).

Long-term effects of neonatal Pam3CSK4 administration
Since we found a decrease in gray and white matter volumes

and a decrease in the number of neurons in hippocampus at PND

12 after Pam3CSK4 administration, we examined whether these

early brain alterations persisted to young adulthood and related to

hippocampus-dependent learning and memory deficits. To

examine any long term effect of Pam3CSK4 administration and

associated neonatal brain injury on learning and memory function,

the Trace Fear Conditioning test was conducted at PND50

(Fig. 8A). At PND53, mice were killed and the weight of the

cerebrum, liver, spleen and the whole body were measured. In

addition, signs of brain injury for both gray and white matter

injury were examined.

For the Trace Fear Conditioning test, no significant differences

were found between the three groups (Fig. 8B). At PND53, the

weight of the cerebrum, liver, spleen, and body were not different

between groups, except for a decreased liver weight in the LPS-

treated group (P= 0.025, Fig. 1C). Neither gray matter nor white

matter volumes were different among all three groups (data not

shown).

Discussion

In the present study, we found that repeated systemic

administration of a TLR2 agonist induced elevated cytokine/

chemokine levels in brain homogenates, reduced neonatal gray

and white matter volume and hippocampal neuron density, and

increased number of microglia cells. By adulthood, brain injury

had recovered and there was no detectable long-term change in

memory function. To our knowledge, this is the first report of the

role of TLR2 agonists on short and long term neonatal brain

development. The present study provides important direct

evidence that systemic inflammation via TLR2 may exert negative

effects on neonatal brain development.

In the rodent, there is a major growth spurt of the brain in the

first postnatal week [25], which equates to the second-third

trimester in human pregnancy, a developmental window when

white matter damage or deficiency of white matter growth is

presumed to occur in the human. We used a repeated Pam3CSK4

exposure model from PND3 up to PND11, therefore, covering the

period of rapid brain growth in rodents.

To ensure a biologic effect, we used a relatively high dose of

Pam3CSK4 (5 mg/kg) compared with other in vivo studies in the

adult, that range from 5 mg/kg to 2 mg/kg [26,27,28,29].

However, 5 mg/kg Pam3CSK4 and 0.3 mg/kg LPS treatment

produced almost identical levels of KC and MCP-1 in brain

homogenates, and despite this relatively high dose, we found no

mortality or other signs of morbidity. Similarly, in previous studies

we found no adverse effects using the same dose of the TLR2

agonist Lipoteichoic acid (LTA) [30]. These observations suggest

that TLR2 agonists have relatively lower potency in neonatal mice

compared with the TLR4 agonist LPS.

TLR2 mRNA and protein is expressed in the cortex in

embryonic and early postnatal stages of development [31], with

relatively low expression before birth that increases during the first

2 weeks of life [32]. Loss of TLR2 does not appear to result in

direct defects in cerebral development [31]. However, TLR2

mRNA is expressed constitutively in the adult mouse brain [33]

and TLR2 deficiency results in impaired neurogenesis in the

hippocampus by adulthood [34]. TLR2 mRNA and genes related

to the TLR2 signaling pathway was shown to be induced in the

ipsilateral mouse brain hemispheres after transient middle cerebral

artery occlusion (MCAO) [35,36]. Moreover, adult TLR2-

deficient mice demonstrated reduced brain damage and improved

functional outcome after MCAO [35,36,37], though contradictory

results have demonstrated a TLR-2 dependent increased brain

infarct size after cerebral ischemia/reperfusion injury [38].

Further, in adult mice, hyaluronan blocks oligodendrocyte

progenitor maturation and remyelination through TLR2 pathway

[39]; Intrathecal administration of Pam3CSK4 induces the

Figure 6. Pam3CSK4 induces microglial activation. Representa-
tive microphotograph of Iba-1 in the hippocampus area (A) and Iba-1
positive cells counts (B) at PND 12 after Pam3CSK4 administration from
PND 3 to PND11 in while type mice. **p,0.01.
doi:10.1371/journal.pone.0019583.g006

TLR2 and Neonatal Brain Development
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pathophysiological hallmarks of bacterial meningitis and neuronal

damage in a TLR2-dependent fashion in adult rats [40]. Overall,

these observations suggest that activation of TLR2 may be

detrimental in acute CNS injury, and together with our

observations that a TLR2 agonist causes neonatal brain injury,

is suggestive that TLR2 antagonists may have potential as novel

neuroprotective agents.

Pam3CSK4 is a synthetic tripalmitoylated lipopeptide that

mimics the acylated amino terminus of bacterial lipoproteins, such

as is found on the nosocomial pathogen Staphylococcus epidermidis.

Pam3CSK4 is specifically recognized by a heterodimer of TLR2 and

TLR1, stimulation then resulting in the activation of intracellular

signaling events. Although there are few studies on the role of TLR2

in immature brain injury, the TLR2 pathway is thought to play a

role in Group B streptococcus-induced neurodegeneration [41].

Moreover, in postnatal day 11 rats, intracisternal injection with

0.5 mg of Pam3CSK4 in the infant rat model of experimental

pneumococcal meningitis is capable of inducing a neuroinflamma-

tory response but does not induce hippocampal apoptosis [42].

However, the TLR2 agonist LTA, does not affect vulnerability to

hypoxia-ischemia in immature rats [30] and deletion of the gene

encoding the adaptor protein MyD88, important for signaling

downstream of TLR2 and other TLRs, did not protect the

immature brain from hypoxic-ischemic brain injury [14]. Together

with our present findings, showing that forebrain and cerebellar

volume were recovered by PND53, this suggests that the role of

TLR2 in brain injury may be context dependent, with a role in

neurodegeneration by whole bacteria that may require engagement

of multiple pattern recognition receptors, including several TLRs,

NOD-like receptors (NLRs), and complement systems, but a more

limited, reversible effect in the context of a pure TLR2 agonist.

Similarly, following prenatal stimulation of TLR4 by LPS, there is a

transient decrease in myelination and functional outcome which is

reversed later in development [43].

Demonstrating the transient effects of Pam3CSK4 on brain

injury, the Trace Fear Conditioning test did not detect any

learning and memory deficit in young adulthood. Trace Fear

Conditioning to either a cue or a context represents a form of

associative learning and memory test that has been well

characterized in many species [44], and used as a sensitive

method to detect hippocampus-dependent learning and memory

including in mice [45]. We have previously shown that this is a

sensitive test to detect learning and memory function recovery

after neonatal hypoxia-ischemia induced brain injury [46].

However, we cannot exclude the possibility of long-term subtle

changes in brain structure and functions in the present studies that

were not detectable with the present methods, and this will need to

be further investigated in the future.

Injury to the cerebellum is becoming increasingly recognized in

preterm infants [47,48]. Also in animal models, reduced number

of neurons in cerebellum has been reported in the postnatal

guinea-pig [49] and fetal sheep [50] following intrauterine growth-

restriction. Moreover, a recent study found a diffuse pattern of

cerebellar white matter damage in animals exposed to LPS while

there was no obvious injury to the cerebellar cortex or of Purkinje

cells [51]. In the present study, we found a significant decrease in

the volume of the molecular layer after Pam3CSK4 treatment

while there were no differences in the granule cell layer or number

of Purkinje cells between groups. These observations suggest that

TLR effects on the cerebellum may be region specific.

Figure 7. Pam3CSK4 decreases cerebellar molecular layer volume. Representative microphotograph of the cerebellar lobe (A) with arrow
indicating Purkinje cell under higher magnification. Quantitative analysis of the total volume of molecular cell layer (B), granule cell layer (C), and
Purkinje cell counts (D) in cerebellum at PND 12 after Pam3CSK4 administration from PND 3 to PND 11 in while type mice. Arrow indicates Purkinje
cell with higher magnification. *p,0.05.
doi:10.1371/journal.pone.0019583.g007
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We found a significant increase in the number of microglia in

Pam3CSK4 treated mice, but we saw no such increase in LPS

treated animals. It is generally accepted that microglia are

responsible for the innate immune response and that microglia

express all TLRs, including TLR2 and TLR4, at readily

detectable levels [52]. Thus, direct TLR2 stimulation could lead

to the activation of microglia and release of pro-inflammatory

cytokines, chemokines and free radicals, which could cause toxicity

to neurons or oligodendrocytes [53,54]. Indeed, levels of IL-1ß,

IL-6, KC and MCP-1 significantly increased at 6 hours after the

first Pam3CSK4 injection at PND3, indicating that the observed

gray/white matter changes in the neonatal brain might be at least

partly due to cytokine/chemokine toxicity to neurons/oligoden-

drocytes. Similar levels of most cytokines were seen after both

Pam3CSK4 and LPS treatment, except for IL-1ß and IL-6, which

was only significantly elevated following TLR2 agonist stimulation

but not LPS stimulation. Of note, such observations may be

consistent with the polarization of neonatal mononuclear cells

towards relatively high TLR2-mediated IL-6 production [55].

Whether such differences in cytokine responses between

Pam3CSK4 and LPS treatment contributed to the differences in

microglia activation between these two treatments will be the

subject of future investigation. Interestingly, IL-1ß is known to

sensitize excitotoxic neonatal brain injury [56] and blocking of the

IL-1ß receptor protects the immature brain from hypoxic-ischemic

brain damage [57]. We did not observe differences in markers of

proliferation or apoptosis at least not at PND 12 and 53, but

decreased mature neuronal number suggests that effects of

Pam3CSK4 on cell survival may have occurred at a time point

prior to that examined.

The liver and spleen play a central role in immune responses

and the liver is crucial in metabolizing microbial constituents such

as Pam3CSK4. Thus the transient enlargement of the spleen and

liver in Pam3CSK4 treated mice may indicate an acute reaction of

the adaptive immune system and attempts to remove Pam3CSK4

in the blood.

Although our study demonstrates that repeated, high-dose,

systemic administration of a TLR2 agonist can lead to CNS injury,

it is important to note that these effects are likely context-

dependent. Indeed, vaccines containing TLR2 agonists, including

intradermal bacille Calmette-Guerin (BCG; Mycobacterium bovis)

[58] and certain formulations of the intramuscular Haemophilus

influenzae type b vaccine [59], have been safely and effectively

administered to millions of infants. This underscores the

importance of context, including route, frequency, and dose of

administration when considering the impact of TLR agonists in

injury models.

In conclusion, we found that systemic administration of a TLR2

agonist to neonatal mice caused transient gray and white matter

injury in both the cerebrum and cerebellum. This suggests that

engagement of the TLR2 pathway can have detrimental effects on

the developing brain, and may play a role in neonatal brain injury

associated with bacterial sepsis. However, neonatal brain injury is

often multifactorial, and TLR2 agonist effects may interact with

other exposures such as hypoxia/ischemia and/or be involved in a

broader inflammatory response following Gram-positive bacterial

exposure. Accordingly, it is possible that during Gram-positive

bacterial infection, combined insults, including those driven via

TLR2, may cause long-lasting functional or structural deficits.
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