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Common inflammatome gene signatures as well as disease-specific signatures were identified by

analyzing 12 expression profiling data sets derived from 9 different tissues isolated from 11 rodent

inflammatory disease models. The inflammatome signature significantly overlaps with known drug

targets and co-expressed genemodules linked to metabolic disorders and cancer. A large proportion of

genes in this signature are tightly connected in tissue-specific Bayesian networks (BNs) built from

multiple independent mouse and human cohorts. Both the inflammatome signature and the

corresponding consensus BNs are highly enriched for immune response-related genes supported as

causal for adiposity, adipokine, diabetes, aortic lesion, bone, muscle, and cholesterol traits, suggesting

the causal nature of the inflammatome for a variety of diseases. Integration of this inflammatome

signaturewith the BNs uncovered 151 key drivers that appeared to bemore biologically important than

the non-drivers in terms of their impact on disease phenotypes. The identification of this inflammatome

signature, its network architecture, and key drivers not only highlights the shared etiology but also

pinpoints potential targets for intervention of various common diseases.
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Introduction

Inflammation is the response of an organism’s immune system

to damage incurred by its cells, organs, and vascularized

tissues by microbial pathogens, injurious chemicals, or

physical insults. The initial stages of inflammation involve

changes in local blood flow combined with the accumulation

of various inflammatory cells (monocytes, neutrophils,

eosinophils, lymphocytes, dendritic cells, and mast cells) at

the site of tissue trauma. Foreign pathogens, cell debris caused

by the inflammatory response, and the inflammatory cells

themselves are then removed as tissue repair commences.

Under normal circumstances, tissue function is restored.

However, if this delicate balance between inflammation and

resolution of the events leading to the inflammation is

dysregulated, inflammation can lead to disease pathology

(Medzhitov, 2008). As the mechanisms of more and more

diseases have been elucidated over the past decade, it has

become clear that most of the major chronic diseases

previously not associated with inflammation, including
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atherosclerosis (Hansson and Libby, 2006; Aviram, 2011;

Mizuno et al, 2011), obesity (Kanda et al, 2006; Heber and

Carpenter, 2011; Kobayashi et al, 2011), diabetes (Muoio and

Newgard, 2008; Das and Mukhopadhyay, 2011; Hess and

Grant, 2011), osteoarthritis (Wieland et al, 2005; Rosenthal,

2011; Zivanovic et al, 2011), stroke (Nakase et al, 2008; Benbir

et al, 2011; Drake et al, 2011; Zakai et al, 2011), sarcopenia

(Jensen, 2008; Meng and Yu, 2010), and cancer (Mantovani

et al, 2008; Bergman et al, 2011; Grange et al, 2011; Porta et al,

2011; Sansone and Bromberg, 2011), all have a clear

inflammation component.

The connection between atherosclerosis and inflammation

was established by studies in animals and humans, which

showed that hypercholesterolemia causes focal activation of

the endothelium in large and medium-sized arteries. The

infiltration and retention of LDL in the arterial intima induce

an inflammatory response in the artery wall (Pentikainen et al,

2000). The molecular link between inflammation and obesity

was established based on the findings that TNFa is over-

expressed in the adipose tissues of mouse models of obesity

(Hotamisligil et al, 1993) as well as in the adipose and muscle

tissues of obese humans (Hotamisligil et al, 1995). It soon

became clear that obesity is characterized by a broad

inflammatory response and that many inflammatory media-

tors exhibit patterns of expression and impact insulin action in

amanner similar to that of TNFa during obesity, as observed in

a range of organisms from mice to humans (Dandona et al,

2004). In addition, it has been shown in epidemiological

studies that chronic inflammation could lead to various types

of cancer. For example, Helicobacter pylori infection is

associated with gastric cancer (Fox andWang, 2007), hepatitis

B or C virus infection is associated with hepatocellular

carcinoma (Gurtsevitch, 2008), and inflammatory bowel

disease is associated with colon cancer (Rhodes, 1996).

It is therefore not surprising to see that single anti-

inflammatory agents can treat a variety of diseases. For

example, glucocorticoids have been used to treat rheumatoid

arthritis (RA), psoriasis, gout, Crohn’s disease, asthma, atopic

dermatitis, and transplant rejection. Likewise, non-steroidal

anti-inflammatory drugs (NSAIDs) such as Coxibs are used for

alleviating RA, ankylosing spondylitis (AS), gout, acute/

chronic pain, and cancer. More recently, anti-cytokine

therapies, particularly anti-TNF therapies, have been broadly

applied in RA, AS, Crohn’s disease, and psoriatic arthritis (Van

Hauwermeiren et al, 2011). Novel therapeutic agents are being

developed based on the assumption that several clinical

indications can be treated by targeting common pathways

(O’Neill, 2006).

The clearly demonstrated inflammatory nature of many

common chronic diseases puts forward a hypothesis that a

representative gene signature can be acquired from multiple

disease models. In support of this, pathogen-induced host

responses, autoimmune diseases, and lung inflammatory

diseases have shared gene expression changes accessed by

transcriptional profiling of blood or hematopoietic cells

(Jenner and Young, 2005; Gilchrist et al, 2006; Nilsson et al,

2006; Pennings et al, 2008; Pankla et al, 2009; O’Hanlon et al,

2011). However, it is not yet clear whether (1) common

signatures are shared across different tissue types and across

different types of inflammatory diseases/conditions, (2)

common signature genes have causal relationships with each

disease, (3) common signatures have therapeutic potentials,

(4) coherent and common gene–gene interaction networks

and regulatory mechanisms underlie various disease states,

and (5) there are disease-specific genes and processes in each

disease model.

To address these questions, we selected 12 inflammation-

related gene expression profiling data sets representing 9

different tissues isolated from 11 disease models. The disease

models include asthma, emphysema, pulmonary fibrosis,

lipopolysaccharide (LPS)-treated acute injury, inflammation

and neuropathic pain, atherosclerosis, stroke, obesity, dia-

betes, and age-related sarcopenia. We derived a representative

gene signature of 2483 genes across 12 disease model-tissue

combinations as well as disease-specific signatures. The

common gene signature was found to be significantly enriched

for genes involved in inflammation and immune response,

thus was termed as the ‘inflammatome’. The inflammatome

signaturewas then comparedwith current known drug targets,

candidate disease-associated genes from genome-wide asso-

ciation studies (GWAS), and co-expression network modules

developed from independent mouse and human cohorts to

assess the disease-causal nature and potential co-regulation

patterns of the inflammatome signature.We also integrated the

inflammatome signature with Bayesian networks (BNs)

developed from independent mouse and human cohorts to

derive consensus Bayesian subnetworks that delineate the

relationships among the signature genes as well as key

regulators of the signature based on the network topology.

Experimental evidencewas also provided to support the role of

the key regulators identified.

Results

Rodent inflammatory models included in the

analysis

The 12 rodent inflammatory model-tissue combinations

include an ovalbumin (OVA)-challenged asthmamodel (lung),

a high fat diet (HFD)-treated ApoE knockout (KO) athero-

sclerosismodel (aorta), an IL-1b transgenic emphysemamodel

(lung), a db/db diabetes model (adipose and islet), a TGFb

transgenic (Tg) pulmonary fibrosis model (lung), a CGN-

induced inflammation pain model (skin), an LPS-treated acute

injury model (liver), a Chung neuropathic pain model (dorsal

root ganglia, DRG), an ob/ob obesity model (adipose), a

middle cerebral artery occlusion (MCAO) stroke model

(brain), and an age-related sarcopenia model (muscle) (Table

I). The total data set derives from 11 rodent animal models and

includes molecular profiling data from 9 different tissues.

Identification and functional annotation of the

‘inflammatome’ signature

To identify a representative gene signature, we adopted a two-

way ANOVA statistical analysis approach and adopted the

Benjamini and Hochberg multiple testing correction scheme.

For the two-way ANOVA, the two main factors applied were

disease model and disease state. This analysis resulted in the

identification of 2483 genes (Supplementary Table 1) that were
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differentially expressed between the disease and normal states

(Po1.0e� 9; Figure 1). The P-value threshold used for gene

selectionwas relatively stringent to ensure the identification of

a set of genes achieving strong consensus across all 12 data

sets. We separated the gene signature into two k-means

clusters of upregulated (1499 genes) and downregulated (984)

genes. Overall, 41% (1026) of the signature genes were

consistently upregulated (614 genes) or downregulated (412

genes) in at least 10 data sets and 119 genes upregulated (83

genes) or downregulated (36) across all 12 data sets. Selected

cuts of upregulated and downregulated genes among the 12

models are summarized in Table II.

We then tested for enrichment of biological functions in the

upregulated and downregulated inflammatome signature

using GO biological process enrichment analysis (Table III).

The majority of the biological processes enriched in the

upregulated genes were associated with immune and inflam-

matory responses (e.g., inflammatory response, leukocyte

activation, cytokine production, chemotaxis, TLR signaling

pathway, and antigen presentation); other processes not

directly involved in immune response were also included,

such as mitotic cell cycle, induction of apoptosis, extracellular

matrix remodeling, osteoclast differentiation, translation, and

angiogenesis. Several protein families, such as caspase (Casp1,

Casp3, Casp4, Casp7, and Casp8), cathepsin (Ctsb, Ctsc, Ctsd,

Ctse, Ctsh, Ctsk, Ctsl, Ctss, and Ctsz), chemokine/chemokine

receptor (Ccl1, Ccl2, Ccl3, Ccl5, Ccl6, Ccl7, Ccl9, Ccl11, Ccl12,

Ccl17, Ccl20, Ccr1, Ccr5, Cxcl1, Cxcl2, Cxcl3, Cxcl5, Cxcl9,

Cxcl10, Cxcl13, Cxcl16, and Cxcr3), complement/complement

receptor (C1q, C1r, C3, C4b, C3ar1, and C5ar1), Fc receptors

(Fcer1g, Fcgr1, Fcgr2b, Fcgr3, and Fcgr4), interleukin/inter-

leukin receptor (Il1b, Il1r2, Il4ra, Il6, Il10, Il10ra, Il10rb, Il19,

and Il33), matrix metallopeptidase (Mmp2, Mmp3, Mmp8,

Mmp9, Mmp12, Mmp13, Mmp14, and Mmp19), minichromo-

some maintenance deficient (Mcm2, Mcm3, Mcm5, Mcm6,

Mcm7, and Mcm10), and proteasome (Psma5, Psmb2, Psmb8,

Psmb9, Psmb10, and Psme1) are upregulated in the majority

Table I Twelve rodent inflammatory disease models and the number of cases
and controls used in the current analysis

Disease Model Species Tissue
profiled

No. of
Cases

No. of
Controls

No. of
total
arrays

Asthma OVA Mouse Lung 5 4 9
COPD IL-1b Tg Mouse Lung 5 3 8
Fibrosis TGFb Tg Mouse Lung 4 4 8
Atherosclerosis ApoE

KO HFD
Mouse Aorta 3 3 6

Diabetes db/db Mouse Adipose 3 3 6
Diabetes db/db Mouse Islet 5 5 10
Obesity ob/ob Mouse Adipose 3 3 6
Multiple LPS Rat Liver 4 4 8
Stroke MCAO Rat Brain 4 4 8
Neuropathic
pain

Chung Rat DRG 4 4 8

Inflammation
pain

CGN Rat Skin 4 5 9

Sarcopenia Aged
versus
Young

Rat Muscle 5 5 10

Atherosclerosis: ApoE KO (aorta)

Diabetes: db/db (islet)

Inflammatory pain: CGN (skin)

COPD: IL-1b Tg (lung)

Asthma: OVA model (lung)

Fibrosis: TGFb Tg (lung)

Diabetes: db/db (adipose)

Obesity: ob/ob (adipose)

Stroke: tMCAO (brain)

Neuropathic pain: Chung (DRG)

Inflammation: LPS (liver)

Sarcopenia: aged rat (muscle)

–0.4 0 0.4

Figure 1 A heat map of the inflammatome signature comprising 1499 upregulated and 984 downregulated genes. The rows represent the disease samples from the
12 data sets and the columns represent the 2483 signature genes that were grouped into two k-means clusters of upregulated and downregulated genes.

Table II A summary of number of consistent upregulated and downregulated
genes in 12 disease models

Upregulated Accumulated
no. of gene

Downregulated Accumulated
no. of gene

All 12
models

83 All 12 models 36

X11 models 303 X11 models 171
X10 models 614 X10 models 412
X9 models 939 X9 models 639
X8 models 1193 X8 models 810
X7 models 1357 X7 models 925

Inflammatome signature of eleven disease models
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(49) of the 12 data sets. The downregulated genes were

significantly enriched for pathways or processes associated

with nerve impulse transmission, energy generation and all

major metabolic processes involving amino acid, fatty acid,

and carbohydrate metabolism (Table III).

Identification of disease-specific signatures

We also identified disease-specific gene signatures, defined as

genes that are statistically significantly differentially expressed

between the disease and control group at a false discovery rate

(FDR)o5% in only one of the rodent models. At an FDRo5%,

1175, 26, 1120, 284, 177, 28, 782, 1123, 1208, 476, 292, and 222

genes were identified as disease model-specific signatures for

Apoe KO (aorta), db/db adipose, db/db islet, Chung neuro-

pathic pain (DRG), CGN-induced pain (skin), IL-1b Tg

emphysema model (lung), LPS-treated acute injury (liver),

ob/ob (adipose), OVA-challenged asthma (lung), sarcopenia

(muscle), MCAO stroke (brain), and pulmonary fibrosis model

(lung), respectively (Supplementary Table 2). In average 576

genes show disease-specific differential expression, support-

ing the presence of disease-specific alternations in gene

expression. However, compared with the B2500 genes in the

inflammatome signature shared among the disease models,

the disease specific signatures are much smaller. In addition, a

GO biological process enrichment analysis only revealed

enrichment of a limited set of functional categories (such as

sensory perception, ion homeostasis, and neuron develop-

ment) for four of the disease model-specific signatures (ApoE

KO, db/db islet, ob/ob, and MCAO stroke) at a Bonferroni-

corrected Po0.05 (Supplementary Table 3).

Although disease-specific signature genes can help identify

disease-specific mechanisms, targets, and biomarkers, the

smaller signature sizes limit our power to identify robust

disease-specific signatures, as indicated by the poor coherence

in the functionalities of the disease-specific signature genes in

comparison with the common inflammatome signature.

We therefore conducted a more in-depth analysis of the

inflammatome signature in the subsequent sections.

Comparison of the common inflammatome

signature with current drug targets and

disease-associated genes

We next assessed the relevance of the rodent model-derived

inflammatome signature for human disease. At the time this

manuscript was prepared, there were 803 known drug target

genes (including marketed drugs and drugs under develop-

ment) according to GeneGO (http://www.genego.com/). In

addition, there were 3498 reported candidate genes adjacent to

SNPs that have been annotated as being associated with

various diseases or disease-related intermediate phenotypes in

the NHGRI GWAS catalog (http://www.genome.gov/gwastu

dies, accessed April 28, 2012). In all, 168 of the 803 drug target

genes and 413 of the 3498 GWAS candidate genes were in the

inflammatome signature (Supplementary Table 4), represent-

ing a significant enrichment of inflammatome genes in each of

these gene sets (Fisher’s Exact Test P-values o5.1e� 22 and

1.8e� 5, respectively; fold enrichments¼ 2.1 and 1.2, respec-

tively). There are 66 overlapping genes among the 3 gene sets

and the targeting of several of them (e.g., CD40, CHRM3,

IL12A, and VEGFA) has been shown to produce a significant

therapeutic effect on multiple diseases (Supplementary

Table 4). Among the overlapping genes between the inflam-

matome and current drug target lists are Ppara and Prkaa2

(Ampk), with these genes downregulated in all 12 inflamma-

tory disease models and agonists for these genes either in the

market or under development (Narkar et al, 2008; Richter and

Ruderman, 2009). This comparative analysis indicated that the

inflammatome signature is significant enriched for current

drug targets and candidate GWAS genes for common human

diseases, supporting a causal relationship between the

Table III Annotation of upregulated (left panel) and downregulated (right panel) inflammatome signatures

Similar set: upregulated Enrichment P Overlap Set Similar set: downregulated Enrichment P Overlap Set

Inflammatory response 4.76E� 61 208 704 Transmission of nerve impulse 3.32E-11 78 639
Leukocyte activation 2.13E� 32 164 704 Valine, leucine, and isoleucine degradation 1.34E-08 18 42
Regulation of immune response 1.44E� 25 84 260 Carboxylic acid metabolic process 4.03E-06 68 661
Cytokine production 6.10E� 18 85 335 Cofactor metabolic process 1.30E-05 31 198
Chemotaxis 4.97E� 16 74 284 Generation precursor metabolites/energy 9.18E-05 57 554
Humoral immune response 3.25E� 14 69 271 Fatty acid catabolic process 0.000122 16 65
Mitotic cell cycle 7.64E� 13 87 414 Ubiquinone metabolism 0.000562 11 46
Induction of apoptosis 1.74E� 12 86 412 Amino acid metabolic process 0.000813 31 236
TLR signaling pathway 4.66E� 12 21 47 Fatty acid b-oxidation 0.001857 13 52
Phagocytosis 2.74E� 11 38 111 Cellular catabolic process 0.005883 64 736
Innate immune response 9.29E� 11 48 173 Electron transport 0.007212 37 341
ECM remodeling 9.67E� 11 22 59 GPCRs in the regulation of muscle tone 0.018483 14 103
Osteoclast differentiation 3.61E� 10 31 82 Tricarboxylic acid cycle 0.026331 8 24
Regulation of cell proliferation 4.19E� 10 112 662 Fatty acid oxidation 0.028396 14 75
Antigen processing and presentation 7.44E� 10 32 89 Fatty acid metabolic process 0.034657 34 323
Positive regulation of translation 3.64E� 09 45 170 G-protein signaling_Rap1A regulation 0.034694 9 45
Cytokine production by Th17 cells 6.33E� 09 17 40 Lipid catabolic process 0.042439 23 180
Angiogenesis 9.41E� 09 60 277 Signal transduction_cAMP signaling 0.053522 14 113
Cell-cycle process 2.79E� 08 104 636 Carbohydrate metabolic process 0.075586 52 606
Wound healing 1.79E� 07 57 274 NF-AT signaling in cardiac hypertrophy 0.107942 12 91
Regulation of translation 4.44E� 07 66 349 regulation of neurotransmitter levels 0.124713 20 155
Macrophage activation 1.61E� 06 20 49 Long-term depression 0.721233 13 76
Interleukin-12 production 1.70E� 06 18 40 Secretion 0.786091 55 733

All P-values from the Fisher’s Exact Test were Bonferroni-corrected to account for multiple testing.
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inflammatome genes and many human diseases, and it

provides a rich source of new drug targets for consideration

in many different disease areas.

Comparison of the common inflammatome

signature with multiple mouse and human tissue

gene co-expression networks

To explore the co-regulation pattern of the common inflam-

matome signature genes and cross-validate their connection to

multiple disease phenotypes in independent studies, we

performed an integrative analysis by linking co-expression

network data obtained from multiple murine F2 genetic

crosses and multiple human cohorts segregating different

disease phenotypes. Gene co-expression network analysis

(GCENA) has been increasingly used to identify gene subnet-

works for prioritizing gene targets associated with a variety of

common human diseases such as cancer and obesity

(Gargalovic et al, 2006; Horvath et al, 2006; Chen et al, 2008;

Emilsson et al, 2008). Networks generally provide a con-

venient framework for exploring the context within which

single genes operate. Networks are simply graphical models

composed of nodes and edges. In a gene co-expression

network, the nodes represent genes and edges (links) between

any two nodes indicate a relationship (a similar expression

pattern) between the two corresponding genes. One important

end product of GCENA is gene modules comprising highly

interconnected sets of genes. It has been demonstrated that

these types of modules are generally enriched for known

biological pathways, for genes that associate with disease

traits, and for genes that are linked to common genetic loci

(Zhu et al, 2004, 2008; Zhang and Horvath, 2005; Gargalovic

et al, 2006; Horvath et al, 2006; Lum et al, 2006; Chen et al,

2008; Emilsson et al, 2008; Schadt et al, 2008). In this way, one

can identify those key groups of genes that sense perturbations

from genetic loci, and subsequently define the intermediate

steps that actually lead to disease states.

A gene co-expression network can be fully represented by a

topological overlap matrix (TOM). Topological overlap

between two genes not only reflects their more proximal

interactions (e.g., two genes physically interacting or having

correlated expression values), but also reflects the higher order

interactions that these two genes may havewith other genes in

the network (Schadt et al, 2005). Following a previously

described method of weighted GCNA (WGCNA; Zhang and

Horvath, 2005), we constructed eleven (11) gene co-expression

networks corresponding to 11 data sets derived from four

human and one mouse gene expression studies as detailed in

Table IV. The TOM plots of the networks are depicted in

Figure 2. A complete description of the studies can be found in

Materials and methods.

Each of the 11 gene co-expression networks includes at least

one module that is significantly enriched for the inflamma-

tome signature, with Fisher’s exact test P-values ranging from

7.6e� 28 to 1.1e� 203 as shown in Table V. For example, the blue

module comprised of 1991 genes from the BxH ApoE� /�
female adipose network, includes 672 of the inflammatome

genes and this represents a 3.28-fold enrichment over what we

would have expected by chance (Poe� 203). Roughly one-third

of the black module genes in the NKI breast cancer network

overlap the inflammatome signature, representing a three-fold

enrichment (Po2e� 51). All these modules are significantly

enriched for genes in the inflammatory and immune response

pathways. On the other hand, the purple module in NKI

network and the turquoise modules in the HCC network, both

containing many typical cell cycle genes such as TOP2A,

CHEK1, E2F1, and EZH2, are also significantly enriched for the

inflammatome signature with Fisher’s exact test P-values

o2.6e� 37 and o1.6e� 31, respectively. Interestingly, the

purple module of the NKI network is the most predictive of

patient’s survival time (Cox model P-valueoe� 12) while the

black module is moderately predictive of survival time as well.

These results indicate that the inflammatome signature is

highly co-regulated not only in multiple tissues (liver, adipose,

muscle, and breast cancer tissue) but also in multiple disease

states (cancer, obesity, and diabetes) in data sets completely

independent of those from which the signature was derived.

We previously described the identification of macrophage-

enriched metabolic network (MEMN) modules in mouse and

human and showed that MEMNs are enriched for genes

supported as causal for virtually all key metabolic disease

traits associated with diabetes, obesity, and cardiovascular

disease (CVD) (Chen et al, 2008; Emilsson et al, 2008; Yang

et al, 2010). Since the enriched functional categories (i.e.,

inflammatory and immune responses) and tissue-specific gene

expression patterns (macrophage- and leukocyte-enriched)

are very similar between inflammatome and MEMNs, we

performed a comparison among the inflammatome signature,

mouse-derived MEMN, and human-derived MEMN gene sets

and found highly significant overlaps between any two of

these sets (Figure 3). This analysis indicated that the MEMNs,

in addition to playing key roles in metabolic disease traits,

could also be involved in additional diseases such as lung

inflammation, sarcopenia, and pain. In fact, among the 420

overlapping genes between the inflammatome and MEMN

sets, 119 were found to be in the Mouse Genome Informatics

(MGI) database (ftp://ftp.informatics.jax.org/pub/reports/

index.html#pheno) and 68 displayed 770 unique phenotypes

relevant to various disease areas ranging from metabolic,

cardiovascular, morphological, neurological, and immune

system disorders to cancer and embryonic lethality

(Supplementary Table 5). Note that the likelihood that 57%

of the 119 genes tested with mutant phenotypes is significantly

higher than the overall rate of 28% of the 9116 genes tested

in the MGI database with mutant phenotypes (proportion

test Po2.9e� 12). In addition, 127 of the 420 genes in the

MEMN have been linked to 119 diseases/traits (Po2.5e� 3;

Supplementary Table 6) in public GWAS studies as cataloged

by NHGRI (accessed April 28, 2012). Moreover, one of the

overlapping genes, C3ar1, has been tested and shown to affect

Table IV Data sets used for co-expression network analysis

Cohort Specie Tissue Disease state

BxH ApoE� /� Mouse Adipose/muscle/
liver

Diabetes and
obesity

NKI Human Breast Cancer
HCC Human Liver Cancer
IFA Human Adipose Normal
HLC Human Liver Normal
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obesity (Schadt et al, 2005; Yang et al, 2009), diabetes

(Mamane et al, 2009), atherosclerosis (Yang et al, 2010), and

asthma (Hasegawa et al, 2004). These lines of evidence again

strongly support the critical causal role of these genes in

multiple diseases.

Employing BNs to infer regulatory relationships

among the inflammatome signature genes

Neither expression signatures nor co-expression networks can

provide causal relationships among genes. Probabilistic causal

networks are one way to model such relationships, where

causality in this context reflects a probabilistic belief that one

node in the network affects the behavior of another either

directly or indirectly. BNs (Zhu et al, 2004; Zhu et al, 2007; Zhu

et al, 2008; Zhu et al, 2012) are one type of probabilistic causal

networks that provide a natural framework for integrating

highly dissimilar types of data. Unlike co-expression networks,

which allow one to look at the overall gene–gene correlation

structure at a high level, BNs are sparser but allow a more

granular look at the relationships and directional predictions

among genes or between genes and other traits such as

Human cancer liver

Mouse male adipose Mouse male liver Mouse male muscle

Mouse female adipose

Human male adipose

Mouse female liver Mouse female muscle

Human female adipose Human breast cancer

Human normal liver

A B C

D E F

G H I

J K

Figure 2 Topological overlap matrix (TOM) plots of weighted, gene coexpression networks constructed from one mouse studies (A–F) and four human studies
including IFA (G–H), NKI (I), HLC (J) and HCC (K). Each symmetric heat map with rows and columns as genes represents the network connection strength (as indicated
by the different shades of color—from white signifying not significantly correlated to red signifying highly significantly correlated) between any pair of nodes (genes) in the
corresponding network. The network connection strength is measured as the topological overlap between genes. The network modules highlighted as color block along
the rows and columns (each color block represents a module) were identified via an average linkage hierarchical clustering algorithm using topological overlap as the
dissimilarity metric. In each network, the module highlighted with a black box is most enriched with the inflammatome signature. (A) Mouse male adipose, (B) mouse
male liver, (C) mouse male muscle, (D) mouse female adipose, (E) mouse female liver, (F) mouse female muscle, (G) mouse male adipose, (H) human female adipose,
(I) human breast cancer, (J) human normal liver, (K) human cancer liver.
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disease.We have previously described amethod to reconstruct

probabilistic, causal networks by integrating genetic and gene

expression data (Zhu et al, 2004, 2007, 2008, 2012). Toward

this end, we constructed 66 mouse BNs from 11 mouse crosses

(Lum et al, 2006; Chen et al, 2008) and three human BNs from

the previously described human studies (Icelandic Family

Blood (IFA), Emilsson et al, 2008; Human Liver Cohort (HLC),

Yang et al, 2010; and breast cancer, Tran et al, 2011). The 66

mouse BNs include 25 constructed from liver data, 23 from

adipose data, and 18 frommuscle in mouse studies. Each data

set involves hundreds to thousands of samples that were

leveraged for the network reconstructions. All mouse studies

were carried out in the context of a genetic F2 intercross

design, where different F2 crosses have different genetic

perturbation architectures and different sets of causal reactive

relationships that can be inferred. Thus, we constructed a

network for each data set independently. Each BN was gender

and tissue specific and was constructed using the genetic and

gene expression data generated from each population (Zhu

et al, 2004, 2007, 2008). Our previous studies have shown that

predictive BNs can be constructed based on genetic and gene

expression data with over 100 samples (Zhu et al, 2004, 2007,

2008, 2012). As the construction of BNs is an NP-hard

problem, we used a Monte Carlo Markov Chain (MCMC)

method to construct the networks. To construct the network,

we simultaneously run 1000 MCMC chains to produce 1000

networks (Friedman et al, 2000; Zhu et al, 2007). Our final

network then represents common features among these 1000

structures, minimizing any issues relating to overfitting of the

data. For each of the three tissues, we derived a tissue-specific

consensus BN as the union of all the BNs for the same tissue.

The three mouse consensus BNs and three human BNs served

as (1) the network framework representative of the inflam-

matome signature and (2) the sources for identifying the key

regulators of the inflammatome signature via a modification of

the key driver identification algorithm (Zhu et al, 2008, 2012;

Tran et al, 2011).

The key driver algorithm works as follows. For each of the

six causal BNs, we first derived a subnetwork comprised of the

directed links between the inflammatome signature genes. The

nodes and edges of the six inflammatome causal networks are

listed in Supplementary Table 7. Then, for each gene in the

subnetwork, we defined its downstream signature as the set of

nodes in the subnetwork that could be reached by the gene

following directed links throughout the 6-edge neighborhood

of the node. A node was claimed as a candidate driver if the

number of its downstream nodes was significantly enriched in

the inflammatome subnetwork. A candidate driver became a

global driver if it was not in the downstream of any other

candidate driver; otherwise it was a local driver. The candidate

drivers that had the number of out-links significantly greater

than random were promoted as global drivers. Finally, the key

and local drivers for the inflammatome signature were derived

Table V Network gene modules most enriched with the inflammatome signature

Cohort Tissue Gender Module Network
size

Signature
size

Signature in
network

Module
size

Signature in
module

Fold
enrichment

Enrichment
P-value

BxH
ApoE� /�

Adipose Female Blue 21 936 2505 2258 1991 672 3.2789252 1.13E� 203

BxH
ApoE� /�

Adipose Male Brown 21 936 2505 2258 1604 597 3.6157922 2.58E� 203

BxH
ApoE� /�

Muscle Male Blue 21 836 2505 2249 2803 721 2.4974442 1.16E� 143

BxH
ApoE� /�

Liver Female Red 21 936 2505 2258 605 291 4.6727346 2.81E� 129

BxH
ApoE� /�

Liver Male Yellow 21 936 2505 2258 1206 395 3.1818763 1.29E� 108

BxH
ApoE� /�

Muscle Female Turquoise 21 842 2505 2250 4518 858 1.8435331 4.40E� 91

NKI Breast
(cancer)

All Purple 19 570 2276 1995 387 130 3.2951888 2.56E� 37

NKI Breast
(cancer)

All Black 19 570 2276 1995 644 201 3.0616681 1.97E� 51

HCC Liver
(cancer)

All Turquoise 14 878 2276 1835 2405 510 1.7193472 2.47E� 42

IFA Adipose Male Turquoise 5580 2276 824 1123 316 1.90552352 1.50E� 40
IFA Adipose Female Turquoise 5561 2276 842 1696 411 1.6005041 2.10E� 34
HLC Liver All Yellow 4408 2276 623 180 84 3.3018727 7.63E� 28

Human MEMN

(2448 genes)

Mouse MEMN

(1200 genes)

Inflammatome

(2309 genes)

420 367

389

87

1272

1413

326

Figure 3 A Venn diagram showing overlaps among the inflammatome, human
macrophage-enriched metabolic network (MEMN), and mouse MEMN signa-
tures. One-third of the inflammatome signature genes are in the human MEMN
and the three signatures share 420 genes.
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based upon the consistency of the status of the candidate

drivers across the six causal networks. A driver was defined as

a key driver of the inflammatome signature if (1) it was a global

driver in at least two causal networks or (2) it was a global

driver in one causal network and a local driver in at least one

other network. A driver became a local driver if (1) it was a

global driver in only one causal network but not a driver in any

other network or (2) it was only a local driver in at least two

causal networks.

Applying this algorithm, we identified 151 key and 212 local

drivers (Supplementary Table 8 for the driver list and

Supplementary Table 9 for the downstream genes of the key

drivers). The key driver genes are significantly enriched for

genes in pathways like leukocyte activation (P¼ 1.49e� 22),

regulation of immune response (P¼ 3.55e� 21), cytokine

production (P¼ 1.40e� 18), and inflammatory response

(P¼ 1.45e� 13). Notably, 55 of the 151 key drivers are global

drivers in at least 2 causal networks and they represent the top

key drivers. Figure 4 shows two causal networks with their key

drivers highlighted.

In order to address whether the drivers represent biologi-

cally more critical genes than non-driver genes, we down-

loaded the mutant phenotype data from the MGI. As shown in

Table VI, compared with a frequency of 28.7% of genes in the

phenotype database that showed observable altered pheno-

types overall, the frequencies of genes with mutant pheno-

types among the key drivers, local drivers, and non-driver

genes were 63.6, 57.9, and 39.2%, respectively, representing

significant enrichments for genes with mutant phenotypes

among the key drivers and local drivers (Fisher’s Exact Test

P¼ 2e� 12 and 1.7e� 12, respectively). In addition, the

frequencies of genes with mutant phenotypes in the key and

local driver groups were significantly higher than that of the

non-driver group (proportion test P¼ 0.001 and 0.005,

respectively). Thus, the key drivers identified indeed appear

to be more biologically important than the non-drivers.

Notably, 19 of the top 55 key drivers were tested in MGI and

73.7% (14) had mutant phenotypes.

The top five key drivers are Cd53, Hck, Tyrobp, Nckap1l, and

Aif1. Cd53 has been suggested to have a role in multiple

inflammatory diseases such as RA, atopic eczema, B-cell

chronic lymphoproliferative disorders, and interstitial lung

disease (Taylor et al, 2000; Barrena et al, 2005; Jockers and

Novak, 2006; Pedersen-Lane et al, 2007); Hck (Hematopoietic

cell kinase) has been associated with COPD and poor outcome

 Human Adipose Bayesian Network Human Liver Bayesian SubnetworkA B 

Figure 4 Inflammatome gene regulatory (Bayesian) networks and their predicted key drivers that are highlighted as large red nodes. The nodes in each network are
the inflammatome signature genes and the directed links between them are derived from the causal networks reconstructed by integrating genetic and gene expression
data in the corresponding cohort: (A) the human adipose IFA study; (B) the human liver HLC study. HCK, CD53, and TYROBP are the top drivers of both inflammatome
subnetworks.

Table VI Comparison of mutant phenotypes between Bayesian network key
drivers, local drivers, and non-drivers

Group No.
of

genes

No. of gene tested in
the MGI phenotype

database

No. of genes
with MGI

phenotype(s)

% Tested
genes with

phenotype(s)

Top 55
key
drivers

55 19 14 73.7

Key
drivers

151 44 28 63.6

Local
drivers

212 57 33 57.9

Non-
drivers

2098 609 239 39.2
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of chronicmyeloid leukemia (Zhang et al, 2007; Lee et al, 2008;

Yanagisawa et al, 2009); Tyrobp has been implicated in

presenile dementia with bone cysts and a cognitive disorder

Nasu-Hakola disease (Paloneva et al, 2000; Thrash et al, 2009);

Nckap1l (NCK-associated protein 1-like), expressed only in

hematopoietic cells, is associated with the Wiskott-Aldrich

Syndrome (WAS), a rare X-linked primary immunodeficiency

(Snapper and Rosen, 1999); Aif1 (allograft inflammatory

factor 1) has been associated with atherosclerosis, systemic

sclerosis, Type 1 diabetes, Type 2 diabetes, and RA (Arvanitis

et al, 2005; Alkassab et al, 2007; Harney et al, 2008; Zhang

et al, 2008; Eike et al, 2009; Rouskas et al, 2012).

Other notable key drivers include C3ar1 and Alox5ap, two

susceptibility genes for various diseases. C3ar1, which has

been experimentally validated as a causal gene for obesity,

diabetes, and atherosclerosis (Schadt et al, 2005; Mamane

et al, 2009; Yang et al, 2009, 2010), and has been linked to

asthma in human genetic association studies (Hasegawa et al,

2004), is a key driver in mouse adipose tissue. Alox5ap

activates 5-lipoxygenase (encoded by Alox5) and has been

linked to a spectrum of diseases including CVDs, stroke,

asthma, arthritis, and cancers. In addition, Alox5ap mutants

have been reported to affect metabolism, homeostasis,

immune system, and skeleton phenotypes (Byrum et al,

1997), and an Alox5ap inhibitor, MK866, has been shown to

have anti-atherosclerosis (Jawien et al, 2006) and anti-tumor

activities (Mayburd et al, 2006). Interestingly, when C3ar1 or

Alox5 genes are modified in KO mice (Mehrabian et al, 2005;

Yang et al, 2009), the inflammatome network was significantly

perturbed, as reflected by significant overlap of liver expres-

sion signatures of C3ar1 and Alox5 KO mice with the

inflammatome network (P¼ 7.65e� 3 for C3ar1 signature and

1.03e� 12 for Alox5 signature, respectively). The C3ar1

signature is enriched for inflammatory pathways such as

complement pathway and IL-10 signaling as well as metabolic

pathways such as fatty acid and amino acid metabolism.

Similarly, theAlox5 signature is enriched for lipid/amino acid/

fatty acid/steroid metabolic processes as well as inflammatory

processes such as T cell/lymphocyte/leukocyte activation.

These KO signatures not only support the regulatory role of the

key drivers in modulating the inflammatome but also tie the

inflammatory genes with other metabolic processes.

In addition, 32 key driver genes are candidate genes for

53 diseases/traits in human GWAS based on NHGRI GWAS

catalog (accessed April 28, 2012; Supplementary Table 10),

again supporting the notion that these key driver genes impact

a variety of human diseases. Therefore, a majority of these

genes have literature support for their critical role in mediating

multiple disorders.

Comparison of inflammatome signature and key

drivers with inflammatory signatures identified in

previous studies

Previously, several studies investigated gene expression pat-

terns in blood or various hematopoietic cell lineages from

different inflammatory conditions/diseases and analyzed the

potential regulatory transcription factors (Jenner and Young,

2005; Gilchrist et al, 2006; Nilsson et al, 2006; Hao and

Baltimore, 2009; Litvak et al, 2009; Pankla et al, 2009; Suzuki

et al, 2009). From these publications, we collected 18

inflammatory response gene signatures. These signatures were

also combined into a super signature by taking the union over

all sets. As shown in Table VII, the inflammatome signature and

its key driver list significantly overlap with 15 and 16 of the 19

signatures, respectively. Among the 15 published signatures

significantly overlapping the inflammatome signature, 14 have

higher fold enrichment for the driver list than for the non-

drivers of the inflammatome signature, suggesting a higher

cross-study consistency among the key driver genes. Among all

the enrichment tests, the driver list shows the highest likelihood

of harboring two previously identified groups of macrophage-

induced transcription factors, namely, Cluster 6 and LPS-TF-

Cluster1 (Gilchrist et al, 2006; Litvak et al, 2009), with fold

enrichments of 18.4 and 23.7, respectively. Both groups

comprising many transcription factors regulated in the early

phase of temporal activation of macrophages and likely control

gene expression in the intermediate and late phases (Gilchrist

et al, 2006; Litvak et al, 2009), again supporting the cross-study

consistency as well as the regulatory power of the inferred

drivers as opposed to the non-drivers in the inflammatome

signature. In addition, the top 55 key drivers have higher

likelihood than the 151 key drivers to be in 11 of the 16

signatures significantly enriched for the key drivers. This and

the previous overlap analysis between the key drivers and the

MGI phenotype database suggest the importance of the rank

order of the predicted drivers.

Although there is a statistically significant over-representa-

tion of these previously identified signatures in the driver and

inflammatome lists, 51% or 77 of the predicted key drivers

and 74% or 1831 of the inflammatome signature genes from

our study are novel, suggesting that this approach is

complementary to all the previous studies.

Discussion

In the current analysis, we first identified a representative

‘inflammatome’ signature of roughly 2500 genes from 12

expression data sets covering 9 different tissues from 11 rodent

inflammatory disease models. The inflammatome signature is

highly enriched with current known drug target and GWAS

genes, suggesting that it could be used as a reference gene

set for new target identification. We also found that the

inflammatome bears close resemblance to the previously

identifiedMEMN, a genemodule identified in both human and

mouse adipose and liver tissues and enriched for causal genes

involved in metabolic disorders (Chen et al, 2008; Emilsson

et al, 2008). When mapping the 2500 inflammatome genes to

previously constructed gene networks, we found that mem-

bers of this gene set are highly connected in both Bayesian and

gene co-expression networks across multiple tissues of multi-

ple independent data sets. The identification of this ‘inflam-

matome’ gene signature extends the coverage of MEMN

beyond adipose and liver in the metabolic disease to multiple

diseases in numerous tissues. The fact that inflammatome

signature also highly overlaps with network modules that

predict cancer survival suggests that the importance of the

signature can be extended to diseases that were not covered by
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the 11 models investigated here. It is also interesting to note

that the inflammatome contains all proposed cancer thera-

peutic targets (e.g., Hif-1a, Vegf, M-csf, Stat3, Nfkb1, Nfkb2,

RelB, Mmp12, and Tgfb) associated with inflammation-related

genes proposed in a recent review article by Sica et al (2008).

In addition to helping define the network architecture of the

inflammatome signature, the integrative network analysis also

identified 151 key regulatory, that is, key driver, genes among

the inflammatome genes. Multiple lines of evidence support

the importance of these key drivers: (1) enrichment for genes

which, when perturbed, cause phenotypic changes in KOmice,

(2) experimental validation of a key driver C3ar1, and (3) 32

key drivers have been identified as candidate susceptibility

genes for over 50 disease traits in GWAS studies. Among the

151 key drivers, Cd53, Hck, Tyrobp, Nckap1l, and Aif1 are

highly consistent key drivers across majority of the causal

networks and they have been linked to many inflammation-

related disorders. The identification of these key drivers

implies a critical role in numerous disease settings and they

may serve as key biomarkers or drug targets.

To our knowledge, this is the largest systematic investigation

of multiple tissues (9) of multiple disease models (11) with an

inflammatory component. Compared with previous studies

investigating inflammatory genes in blood or hematopoietic

cell lineages in limited sets of inflammatory diseases or

conditions, our study identified a significantly larger number

of inflammatome genes and key regulators that are not only

consistent in multiple tissues but are involved in a much

broader spectrum of disease types. In addition, the integration

of gene expression profiling data with knowledge-based

databases and data-driven networks not only helps identify a

common inflammatome signature and relates the signature to

the diseases under investigation, but also helps uncover the

network architecture and key genes that drive network and

disease variance. Since the inflammatome was derived from

multiple disease models and tissues, it points to a central role

that infiltrating inflammatory cells such as macrophages play

in all major disease areas. Several genes of macrophage origin,

when perturbed, have been shown to impact multiple disease

outcomes. It is conceivable that further mining and validation

of the inflammatome signature, especially the key drivers

identified, could result in additional high value targets that can

be used for multiple inflammatory diseases rather than

individual diseases.

It is important to note that the common inflammatome

genes and their drivers do not necessarily undermine the

Table VII Enrichment test of our inflammatome signature and its drivers for the inflammatory signatures from the literature using Fisher’s Exact Test (FET). The
combined I.M. signature is a union of all the other signatures reported in this table

Signature Source Size Overlap Fold enrichment FET P-value

Non-driver
(2098)

Key driver
(151)

Top key
driver (55)

Non-
driver

Key
driver

Top key
driver

Non-
driver Key driver

Top key
driver

Cluster1 Gilchrist et al
(2006)

137 11 0 0 0.957 0 0 0.483 1 1

Cluster10 Gilchrist et al
(2006)

215 34 12 5 1.884 9.241 10.571 1.14E� 04 6.91E� 10 7.70E� 06

Cluster11 Gilchrist et al
(2006)

61 13 0 0 2.539 0 0 0.000427 1 1

Cluster2 Gilchrist et al
(2006)

167 23 5 4 1.641 4.957 10.887 6.61E� 03 5.44E� 04 3.33E� 05

Cluster3 Gilchrist et al
(2006)

64 4 4 2 0.745 10.348 14.205 6.32E� 01 4.30E� 05 3.82E� 04

Cluster4 Gilchrist et al
(2006)

140 26 7 3 2.213 8.278 9.74 3.59E� 05 2.24E� 06 2.57E� 04

Cluster5 Gilchrist et al
(2006)

42 8 2 0 2.27 7.884 0 7.13E� 03 2.09E� 03 1.00Eþ 00

Cluster6 Gilchrist et al
(2006)

18 1 2 0 0.662 18.396 0 0.453 0.000165 1

Cluster7 Gilchrist et al
(2006)

178 18 5 3 1.205 4.651 7.661 0.166 0.00076 0.000638

Cluster8 Gilchrist et al
(2006)

146 25 11 4 2.04 12.474 12.453 1.95E� 04 9.32E� 11 1.74E� 05

Cluster9 Gilchrist et al
(2006)

36 3 1 1 0.993 4.599 12.626 0.358 0.02 0.00285

FANTOM-TF Suzuki et al
(2009)

47 10 1 0 2.535 3.523 0 0.00145 0.0328 1

Host response Jenner and
Young (2005)

511 90 22 11 2.099 7.128 9.785 4.76E� 12 6.51E� 14 9.24E� 10

LPS-TF-cluster1 Litvak et al
(2009)

21 3 3 1 1.702 23.652 21.645 9.39E� 02 7.07E� 06 9.72E� 04

LPS-TF-cluster2 Litvak et al
(2009)

57 7 0 0 1.463 0 0 0.102 1 1

Macrophage
regulated

Nilson et al
(2006)

1552 208 39 17 1.597 4.16 4.979 2.52E� 12 2.26E� 15 2.70E� 09

Sepsis Pankla et al
(2009)

37 9 1 1 2.899 4.475 12.285 0.000716 0.021 0.00301

TNF signature Hao and
Baltimore (2009)

89 26 6 2 3.481 11.162 10.215 2.10E� 09 1.16E� 06 1.00E� 03

Combined I.M.
signature

Union of all
signatures

3576 468 74 30 1.559 3.426 3.813 1.99E� 25 5.10E� 25 4.23E� 13
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significant value of disease-specific signatures for persona-

lized medicine, as commonly practiced in today’s pharmaceu-

tical industry and medical system. Our study indeed identified

many disease-specific genes, supporting the existence of

unique features in each disease type. Future studies that

involve larger sample sizes in each disease model can help

further our understanding of disease-specific processes. In

light of a comprehensive understanding of the shared as well

as the distinct molecular mechanisms, the most effective and

personalized treatment of a particular disease could be the

combination of a drug targeting the core processes common to

multiple diseases and a drug that is more specific to each

disease type.

Materials and methods

Rodent inflammatory disease models

As shown in Table I, 12 rodent inflammatory disease models are used
in the current study and the tissues involved include lung, aorta,
adipose, islet, liver, brain, DRG, skin, and muscle. Gene expression
data for all disease models reported in the current study have been
deposited to Gene Expression Omnibus under GSE31559.

OVA mouse model for asthma
Five male BALB/c mice (20–25g) are immunized with OVA 1 week
apart. Two weeks after the first immunization, mice are subjected to
0.5� PBS or 5% OVA (in 0.5� PBS) aerosol challenge for 20min via
whole body exposure for 3 consecutive days. One day after the last
aerosol challenge, mice are anesthetized with Ketamine/diazepam/
sodium pentobarbital and surgically tracheotomized and jugular vein
cannulated before attaching to a small animal ventilator (Flexivent) for
invasive lung mechanical responses to intravenous methacholine.
Mice are removed from the ventilator and whole lungs are harvested.
Right versus left lungs are rinsed in PBS, blotted dry, and immediately
frozen in liquid nitrogen for storage at � 801C. Right lung tissues were
used for profiling. Total RNAwas extracted from left lung using RNeasy
Midi kit as described by the manufacturer (Qiagen, Valencia, CA,
USA). Samples were treated with DNaseI on-column (Qiagen) for
30min. RNA concentration was measured using a NanoDrop ND-1000
(NanoDrop Technologies, Wilmington, DE, USA) and RNA integrity
was determined with a 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). Samples displaying an RNA integrity number (RIN)
47.5 were used for profiling. Samples from four mice treatedwith PBS
were combined to serve as reference pools and compared with
individual lung samples of PBS- and OVA-treated animals. Microarray
profiling was conducted as previously described (Lampe et al, 2004),
using a mouse custom 44K array comprising 40 572 genes. The two-
color microarrays were scanned using the Agilent scanner and
proprietary image acquisition software. Rigorous image quality control
(QC) was performed using proprietary software and the raw data
warehoused in a proprietary database. Experimental QC was
performed in MATLAB (Mathworks, Inc. Natick, MA, USA; http://
www.mathworks.com). Expression datawere loaded into the Resolver
(Rosetta proprietary software database http://www.rosettabio.com/
products/resolver/default.htm), for transformation normalization and
error modeling. Fluor-reversed pairs for each sample were combined
to give a single log-ratio and a P-value for technical variability for each
biological sample compared with its appropriate control.

IL-1b Tg mouse model for COPD
Lung samples from three IL-1bTgmice treatedwithwaterwere used as
the reference and compared with five individual lung samples from Tg
Dox-treated lungs to obtain the IL-1b Tg-induced signatures. All lung
samples were collected 7 days after Dox treatment when active airway
inflammation was observed. RNA samples were prepared as described
above in the mouse OVA model. Samples were amplified and labeled

using a custom automated version of the RT/IVT protocol and reagents
provided by Affymetrix. Hybridization, labeling, and scanning were
completed following manufacturer’s recommendations (Affymetrix)
and microarray profiling was performed by using a mouse Affymetrix
custom array containing 44 000 probe sets.

TGFb Tg mouse model for fibrosis
TGFb Tg and WT littermate control mice were treated with water or
doxycycline (Dox) for 14 days. At day 14, doxycycline-treated
transgenic animalsmanifest both pronounced lung fibrosis and airway
inflammation. These end points were measured before profiling
samples to ensure that each Dox-treated animal displays a uniform
response. Lung samples from four mice per group (TGFb Tg and WT)
were collected. Total RNA purification and microarray profiling were
performed in the same way as described above in the mouse OVA
model.

ApoE� /� HFD mouse model for atherosclerosis
Three C57BL/6 WT and three ApoE� /� mice (The Jackson
Laboratory) were weaned at 4 weeks of age. For gene expression
profiling studies, an atherogenic western HFD containing 21% fat and
0.15% cholesterol (88137; Harlan Teklad) was given to both WT and
ApoE� /� animals for 16 weeks started when the animals were at
8 weeks of age.

RNA from whole aorta was extracted with Qiagen RNeasy kit (Cat#
74181) according to manufacturer’s recommended protocol. Reverse
transcription (RT) was carried out with high capacity cDNA archive kit
(Applied Biosystems, Cat# 4322171). For total RNA samples from
whole aorta tissue, 500ng RNA was used for each 100 ml RT reaction.
Microarray profiling was performed in the same way as described
above in the mouse OVA model.

dbdb mouse model for diabetes (adipose)
Epidydimal white adipose tissue (eWAT) was isolated from six db/db
and six lean control (db/þ ) mice at 10 week of age. The db/db mice
are obese, severely hyperglycemic, and only modestly hyperinsuline-
mic at 10weeks of age. Total RNA purification andmicroarray profiling
were performed in the same way as described above in the mouse
OVA model.

dbdb mouse model for obesity (islet)
Pancreatic islets were isolated from the db/db and the lean control
(db/þ ) mice at 9 weeks of age. The db/db mice are obese, severely
hyperglycemic, and only modestly hyperinsulinemic, indicating the
de-compensation of b-cell to the insulin resistance. Comparing gene
expression profiles in db/db and db/þ islets at this time point allowed
us to find genes involved in the b-cell dysfunction during the
development of diabetes in this model. Islet RNA samples were
purified and profiled fromfivemice per group essentially the sameway
as described above in the mouse OVA model.

ob/ob mouse model for obesity
eWAT fromnine ob/ob and nineWTmice on C57Bl/6J background at 8
weeks of agewas collected and three samples each fromWTand ob/ob
mice were combined to form three pooled groups each. RNA samples
were purified and profiled essentially the sameway as described above
in the mouse OVA model.

LPS rat model for multiple inflammatory diseases
Four Sprague-Dawley rats received either an intraperitoneal injection
of LPS of 3mg/kg body weight (n¼ 4) or sodium chloride (SC) 0.9%
(n¼ 4). Animals were killed 24 h after LPS or SC injection. Total RNA
was extracted from liver using RNeasy Midi kit as described by the
manufacturer (Qiagen). Samples were treated with DNaseI on-column
(Qiagen) for 30min. RNA concentration was measured using a
NanoDrop ND-1000 (NanoDrop Technologies) and RNA integrity
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was determined with a 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). Samples displaying an RIN 47.5 were used for
profiling. Samples from livers treated with SC were combined to serve
as reference pools and compared with individual liver samples of
SC- and LPS-treated animals. Microarray profiling was conducted as
previously described (Lampe et al, 2004), using a rat Agilent custom
array contains B44 000 probes.

Transient MCAO rat model for stroke
Brain tissues were collected from four transient MCAO (tMCAO) rats
and four controls at 24 h. Selection of optimal time points was
primarily based upon the time course of infarct formation (histological
data). Brain tissue of 4mm thick ipsilateral brain section (dissected
into cortex and striatum) was collected but only cortex samples were
used for expression profiling. RNA purification and microarray
profiling were performed essentially the same way as described above
for LPS rat model except microarray platform was using a rat custom
Agilent array contains B25000 probes.

Chung rat model for neuropathic pain
Rat DRG at 7 days following spinal nerve ligation that elicits
neuropathic pain or sham operation was profiled. Four DRG samples
per group each pooled from two animals were included in the analysis.
RNA purification and microarray profiling were performed essentially
the same way as described above for LPS rat model except microarray
platform was using a rat custom Agilent array contains B25000
probes.

Carrageenan rat model for inflammation pain
Four rats were treated with carrageenan (CGN) at 30mg/kg body
weight (mpk) and then compared with five control animals without
CGN treatment. Three hours post-CGN pawedema and hyperalgesia to
mechanical pressure were measured. Rats were euthanized 4 h post-
CGN for skin tissue harvesting. Skin RNA samples were purified and
QC in the same way as described above in the LPS rat model but
microarray profiling was performed using a custom Affymetrix array.

Aged rat model for sarcopenia
Five 24-month-old male Sprague-Dawley rats were obtained and
served as the aged group to compare with five 6-month-old male
Sprague-Dawley rats which served as young controls. All animals were
housed in a 12:12 h light cycle with ad lib food and water for at least a
month (age at necropsy was 28 months and 7 months for old and
young, respectively). Body composition measures were collected
using a rodent magnetic resonance (MR) instrument and grip strength
was assessed for eight animals in each group. Animals were
euthanized with CO2 and exsanguination and the whole hind limb
lateral gastrocnemius muscle from the left leg was dissected and snap
frozen in liquid nitrogen. RNA samples were purified and QC in the
same way as described above in the LPS rat model but microarray
profiling was performed using a custom Affymetrix array.

Inflammatome signature identification

The inflammatome signature was identified by adopting a two-way
ANOVA approach using two factors and their interaction term; ‘model’
(12 levels, 12 rodent models) and ‘disease status’ (2 levels, normal and
disease samples). In all, 2483 genes with disease P-values ofp1.0e� 9

(Benjamini–Hochberg corrected) were selected.

Disease-specific signature identification

One-way ANOVA was used to identify differential expression signa-
tures in individual rodent models. FDR was estimated using Q-value
approach to control for multiple testing and statistical cutoff was set to

FDRo5%. Genes that were only significant in one model were defined
as disease-specific genes for the particular model.

Mouse BXH cross study

In a previously described cross between C57BL6/J (B6) and C3H/HeJ
(C3H) on an Apoe� /� background (referred to here as the BXH
cross) (Wang et al, 2006), muscle, liver, and adipose tissues were
extracted from 334 F2 animals in the B3H cross and profiled on an
Agilent custom murine gene expression microarray17. All F2 animals
were genotyped at 41300 single-nucleotide polymorphism markers
and clinically characterized with respect to obesity-, diabetes-, and
atherosclerosis-related traits.

Human study populations

For the NKI breast cancer cohort (van de Vijver et al, 2002), about 300
cancer breast samples were collected and profiled on the Agilent
Human 25K platform comprising 24 496 non-control oligonucletoide
probes. For details about tissue collection and RNA/DNA isolation,
RNA sample preparation, microarray hybridization, and expression
analysis, see the original paper (van de Vijver et al, 2002). The gene
expression data were adjusted for estrogen and progesterone receptor
(ER/PR) status as well as age to avoid their influence.
For the IFA cohort, 673 Icelandic subjects ranging in age from 18 to

85 years were recruited and of these 553 formed 124 dense three-
generation pedigrees. Individuals were recruited so as to maximize the
density for any of the given pedigrees. All participants in the IFAwere
scored for various clinical traits related to obesity, including height,
weight, waist circumference, hip circumference, and percentage body
fat (PBF) measured by bioimpedance. For details about tissue
collection and RNA/DNA isolation, RNA sample preparation, micro-
array hybridization, and expression analysis, see our previous paper
(Emilsson et al, 2008).
For the HLC, a total of 427 liver samples (1–2 g) were acquired from

Caucasian individuals from three independent liver collections at
tissue resource centers at Vanderbilt University, the University of
Pittsburgh, and Merck Research Laboratories. The Vanderbilt samples
(N¼ 504) included both postmortem tissue and surgical resections
from organ donors and were obtained from the Nashville Regional
Organ Procurement Agency (Nashville, TN), the National Disease
Research Interchange (Philadelphia, PA), and the Cooperative Human
Tissue Network (University of Pennsylvania, Ohio State University,
and University of Alabama at Birmingham). The Pittsburgh samples
were normal postmortem human liver and were obtained through the
Liver Tissue Procurement andDistribution System (Dr. Stephen Strom,
University of Pittsburgh, Pittsburgh, PA). The University of Pittsburgh
samples (N¼ 211) were all postmortem, as were the Merck samples
(N¼ 65) collected by the Drug Metabolism Department and reported
previously1. All samples were stored frozen at � 801C from collection
until processing for RNA and DNA; some samples had been stored for
over a decade before being processed for this study. Demographic data
varied across centers for these samples and were missing in many
cases. In cases where age, gender, or ethnicity data were not available
in the patient records, we imputed it from the gene expression and/or
genotype data (see below). Formore details about tissue collection and
RNA/DNA isolation, RNA sample preparation, microarray hybridiza-
tion, and expression analysis, see our previous paper (Schadt et al,
2008).
For the human hepatocellular carcinoma (HCC) cohort, B250

matched tumor and adjacent normal samples were collected fromHCC
patients during surgical resection and assess (Burchard et al, 2010).
Demographic and pathologic parameters for the 272 ethnic Chinese
HCC patients who received curative surgery and used in this study are
shown (see Supplementary Table 1). Half of the patients (51.1%)
suffered from tumor recurrence during the follow-up period. The
primary end points measured were overall survival, DFS, and tumor
stage (pTNM). Flash frozen tissue was placed in a chilled milling tube
along with a stainless steel bead, dipped in a liquid nitrogen bath and
loaded onto the QIAGEN TissueLyser for milling (30Hz in 30 s
intervals). Multiple cycles of milling were sometimes required to
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achieve complete pulverization of the tissue to a fine powder. After
milling, the tissue powderwas recovered and rapidlymanually split for
extraction DNA and RNA while all the time maintaining sub-zero
temperatures. Samples were amplified and labeled using a custom
automated version of the RT/IVT protocol and reagents provided
by Affymetrix. Hybridization, labeling, and scanning were
completed following manufacturer’s recommendations (Affymetrix).
Sample amplification, labeling, and microarray processing were
performed by the Rosetta Inpharmatics Gene Expression Laboratory
in Seattle, WA.

Gene co-expression network analysis

The weighted network analysis begins with a matrix of the Pearson
correlations between all gene pairs, then converts the correlation
matrix into an adjacencymatrix using a power function f(x)¼ x^b. The
parameter b of the power function is determined in such a way that the
resulting adjacency matrix (i.e., the weighted co-expression network)
is approximately scale free. To measure how well a network satisfies a
scale-free topology, we use the fitting index (Zhang andHorvath, 2005)
(i.e., the model fitting index R2 of the linear model that regresses
log(p(k)) on log(k) where k is connectivity and p(k) is the frequency
distribution of connectivity). The fitting index of a perfect scale-free
network is 1. For each data set, we select the smallest b that leads to an
approximately scale-free network. The distribution p(k) of the
resulting network approximates a power law: pðkÞ � k� g.
To explore the modular structures of the co-expression network, the

adjacency matrix is further transformed into a TOM (Zhang and
Horvath, 2005). As the topological overlap between two genes reflects
not only their direct interaction, but also their indirect interactions
through all the other genes in the network, previous studies (Ravasz
et al, 2002; Zhang and Horvath, 2005) have shown that topological
overlap leads to more cohesive and biologically meaningful modules.
To identify modules of highly co-regulated genes, we used average

linkage hierarchical clustering to group genes based on the topological
overlap of their connectivity, followed by a dynamic cut-tree algorithm
to dynamically cut clustering dendrogram branches into genemodules
(Langfelder et al, 2007). To distinguish betweenmodules, eachmodule
was assigned a unique color identifier, with the remaining, poorly
connected genes colored gray. The whole procedure leads to an
ordered TOM heat map in which the rows and the columns represent
genes in a symmetric manner, and the color intensity represents the
interaction strength between genes. This connectivity map highlights
that genes in a transcriptional network fall into distinct network
modules, where genes within a given module are more interconnected
with each other (blocks along the diagonal of the matrix) than with
genes in other modules. There are a couple of network connectivity
measures, but one particularly important one is the within module
connectivity (k.in). The k.in of a gene was determined by taking the
sum of its connection strengths (co-expression similarity) with all
other genes in the module that to which the gene belonged.

Construction of BNs

Recent progress on reconstruction of gene regulatory networks has
shown that integration of multiple sources of genetic data can lead to
gene causal networks predictive of complex phenotypes (Zhu et al,
2004, 2008;Mehrabian et al, 2005; Schadt et al, 2005; Kulp and Jagalur,
2006; Lum et al, 2006). Among a variety of approaches, BNs have
shown superior performance. BN is a probabilistic representation of
the gene regulatory network. In all, 6312, 6349, 6268, and 5802
differentially regulated genes for NKI (van ’t Veer et al, 2002), Wang
(Wang et al, 2005), Miller (Miller et al, 2005), and Christos (Sotiriou
et al, 2006), respectively, were provided as input into a BN
reconstruction software program based on a previously described
algorithm (Zhu et al, 2004). Searching optimal BN structures given a
data set is an NP-hard problem. We employed an MCMCmethod to do
local search of optimal structures. As the method is stochastic, the
resulted structure will be different from each run. In our process, 1000
BNs were reconstructed using different random seeds to start the
stochastic reconstruction process. For each seed, 15�n2 iterations of
MCMC were run on average, where n is the number of nodes. The

Bayesian Information Criterion (BIC) scores were used as the
optimization criteria. From the resulting set of 1000 networks
generated by this process, edges that appeared in 430% of the
networks were used to define a consensus network. The 30% cutoff
threshold for edge inclusion is based on our previous simulation study
(Zhu et al, 2007), where 30% cutoff yields the best tradeoff between
recall rate and precision. The consensus network resulted by averaging
may not be a BN (a directed acyclic graph) any more. To make the
consensus network structure into a directed acyclic graph, edges in this
consensus network were removed if and only if (1) the edge was
involved in a loop and (2) the edge was the most weakly supported of
all edges making up the loop.

Assessing biological importance of BN key drivers

via mutant phenotypes

The mutant phenotype data were downloaded from the MGI database
(ftp://ftp.informatics.jax.org/pub/reports/index.html#pheno) and
genes within mutant alleles in the database were annotated based on
the key driver analysis results. The frequency of genes with mutant
phenotypes in each of the three groups, namely, key drivers, local
drivers, and non-drivers, was calculated. One-sided Fisher’s exact was
used to test enrichment of genes that showed mutant phenotypes in
each group compared with all genes with mutant alleles in the
database. One-sided proportion test was used to compare the
frequency of genes with mutant phenotypes between key drivers,
local drivers, and non-drivers. Significance level was set to Po0.05.

Identification of liver gene expression signatures

of C3ar1 and Alox5 KO mice

The gene expression profiling experiments for C3ar1 and Alox5 have
been described previously (Mehrabian et al, 2005; Yang et al, 2009).
Briefly, the liver tissues of three C3ar1 KO, four littermate C3ar1 WT
mice, five Alox5 KO, and five littermate Alox5 WT mice were profiled
with Rosetta/Merck Mouse TOE 75k Array 1 microarray (GPL3562)
manufactured by Agilent Technologies (Palo Alto, CA). The array
consists of 23 574 non-control oligonucleotides extracted from mouse
Unigene clusters and combinedwith RefSeq sequences and RIKEN full-
length cDNA clones. The expression data have been deposited to GEO
under an accession number GSE31559, respectively. A two-sided
Student’s T-test was used to identify signature genes with significant
differences between KO animals and the WTcontrol mice.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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