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Abstract

Background: Systems biological approach of molecular connectivity map has reached to a great interest to

understand the gene functional similarities between the diseases. In this study, we developed a computational

framework to build molecular connectivity maps by integrating mutated and differentially expressed genes of

neurological and psychiatric diseases to determine its relationship with aging.

Results: The systematic large-scale analyses of 124 human diseases create three classes of molecular connectivity

maps. First, molecular interaction of disease protein network generates 3632 proteins with 6172 interactions, which

determines the common genes/proteins between diseases. Second, Disease-disease network includes 4845

positively scored disease-disease relationships. The comparison of these disease-disease pairs with Medical Subject

Headings (MeSH) classification tree suggests 25% of the disease-disease pairs were in same disease area. The

remaining can be a novel disease-disease relationship based on gene/protein similarity. Inclusion of aging genes

set showed 79 neurological and 20 psychiatric diseases have the strong association with aging. Third and lastly, a

curated disease biomarker network was created by relating the proteins/genes in specific disease contexts, such

analysis showed 73 markers for 24 diseases. Further, the overall quality of the results was achieved by a series of

statistical methods, to avoid insignificant data in biological networks.

Conclusions: This study improves the understanding of the complex interactions that occur between neurological

and psychiatric diseases with aging, which lead to determine the diagnostic markers. Also, the disease-disease

association results could be helpful to determine the symptom relationships between neurological and psychiatric

diseases. Together, our study presents many research opportunities in post-genomic biomarkers development.

Background

Systems biology is an indispensable approach to study

the complex mechanisms of any disease or disorders.

After post-genomic era the accumulation of genomics

and proteomics data are widely flooded. However, there

is an unrealized opportunity remains in the understand-

ing of detailed molecular mechanisms of several neuro-

logical disorders [1,2]. Thus, the molecular diagnosis of

most of the neurological disorders remains difficult and

mostly carried out by neurological examination [3]. The

current molecular connectivity approaches of systems

biology are mainly focusing on building large protein

networks without probing the interaction mechanisms

specific to disorders or disease condition [4,5]. Hence,

the possibility of finding successful biomarkers through

systems biology approach is intricate. In order to gain a

better understanding of molecular mechanism, disease

relationship and biomarkers, the genes implicated within

similar disorders are need to be focused.

The systems biological concepts of disease interaction

were usually made by collecting signature genes of

genetically heterogeneous hereditary diseases and inves-

tigating the different mutations in a same gene (allelic

heterogeneity) giving rise to different disorders [6]. Simi-

lar, trends are followed for differentially regulating genes

and linking them to various diseases [7]. Here, we had

taken an integrated approach of mutated and differen-

tially regulating genes and exploring diseasome network
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that corresponds to the neurological and psychiatric dis-

eases. Such integrative approach will improve the confi-

dence of finding specific markers for diseases. The

reasons that we choose an integrative approach on neu-

rological disorders are two-fold. First, the understanding

of neurological disorder is considerably less, because of

difficulty in obtaining brain tissue for many cases. Sec-

ond, there is an increasing prevalence rate [8,9] and lack

of molecular diagnosis for most of the neurological dis-

orders [10,11].

In this study, we propose an integrative, network-

based model of mutated and differentially regulating

genes of 100 neurological and 24 psychiatric diseases

(see Additional File 1 for a disease category), that identi-

fies the neurological and psychiatric relationship and

their association with aging. Furthermore, this network

model helps to understand the common mechanism

between diseases through common pathway network

(CPN). Overall, our findings highlight the importance of

integrating the gene/protein data of neurological dis-

eases into future molecular biomarkers and drug target

discovery.

Results and Discussion

In this study, we developed a novel computational frame-

work (Figure. 1) to build disease-protein network (DPN)

(Figure. 2), disease-disease network (DDN) (Figure. 3) and

common pathway molecular network (CPN) (Figure. 4).

Our approach of integrating mutated and differentially

expressed diseases genes allow us to validate the neurolo-

gical and psychiatric relationships with aging. In addition,

this approach helps to predict the disease specific biomar-

kers for the potential diagnosis. We showed that this

approach was effective in constructing a statistically

Figure 1 Computational framework for developing molecular connectivity maps. The framework consists of three major components:

disease protein network, disease-disease network and disease biomarker network. The first component takes the inputs from database and

literature and outputs a disease protein network (DPN). The second component takes the input from DPN and generates the output of positively

scored disease-disease network (DDN) using scoring algorithm. Further, the second component was used to generate sub-component of

common pathway network (CPN). The final disease biomarker network (DBN) component was generated from DPN showing proteins specific to

diseases.
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significant molecular connectivity map of 124 diseases

with 3632 proteins. This work pointed out a new direction

for biomedical researchers to investigate the molecular

interaction network with the known dysfunctional genes

to identify disease relationship. The results of disease-dis-

ease connectivity map constructed from disease protein

interactions helps to guide the hypothesis for generation

of biomarkers for neurological and psychiatric diseases.

We used OMIM and literature mining to generate the

initial list of 1211 seed genes for 124 diseases. Using

STRING, we expanded 1211 seed genes/proteins to

13011 human proteins with 11800 proteins as enriched

set. Of 13011 proteins, most of the proteins were asso-

ciated to one or more diseases showing the possibility of

successful interactions between the diseases. These

records were further mapped to HGNC database to

obtain a unique gene symbol, to avoid false interactions.

As explained in the methodology, the disease protein

network (DPN) was constructed to have 3632 proteins

with 6172 interactions (see Additional File 2 for protein

interaction). In addition, we included the 261 ageing

genes to the DPN, to make a valid correlation of aging

within the analyzed diseases. These aging genes were

presumably more interesting to determine the associa-

tion of aging with neurological and psychiatric diseases.

This final DPN containing 3999 proteins with 6557

interaction (Figure. 2) was important to generate the

disease-disease relationship (Figure. 3), common disease

pathway network (Figure. 4) and disease biomarker net-

work (Figure. 5). In Figure 2, we showed the curated

view of seed and enriched set of proteins interactions

including aging genes/proteins. All proteins were shown

as nodes; the seed and enriched proteins are colored yel-

low and the aging genes were colored as red. Similarly,

in Figure 3, nodes indicate disease and edges indicate

the link between diseases. The disease-disease interac-

tion was comprehended but the reliability of the DDN

depends on DPN. Therefore, the overall proteins

involved in the DPN were validated by analyzing its sig-

nificance by a random sampling method. For instance,

the protein sub-network (PSN) of Parkinson’s disease

contains 297 proteins, in which PSEN1 is highly

Figure 2 Disease protein network (DPN). In DPN each nodes (seed and enriched proteins) were colored yellow and the aging genes were

colored as red and the proteins interactions were represented in violet solid lines.
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connected protein, showed 12 interactions in its net-

work. Therefore, the index of aggregation was calculated

as 4.04. The random sampling method was carried out

as described in the methodology. Only seven runs out of

1000 resulted in an index of aggregation value greater

than 4.04 (Figure. 6A). Therefore, the p-value of the

observed index of aggregation of the Parkinson’s disease

network was 0.007. Similar trends were followed for all

the diseases and geometric mean for overall p-values

was calculated as 0.00612. With the significance of dis-

ease-protein interaction data, the DDN was generated in

order to determine the relationship between the dis-

eases. Two diseases were connected by a link if same

proteins/genes were implicated in both the diseases.

These identified disease-disease interactions were further

validated by interaction score. This process generated a

total of 4845 positively scored disease-disease interac-

tions (Additional File 3 for positively scored interaction).

In these identified interactions, 79 neurological and 20

psychiatric diseases were shown to have a strong asso-

ciation with aging (Figure. 6B) (see Additional File 4 for

aging interaction). Further, the analyses of 100 neurolo-

gical diseases revels 98 diseases were shown to have

relationships with any of the analyzed psychiatric dis-

eases. For example, 78 neurological diseases provide the

common association with both major depressive disor-

der and manic depressive psychosis, suggesting the role

of depressive state in these 78 diseases (Figure. 6C). To

access the reliability of these connections, we mapped

the connected disease pair onto MeSH term. Of 4746

positively scored disease-disease links excluding aging

interactions, 1219 (25%) pair shared common disease

term (see Additional File 5 for MeSH validated interac-

tion), (Figure. 6D). For example, Alzheimer’s and Par-

kinson’s disease were present in the neurodegenerative

disease section of the MeSH tree. The remaining 3527

disease pairs were not located in the same branch of

MeSH tree. However, these positively scored disease

connections that located in different branches of MeSH

tree was particularly interesting, because they provide

novel disease relationships that were primarily relying

on gene similarity instead of phenotypic classification.

Figure 3 Disease-disease network (DDN). In disease-disease network, each node represents to a disease yellow colored. Two diseases were

connected by red solid line, if they attained the positive score in algorithm. The total of 4845 positively scored disease-disease interactions were

shown along with the aging interactions.
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For example, Parkinson’s disease has been connected to

REM sleep behavior disorder, not surprisingly, many

studies indicate the association of REM sleep behavior

disorder with Parkinson’s disease [12-14]. However, they

were not explicitly in same disease branch according to

MeSH. For better understanding of common mechanism

between the diseases, the proteins/genes that commonly

associated between each disease pairs were mapped to

NCI-Nature Pathway Interaction Database [15]. This

process generates 179 associated pathways between the

disease pairs (Additional File 6 for common pathway

network). Further, analyses of these pathways may guide

for the drug target discovery. For instance, our study

showed the association of glucocorticoid receptor regu-

latory network between Alzheimer’s and major depres-

sive disorder. Supportive to this result, previous study of

Figure 4 Common pathway network (CPN). In CPN, node represents to a disease (gray) and their associated pathway represented in red. Two

diseases were connected to a pathway, if both the disease shares proteins/genes that are associated to a pathway.
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Filippo et al., suggests glucocorticoid receptor can be

the common drug target for both Alzheimer’s and

major depressive disorder [16].

Biomarkers are the most interesting part of any biome-

dical research, and it is essential for neurological and

psychiatric diseases because most of these diseases lack

diagnostic markers. Every disease was expected to have

its own fingerprint, which subsequently helps in detec-

tion of diseases. Though, we analyzed 124 diseases, only

24 diseases were shown to have a disease specific bio-

markers (Figure. 5) (Additional File 7 for biomarkers

list) while, others may have shared their fingerprint with

their related diseases. Interestingly, few of our identified

biomarkers were previously reported. For instance, our

previous study suggests that pyruvate dehydrogenase

lipoamide beta (PDHB) and neuropeptide FF-amide

peptide precursor (NPFF) are the biomarkers for Parkin-

son’s disease [17]. However, this approach provides the

additional information that PDHB is not only associated

with Parkinson’s disease but also associated with Athe-

tosis and Friedreich Ataxia, whereas NPFF was found

unique to Parkinson’s disease, suggesting the possibility

as biomarker. The significance of these disease specific

biomarkers was validated by enrichment score based on

gene ontology with a threshold of 1.3. All the identified

disease biomarkers passed the threshold and confirmed

its significance to its diseases. Furthermore, the identi-

fied biomarkers of each disease was scored based on the

feasibility of diagnosis from biofluids, this analysis would

be of marginal interest to researchers focusing on diag-

nosis of these 24 diseases from biofluids. Each para-

meter such as house keeping genes and biofluids

Figure 5 Disease biomarker network (DBN). The disease biomarker network contains 24 diseases (green) with 73 biomarkers. The biomarkers

were colored based on the diagnostic parameters (gray). The associations of biomarkers with any of the diagnosis parameters (gray) are

represented in yellow, while other biomarkers are indicated in violet.
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circulating proteins were assigned a value (m-score) to

generate the overall diagnostic score. In comparison

with other biofluids, urine has two characteristics fea-

ture that makes it a preferred high m-score value of 0.7

for feasible diagnosis. First, urine can be obtained in

large quantities using non-invasive procedures. This

allows repeated sampling of the same individual for dis-

ease surveillance. Second, the urinary protein content is

relatively stable probably due to the fact that urine

“stagnates” for hours in the bladder [18]. However, the

reliability of diagnostic biomarkers in CSF is high

because, it has direct contacts with the extracellular

space of the brain, making it as a unique medium in

detecting biochemical changes in the central nervous

system. However, obtaining the CSF samples is difficult

thereby it was assigned to a least diagnostic m-score of

0.3. Considering the feasibility of both urine and CSF,

the average m-score of 0.5 was assigned to biomarkers

presence in blood plasma. Of 73 identified biomarkers

proteins, 18 were found to be present in any one of the

biofluids and three biomarkers were identified to be cir-

culating in all the biofluids (Figure. 6E). Further com-

parison of biomarkers with house keeping genes,

showed six biomarkers proteins were encoded by essen-

tial genes, which enhances the possibility of diagnosis in

any tissue. Though, we suggest these top scored proteins

as feasible diagnostic markers (Figure. 5) (Table. 1),

further studies are need to be carried out to determine

its significance as biomarkers.

Cross-validation of network

To validate our computational approach, the results

obtained from this study were compared with the results

of Goni et al and Goh et al approaches [19,4]. Our

result was in agreement with Goni et al studies showing

the successful interaction between Alzheimer’s disease

and multiple sclerosis. In addition to our result, several

other studies also confirm the molecular relationship

between Alzheimer’s disease and multiple sclerosis

[20-22]. However, similar interaction trend was not

been achieved with Goh et al approach. This is because

Goh et al approach of molecular connectivity was car-

ried out on mutated genes, while our approach uses

both differentially expressed and mutated disease genes

for the generation of DDN. Hence, our approach con-

firms the effectiveness of integrating differential and

Figure 6 Characterizing the disease modules. (a) Histogram of the index of aggregation distribution for Parkinson’s disease enriched sets of

proteins randomly selected from a database. The arrow indicates the aggregation values for the enriched Parkinson’s disease proteins set. The

Venn diagram (b) showed the neurological diseases relationships between aging and psychiatric diseases, The Venn diagram (c) showing the

neurological disease relationship with depression. (d) Peak representation of positively scored disease pairs category and MeSH disease pairs

category. The common region indicates the similarity disease pairs between the two categories. The Venn diagram (e) shows the presences of

biomarkers in biofluid and house keeping genes.
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mutated genes for reliable disease-disease relationships.

On the other hand, the proposed biomarkers of our

study were cross-validated using genetic association

database (GWAS) [23] to confirm its disease specificity

in context to neurological or psychiatric diseases. In our

identified 73 biomarkers, only 27 biomarkers were

shown to have disease association information, while the

information of 46 biomarkers was not available in

GWAS database. This is because the genetic associations

of few diseases were not been included in GWAS data-

base. However, the precision rate (PPV) was calculated

only on these 27 biomarkers. All 27 biomarkers were

confirmed to be specific to its diseases in context to the

analyzed disorders. Hence, the PPV was calculated to be

100%.

Limitations

Though, our present approach provides good accuracy in

determining the disease-disease interaction and biomar-

kers, it has limitation in the aspects of biomarkers detec-

tion. In medicine, biomarkers are the molecules, specific

to its pathological condition. Since, our study is focused

on neurological and psychiatric diseases the obtained bio-

markers are specific to its diseases of neurological and

psychiatric disorders. However, there is a possibility for

these 73 biomarkers to have an association with other

disorders irrespective neurological and psychiatric dis-

eases. Such limitation can be avoided by including all the

disorders in a network and implementing our biomarker

strategy for detection of biomarkers. However, with the

available information of these 27 biomarkers, we vali-

dated across GWAS database. The results confirm that

15 biomarkers are specific to its disease and have no

association with any other disorders (Table. 1).

Conclusions

In conclusion, the disease-disease relationships are of

great interest because such knowledge not only

enhances our understanding of disease mechanisms, but

also accelerates many aspects of biomarker and drug

target discovery. These results can be interesting to neu-

rologists, and our method can be generalized to other

disease biology areas for systems biological investigation.

We believe our approach to understand the mechanism

involved in neurological disease has given a valuable

insight into the relationship of aging and psychiatric ill-

ness. Moreover, these combined efforts resulted in iden-

tification of biomarkers that will greatly improve in

diagnosis of neurological and psychiatric diseases.

Methods

Initial collection of disease related genes

The initial 124 disease list was manually collected and

validated against the Medical Subject Headings (MeSH)

database [24] in order to determine its neurological and

psychiatric relationship. Of 124 diseases 100 have shown

the relationship with neurological and 24 with psychia-

tric diseases (Figure. 7). These 124 diseases were taken

as the basis for developing disease protein network. The

network was constructed by retrieving the genes related

to these diseases from Online Mendelian Inheritance in

Man (OMIM) database [25] and literature mining. The

human mutated genes were retrieved from OMIM and

literature mining was carried out to retrieve the genes

that are differentially expressed in its corresponding

Table 1 Biomarkers score

Disease Biomarkers (score)

Alzheimer’s Disease APLP2 (4), NEU2 (1.4), PCDH11X (0.5), SUMF1
(0.5), TOMM40 (0.5)

Amyotrophic Lateral
Sclerosis

ALS2CR8 (0.5), DERL1 (0.5), FUS (1), HOPX (0.5),
KIF1A (0.5), MOBKL2B (0.5), NIF3L1 (0.5), SCN7A
(0.5), SEMA6A (1.4), SLC39A11 (0.5), STRADB
(0.5), SUSD1 (0.5), UNC13A (0.5), ZFP64 (0.5)

Angelman Syndrome ARID4A (1.4), ARID4B (0.5), MKRN3 (1), NDNL2
(0.5), NIPA2 (0.5), PHLDA2 (0.5), SLC9A6 (0.5),
TSPAN32 (0.5), TSSC4 (0.5)

Asperger Syndrome GPR172B (0.5)

Ataxia Telangiectasia DDX10 (1), HEPACAM (1.4), TCL1A (0.5)

Canavan Disease ASPA (0.5)

Dyslexia ARFGEF1 (0.5), CCPG1 (0.5), PDGFC (0.5)

Epilepsy TRAPPC10 (0.5)

Fatal Familial Insomnia CD68 (0.5)

Friedreich Ataxia ACO1 (0.5)

Huntington disease AKAP8L (0.5), ARFIP2 (0.5)

Korsakoff Syndrome TKTL1 (0.5)

Lambert-Eaton
Myasthenic Syndrome

RAPSN (0.5), SOX1 (0.5)

Major Depressive
Disorder

FKBP5 (1), PCLO (2)

Manic Depressive
Psychosis

TRPM2 (0.5)

Multiple Sclerosis CSMD1 (0.5), FCGR1A (2), FCGR1B (2), FCGR2A
(3.5), FCGR2B (5), FCGR2C (4.1), FCGR3A (4.1),
FCGR3B (0.5), IFNB1 (0.5)

Multiple System Atropy AGTPBP1 (0.5), EXTL3 (0.5)

Parkinson’s Disease CALB1(5), CSF1R (5), MT-CYB (0.5), CHAC1 (0.5),
NPFF (0.5)

Pathologic gambling DNER (3.5)

Restless Legs Syndrome DMRT1 (0.5)

Schizophrenia AP3B2 (2), HMBS (0.5), SETD2 (1.4), ST6GAL2
(3.5)

Septo-Optic Dysplasia LBX1 (1)

Stroke NINJ2 (0.5), PROZ (0.5)

von Hippel-Lindau
Disease

TCHP (0.5)

The biomarkers of 24 diseases were indicated along with their diagnostic

score. The biomarkers that are shown to be specific to neurological and

psychiatric diseases in comparison with GWAS database are indicated in bold.

Ahmed et al. BMC Systems Biology 2011, 5:6

http://www.biomedcentral.com/1752-0509/5/6

Page 8 of 12



diseases. Overall, 1209 seed genes were retrieved and

most of these genes were common to one or more dis-

eases. Further, 261 human aging genes were included to

this study to identify the association of aging to the ana-

lyzed diseases. This aging gene set was downloaded

from GenAge database [26].

Enriched protein network

The Search Tool for Retrieval of Interacting Genes/Pro-

tein (STRING) database [27] was used to collect protein

interaction data to construct disease-protein network

(DPN) from 1209 seed genes. The STRING database

contains experimental and predicted protein interaction

data of 630 organisms of both eukaryotes and prokar-

yotes. This study includes both experimental and pre-

dicted interaction of human proteins for the generation

of disease-protein network, considering the successful-

ness of predicted interactions in several disease interac-

tion studies [5,28]. To build disease-protein network, we

pulled out proteins that are interacting to seed genes/

proteins, with confidence scores ranging from 0.5 to

1.0. Such expanded set of initial seed proteins were

denoted as enriched protein set and the interaction of

seed and enriched set of each disease is known as pro-

tein sub-network (PSN). The aging genes set were

included to the network without enrichment to make a

strong correlation with neurological and psychiatric dis-

eases. All genes were mapped to the official gene sym-

bol using HUGO Gene Nomenclature Committee

(HGNC) [29] to avoid false interaction to same genes/

proteins and the data curation was carried out using

Microsoft Excel and Microsoft Access. From these non-

redundant interaction data, disease-protein network

(DPN), disease-disease network (DDN), common path-

way network (CPN) and disease-biomarker network

(DBN) were created and visualized using Cytoscape ver-

sion 2.7.0 and NAViGaTOR version 2.1software. In

DPN, node represents disease proteins. The proteins of

two diseases were connected if same proteins are asso-

ciated with both diseases. In DDN, node represents dis-

ease, two diseases are connected to one another if they

share at least one protein common to both the disease.

Further, CPN was created from the commonly asso-

ciated genes/protein between the disease pair and DBN

was created by pulling out the disease specific seed pro-

teins from DPN.

Statistical significance of network

To validate the DPN, we adopted a similar method

developed by Chen et al [28]. The index of aggregation

was calculated for each PSN and their significance was

evaluated by random re-sampling method. The largest

connected protein in each PSN was selected and the

index of aggregation for each PSN was calculated.

Index of aggregation

Largest connected

protein in protei
(%) =

nn sub-network

Total number of

proteins in its protein sub-neetwork

In order to determine significance of DPN, the follow-

ing random sampling method was executed,

1. Randomly select same number of seed proteins as

in each PSN from Brain Gene Expression Map data-

base [30].

2. Pull out the enriched set for the randomly

selected seed proteins from STRING database.

3. Compute an index of aggregation.

4. Repeat the above steps for 1000 times to generate

index of aggregation.

5. Compare the index of aggregation of protein-sub

network with the distribution of previous steps, to

calculate p-value.

6. Similarly, repeat the above steps for remaining

PSN.

7. Finally, compute the geometric mean to the

obtained p-values of 124 PSN.

Disease-disease interaction score

The interaction score was assigned for each disease pair

(Fdij). The score indicates the strength of the interaction

between the diseases based on the protein interaction.

Φdij ij i jlog (P Z) log (P P )= + +* *N Z−

Here, Pi and Pj are the total number of proteins for the

disease, i and j, respectively. Pij is the total number of

common protein between the two diseases. N is the size

of entire proteins involved in the disease protein network.

Z is a constant (Z = 1) introduced to avoid out-of bound

errors, if Pi = Pj = Pij = 0. The expected result of Fdij is

positive, when the disease pair is over-represented and

negative, when the disease pair is under-represented.

MeSH based disease interaction mapping

Medical Subject Headings (MeSH) is the National Library

of Medicine’s controlled vocabulary thesaurus. It consists

of sets of terms naming descriptors in a hierarchical

structure that permits searching at various levels of speci-

ficity. We downloaded the disease tree file from MeSH,

which contains 16 categories, including disease, chemi-

cals and drug category, etc. The neurological disease

category (C10) was classified into 15 major clusters and
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psychiatric disorder (F03) was classified into 16 major

clusters. Each positively scored disease pair (Fdij) was

mapped to the neurological and psychiatric disease cate-

gory to determine the reliability of disease connectivity.

For instance, if each disease pair presents in single major

cluster suggest having strong connectivity.

Common Pathway network

In order to understand the common molecular mechanism

between diseases, the proteins/genes that associated

between each disease pair of disease-disease interaction

were mapped to the NCI-Nature Pathway Interaction

Database (PID) [15]. PID is a manually curated human

pathway database contains 116 human pathways with 6180

interactions. PID provides the p-value based on the prob-

ability of occurrence of the proteins in the defined pathway.

Lower the p-value the greater the probability of proteins

associated towards a given pathway. Hence, we filtered the

common pathway between the diseases by p-value 0.05.

Biomarker’s identification

The analysis of DPN was carried out to determine the

biomarkers for each disease involved in this study. Bio-

markers were identified by finding the disease specific

seed proteins from the DPN network. This process was

carried out by comparing the each seed protein of one

PSN with the other PSN. If the seed protein was unique

to its PSN, then the identified seed protein was consid-

ered as a biomarker (pi) to its disease.

Significant enrichment biomarkers score

The functional enriched biomarkers score for each dis-

ease was computed based on the gene ontology. The

scores were calculated using Biological Network Gene

Ontology (BiNGO) plug-in in Cytoscape software.

BiNGO provides p-value statistics based on the prob-

ability of occurrence of the genes/proteins in the defined

ontological categories [31]. Here, the p-values for each

disease biomarkers were calculated on the entire ontolo-

gical categories such as molecular function, biological

processes and cellular localization. Further, the geo-

metric mean of p-values of each disease was calculated

and the negative logarithm was performed. The biomar-

kers relationship to its disease was significant, if the

score obtained to be greater than a threshold of 1.3 [32].

Biomarker scoring for diagnosis from biofluid

The identified biomarkers were scored based on the fea-

sibility of diagnosis. The biomarker score (Ψpi score) for

each protein (pi) was calculated by assigning the score

Figure 7 MeSH based disease classification of 124 diseases. The manually collected 124 diseases represented in white blocks were grouped

based on the MeSH disease category (blue block) of neurological and psychiatric diseases (yellow block). Most of the diseases were linked to

one or more MeSH disease categories. The overall linkage between the diseases was represented by solid lines.
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for each parameter such as house keeping genes (μi),

urine protein (ai), plasma protein (bi) and CSF protein

(gi) in a given scoring formula.

Ψ pi score i 3 i i= + + +µ α β γ( )i

The proteomic data of urine was obtained from [33]

and plasma proteome data was obtained from the

Human proteome organization database [34]. The CSF

proteome and house keeping genes data were obtained

from the literature of previous studies [35,36]. In scoring

formula (Ψpi score), μi: scored 1.0, if the protein (pi) is

encoded by house keeping gene, else it is scored 0.5; ai

= 0.3, if the protein (pi) circulating in CSF; bi = 0.5, if

protein (pi) circulating in plasma; gi = 0.7, if the protein

(pi) circulating in urine. The absence of protein (pi) in

any biofluid indicated as, ai (or) bi (or) gi = 0.

Cross validation of network

In order to validate our computational approach, the

results obtained from this study were compared with

the results of previous studies. The disease-disease inter-

action was cross-validated with Goni et al and Goh et al

approaches [19,4]. Furthermore, the identified biomar-

kers were validated using Genome Wide Association

studies (GWAS) database [23] to calculate the precision

rate.

Precision rate PPV
TP

TP FP
( )% =

+

TP: Number of True Positive

FP: Number of False Positive

GWAS contains disease associated gene/protein infor-

mation in terms of gene expression, proteomic expres-

sion and mutation data. Cross validation of identified

biomarkers with GWAS database will be valuable, to

utilize the measurable threshold of our biomarkers for

diagnosis.

Additional material

Additional file 1: MeSH based disease categorization. Classification of

manually collected 124 diseases based on the MeSH terms. This file is in

PSI-MI level 2.5 format and can be viewed by Cytoscape software.

Additional file 2: Curated disease protein network (DPN). Disease

protein network of 3632 proteins with 6172 interactions. This file is in

PSI-MI level 2.5 format and can be viewed by Cytoscape software.

Additional file 3: Extracted disease-disease network (DDN) using

scoring algorithm. List of positively scored disease-disease interactions.

This file is in PSI-MI level 2.5 format and can be viewed by Cytoscape

software.

Additional file 4: Disease and aging interaction. Positively scored

interaction between of disease and aging. This file is in PSI-MI level 2.5

format and can be viewed by Cytoscape software.

Additional file 5: MeSH validated disease interaction pairs. List of

MeSH validated disease interactions. This file is in PSI-MI level 2.5 format

and can be viewed by Cytoscape software.

Additional file 6: Common pathway network. Common pathway

associated disease pairs. This file is in PSI-MI level 2.5 format and can be

viewed by Cytoscape software.

Additional file 7: Gene/protein sets uniquely representing specific

disease as biomarkers. Disease specific biomarker proteins. This file is in

PSI-MI level 2.5 format and can be viewed by Cytoscape software.
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