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Abstract

Introduction—We sought to determine whether a systems biology approach may identify novel 

late-onset Alzheimer’s disease (LOAD) loci.

Methods—We performed gene-wide association analyses and integrated results with human 

protein-protein interaction data using network analyses. We performed functional validation on 

novel genes using a transgenic Caenorhabditis elegans Aβ proteotoxicity model and evaluated 

novel genes using brain expression data from people with LOAD and other neurodegenerative 

conditions.

Results—We identified 13 novel candidate LOAD genes outside chromosome 19. Of those, RNA 

interference knockdowns of the C. elegans orthologs of UBC, NDUFS3, EGR1, and ATP5H were 
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associated with Aβ toxicity, and NDUFS3, SLC25A11, ATP5H, and APP were differentially 

expressed in the temporal cortex.

Discussion—Network analyses identified novel LOAD candidate genes. We demonstrated a 

functional role for four of these in a C. elegans model and found enrichment of differentially 

expressed genes in the temporal cortex.

Keywords

Alzheimer’s disease; SNP; Protein-protein interaction; C. elegans; Brain expression; Network 
analysis; Systems biology

1. Introduction

Most late-onset Alzheimer’s disease (LOAD) genetic research has pursued one variant at a 

time approaches such as genome-wide association studies (GWASs). Lambert et al. [1] 

published the largest LOAD GWAS to date and identified about two dozen loci associated 

with LOAD.

Although GWAS is an important first step, additional approaches will also likely contribute 

to understanding the genetic determinants of LOAD. A three-component approach [2]—

GWAS, gene, and network/pathway-based analyses—has been recommended to more fully 

characterize genetic architecture of complex diseases.

Previously, network analyses using gene expression data from 1647 postmortem brain 

tissues from LOAD patients and nondemented individuals have found an immune and 

microglia-specific module [3]. Immune response, regulation of endocytosis, cholesterol 

transport, and protein ubiquitination pathways were significant [4].

The strategy to integrate human protein-protein interaction (PPI) data with gene-wide 

association results strategy implemented here refines the gene-based approach by 

incorporating additional biological knowledge. This approach capitalizes on the idea that 

protein-encoding genes known to interact with multiple other proteins tend to be associated 

with more extensive regulation and are more likely to cause complex pathologic processes 

than genes with fewer interactions [5,6].

In this article, we use a dense module search (DMS) approach using human PPI data to 

prioritize gene-based analyses of GWAS results. We evaluate the plausibility of the resulting 

network module using experiments with transgenic Caenorhabditis elegans models of β-

amyloid (Aβ) aging-related proteotoxicity and brain expression data.

2. Methods

We present a flowchart of the analytic steps in Supplementary Fig. 1.

2.1. Stage 1 data: GWAS results

The LOAD GWAS data set was reported by the International Genomics of Alzheimer’s 

Project (IGAP) Consortium [1]. These data were derived from 17,008 people with LOAD 
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and 37,154 cognitively normal elderly control subjects. IGAP includes data from the 

Alzheimer’s Disease Genetics Consortium, the Genetic and Environmental Risk in 

Alzheimer’s Disease Consortium, the European Alzheimer’s Disease Initiative, and the 

Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (see [1] for 

more details). Full details are provided in Supplementary Section 1.

The IGAP analysis included single-nucleotide polymorphisms (SNPs) with minor allele 

frequencies ≥0.01 and the imputation quality score ≥0.3 in each study, resulting in 7,055,881 

SNPs. The SNPs allelic association result file is available from http://www.pasteur-

lille.fr/en/recherche/u744/igap/igap_download.php.

2.2. Gene-wide analysis

We used the Versatile Gene-Based Test for Genome-wide Association Study [7] (VEGAS) 

routine in Fast Association Tests [8] for gene-wide analysis. See Supplementary Section 3 

for further details on VEGAS. We used all SNPs within ±50 kb of the untranslated regions 

(UTRs) for each gene. We used NCBI Build 37 to assign SNPs to 34,211 genes and 

pseudogenes (hereinafter “genes”). We retained 6,753,292 of the 7,055,811 SNPs that 

passed QC (95.7%). These SNPs were mapped to 33,086 genes with 1–15,373 SNPs per 

gene.

We repeated gene-wide association analyses using a more stringent ±0 kb of the UTRs as a 

sensitivity analysis, resulting in 28,370 genes.

2.3. DMS-based analyses

We mined human interactome PPI data (190,526 unique interactions for 15,260 genes based 

on biological evidence) using the R package iRefR [9]. The iRefR provides an index of 

protein interactions available in primary interaction databases: BIND, BioGRID, CORUM, 

DIP, HPRD, InnateDB, IntAct, MatrixDB, MINT, MPact, MPIDB, MPPI, and OPHID (all 

acronyms, citations and URLs are in Supplementary Section 2). There were 13,550 genes in 

common between the gene-wide analysis and the PPI databases. Not all genes code for 

proteins and of those that do, not all have interactions with proteins of other genes. Many 

genes do not have any IGAP SNPs that map within the ±50 kb boundary.

We integrated gene-wide results with the PPI data using dense module GWAS (dmGWAS) 

[10] to identify candidate genes and subnetworks. dmGWAS, a DMS method, identifies 

networks of interacting genes enriched with low P values by searching the entire interactome 

and exhaustively examining the combined effect of multiple genes. See Supplementary 

Section 4 for details of the DMS method used by dmGWAS.

We used Cytoscape [11] to visualize the top module as an undirected graph using the 

“betweenness centrality” measure, defined as the length of shortest paths from all nodes to 

all other nodes. We report the betweenness centrality measure and the degree of each gene/

node in Table 1. The degree of a node/gene represents the number of edges (connecting two 

nodes/genes) linked to that node/gene.
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As a sensitivity analysis, we performed the DMS analysis omitting the gene with the highest 

degree and betweenness centrality measure.

2.4. Evaluation of novel candidate LOAD genes with a transgenic C. elegans model

We assessed the roles of novel candidate genes in the top module outside chromosome 19 

that had nematode orthologs. We used transgenic C. elegans models in which either the 

Aβ3–42 (CL2006) or the Aβ1–42 (GMC101) (both referred to subsequently as “Aβ”) peptide 

was expressed in body wall muscle cells under the control of the unc-54 promoter [13,14]. 

Culture of transgenic C. elegans, RNA interference (RNAi) knockdown, and assessment of 

age-associated paralysis were performed as previously described [14,15]. Worms were 

scored as paralyzed if they were unable to make forward progress on the surface of the 

nematode growth medium in response to plate tapping or tail prodding. All RNAi clones 

were verified by sequencing. RNAi was initiated from the fourth larval stage (L4). We 

assessed functional roles of novel genes using corresponding nematode orthologs and 

determined the effect of RNAi knockdown on toxicity caused by transgenic expression of 

the Aβ peptide. Statistical significance (α = 0.01) was determined using a Wilcoxon rank 

sum test.

2.5. Evaluation of novel candidate LOAD genes with human brain gene expression data

We also evaluated novel candidate genes in the top module outside chromosome 19 using 

brain gene expression data [16]. Gene expression data were available from the temporal 

cortex of 399 individuals and cerebellum of 374 individuals [17]. Complete methods are 

described in [16]. Briefly, RNA was isolated and its quantity and quality were determined 

[18]. Transcript levels were measured using Illumina whole-genome cDNA-mediated 

annealing, selection, and ligation (DASL) assays. Normalized differential expression levels 

were assessed for LOAD versus all non-LOAD individuals and versus those with 

progressive supranuclear palsy (PSP).

We used linear regression models with LOAD versus non-LOAD or versus PSP as the 

predictor and expression levels as endophenotypes, adjusting for the number of APOE ε4 

alleles, age at death, sex, plate, RNA integrity number, and adjusted RNA integrity number 

squared. Further details are provided in Supplementary Section 5. Results are reported as 

false-discovery rate q values [19] following correction for the number of genes (and probes) 

evaluated.

3. Results

3.1. Variants identified by VEGAS and DMS approaches

VEGAS gene-wide results were similar to previously published GWAS results [1] 

(Supplementary Table 1). In addition to LOAD genes identified by prior GWAS and two 

additional genes identified in a previous analysis of IGAP data [20], VEGAS analyses 

identified novel signals for three genes and four pseudogenes, all P value <1.0 × 10−6 except 

as indicated: the genes HBEGF (chromosome 5; P value = 2.0 × 10−6), SLC4A9 
(chromosome 5), and HLA-DRA (chromosome 6), and the pseudogenes CDCA4P3 
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(chromosome 1), GULOP (chromosome 6), YWHAZP9 (chromosome 11), and SLC25A1P1 
(chromosome 11) (see Supplementary Table 1).

P values for most genes in our sensitivity analysis (±0 kb of the UTR map) were similar (see 

Supplementary Table 1) compared with the ±50 kb of the UTR mapping scheme.

The top DMS module contained 33 unique genes with 53 interactions (see Fig. 1). Many of 

these genes were on chromosome 19 and may represent linkage disequilibrium with APOE. 

Seventeen were not on chromosome 19, of which four were previously identified to be 

associated with LOAD risk (BIN1, HLA-DRB1, MS4A2, and PICALM) and 13 have not 

been previously identified in the GWAS [1] or prior gene-based analyses [20] of LOAD: 

ALB, EGR1, HLA-DRA, CHRNA2, MYC, NDUFS3, UBC, SLC25A11, C1QBP, KRT14, 
ICT1, ATP5H, and APP (see Table 1). Network analysis graphs for the top three and top five 

modules are shown in Supplementary Figs. 2 and 3. The top three and five modules included 

49 and 74 unique genes.

Results from our ±0 kb sensitivity analyses are presented in Supplementary Table 2.

UBC, APP, and ALB had the highest betweenness centrality (0.728, 0.175, and 0.129) and 

degree (23, 9, and 6) values. UBC had much higher values than any other gene, so we were 

concerned that it could be driving our results. Sensitivity analyses excluding UBC resulted 

in a top module with 47 unique genes and 71 interactions anchored by APP and MYC (see 

Supplementary Fig. 4). Twenty-six of the 33 genes in the top module from our primary 

analyses were also present in the UBC-free sensitivity analyses. The six genes whose status 

depended on UBC were ATP5H, EGR1, KRT14, CHRNA2, C1QBP, and FOXA3.

3.2. C. elegans results

We identified C. elegans orthologs for four of the 13 novel genes in the top module: UBC, 
ATP5H, EGR1, and NDUFS3. In addition, we identified orthologs of two well-known 

LOAD loci: BIN1 and PICALM.

RNAi knockdown of C. elegans UBC orthologs (ubq-1 and ubq-2 are targeted by a single 

RNAi clone) significantly accelerated age-associated onset of Aβ3–42 toxicity (see Fig. 2A; 

P < .01). RNAi knockdown of NDUFS3 (nuo-2) and ATP5H (atp-5) C. elegans orthologs 

significantly delayed paralysis because of Aβ3–42 toxicity (see Fig. 2B and C; both P values 

<.01). RNAi knockdowns of EGR1 (egrh-1), BIN1 (amph-11), and PICALM (unc-11) C. 
elegans orthologs significantly delayed paralysis because of Aβ1–42 toxicity (see Fig. 2E; all 

P values <.001). None of the RNAi conditions induced paralysis in the control worms 

(CL2122) for the aforementioned six genes (see Fig. 2D and F).

3.3. Brain expression results

Data were available for probes that targeted 11 of the 13 novel genes outside chromosome 

19; CHRNA2 and KRT14 had low expression levels. The 11 genes were targeted by 15 

probes. Four (NDUFS3, SLC25A11, ATP5H, and APP) of the 11 genes (36%) had 

differentially expressed probes (q < 0.05) in the temporal cortex. This figure is enriched 

compared with all expressed probes in the same experiment: 1933 of 13,592 (14%) probes 
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had differential expression. Two additional genes (UBC and C1Q8P) had differential 

expression in cerebellum (Table 2).

We also compared gene expression for people with LOAD to the group with PSP; six of the 

11 genes (55%) had differential expression in the cortex (q < 0.05), including the four genes 

with differential cortical expression and the two genes with differential cerebellar expression 

in comparison with all non-AD neurodegeneration (Table 2).

SLC25A11 expression levels were the most different (Table 2). Cortical expression levels 

were lower in people with LOAD than for people with other neurodegenerative conditions 

for all differentially expressed genes except APP.

4. Discussion

We identified three novel genes using gene-wide analyses. The novel locus HBEGF 
(chromosome 5: heparin-binding epidermal growth factor-like growth factor) is recognized 

as an important component for the modulation of cell activity. Found widely distributed in 

cerebral neurons and neuroglia, HBEGF induced by brain hypoxia and/or ischemia 

subsequently stimulates neurogenesis [21]. The protein encoded by SLC4A9 (chromosome 

5; solute carrier family 4, sodium bicarbonate cotransporter, member 9), a neighbor of 

HBEGF, is a membrane protein involved in anion exchange expressed primarily in kidney 

[22]. HLA-DRA major histocompatibility complex, class II, DR alpha (chromosome 6) is an 

HLA class II alpha chain paralogue. HLA associations have been previously reported in 

Alzheimer’s disease [1], Parkinson’s disease [23,24], and multiple sclerosis [25,26]. In a 

recent article, the HLA locus provided support to the notion of a link between 

frontotemporal dementia and the immune system. Analyses of DNA methylation data 

suggested risk at that locus was associated with cis-changes in methylation levels of HLA-
DRA in frontal cortex [27].

The DMS analysis identified genes previously associated with LOAD and genes not 

previously associated with LOAD. Five genes—UBC, APP, EGR1, ALB, and ATP5H—

were highly relevant in the top module as indicated by high betweenness centrality measure 

values. Four genes that had not previously been associated with LOAD had nematode 

orthologs, and we completed experiments on four of these. We were able to validate the 

associations of UBC, ATP5H, EGR1, and NDUFS3 using a C. elegans model of age-related 

Aβ toxicity. A high proportion of genes not previously associated with LOAD had 

differential expression in the temporal cortex from people with LOAD compared with 

people with non-LOAD neurodegeneration because of PSP.

UBC codes for ubiquitin C, a polyubiquitin precursor. Ubiquitinization is an important 

process that promotes synaptic integrity [28], thought to be of critical importance in LOAD 

pathobiology, and a feature of the characteristic neuropathologic features of LOAD. The 

UBC finding here is specific to UBC and not to other ubiquitin pathway genes. The C. 
elegans model for Aβ3–42 toxicity was sensitive to UBC knockdown with RNAi, such that 

knockdown of UBC orthologs significantly accelerated the age-associated onset of Aβ3–42 

toxicity. UBC expression levels in the temporal cortex were lower in individuals with LOAD 
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than people with non-LOAD neurodegeneration. Taken together, these data strongly suggest 

that UBC may be an important locus in the genetic architecture of LOAD, where reduced 

levels of UBC may lead to LOAD risk via a mechanism that enhances Aβ toxicity in 

vulnerable brain regions.

Although UBC has many interactions with other genes in the top module, it did not appear 

to be necessary for our results, as the top module excluding UBC in our sensitivity analyses 

had broad similarity to the top module including UBC.

APP (chromosome 21: amyloid precursor protein) is another gene that appears to be 

important from these analyses. Its primary function is not known. It has been implicated as a 

regulator of synapse formation [29], neural plasticity [30], and iron export [31]. Although 

APP was the first gene identified for early onset familial AD, only recently has a 

relationship between APP and LOAD been reported [32,33]. These results are in contrast to 

other studies that have not found associations between LOAD and common [34] or rare [35] 

APP SNPs. One rare variant in APP was found to be protective for LOAD in Iceland [36]; 

this variant is rare in North Americans [37] and does not explain our findings, which are 

derived from variants with minor allele frequency >1%. Our finding that APP has central 

importance in the DMS-based top module reinforces the relevance of Aβ biology in LOAD 

pathogenesis.

EGR1 (early growth response protein 1; chromosome 5) has a distinct pattern of expression 

in brain, and its induction is associated with neuronal activity. EGR1 regulates 

phosphorylation of microtubule-associated protein tau in mammalian brain [38], and EGR1-

controlled regulatory networks are associated with neurodegeneration [39].

ALB (albumin: chromosome 4) is a soluble, monomeric protein which comprises about half 

of the blood serum protein. Albutein, a therapeutic albumin, was found to inhibit Aβ self-

association by selectively binding Aβ aggregates and by preventing further growth of Aβ 
assemblies [40]. The Alzheimer’s Disease Management by Albumin Replacement project 

found that therapeutic albumin was associated with mobilization of Aβ and cognitive 

improvement in treated patients [41].

ATP5H (chromosome 17) encodes subunit d of the enzyme mitochondrial ATP synthase 

[42,43]. In a recent article [44], a variant in the ATP5H-KCTD2 locus was found to be 

associated with LOAD risk. Another mitochondrial gene, NDUFS3, which encodes complex 

I, mitochondrial respiratory chain, 30-kD subunit, also emerges from this systems-based 

approach. Knockdown of orthologs of both genes in C. elegans delayed paralysis because of 

Aβ3–42 toxicity. Both genes had lower expression in the temporal cortex of people with 

LOAD compared with people with other neurodegenerative conditions and were 

significantly positively correlated with one another and with UBC.

For a complex disease such as LOAD, there may be a few rare variants with large effect size, 

and also multiple common variants, each with a more modest risk [45]. Our results suggest 

that genetic signals with modest association P values when considered independently (e.g., 

UBC, APP, EGR1, and ALB) could converge in interactome modules. These genes have 

weak independent association signals but are highlighted in the PPI analyses because of their 
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extensive biological interactions with multiple additional genes that also had weak 

independent associations with LOAD risk when considered in isolation (one variant at a 

time). The PPI approach enables identification of an entire module of genes characterized by 

good evidence for relationships with each other and high representation of associations with 

the LOAD phenotype.

The gene-wide findings were mostly consistent with previous genetic analysis of LOAD 

with the same data [1,20]. The difference in our gene-wide results compared with the 

previously published results [20] can be attributed to the different mapping schemes used to 

link SNPs to genes. Using haplotype files for the 1000G reference build and a ±50 kb gene 

boundary, we were able to use 96% of the SNPs from the IGAP data, which resulted in more 

genes included in our analyses. Also, we used a different genewide analysis technique 

compared with that of Escott-Price et al. [20].

Our findings were different from those of network analyses using gene expression data, 

which identified an immune and microglia-specific module [3] and another study which also 

identified immune response, regulation of endocytosis, cholesterol transport, and protein 

ubiquitination pathways [4]. Those studies began with gene expression data, whereas our 

analyses began with SNP data. Those studies used curated pathways, whereas ours used a 

PPI approach. Those studies did not have functional validation, whereas we used a C. 
elegans Aβ proteotoxicity approach that richly confirmed the relevance of novel genes in our 

top module to Aβ biology in living animals.

Unlike some pathway approaches, the DMS approach does not require a priori curation of 

pathways. Instead, this method incorporates PPI data mined from publicly available 

databases to prioritize the genome-wide genetic data. Our results identified a top module that 

had biological plausibility, a high proportion of differentially expressed genes in the 

temporal cortex of people with LOAD compared with people with non-LOAD 

neurodegenerative conditions, and for four genes not previously associated with LOAD that 

had nematode orthologs, had functional outcomes in an aging-related nematode Aβ 
proteotoxicity models.

There are some limitations to our analyses that should be considered. As in any gene-wide 

analysis, although many SNPs are in genes or very close to genes and fall within our ±50 kb 

boundaries, some SNPs are outside those boundaries; some SNPs within those boundaries 

may be associated with the expression of a distal rather than the most proximal gene. PPIs 

may be tissue dependent. PPI databases document interactions between proteins that 

scientists have chosen to study and publish for more than the past 100 years. Almost 

certainly, additionally important interactions remain to be identified. Additional 

pharmacogenomics data may help disentangling the pathophysiologic implications of these 

genes.

Definitive nematode orthologs do not exist for most of the genes in the top module. We were 

thus unable to examine all interesting candidates in the nematode model. The C. elegans 
models of Aβ toxicity fail to recapitulate many of the important features of LOAD. Also, 

ubq-1 and ubq-2 shorten lifespan significantly, and there is a possibility that this knockdown 
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creates a synthetic sick phenotype that accelerates paralysis in the context of Aβ3–42 

expression. Nevertheless, this model is useful for understanding genetic modifiers of cellular 

proteotoxic stress in a metazoan. Knockdown of ubq-1 and ubq-2 dramatically shortens 

lifespan, whereas knockdown of nuo-2, egrh-1, and atp-5 all extend lifespan. None of these 

effects are because of differences in development, as the data are shown as age in days of 

adulthood. It is not necessarily surprising that the loss of function in different network 

components could have opposing effects on protein homeostasis and Aβ toxicity in C. 
elegans. Functional validation in C. elegans is a way to demonstrate a role for these 

conserved factors in mediating Aβ toxicity, either through enhancing sensitivity or 

resistance. Positive C. elegans results (either reduced or enhanced resistance to Aβ toxicity) 

strongly suggest that the knocked out gene may be a conserved modifier of protein 

homeostasis. These findings should guide future mechanistic studies in C. elegans and 

mammalian systems.

It is of potential interest that knockdown of atp-5 and nuo-2 conferred protection against β-

amyloid in C. elegans, whereas ATP5H and NDUFS3 expressions were reduced in the 

LOAD brains. One potential explanation for this could be that reduced expression of these, 

and perhaps other, electron transport chain components may be a protective response to 

accumulation of Aβ in the brain. Future studies in C. elegans may shed light on the 

mechanisms by which knockdown of these mitochondrial proteins enhances resistance to Aβ 
and whether a similar decrease in the expression of these genes is associated with transgenic 

expression of Aβ in C. elegans.

The brain expression data we analyzed here were derived from people with pathologically 

confirmed LOAD and people with other non-LOAD related neurodegenerative conditions. 

Identifying differences in gene expression between these groups can indicate genes that may 

play a role in LOAD pathogenesis. However, these data do not inform us as to whether there 

may be differences in the expression for these genes between individuals with LOAD and 

those without any neurodegenerative conditions [16]. Except for ALB expression, we did not 

find any differences between cerebellar expression levels of people with LOAD and people 

with other causes of neurodegeneration for the genes we identified in our top module. 

Because temporal cortex is a region that is significantly affected with LOAD 

neuropathology, changes in gene expression detected within the temporal cortex and not in 

cerebellum may be a consequence rather than a cause of the pathology. We tried to control 

for cellular loss (i.e., neurons) or increase (i.e., glia) in LOAD temporal cortex by including 

cell-specific probes in our analyses of gene expression, but this approach may not be 

sufficient to account for all neuropathology-driven expression differences. Although it is not 

possible to discern whether gene expression differences are a cause or consequence of 

neuropathology using expression profiling, this approach can nevertheless identify genes 

that are key in disease pathophysiology (e.g., APP) and also provide important, additional 

evidence for genes implicated in a disease by other approaches (i.e., gene-based association, 

interactome, and so forth). We note that our microarray-based measurements of expression 

levels from tissue cannot discern expression changes obtained at the single cell or cell-

component level. Additional studies, such as [46], are needed to determine, for example, 

whether these expression differences are driven by specific cell types within the same tissue, 
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or within neurons whether these differences are driven by cell body versus dendritic versus 

synaptic domains, which have been shown to exist for some of the proteins reported here.

In summary, we used a DMS approach to identify modules of genes associated with LOAD. 

We confirmed some prior findings that used complementary analytic strategies. We also 

identified some loci not previously associated with LOAD. We used C. elegans models to 

confirm Aβ-related proteotoxicity associated with four of these novel loci and found 

enrichment for differentially expressed genes in the temporal cortex from people with 

LOAD compared with people with non-LOAD neurodegeneration. Subsequent analyses may 

identify therapeutic targets associated with these loci.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

1. Systematic review: We searched for “protein-protein interaction [1]” (PPI), 

“SNP” and “Alzheimer’s disease” (AD) in PubMED and identified an article 

on July 28, 2016 where the authors used a gene-gene core-regulation network 

based on cis-expression quantitative trait loci (eQTL) SNPs and a single PPI 

database. This study represents the most comprehensive PPI-based network 

analyses for AD integrating all SNPs from the biggest genome-wide 

association study of AD [2] and PPI mined from 11 databases.

2. Interpretation: The study demonstrates use of a novel approach to prioritize 

genetic association results by integrating prior biological knowledge. RNA 

interference knockdowns of the Caenorhabditis elegans orthologs of UBC, 
NDUFS3, EGR1, and ATP5H were significantly associated with Aβ toxicity, 

and NDUFS3, SLC25A11, ATP5H, and APP were differentially expressed in 

the temporal cortex.

3. Future directions: Genes that may not be identified in standard genome-wide 

association study analyses may play an important role in the pathophysiology 

of late-onset AD.
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Fig. 1. 
Protein-protein interaction (PPI) subnetwork visualization for the top dense module 

searching (DMS)-identified module. In DMS, PPI data are used to identify groups of genes 

(“modules”) whose products interact with each other. These groups of genes are compared 

on the basis of having a higher proportion with statistically significant associations with a 

phenotype, which in this case is late-onset Alzheimer’s disease. The darkness of the nodes 

and the thickness of the vertices of the nodes both reflect the “betweenness centrality” 

measure, which is defined as the number of shortest paths from all vertices/interactions to all 

others that pass through that node/gene. The “degree” of each gene is represented by the 

number of vertices connecting it with other genes. This figure suggests that UBC is highly 

relevant in this network, and that it may act as an important organizing regulatory molecule 

in this biological network. Genes in chromosome 19 are highlighted in yellow. The color 

version of this figure is available in the online edition.
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Fig. 2. 
Graphs of the proportion of Aβ-expressing transgenic Caenorhabditis elegans strains 

CL2006 and GMC101 exhibiting changes in age-related paralysis with RNAi knockdown 

experiments. RNAi knockdowns of ubq-1 (A) exacerbate paralysis, whereas RNAi 

knockdowns of atp-5 and nuo-2 (B, C) reduce paralysis in Aβ3–42-expressing C. elegans 
strain CL2006. Wild type (WT) control strain CL2122 (D) does not become paralyzed from 

RNAi knockdowns of genes evaluated in A to C. RNAi knockdowns of ergh-1, amph-1, and 

unc-11 reduce paralysis (E) in Aβ1–42-expressing C. elegans strain GMC101. RNAi 

knockdowns of genes evaluated in E do not result in paralysis (F) of WT control strain 

CL2122. RNAi or empty vector (EV) was initiated at the fourth larval stage (L4) just before 

adulthood. The data plotted in these graphs indicate the proportion of worms found to be 

paralyzed at each time point.
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