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Systems biology approach to 

studying proliferation-dependent 

prognostic subnetworks in breast 

cancer
Qianqian Song1,2, Hongyan Wang1, Jiguang Bao2, Ashok K. Pullikuth3, King C. Li1, 

Lance D. Miller3 & Xiaobo Zhou1,3

Tumor proliferative capacity is a major biological correlate of breast tumor metastatic potential. In 

this paper, we developed a systems approach to investigate associations among gene expression 

patterns, representative protein-protein interactions, and the potential for clinical metastases, to 

uncover novel survival-related subnetwork signatures as a function of tumor proliferative potential. 

Based on the statistical associations between gene expression patterns and patient outcomes, we 

identified three groups of survival prognostic subnetwork signatures (SPNs) corresponding to three 
proliferation levels. We discovered 8 SPNs in the high proliferation group, 8 SPNs in the intermediate 
proliferation group, and 6 SPNs in the low proliferation group. We observed little overlap of SPNs 
between the three proliferation groups. The enrichment analysis revealed that most SPNs were 
enriched in distinct signaling pathways and biological processes. The SPNs were validated on other 
cohorts of patients, and delivered high accuracy in the classification of metastatic vs non-metastatic 
breast tumors. Our findings indicate that certain biological networks underlying breast cancer 
metastasis differ in a proliferation-dependent manner. These networks, in combination, may form 
the basis of highly accurate prognostic classification models and may have clinical utility in guiding 
therapeutic options for patients.

Breast cancer was the most commonly diagnosed type of cancer among women in the United States in 
2012, accounting for 29% of all new cancer cases in women1. It is estimated that in 2015 in the U.S. alone, 
231,840 new women patients will be diagnosed with breast cancer and an estimated 40,290 deaths may 
result from morbidity associated with this malignacy2. Breast cancer, like other solid tumor types, can 
metastasize to distant organ sites following surgical and systemic treatment3 that is the leading cause of 
patient mortality. Treatment options including surgery, adjuvant chemotherapy and molecularly targeted 
therapies may delay or prevent metastasis for some patients, but not others. Breast cancer is character-
ized by vast heterogeneity at the pathological, clinical and intrinsic molecular levels that may in�uence 
treatment options and patient outcomes. �ese heterogeneities underscore the need for a better under-
standing of the pathobiological mechanisms associated with breast tumor progression and recurrence 
that could lead to novel treatment strategies.

Many studies have reported gene-based markers as biological signatures to predict patient outcomes. 
Wang et al.4 studied tumor gene expression pro�les using average linkage hierarchical clustering. �ey 
used two supervised class prediction approaches to identify genes that discriminated between patients 
who developed distant metastases from those who remained metastasis-free for 5 years. van’t Veer et al.5 
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applied supervised classi�cation to identify a gene expression signature that predicted rapid breast cancer 
recurrence, and provided a strategy to select patients that would bene�t from adjuvant therapy. In both 
studies, the prognostic genes appeared to represent a number of known signaling pathways related to 
cancer, but the individual contributions of each to tumor metastatic potential was uncertain.

A number of studies have reported on prognostic markers related to cell proliferation and immu-
nity. Sotiriou et al.6 identi�ed 97 genes associated with histologic grade and functionally involved in 
cell proliferation. Wirapati, et al.7 compared the prognostic performances of nine gene signatures; their 
prognostic abilities largely depended on their inclusion of proliferation-associated genes. In contrast, in 
a study by Rody et al.8, seven surrogate markers of tumor-in�ltrating immune cells were identi�ed from 
over 600 genes functionally associated with leukocyte biology. Although some studies have identi�ed 
gene markers as principally biology-driven predictors of breast cancer outcomes, their results were rarely 
consistent9,10. Most published gene markers have had limited or negligible clinical utility to predict indi-
vidual patient outcomes11,12. In response to these issues, methods based on the concept of network mark-
ers were developed to provide more meaningful predictive information than traditional gene-focused 
methods11,13. For example, signaling nodes and axes responsible for interconnecting many di�erentially 
expressed genes are not detected through conventional di�erential expression analysis. Compared with 
individual gene markers without network information, such subnetwork markers achieved higher pre-
dictive accuracies. In the work of Chuang et al. prognostic subnetworks were identi�ed and validated 
as more accurate predictors of the relative risk for disease progression than established gene markers13.

�us, here we propose a method for discovering survival-associated prognostic subnetworks that 
would uncover biological mechanisms in metastatic breast cancer, which are either dependent or inde-
pendent of tumor proliferative capacity. We utilized a previously assembled breast tumor microarray 
meta-cohort of 1,954 tumor expression pro�les annotated for clinical outcomes14. Based on the prev-
alence of proliferation genes in breast tumor expression pro�les14,15, we strati�ed the metacohort for 
tumor proliferative capacity using our previously de�ned proliferation (P) metagene14. We partitioned 
all breast cancer cases into three proliferation subgroups (P-high, P-inter and P-low) based on the P 
metagene score (i.e. the average expression level of the genes comprising the metagene). �en we applied 
an approach integrating the greedy search algorithm with the Cox proportional-hazards model to dis-
cover subnetworks associated with the distant metastasis-free survival time (DMFS) in di�erent prolif-
eration groups.

Results
Subnetwork signatures characteristic of proliferation tertiles. In spite of the various studies 
that have identi�ed gene signatures that can predict and distinguish patient responses according to 
clinical responses and outcomes, a clear consensus among these gene signatures has been elusive. We 
hypothesized that in addition to gene signatures, an underlying biological protein-protein interaction 
information could be uncovered that will bolster the predictive power when used in conjunction with 
gene signatures. To this end, we strati�ed the patient samples into tertiles of Proliferation-high, -inter-
mediate and –low (P-high, P-inter and P-low respectively) according to their proliferative capacity (See 
Methods and Nagalla et al.14).

With the P-high group as an example, we performed a 10-fold cross-validation for 1000 iterations 
to obtain robust assignments of patients (good outcome =  225, poor outcome =  427, Figure S1). �e 
log-rank P-value of such classi�cation of patients was 2.62 ×  10−04, which illustrates the robustness of 
our approach. �rough our approach, the survival prognostic subnetworks (SPNs) were obtained by the 
three tests �ltering the primary subnetworks (PNs, see Methods C).

SPNs stratify patients into different risk sub-groups. P-high group. By applying our approach 
to the P-high tertile of the training set, we identi�ed 8 SPNs, which we call P-high SPNs (Fig. 1). �e 
genes in P-high SPNs are colored in red or green to represent over-expression or under-expression, 
respectively, in patients with shorter DMFS. �e adjusted P-value (P-value of chi-square test for Cox 
model corrected using Bonferroni adjustments) of the SPNs are shown in Supplementary Table S1. In 
the training set (P-high subset, n =  652), patients were classi�ed by the 8 SPNs into two subgroups. 
Kaplan-Meier estimator revealed signi�cant di�erence between the two subgroups of patients (Fig.  2, 
log-rank p value =  1.95 ×  10−13). 214 patients with longer DMFS in one subgroup were classi�ed as 
good-outcome (red color), while the other 438 patients with shorter DMFS in the other subgroup were 
classi�ed as poor-outcome (green color) (Fig. 2A). In the test set (P-high subset, n =  85), patients were 
strati�ed by the 8 SPNs into two subgroups (Fig.  2B). �e di�erence between the two subgroups was 
signi�cant (log-rank p value =  0.00218). 51 patients were class�ed as good outcome and 34 pateints 
were classifed as poor outcome. �e accuracy of strati�cation in test set was 88.24%, indicative of higher 
predictive power of P-high SPNs. We found that the size ratios of the subgroups with di�erent out-
come varied between training and test sets. For the P-high group, the size ratio was 214/438 (good vs 
poor outcome) in training subgroup, whearas it was 51/34 (good vs poor outcome) in test subgroup. By 
comparing the distribution of patients’ DMFS in the two datasets, we observed that they have di�erent 
proportion of longer/shorter DMFS.
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P-intermediate and P-low groups. We identi�ed 8 SPNs and 6 SPNs respectively in P-inter and P-low 
tertile of training set, which are called P-inter SPNs and P-low SPNs. �e P-inter and P-low SPNs are 
shown in Figure S2 and S3. �e genes in P-inter and P-low SPNs colored with red or green represented 
over-expression or under-expression, repectively, in patients with shorter DMFS.

In P-inter tertile (n =  652) of training set, 461 patients were classifed as good-outome, while the 
other 191 patients were classifed as poor-outcome (Fig.  3A). In P-low tertile (n =  652) of training set, 
416 patients were classifed as good-outome, while the other 236 patients were classifed as poor-outcome 
(Fig. 3C).

In the P-inter and P-low tertile of test sets, we utilized P-inter and P-low SPNs for patient strati�cation 
based on clinical outcome. In P-inter tertile (n =  85) of test set, 8 patients were classifed as good-outome, 
while the other 67 patients were classifed as poor-outcome (Fig. 3B). In P-low tertile (n =  85) of test set, 
41 patients were classifed as good-outome, while the other 44 patients were classifed as poor-outcome 
(Fig.  3D). Survival curves (with signi�cant log-rank P-values) of P-inter and P-low tertile of training 
set are shown in Fig  3. �e signi�cant P-value (for P-inter, log-rank p =  0.0201; for P-low, log-rank 
p =  0.0056) in test set showed the strati�cation power of P-inter and P-low SPNs. �e classi�cation 
accuracy is shown in Figure S4. In both training and test set, our SPNs has the potential to deliver high 
accuracy.

Figure 1. SPNs discovered in the P-high group, i.e. P-high SPNs. �ere are 8 SPNs discovered in the 

high proliferation (P-high) group. P-high SPNs contain important genes, like the HSP90AA1, CALM1, 

VEGFA, etc. Genes are color coded (i.e. red/green: genes that are overexpressed/underexpressed in patients 

with shorter DMFS). In the color bar, deep green means that log2(fold change) < 0, ligh green or light red 

represents that 0<  fold change < 1, while deep red means that log2(fold change) > 0. Details can be found 

in Results.
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Taken together, P-high/P-inter/P-low SPNs are robust in patients stati�cation and DMFS prediction. 
�ese results further indicate that our approach can e�ectively and accurately stratify the breast cancer 
patients.

Enrichment analysis of SPNs. Biological Process and KEGG Pathway Enrichment. We examined 
the SPNs for their potential enrichment in biological process (BP) sets (825 in MSigDB database) and 
pathways (186 in MSigDB database). Enrichment of a certain biological process or pathway is indicated 
by yellow, whereas non-enrichment is indicated by blue.

For the P-high SPNs, some biological processes, like the protein folding process, were enriched in 3 
SPNs (i.e. SPN 1, 4 and 8). Nine KEGG pathways were enriched in 3 SPNs (i.e. SPN 3, 6, 7) (Fig. 4A,B). 
Of these pathways, SPN 3 enriched in the ECM receptor interaction pathway and the antigen processing 
and presentation pathway, which are implicated in tumor progression and breast cancer metastasis16,17. 
Interestingly, SPN 6 enriched in prostate cancer pathway and general pathways in cancer. �e cell cycle 
pathway was enriched in SPN 7.

With regard to P-inter SPNs, 14 biological processes including mainly the metabolic, catabolic process 
and ubiquitin cycle process were separately enriched in SPN 2 and SPN 4 (Figure S5. A). While SPN 2, 
5, 6 enriched in the Ubiquitin mediated pathway (Figure S5. B), which has a role in transcription regu-
lation18 and also links to cytoskeletal dynamics, cell adhesion and migration19. Interestingly, some SPNs 
enriched in apoptosis pathway, pathway in cancer, and the colorectal cancer pathway.

With respect to P-low SPNs, 15 biological processes including the negative regulation of cell cycle and 
cell proliferation were respectively enriched in SPN 2 and SPN 5 (Figure S6. A). Five P-low SPNs (i.e. 
SPN 1, 2, 4, 5, 6) enriched in several signaling pathways, including the MAPK, ERBB, chemokine, NK 
cell-, T-cell-, B-cell, transendothelial migration signaling pathways, which may collectively have func-
tions in cell proliferation, metastasis and survival20 and may play roles in the immune system21 function 
as well.

�e pathways that were enriched in P-inter and P-low SPNs were largely distinct. On the one hand, 
several cancer associated pathways were enriched in both P-inter and P-low SPNs, whereas the types of 
cancer di�ered between these two categories. On the other hand, several catabolic processes and protein 
degradation pathways were enriched in P-inter SPNs, whereas P-low SPNs enriched in immune function 
pathways (especially P-low SPN 2) and cell cycle regulation.

Patient stratification across treatment regimens: clinical and intrinsic subtypes. Given the 
classi�cation ability of SPNs in patients regardless of their treatment and other clinical characteristics, we 
evaluated the SPNs’ classi�cation performance in certain therapeutic subpopulations of test set. Detailed 
clinical and pathological characteristics of test set is provided in the Supplementary Table S2.

We focused on classifying subpopulations with ER-negative subtype that received taxane and anth-
racycline chemotherapy in P-high, P-inter and P-low test set. Figure  5 shows the survival curves of 
these three subpopulations. In the estrogen receptor-negative (ER-) group in P-high test set, patients 
who received taxane and anthracycline chemotherapy, 15 and 19 patients were classi�ed good- and 

Figure 2. Survival analysis of P-high subsets in training set and test set. (A) the survival curves by 

Kaplan-Meier analysis in training set (P-high subset of our breast cancer dataset). (B) the survival curves 

in test set (P-high subset of GSE25055 dataset). Red color represented patients that were classi�ed as good 

outcome, and green color represented patients classi�ed as poor outcome.
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poor- outcome (log-rank p =  0.0249) respectively. In P-inter test set, patients with ER- that received tax-
ane and anthracycline chemotherapy were statistically signi�cantly classifed as 11 good outome and 10 
poor outcome (log-rank p =  0.0394). �e subpopulations in the P-low test set were classi�ed as 14 good 
and 17 poor outcome patients (log-rank p =  0.0122). �erefore subpopulations with certain clinical sub-
type were also signi�cantly segregated by P-high/P-inter/P-low SPNs (Fig. 5) lending support for SPNs’ 
potential for prognostics across treatment regiments and clinical subtype.

Comparison with other algorithms. We compared our method with that of Cox-based Ridge 
regression22,23 and the CRANE method24. Since our method was based upon the proliferation capacity 
of breast tumor, we employed the P-high tertile of training and test set to perform these comparisons.

Cox-based Ridge Regression method. We trained the Cox-based Ridge regression model on the training 
set (P-high, n =  652), and selected top gene signatures. �en we assessed the signi�cance of these gene 
signatures on test set (P-high, n =  85). �e survival curves and corresponding statistical signi�cance are 
shown in Figure  6. �e log-rank P-values on training and test sets are 0.0106 and 0.0291, respectively 
(Fig. 6A,B). �e classi�cation accuracy is 57.06% (Figure S4), which is lower than the class�cation accu-
racy based on our SPNs.

Figure 3. Survival analysis of P-inter/P-low subsets in training set and test set. (A) the survival curves 

by Kaplan-Meier analysis in the P-inter training set. (B) the survival curves by Kaplan-Meier analysis in the 

P-inter test set. (C) the survival curves by Kaplan-Meier analysis in the P-low training set. (D) the survival 

curves by Kaplan-Meier analysis in the P-low test set.
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Figure 4. Enrichment analysis of P-high SPNs in BP sets and KEGG pathway sets. (A) visualize the 

enriched categories of Biological Process (BP) sets. (B) visualize the enriched categories of KEGG pathway 

sets. Enriched biological process or pathway (i.e. enrichment) was indicated by yellow, whereas non-

enrichment was indicated by blue.

Figure 5. Survival analysis of patients across treatment regimens. (A) the classi�cation of subpopulations 

with ER-negative subtype that received taxane & anthracycline chemotherapy (T-A Chemo) in P-high test 

set. (B) the survival curves of estrogen receptor-negative (ER-) patients who received taxane & anthracycline 

chemotherapy (T-A Chemo) in P-inter test set. (C) the survival curves of estrogen receptor-negative (ER-) 

patients who received taxane &anthracycline chemotherapy (T-A Chemo) in P-low test set.
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�e CRANE method. We next applied the CRANE method on the training set to identify subnetwork 
signatures, and then to validate signature in test set. Here, we binarized gene expression pro�les on both 
sets to implement CRANE.

We normalized the gene expression pro�les, and set the top fraction (25%) of the gene expression 
matrix to “High expression” and the rest to “Low expression”. With the bottom-up searching algorithm 
on the training set, we identi�ed 11 subnetwork signatures. We used these 11 subnetworks, to classify the 
samples in both training and test set (Fig. 6C,D). �e corresponding statistical signi�cance and accuracy 
(together with precision and recall) are presented in Figure 6 and Figure S4 (for test set: P-value =  0.015, 
accuracy is 74.71%).

Our method. As seen in Figs 2 and 6 and Figure S4, our method outperformed the other two methods 
in predicting metastasis of breast cancer patients. In test set, our method has the potential to deliver 
higher signi�cance and accuracy (P-value =  0.00281, accuracy is 88.24% for test set). Comparison the 
P-values and accuracy of patient strati�cation of our method with CRANE indicated that our method 
was more e�ective than CRANE.

Comparison with other signatures. In order to test the performance of our SPNs with previously 
identi�ed gene signatures that have been shown to have predictive power, we compared our SPNs with 
that of Wang et al.’s 76-gene signatures4. We applied our SPNs to the dataset used to obtain Wang et al.’s  
76-gene signatures (GEO Accession No: GSE2034). Since our SPNs are proliferation dependent, the 
GSE2034 dataset was divided into three proliferation subsets by the nearest shrunken centroid classi�er25 
as described in the Methods section. A�er assigning the GSE2034 dataset to three proliferation subsets, 

Figure 6. Survival analysis based on signatures discovered by other algorithms. (A) the survival curves 

of training set based on gene markers discovered by the Cox-based ridge regression model. (B) the survival 

curves of test set based on gene markers discovered by the Cox-based ridge regression model. (C) the 

survival curves of training set based on network markers discovered by the CRANE method. (D) the 

survival curves of test set based on network markers discovered by the CRANE method.
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we applied our corresponding SPNs to the three proliferation subsets. �e survival curves of the three 
proliferation subsets are presented in Figure S7. As shown in Figure S7, the signi�cant P-values suggest 
that our SPNs indeed have strong predictive power, and have comparable performance to that of Wang 
et al.’s 70-gene signatures. Besides, it also suggests that the proliferation index is very important in pre-
dicting breast cancer patients’ metastasis.

Additionally, the Chuang et al.’s study11 identi�ed 149 and 243 discriminative subnetworks based 
on van de Vijver et al. (2002)26 and Wang et al. (2005)4 data sets. A compendium including all of their 
subnetworks is available online via the Cell Circuits database27. We compared the sub-networks identi-
�ed in our study with those identi�ed by Chuang et al.11. Interestingly, there were no completely overlap 
between our SPNs with their discriminative subnetworks. One possible explanation for the di�erent 
subnetwork signatures is that, our study focuses on discovering subnetwork signatures dependent on 
proliferation capacity, while Chuang et al.’s study focuses on primary breast cancer patients. Besides, the 
datasets used in Chuang et al.’s and our studies are di�erent in terms of patients’ subtypes: the Chuang 
et al.’s dataset contain mostly lymph-node-negative primary breast cancer patients, whereas our dataset 
includes all of the six intrinsic molecular subtypes. Furthermore, the protein-protein interaction data-
bases used as the searching space are also di�erent in the two studies.

It is interesting to note that there are some common enriched biological processes in the discovered 
network signatures obtained by both studies, e.g. the process of cell proliferation and apoptosis, meta-
bolic process, etc. In addition, we identi�ed 27 common genes between our SPNs and Chuang’s network 
signatures (orange color in the �rst column “Gene Symbol” of Supplementary Table S4).

In addition, we summarized the genes for our SPNs, genes identi�ed by the Cox-based Ridge regres-
sion, and genes in the subnetworks identi�ed by CRANE. Supplementary Table S4 shows the overlap 
and unique genes between di�erent signatures. In the grid, the column and row of red cell represent 
the network signature and its corresponding gene, respectively. Supplementary Table S4 indicates that 
the signatures obtained from our method share 10 genes with the CRANE, 5 genes with the Cox-based 
Ridge regression method, whereas the CRANE and the Cox-based Ridge regression method shared only 
2 genes.

Discussion
In this study, the proliferation metagene was applied to divide the samples. Patients were clustered to 
proliferation groups based on the expression values of proliferation metagene through the hierarchical 
clustering. In each proliferation group, patients were strati�ed based on our SPNs, and the survival anal-
ysis was conducted by the Kaplan-Meier Method. According to the previous study14 and our approach, 
the proliferation metagene performed well when patients were divided into three groups. However, the 
statistical power diminishes when patients are divided either into two or four groups (Figure S8 and S9 
respectively). �us we utilized the three proliferative groups (P-high, P-inter and P-low) to identify SPNs.

In our study, we assumed that all the genes in the sub-networks have the same prediction value for 
DMFS. It may be important to consider that di�erent genes in the sub-networks, especially the core 
genes might di�er in their predictive value. For example weighting HSP90AA1 in sub-network 1, 2, 
5, 6 from the P-high tertile may give a better prediction for DMFS. Here we took the frequency of 
the genes appeared in the SPNs as a weight for those gene. Figure S10 presents the P-values in P-high 
(p =  0.145) and P-inter (p =  0.508) group that are non-signi�cant, while in the P-low group, the P-value 
(p =  0.00528) is more signi�cant. �us assigning weights to core genes doesn’t always provide a better 
prediction for the DMFS. However, the mean value is able to capture the joint role of genes in a subnet-
work. We obtained signi�cant and reproducible subnetwork signatures based on mean value of z-scores 
consistent with previous studies13,14. �us the mean value of normalized gene expression data is an e�-
cient and e�ective metric to characterize the activity of a subnetwork.

To address if these SPNs from certain P tertile have a general impact on DMFS, we applied the SPNs 
identi�ed in one P-tertile to test in the other P tertiles (Figure S11). By comparing the survival curves 
for each tertile using corresponding SPNs, we observed that the speci�c SPNs have great impact on its 
corresponding P-tertile, but much less impact on the other P-tertiles, which demonstrates the SPNs 
depends closely on the proliferation tertile.

Next we tested the hypothesis that gene signatures when used concomittantly with protein interaction 
data re�ective of related signaling and proteomic landscape can provide robust prognostic tools in breast 
cancer. �e SPNs we identi�ed within each proliferation tertile are largely exclusive to the speci�c ter-
tile, however, while a few individual genes overlap between proliferation tertiles (e.g. RAC1 and RAP1B 
between P-inter and P-low SPNs), the majority of interacting genes (that interact with the overlapping 
genes in SPN assignment) remain unique to a speci�c proliferation tertile. Besides, our SPNs have the 
potential to deliver higher signi�cance and accuracy than other signatures in stratifying patients.

In the P-high tertile, most subnetworks contained HSPA1A, HSP90AA1 and TUBB2C (i.e., 6/8 
SPNs =  75%) whereas the rest share CDK7 and SFN, (2/8 SPNs =  25%). While the former share a few 
other genes between their component SPNs, CDK7 and SFN (strati�n) interact with entirely di�erent 
set of genes in SPN3 and SPN7. HSPA1 is a negative regulator of apoptosis and plays important roles 
in cell growth and cell proliferation28. �e related HSP90AA129 codes for stress-inducible heat shock 
protein 90A. �e Class I cytosolic HSP90, assisted by co-chaperones and accessory proteins, aids in 
the folding of a diverse class of proteins including kinases, G protein-coupled receptors (GPCRs), ion 
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channels, transcription factors, and nuclear hormone receptors. A role in oncogenic signaling has been 
implicated by HSP90’s ability to bind and stabilize mutated oncogenic proteins30. HSP90 also mediates 
antigen cross-presentation by antigen-presenting cells (APC) to activate CD8 +  T-cells31. TUBB2C, has 
been implicated in MHC class I protein binding involved in natural killer cell-mediated cytotoxicity32. 
Furthermore, beta class II tubulin predominates in most breast tissues, and nuclear beta (II) may be a 
useful marker for detection of tumor cells33. A conclusion that can be drawn from HSPA1A, HSP90AA1 
and TUBB2c containing SPNs is that by selectively interacting with additional redundant and unique 
genes, these three genes may in�uence di�erent signaling pathways in highly proliferative tumors.

In the P-inter group, RAC1 and RACGAP1 (3/8 SPNs =  38%), and SP1(4/8 SPNs =  50%) were pres-
ent in mutually exclusive subnetworks; the former two present in SPNs1, 3, and 5 while SP1 is excluded 
from these but present in entirely di�erent subnetworks (i.e., 4, 6, 7, 8). �e SP1 (coding for zinc �nger 
transcription factor) containing subnetwork is also enriched for IMPDH2 (inosine-5’-monophosphate 
dehydogenase 2), HTT (Huntingtin), IL2RB (interleukin 2 receptor β ), and IGFBP2 (insulin-like growth 
factor binding protein 2). RAC1 (a member of the small GTPase family) is the key RAC isoform respon-
sible for regulating ROS generation, actin cytoskeleton and cell adhesion and migration in basic cell 
biology and during the multiple stages of osteoclast di�erentiation34. RAC signaling has also been impli-
cated in growth factor signaling downstream of EGF and PDGF35. �e presence of RAC and its negative 
regulator RACGAP1 in the same SPNs might thus regulate growth factor signaling in P-inter breast 
tumors. In this regard it is interesting to note that RAC1 is predominantly higher in patients with longer 
DMFS (green in Figure S2), while its negative regulator RACGAP1 is higher in patients with shorter 
DMFS. From these data, we could infer that consistently active RAC1 at the protein level due to lack 
of or low expression of its negative regulator might enhance RAC signaling that might result in shorter 
DMFS perhaps by promoting migration and metastasis. �e presence of SP1 together with IL2 signaling 
regulators, IGFBP2, IMPDH2 and HTT in separate subnetworks that excludes RAC signaling component 
might indicate the presence of at least two non-redundant mechanisms in P-inter breast cancers that may 
determine patient outcomes.

Of the six SPNs identi�ed in P-low tumors, CTTN (cortactin) and RAP1B are expressed in the same 
5/6 SPNs (83%), of which CTNNA1 (Cadherin associated protein, Catenin α 1) is associated with 4 of 
those SPNs. It is interesting to note that RAP1B is consistently higher in patients with longer DMFS 
whereas CTTN and CTNNA1 are consistently highly in patients with shorter DMFS suggesting a poten-
tial cross regulation or feedback mechanism between these interacting hubs. As one of the most common 
genes in P-low SPNs, CTNN can enhance the interaction of tumor cells with endothelial cells and the 
invasion of tumor cells into bone tissues, which contribute to tumor metastasis36. CTTN plays a dual 
role in: 1) regulating the interactions of adherens-type junctions components37 and 2) organizing the 
cytoskeleton and cell adhesion structures of epithelia and carcinoma cells38. CTTN is overexpressed in a 
varity of tumors including breast, hepatocellular, bladder, head and neck tumors where its aberrant reg-
ulation was implicated in tumor cell invasion and metastasis39,40. Interestingly CTNNA1 is also a critical 
regulator of actin cytoskeleton and adherens junction and cell-substrate interactions41,42. Consistent with 
higher CTNNA1 potentially playing a role in patients with shorter DMFS, in P-low tumors, CTNNA1 
was recently demonstrated to be downregulted in highly proliferative basal-like tumors acting through 
NFkB pathway and correleted to clinical outcomes43. Both RAP1A and RAP1B belong to the RAS 
superfamily; RAP1B is the dominant isoform in B cells, and can regulate B-cell development and T-cell 
dependent humoral immunity44. RAP1 counteracts mitogenic signaling in certain diseases in part by 
interacting with RasGAPs and Raf competitively and has been implicated in the regulation of vascular 
barrier function. �us higher RAP1 expression may reduce oncogenic signaling leading to longer DMFS 
in P-low patients (Figure S3).

In summary, we have utilized a systems approach to integrate gene expression data and patient sur-
vival data with protein interaction networks at discrete windows of tumor proliferative biology. As more 
comprehensive transcriptomic information becomes available (e.g., miRNA and lncRNA data), we will 
gain a greater depth of understanding of the mechanisms that underlie such biology-dependent prognos-
tic interactions. By narrowing salient gene sets or their assembled signatures into functional interaction 
networks, we demonstrated the utility of using multi-platform modalities to predict patient outcomes 
based on speci�c networks that strati�ed patients by their proliferation pro�les. Similar methods may 
be useful in uncovering the basic mechanisms that underlie patient responses and may pave the way 
to identi�cation of prognostic biomarkers for di�erent molecular subtypes of cancer and responses to 
clinical therapy. �e predominance of genes implicated in signaling, intercellular tra�c, and cytoskeletal 
dynamics in these SPNs suggest that it may be practical to formulate testable hypotheses in vitro and in 
vivo based on the approach used here.

Methods
Datasets and tools. Breast cancer microarray dataset. �e dataset consists of 15 di�erent breast 
cancer microarray datasets (total n =  2,116 cases) with the corresponding clinical annotations that were 
extracted from public data repositories45. Most data analysis were performed in the R environment 
implemented in Bioconductor. Raw array data (CEL �les) were normalized using the justMAS function 
in MAS5.0, in the simplea�y library in the R so�ware. �e speci�c array platforms employed were the 
HG-U133A, HG-U133 PLUS 2.0 and HG-U133A2 gene chips. Only probe sets common to all chip types 
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were utilized, which resulted in 22,268 probe sets in all study populations. Cross-population batch e�ects 
were corrected using the COMBAT empirical Bayes method46. Of the initial 2,116 tumor pro�les, 1,954 
samples were annotated for distant metastasis-free survival (DMFS) time and recurrence event that were 
used as training set in our study.

Test set. �is dataset, referenced by accession number GSE2505547,48 in the GEO database, contained 
expression pro�les of 59 breast tumor samples with metastasis and 196 breast tumor samples without 
metastasis. �e patient samples in GSE25055 were collected by the prospective multicenter study con-
ducted between June 2000 and March 2010 at the M. D. Anderson Cancer Center47. We normalized the 
data using the robust multi-array average (RMA) expression measure49 to adjust for di�erences of study 
sources. All 255 patient data were annotated for distant metastasis-free survival time (DMFS). Clinical 
and pathological characteristics of patients and their tumors in the test set are shown in Supplementary 
Table S2.

Human functional protein interaction database (FI). �is database50 was constructed by combining 
curated interactions from Reactome and other pathway databases (including Reactome51, Panther52, 
CellMap, NCI Pathway Interaction Database53, KEGG54, and TRED database55), with uncurated pairwise 
relationships gleaned from physical PPIs in human and model organisms, protein interactions generated 
from text mining, and GO annotations. �e naïve Bayes classi�er (NBC) was applied to distinguish 
high-likelihood FIs from non-functional pairwise relationships as well as outright false positives to con-
struct the �nal FI network.

Biological process (BP) sets. �e biological process sets in MSigDB database of GSEA56 used the tree 
structure of GO terms (i.e., parent/child relationships) to construct the process. �e resulting sets in 
MSigDB were “�at” in the sense that they lacked the topology information such as parent – child rela-
tionships among GO terms.

Statistical programs for analyses. �e R so�ware was adopted to implement our approach. We wrote 
a R program for the greedy search algorithm to identify the subnetwork signatures (SPNs) in di�erent 
proliferation group of patients (see below). A�er SPNs were identi�ed, hierarchical cluster (“hcluster” 
function in R) was used to stratify the patients. Given the binary strati�cation of patients, we used the 
“survival” package to perform survival analysis. We applied the “coxph” function to the Cox proportional 
hazard model, the “surv�t” function to create the Kaplan-Meier survival curves while “survdi� ” function 
was utilized to test the di�erence between two survival curves.

Patient stratification according to proliferation tertiles. A. Patient strati�cation by tumor prolif-
eration metagene. In our previous study14, we developed the proliferation “metagene”, which includes 
highly correlated genes with roles in cell cycle and proliferation. Supplementary Table S3 shows the 
A�ymetrix probe sets and corresponding genes that comprise the proliferation metagene. With the pro-
liferation metagene, we clustered the patients through hierarchical clustering. �en the patients was 
clustered to three gorups with di�erent proliferative capacity, i.e. P-high, P-intermediate and P-low, each 
containing 652 tumors (Fig. 7A).

B. Primary network identi�cation. In each proliferation group, we conducted the following procedures 
to discover survival prognostic network markers (SPNs). Here we took the P-high group as an example 
to identify survival markers (P-intermediate and P-low groups were considered in the same manner).

We assumed a subnetwork containing m genes and corresponding edges extracted from the FI data-
base50 (Fig.  7B). gij was labeled as the gene expression value of the i-th gene in j-th patient. First, the 
expression values of genes in the subnetwork were normalized to zij over all samples j{ } j 1

n
= , i.e. 

zij =  (gij −  ui). Here ui, σi were the mean and standard variance of i-th gene expression values across all 

samples. Second, { }z i m1ij, = , …,  were averaged into an activity value xj for the j-th patient, i.e. 

x z z z mj j j mj1 2= ( + + + )/ . Here, the activity value X x x xn1 2= ( , , …, ) over the training set was 

used to predict the distant metastasis-free survival (DMFS) time T, i.e. T t t tn1 2= ( , , …, ). �ird, we 
predicted the impact of activity score X on T using the Cox proportional hazard model: H(t)/H0(t)  
=  exp(β · X). Score S de�ned as –log(P.value) of a chi-square test on the Cox model evaluates the impact 
of X on T.

�en we performed a greedy search algorithm based on score S to search the FI network database. 
With each gene serving as an initiating seed in one search, the search iteratively expanded initiating gene/
current subnetwork by adding a gene selected from their neghboring genes, which yielded the maximal 
increase of score S. A�er one gene was added, we deleted a gene from current subnetwork if the score 
S continued to increase. At the end of this searching process, we identi�ed a number of subnetworks 
called primary subnetworks (PNs) with high S scores. Considering the multiple testing, we adjusted the 
P-values (i.e. exp(- S score)) of PNs by controlling the false discovery rate (FDR) to obtain the adjusted 
S scores.
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C. Signi�cance test. According to step B., we identi�ed a large group of primary subnetworks (PNs). 
To ensure robustness, three tests were applied on the training set to select signi�cant PNs with favorable 
predictive features. �e 1000 trials in the �rst test were based on 1000 random permutations of gene 
symbols (row names) of the gene expression matrix. �e 1000 trials in the second test were based on 
1000 random permutations of expression values of each gene across all samples, and the 1000 trials in 
the third test were based on 1000 random permutations of patients’ survival time (DMFS). In each trial, 
we conducted step B to �nd subnetworks together with adjusted S scores.

For each test, the 1000 trials were used as null background and 95% quantile was chosen as threshold 
to �lter subnetworks. �rough these three tests, we identi�ed the �nal signi�cant subnetwork markers, 
which were de�ned as the survival prognostic network markers (SPNs).

D. Survival analysis based on SPNs. Hierarchical clustering method (Euclidean distance) was applied to 
patients’ activity matrix (activity value of SPNs vs patients). A�er the clustering, patients were clustered 
into two discriminate subgroups. �e hierarchical clustering was implemented by “hcluster” function in 
R with average linkage.

Figure 7. Identi�cation and analysis of the proliferation-dependent survival prognostic network 

markers (SPNs). (A) 1,954 breast cancer patients were divided to three proliferation groups based on the 

proliferation metagene. (B) Assume a subnetwork containing m genes. gij was the gene expression value of 

the i-th gene in j-th patient, and gij was transformed to zij by zij =  (gij −  ui)/σi. �e activity value xj of the j-th 

patient was the average of zij, i.e. x z z z mj j j mj1 2= ( + + + )/ . �en the Cox proportional hazard model 

was used to measure the realtionship between the activity value xj and tj. �rough the P-value of a chi-

square test on the Cox model, we de�ned Score S to be –log(P.value) as the criteria to select subnetworks. 

Here a greedy search algorithm was conducted to search the FI network database. At the end of this 

searching process, we identi�ed primary subnetworks (PNs) with high S scores. (C) �ree signi�cance tests 

were conducted to select survival prognostic subnetwork markers (SPNs) from PNs. (D) Based on the 

activity value matrix, the hierarchical clustering was applied to divide patients to two discriminate 

subgroups. �en Kaplan-Meier analysis was used to study the survival of the two discriminate subgroups. 

(E) Two validation stratigies were used to evaluate our model and SPNs. (F) Enrichment analysis of SPNs in 

biological process (BP) sets and KEGG pathway sets.
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Kaplan-Meier survival analysis was used to study the survival of two discriminate subgroups, and 
the log-rank test was applied to evaluate statistical signi�cance of survival curves. Based on the average 
survival, we annotated the two sub-groups as good outcome (> 5 years) and poor outcome (< 5 years) 
groups.

E. Validation of SPNs. Two validation strategies were used to evaluate our model. One strategy is the 
cross-validation57, which is performed for 1000 times. Taking P-high tertile as an example, we divided 
the P-high tertile in our breast cancer dataset (n =  652) into 10 equal subsets (10-fold cross-validation). 
Each of the 10 subsets of this tertile was evaluated as test set, while we trained subnetwork markers on 
the rest 9 subsets (training set). We used the markers identi�ed by the training set to classify samples 
in the test set. A�er the cross-validation was complete, each sample in the P-high tertile was classi�ed 
into good or poor outcome. By following the strategy in Simon, et al.57, we assigned the patients that 
were classi�ed as good outcome in the 10 loops of the cross-validation together, and patients classi-
�ed as poor outcome in the 10 loops of the cross-validation together. �e survival curves, which were 
cross-validated, were constructed based on this classi�cation, and the log-rank P-value was calculated. 
A�er implementing this procedure for 1000 times, we obtained the robust assignment of patients and 
the P-value for such assignment.

For independent validation, we used the test set (GSE25055) to examine the signi�cance of SPNs 
identi�ed from our breast cancer dataset. Firstly, we divided samples in the test set to three subsets 
(high, inter, low) by the nearest shrunken centroid classi�er25, which was trained on the proliferation 
gene matrix (proliferation genes vs patient samples) of P-high, P-inter and P-low training set respectively. 
For a new sample, the gene expression pro�le was transformed into a proliferation metagene pro�le. �e 
nearest shrunken centroid classi�er assigned the new patient to P-high, P-inter or P-low tertile whose 
shrunken mean value of metagene pro�le was more similar to the metagene pro�le of the new sample. 
�en, for each subset, we applied the corresponding SPN (P-high/P-inter/P-low SPN) markers to divide 
it into good outcome group and poor outcome group.

F. Bio-function analysis. Enrichment in biological processes and functional pathways the biological pro-
cess (BP) sets and KEGG pathway sets were downloaded from MSigDB database in GSEA. We performed 
an enrichment analysis of our SPNs by comparing genes in each SPN to the biological processes and 
pathways. Fisher’s exact test was conducted to identify enriched biological process and pathway catego-
ries, and to suggest the most important biological functions associated with our SPNs. One biological 
process or pathway is “enriched” if the �sher’s test P-value corrected using Bonferroni adjustments is less 
than 0.05, where the adjusted P-value evaluates the signi�cance of enrichment for certain category in our 
SPNs. R so�ware was used to visualize the BP and KEGG sets enrichment.

G. Comparison with other algorithm. We analyzed the comparative performances of subnetwork signa-
tures identi�ed by our method with that of the Cox-based Ridge regression method22,23 and the CRANE 
algorithm24. �e Cox-based Ridge regression method is the Cox regression model that is regularized with 
L2 penalty in Ridge regression. �e CRANE algorithm identi�es subnetworks (together with subnetwork 
states that is a speci�c combination of quantitated mRNA expression levels of genes in a subnetwork) 
that are coordinately dysregulated in tumorigenic and metastatic samples. CRANE developes a combi-
natorial formula of coordinate dysregulation of a subnetwork in terms of mutual information between 
the subnetwork activity and phenotype. �en the combinatorial fomula is decomposed into individual 
terms, which measures the information that individual subnetwork state provided on phenotype (e.g. 
metastasis). With the statistical property of individual subnetwork state, they proposed a bottom-up 
searching algorithm that can e�ectively prune out the subnetwork space to identify informative subnet-
works (Details in 24). �e informative subnetworks identi�ed by CRANE algorithm were then compared 
with the performance of our SPNs.

�ree criteria, i.e. accuracy, precision and recall, were used to measure the classi�cation performance. 
According to the de�nitions58 and the concepts in this study, we de�ne a true positive as a metastatic 
sample that is correctly predicted as a metastatic sample, while a false positive is a non-metastatic sample 
that is incorrectly predicted as metastatic. A true negative is de�ned as a non-metastatic sample that is 
correctly predicted as non-metastatic, while a false negative is a metastatic sample that is incorrectly 
predicted as non-metastatic. �en the three performance criteria are de�ned as: Accuracy =  (# true pos-
itives +  # true negatives)/(# false positives +  # false negatives); Precision =  # true positives/(# true posi-
tives +  # false positives); Recall =  # true positives/(# true positives +  # false negatives), where # refers to 
number of samples. As de�ned, the accuracy quanti�es thse proportion of true results (including true 
positives and true negatives) among all samples. �e precision quanti�es the proportion of true positives 
among all samples predicted as metastatic, while recall quanti�es the proportion of true positives among 
all metastatic samples.
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