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Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rap-

idly emerging as new and industrially important biomaterials. Due to their unique and 

complex chemical structures and many interesting physicochemical and rheological 

properties with novel functionality, the microbial EPSs find wide range of commercial 

applications in various fields of the economy such as food, feed, packaging, chemical, 

textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are 

mainly associated with high-value applications, and they have received considerable 

research attention over recent decades with their biocompatibility, biodegradability, and 

both environmental and human compatibility. However, only a few microbial EPSs have 

achieved to be used commercially due to their high production costs. The emerging 

need to overcome economic hurdles and the increasing significance of microbial EPSs in 

industrial and medical biotechnology call for the elucidation of the interrelations between 

metabolic pathways and EPS biosynthesis mechanism in order to control and hence 

enhance its microbial productivity. Moreover, a better understanding of biosynthesis 

mechanism is a significant issue for improvement of product quality and properties and 

also for the design of novel strains. Therefore, a systems-based approach constitutes 

an important step toward understanding the interplay between metabolism and EPS 

biosynthesis and further enhances its metabolic performance for industrial application. 

In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important 

factors for their production will be discussed. After this brief introduction, recent literature 

on the application of omics technologies and systems biology tools for the improvement 

of production yields will be critically evaluated. Special focus will be given to EPSs with 

high market value such as xanthan, levan, pullulan, and dextran.

Keywords: EPS, microbial production, exopolysaccharides, systems biology, xanthan, levan, pullulan, dextran

INTRODUCTION

Biopolymer (also called renewable polymers) is used as a term to describe polymers produced by 
biological systems and polymers that are not synthesized chemically but are derived from biological 
starting materials such as amino acids, sugars, and natural fats (Tang et al., 2012). Consequently, 
biopolymers can be classi�ed as synthetic or natural polymers (Vroman and Tighzert, 2009). 
�e biopolymers are superior to petrochemical-derived polymers in several aspects that include 
biocompatibility, biodegradability, and both environmental and human compatibility. Although 
petroleum-based polymers have negative e�ects to environment and humanity such as toxicity, 
de�ance to biodegradation, and waste accumulation, they have been used in a variety of industrial 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2015.00200&domain=pdf&date_stamp=2015-12-18
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://dx.doi.org/10.3389/fbioe.2015.00200
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:ozlem.ates@nisantasi.edu.tr
http://dx.doi.org/10.3389/fbioe.2015.00200
http://www.frontiersin.org/Journal/10.3389/fbioe.2015.00200/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2015.00200/abstract
http://loop.frontiersin.org/people/132012/overview


December 2015 | Volume 3 | Article 2002

Ates Systems Biology of Microbial Exopolysaccharides Production

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

applications. �erefore, in response to these problems, biopoly-
mers are a suitable alternative that the researchers were looking 
(Keshavarz and Roy, 2010).

Today, several microorganisms are identi�ed as microbial 
biopolymer producers and these polymers can be found as attached 
to the cell surface or extracted from the fermentation medium. 
Bacteria use these microbial biopolymers as storage materials 
in response to particular environmental stresses (Sanchez-
Garcia et al., 2010). Due to their biological functions microbial 
polysaccharides can be generally classi�ed as intracellular storage 
polysaccharides (glycogen), capsular polysaccharides (e.g., K30 
O-Antigen), and extracellular bacterial polysaccharides (for 
example, levan, xanthan, sphingan, alginate, pullulan, cellulose, 
etc.), which are important for bio�lm formation and pathogenic-
ity (Schmid and Sieber, 2015).

Microbial polysaccharides that are produced by microorgan-
isms and secreted out of the cell are de�ned as exopolysaccharides 
(EPSs). In nature, they have a signi�cant role for protection of the 
cell, adhesion of bacteria tosolid surfaces, and participating in cell-
to-cell interactions (Nicolaus et al., 2010). In recent years, there is 
a signi�cant interest on microbial EPSs since they have di�erent 
structural and functional properties (Morris and Harding, 2009). 
EPSs are important resources for hydrocolloids used in food, 
pharmaceutical, chemical, and many other industries (Ahmad 
et al., 2015). Due to their many interesting physicochemical and 
rheological properties with novel functionality, the microbial 
EPSs act as new biomaterials and �nd a wide range of applications 
in many industrial sectors such as textiles, detergents, adhesives, 
microbial enhanced oil recovery (MEOR), wastewater treatment, 
dredging, brewing, downstream processing, cosmetology, phar-
macology, and food additives (Rühmann et al., 2015). Xanthan, 
dextran, and pullulan are examples of microbial polysaccharides 
with a considerable market due to their exceptional properties. 
However, plant and algal polysaccharides such as starch, galacto-
mannans, pectin, carrageenan, and alginate still include a major 
part of the hydrocolloid market, which has a market value of 4 
million US dollars in 2008, 3.9 billion US dollars in 2012, and this 
value is expected to reach 7 billion US dollars by 2019 (Williams 
et al., 2007; Patel and Prajapati, 2013). Since microbial EPSs enable 
fast and high yielding production processes under controlled 
conditions, they are economically competitive to the plant and 
algal origin polysaccharides, which are a�ected by climatologi-
cal and geological environmental conditions (Kaur et al., 2014). 
Although there is an increased attraction for microbial EPSs in 
industrial and medical applications and they are related with 
high-value applications, only a few bacterial EPSs have achieved 
to be used commercially such as xanthan, gellan, and dextran due 
to high production costs (Freitas et al., 2011; Llamas et al., 2012).

Due to the exceptionally high production costs, microbial 
EPSs could never �nd their proper place in the polymer market 
and therefore, high-level EPSs producing microbial systems gain 
escalating industrial importance. Increasing signi�cance of EPSs 
in industrial and medical biotechnology calls for the elucidation 
of the interrelations between metabolic pathways and biosynthe-
sis mechanism in order to control and hence improve microbial 
productivity. �erefore, extensive interest has been dedicated to 
understand bacterial EPSs biosynthesis mechanism and pathways 

and enhance productivity within the past years. Omics technolo-
gies such as genome sequencing, functional genomics, protein 
structure analysis, and new bioinformatics tools have been used 
to identify new EPS biosynthesis pathways and understand the 
principles of EPS formation (Schmid and Sieber, 2015).

A modeling approach that linked omics data and the simulation 
of variable expression and enzyme activity will provide information 
about a cell’s macromolecular machinery (Lerman et  al., 2012). 
For this purpose, genome-based and genome-scale metabolic 
reconstructions can be used to understand and predict pheno-
types of a microbial species (Hanemaaijer et al., 2015). �erefore, 
a systems biology approach constitutes an important step toward 
understanding the interplay between metabolism and microbial 
EPS biosynthesis and further enhances its metabolic perfor-
mance for industrial application. Figure 1 demonstrated a brief  
summary of integration of omics studies with systems biology.

In this review a�er a brief description of the microbial EPSs, 
biosynthesis mechanism and important factors for their produc-
tion, recent literature on the application of omics technologies 
and systems biology tools for the improvement of production 
yields will be critically evaluated. Microbial EPSs with high 
market value such as xanthan, dextran, scleroglucan, pullulan, 
and levan are specially focused.

MICROBIAL EXOPOLYSACCHARIDES

�e biopolymers produced by microorganisms were categorized 
to four main groups: polyesters, polyamides, inorganic polyanhy-
drides, and polysaccharides (Crescenzi and Dentini, 1996; Rehm, 
2009, 2010). Since the microbial biopolymers serve as reserve 
material or as part of a protective mechanism, the biopolymer 
producer microorganisms have signi�cant advantages under 
certain environmental conditions (Rehm, 2010). �e �rst 
bacterial polymer dextran was discovered by Pasteur (1861) in 
the mid-nineteenth century as a microbial product in wine and 
the bacterium Leuconostoc mesenteriodes was identi�ed by Van 
Tieghem (1878) as dextran producer strain.

�e bacterial polysaccharides that are synthesized and secreted 
by various microorganisms into the extracellular environment 
either as soluble or insoluble polymers are de�ned as EPSs. �eir 
compositions, functions, chemical, and physical properties that 
establish their primary conformation vary from one bacterial 
species to another. EPSs are composed of mainly of carbohydrates 
(a wide range of sugar residues) and some non-carbohydrate 
substituents (such as acetate, pyruvate, succinate, and phosphate) 
(Vu et al., 2009; Nicolaus et al., 2010; Llamas et al., 2012; Staudt 
et al., 2012).

Most of EPSs producer bacteria have been described to pro-
duce either homo or heteropolysaccharide (Kumar et al., 2007). 
On the other hand, bacteria (Serratia marcescens, Aeromonas 
salominicida, and Pseudomonas sp. strain NCIB 2021) that 
were able to produce two di�erent polysaccharides have been 
reported (Kwon et al., 1994). Due to linkage bonds and nature 
of monomeric units, homopolysaccharides can be categorized as 
α-d-glucans, β-d-glucans, fructans, and polygalactan. d-glucose, 
d-galactose, l-rhamnose, and N-acetylglucosamine (GlcNAc), 
N-acetylgalactosamine (GalNAc), or glucuronic acid (GlcA) 
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FIGURE 1 | A schematic diagram of integration of omics studies with systems biology.
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are the repeating units of heteropolysaccharides and occasion-
ally non-carbohydrate substituent such as phosphate, acetyl, 
and glycerol. Homopolysaccharides and heteropolysaccharides 
are also dissimilar in synthetic enzymes and site of synthesis. 
Biosynthesis of homopolysaccharides requires speci�c substrates 
like sucrose, while the residues of heteropolysaccharide are 
produced intracellularly and precursors are located across the 
membrane by isoprenoid glycosyl carrier lipids for extracellular 
polymerization (Nwodo et al., 2012). EPSs have also been classi-
�ed in seven categories based on their functionality by Flemming 
and Wingender (2010) as constructive or structural (serve in the 
matrix help water retention and cell protection), sorptive (com-
posed of charged polymers), surface-active (including molecules 
with amphiphilic behavior), active, informative, redox-active, 
and nutritive.

EPS a�ords self-protection for cells from desiccation, preda-
tion, the e�ects of antibiotics, antimicrobial substances, antibod-
ies, bacteriophages and adherence to other bacteria, animal, and 
plant tissues under di�erent stress conditions such as biotic stress, 
competition, and abiotic stresses, including temperature, light 
intensity, or pH (Mata et  al., 2006; Kumar et  al., 2007; Kumar 
and Mody, 2009; Ordax et  al., 2010; Donot et  al., 2012; Staudt 
et  al., 2012). Additionally, EPS supplies bacterial aggregation, 
surface attachment, and symbiosis of plant-microbe; hence, it is 
a crucial property for wastewater treatment and soil aggregation. 
Furthermore, pathogenicity of a microorganism is related with 
the production of capsular EPS and depends on the rate and 
amount of EPS synthesis (Kumar et al., 2007).

Microorganisms are o�en linked with a high cellular density 
bio�lm and its stability is controlled by EPSs through interactions 
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between the polysaccharide chains. Moreover, microbial diversity 
is biologically supported by EPS to constitute a substrate for the 
microbial growth. Bio�lm formation plays a crucial role both in 
adhesion and in adaptation of bacteria to the physicochemical 
conditions of the environment (Donot et al., 2012).

Environmental factors and speci�c culture conditions such 
as pH, temperature, carbon-to-nitrogen (C/N) ratio, oxygena-
tion rate, and carbon sources can impact EPS production. EPS 
composition can be altered by conditional changes (di�ering 
monosaccharides or by monosaccharide molar ratio). For 
instance, due to the carbon source, Lactobacillus casei has been 
shown to alter the chemical composition of its EPS (Staudt et al., 
2012). Furthermore, production of microbial EPSs in bioreactors 
enables to optimize growth and production yields by studying 
physiology and genetic engineering (Delbarre-Ladrat et al., 2014).

Due to their unique and complex chemical structures that 
o�ers bene�cial bioactive functions, biocompatibility, and bio-
degradability, microbial EPSs have �nd a wide range of application 
areas in chemical, food, pharmaceutical, cosmetics, packaging 
industries, agriculture, and medicine in which they can be used 
as adhesives, absorbents, lubricants, soil conditioners, cosmetic, 
drug delivery vehicles, textiles, high-strength materials, emulsi-
�ers, viscosi�ers, suspending, and chelating agents. In recent 
years, several novel bacterial EPSs have been isolated and identi-
�ed; however, a few of them have achieved to have signi�cant 
commercial value due to the high production costs (Mata et al., 
2006; Kumar et al., 2007; Nicolaus et al., 2010; Freitas et al., 2011; 
Llamas et al., 2012; Delbarre-Ladrat et al., 2014). Bacterial EPSs 
such as xanthan, gellan, dextran, and curdlan with superior physi-
cal and chemical properties are used instead of plant (guar gum or 
pectin) or algae (e.g., carrageenan or alginate) polysaccharides in 
traditional applications (Kumar and Mody, 2009; Nicolaus et al., 
2010; Freitas et al., 2011; Liang and Wang, 2015). Other bacterial 
EPSs such as levan, pullulan, and wellan with unique properties 
and biological activities have found new commercial opportuni-
ties (Freitas et al., 2011).

GalactoPol, which is synthesized by Pseudomonas oleovorans 
and composed mainly of galactose, and a fucose containing 
EPS FucoPol that is synthesized by Enterobacter A47 have been 
recently reported bacterial EPSs with great commercial potential. 
Almost 30 species of lactic acid bacteria (LAB) are also known 
as polysaccharide producers and one of the commercial EPS 
dextran producer Leuconostoc mesenteroides is a LAB; however, 
low production yields avoid LAB species to be exploited com-
mercially. Besides, lactobacilli are GRAS (generally recognized 
as safe) bacteria and their EPS could be utilized in foods (Badel 
et al., 2011).

A�er the discovery of the various EPSs, the activities of enzymes 
related with EPS production were investigated and radioisotope-
labeled precursors were used to elucidate the metabolic path-
ways for microbial biosynthesis. Moreover, understanding the 
molecular and regulatory mechanisms behind the biosynthesis 
of microbial polymers is an essential requirement for engineering 
bacteria leading to production of tailor-made biopolymers with 
high-value applications for industrial and medical applications 
with an economic cost (Rehm, 2009, 2010).

BACTERIAL SYNTHESIS OF 
EXOPOLYSACCHARIDES

Extensive progress has been made in elucidating the biosynthetic 
and genetic mechanisms of biosynthesis of bacterial polysac-
charides in recent years. �e mechanism of biosynthesis and the 
precursors required illustrate diversity for di�erent classes of 
EPSs. EPSs are synthesized by bacteria extracellularly or intracel-
lularly (Boels et al., 2001; Kumar et al., 2007; Badel et al., 2011; 
Freitas et al., 2011; Li and Wang, 2012). Genes required for EPS 
production are responsible for encoding regulation, chain-length 
determination, repeat-unit assembly, polymerization, and export. 
�e mechanism regulating EPS biosynthesis is a challenged topic 
to be understood despite accumulating knowledge of EPS gene 
organization (Péant et al., 2005). Regulation of EPS biosynthesis 
is related with various physiological and metabolic parameters 
such as the availability of sugar precursors and the expression 
level of enzymes (Delbarre-Ladrat et al., 2014). Information on 
genetics of certain EPS like xanthan is abundant; however, genetic 
data for other EPS synthesis (i.e., pullulan) is still limited (Donot 
et al., 2012).

Bacterial EPSs are mostly generated intracellularly and 
exported to the extracellular environment with the exception of 
homopolysaccharides such as dextran, levan, and mutan that are 
synthesized outside the cells by the action of secreted enzymes 
that convert the substrate into the polymer. �e enzymes involved 
in EPS synthesis are found at di�erent regions of the cell and can 
be characterized into four categories. �e �rst group is intracel-
lular enzymes such as hexokinase, which phosphorylates glucose 
(Glc) to glucose-6-phosphate (Glc-6-P). �ey are also involved 
in other cellular metabolisms. �e second group is required to 
catalyze conversion of sugar nucleotides. Uridine-5′-diphosphate 
(UDP)-glucose pyrophosphorylase that catalyzes the conversion 
of Glc-1-P to UDP-Glc, which is one of the key molecules in EPS 
synthesis can be given as an example for this class of enzymes. 
Another enzyme group is glycosyltransferases (GTFs) that are 
located in the cell periplasmic membrane. �e sugar nucleotides 
are transferred by GTFs to a repeating unit attached to glycosyl 
carrier lipid. �e enzymatic functions, the structures, and iden-
ti�cation of the genes that encode GTFs has been investigated 
intense and due to amino acid sequence similarities more than 
94 GTF families were reported in the Carbohydrate-Active 
EnZymes (CAZy) database (http://www.cazy.org) (Li and Wang, 
2012). �e last class is presumably involved in the polymerization 
of the macromolecules and situated outside the cell membrane 
and the cell wall (Kumar et al., 2007).

�e general mechanisms for the production of bacterial 
polysaccharides are Wzx/Wzy-dependent pathway, the ATP-
binding cassette (ABC) transporter-dependent pathway, the 
synthase-dependent pathway, and the extracellular synthesis 
by use of a single sucrase protein. Inside the cell, the precursor 
molecules are transformed by enzymes and produce activated 
sugars/sugar acids in the �rst three mechanisms. Alternatively, 
in extracellular production pathway by direct addition of mono-
saccharides obtained by cleavage of di- or trisaccharides, the 
polymer strand is elongated (Schmid and Sieber, 2015).�ese 
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FIGURE 2 | Simplified schematic diagram summarizing the biosynthetic pathways (Synthase dependent, ABC transporter, Wzx/Wzy dependent) 

involved in microbial EPS synthesis (OPX, outer-membrane polysaccharide; PCP, polysaccharide copolymerase; TPR, tetratricopeptide repeat 

proteins).
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general mechanisms of EPS biosynthesis were demonstrated in 
detail in Figure 2.

In the Wzx/Wzy-dependent process, activated sugars are 
linked in a speci�c sequence to a lipid carrier by GTFs until the 
repeating unit is formed involving a Wzy protein. In the Wzx/
Wzy-independent (ABC transporter-dependent) pathway, 
polymerization occurs at the cytoplasmic side of the inner 
membrane. �e genes, which are required for high-level polym-
erization and surface assembly, are described as wza (encoding an 
outer-membrane protein), wzb (encoding an acid phosphatase), 
and wzc (encoding an inner-membrane tyrosine autokinase). In 

most Gram-negative bacteria (i.e., Erwinia spp., Methylobacillus 
sp. strain 12S, Rhizobium spp., and Xanthomonas campestris), 
EPS biosynthesis and export have been reported to occur via 
the Wzx/Wzy-independent and Wzx/Wzy-dependent pathway 
(Arco et al., 2005; Cescutti et al., 2010; Freitas et al., 2011).

EPS secretion can occur in the presence or absence of a lipid 
acceptor molecule in the synthase-dependent pathway, which 
secretes complete polymer strands across the membranes and 
the cell wall, and is not dependent of a �ippase for translocating 
repeat units. In this system, the polymerization and the transloca-
tion process are performed simultaneously by a single synthase 
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protein, a membrane-embedded glycosyl transferase. �ese 
pathways are o�en utilized for the assembly of homopolymers 
requiring only one type of sugar precursor such as curdlan 
[β-(1-3)-linked glucose monomers] or bacterial cellulose [β-(1-
4)-linked glucose units] (Rehm, 2010; Whitney and Howell, 
2013; Schmid and Sieber, 2015). Regulation of polymerization is 
implemented by an inner-membrane receptor, in Gram-negative 
synthase-dependent secretion systems such as P. aeruginosa 
alginate and Gluconacetobacter xylinus cellulose (Whitney and 
Howell, 2013).

In extracellular synthesis, polymerization reaction occurs as 
transfer of a monosaccharide from a disaccharide to a growing 
polysaccharide chain in the extracellular environment. �is 
type of production of EPSs is uncomplicated; independent of 
the central carbon metabolism besides there is a limited varia-
tion in structure. �e extracellular EPS synthesis can occur for 
homopolysaccharides (dextran, levan, and mutan) by extracel-
lular GTF (Boels et al., 2001; Finore et al., 2014).

�e intracellular biosynthesis of homo- and heteropolysac-
charides includes production of (ir)regular repeating units from 
sugar nucleotide precursors, which are also involved in the 
biosynthesis of several cell wall components and can therefore be 
considered essential for growth (Boels et al., 2001; Nicolaus et al., 
2010; Li and Wang, 2012). Direct precursors for bacterial EPS 
biosynthesis are formed intracellulary from intermediates of the 
central carbon metabolism. �e precursors and donor monomers 
for the biosynthesis of most repeating units are sugar nucleotides 
such as nucleoside diphosphate sugars (such as ADP-glucose), 
nucleoside diphosphate sugar acids (such as GDP-mannuronic 
acid), and nucleoside diphosphate sugar derivatives [such as 
UDP-glucose, UDP-N-acetyl glucosamine, UDP-galactose, 
and deoxythymidine diphosphate (dTDP)-rhamnose] (Barreto 
et  al., 2005; Péant et  al., 2005; Rehm, 2010). �ese sugars can 
be transported by basically three di�erent ways: ATP hydrolysis 
coupled to sugar translocation via a sugar transport ATPase, the 
import with coupled to transport of ions and other solutes, and 
transport via the phosphoenolpyruvate (PEP) transport system 
(PTS) (Barreto et al., 2005; Péant et al., 2005).

GTFs (EC 2.4.x.y) catalyze heteropolysaccharide biosynthesis 
which has numerous intracellular steps and only the last step 
that polymerization of repeating units occurs is extracellular. 
Depending on substrate type, uptake of sugars is achieved through 
a passive or an active transport system by the cell in the �rst 
step. Subsequently, the substrate is catabolized in the cytoplasm 
through glycolysis and sugar nucleotides are formed. �e bio-
synthesis of activated precursors [energy-rich monosaccharides, 
mainly nucleoside diphosphate sugars (NDP-sugars)], which are 
derived from phosphorylated sugars is occurred. Finally, EPS is 
secreted to extracellular environment therefore their secretion 
from cytoplasm through cell membrane without compromising 
the critical barrier properties is a challenging process (Badel et al., 
2011; Freitas et al., 2011).

Conversely, homopolysaccharides are synthesized extracel-
lularly by GTFs. �is class is de�ned as glycansucrases class 
(E.C. 2.4.x.y) and dissimilar to classical Leloir-type GTF they 
utilize sucrose as donor substrate instead of nucleotide-sugars. 
�e transfer of monosaccharides, generating a glycosidic bond, 

from activated molecules to an acceptor molecule is catalyzed 
by these enzymes. Energy released by degredation of sugars is 
used to catalyze transfer of a glycosyl residue on forming polysac-
charide. Due to the product of biosynthesis, the enzymes can be 
di�erentiated between transglucosydases (EC 2.4.1.y) and trans-
fructosydases (EC 2.4.1.y or 2.y). Transglucosidases class includes 
dextransucrase, mutansucrase, and reuteransucrase (EC 2.4.1.5), 
which are high molecular weight extracellular enzymes and cata-
lyze hydrolysis of sucrose to glucose and fructose and glucosyl 
transfer on carbohydrate or non-carbohydrate compounds. EPS 
structures can be varied based on di�erent enzymes intervention 
and the synthesis of each polysaccharide is catalyzed by a speci�c 
GTF; therefore, two products encoded by two genes of gtf result 
in two di�erent EPS. In addition, the enzyme conformation 
a�ects branching degree of homopolysaccharides. Levansucrases 
(EC 2.4.1.10) and inulosucrases (EC 2.4.1.9) from transfruc-
tosidases class produce levan and inulin type fructans. Ftf genes 
are induced under stress conditions and sucrose hydrolysis and 
fructosyl transfer on fructan polymerized chain or syntheses of 
tri- or tetrasaccharides are catalyzed. In fructan, glucose is the 
non-terminal reducing residue (G-Fn) (Badel et al., 2011).

OMICS STUDIES AND SYSTEMS BIOLOGY 
AND OF MICROBIAL BIOPOLYMER AND 
MICROBIAL EPS PRODUCTION

Systems biology o�ers valuable application areas in molecular 
sciences, medicine, pharmacy, and engineering such as pathway-
based biomarkers and diagnosis, systematic measurement and 
modeling of genetic interactions, systems biology of stem cells, 
identi�cation of disease genes, drug design, strain development, 
bioprocess optimization (Medina-Cleghorn and Nomura, 2013).

Strain improvement using systems level analysis of metabolic, 
gene regulatory and signaling networks, and integration of 
omics data are the most focused subjects of systems biology. 
Biochemical and bioprocess engineering principles are applied 
for optimization of upstream-to-downstream bioprocesses at 
�rst stages of strain development (Barrett et al., 2006). Process 
development has been a supporter of the scienti�c achievements 
in systems biology, mostly in the areas of transcriptomics, prot-
eomics, metabolomics, and �uxomics with availability of genome 
sequences for production organisms. �e applications of systems 
biology in industry become a challenged subject (Otero and 
Nielsen, 2010).

In recent years, the enormous amounts of genome sequenc-
ing projects have resulted in accumulation of complete genome 
sequence information for a number of species. �is information 
is valuable for understanding biological capabilities of organisms 
and biological processes such as signal transduction and cellular 
metabolism at the system levels. �erefore, an ever-increasing 
number of models for bacteria and more papers that describe new 
reconstruction tools and improvements have been published. 
Genome-scale constraint-based metabolic models have been 
reconstructed for several organisms and such constraint-based 
models can be quickly generated by so�ware packages using an 
organism’s genomic, biochemical, and physiological data. �ese 
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FIGURE 3 | Gene clusters of significantly important microbial EPSs biosynthesis. (A): Xanthan biosynthesis by Xanthomonas campestris pv. campestris 

ATCC 33913, (B): Levan biosynthesis by Bacillus subtilis subsp. subtilis 6051-HGW (bsh), (C): Dextran biosynthesis by Streptococcus intermedius JTH08 (sie). 

Conserved operan informations were obtained from ODB Operon Database (Okuda and Yoshizawa, 2011).
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metabolic models have been used to integrate high-throughput 
data understand cellular metabolism, to develop metabolic 
engineering strategies, to design media and processes, to consider 
theoretical capabilities, and to control the process online, which 
illustrates its usefulness for development and optimization of 
process. Metabolic models are used for generating new hypoth-
eses and targeting promising areas in engineering �eld. Metabolic 
engineering studies have been performed to modify microbes to 
produce industrially relevant biochemicals and biofuels such as 
ethanol and higher alcohols, fatty acids, amino acids, shikimate 
precursors, terpenoids, polyketides, and polymer precursors (e.g., 
1,4-butanediol) (Henry et al., 2010; Baart and Martens, 2012; Xu 
et al., 2013; Long et al., 2015; Simeonidis and Price, 2015).

Genome-scale metabolic networks have great achievement 
in development of metabolic engineering strategies for strain 
improvement mainly in �ve industrial �elds: food and nutrients, 
biopharmaceuticals, biopolymer materials, microbial biofuels, 
and bioremediation. Metabolic models are built to improve 
the yield of fermentation by products and explore metabolic 
mechanisms and processes in food and nutrients industry. Several 
biopharmaceuticals and the productivity of useful biopolymers 
and their precursors have improved by genome-scale metabolic 
model-guided metabolic engineering strategy (Xu et al., 2013). 
Dupont’s near-decade long optimization of Escherichia coli for 
bioproduction of 1,3-propanediol is an important genome-scale 
metabolic engineering application (Nakamura and Whited, 
2003). �e industrially optimized strain required up to 26 
genomic changes including insertions, deletions, and regulatory 
modi�cations. Recent advances in constraint-based modeling 
have enabled in  silico prediction of genomic targets for the 
enhancement of strain performance or product yield (Esvelt and 
Wang, 2013). �e engineering strategies have been successfully 
implemented for the improvements in the yield or production 
process, alterations in the degree of polymerization, removal of 
side chains or non-sugar substituents, or heterologous expression 
of EPS biosynthesis gene clusters (Becker, 2015). Additionally, the 
gene clusters of signi�cant EPSs were �gured out in Figure 3.

Due to their superior properties, wide application areas, there 
is a high demand to improve microbial EPS production with an 
economical cost. �erefore, the omics data and tools were utilized 

to perform systems biology approaches to understand and control 
EPS biosynthesis mechanism, design novel strains, and enhance 
productivity.

Natural or engineered microorganisms could synthesize many 
biopolymers and their monomers such as poly-3-hydroxyalkanates 
(PHAs), polylactic acid (PLA), polysaccaharides, carboxylic 
acids, and butanediols. Systems biology approach and genome-
scale metabolic models-guided metabolic engineering strategies 
have been successfully employed to enhance the productivity of 
useful biopolymers and their precursors (Xu et al., 2013).

Jung et  al. reported direct synthesis of PLA, which is a 
promising biomass-derived homopolymer and its copolymer, 
poly (3-hydroxybutyrateco- lactate), P (3HB-co-LA), by direct 
fermentation of metabolically engineered E. coli. In typical 
conditions, PLA production involves two steps fermentative 
production of lactic acid followed by chemical polymerization 
with low production yields. In this study, in silico genome-scale 
metabolic �ux analysis was performed to determine metabolic 
engineering targets to improve E. coli strain. �e engineering 
process was achieved by knocking out the ackA, ppc, and adhE 
genes and by replacing the promoters of the ldhA and acs genes 
with the trc promoter, and therefore, an 11 wt% enhancement of 
PLA production was obtained.

Polyhydroxyalkanoates (PHA) synthesizing capacity of 
Pseudomonas putida was investigated by genome-scale metabolic 
model of this microorganism and survival under anaerobic stress 
was achieved by introducing the ackA gene from Pseudomonas 
aeruginosa and Escherichia coli (Sohn et al., 2010).

Cai et al. (2011) reported the dra� genome of the moderately 
halophilic bacterium Halomonas sp. TD01. In this study, several 
genes relevant to PHA and osmolytes biosynthesis were analyzed 
providing invaluable clues for understanding of the evolution and 
genes transfer, the strategic guidance of the genetic engineering 
of halophilic Halomonas sp. TD01 for co-production of PHA and 
ectoine.

�e analysis of the genes required for the synthesis of the EPS 
mauran by H. maura strain S-30 was performed to identify gene 
cluster in this strain. �ree conserved genes, epsA, epsB, and epsC, 
also a wzx homolog, epsJ, which indicates that mauran is formed 
by a Wzy-dependent system, were found. It was also reported 
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that eps gene cluster reaches maximum activity during stationary 
phase, in the presence of high salt concentrations (5% w/v), which 
was investigated by transcriptional expression assays using a deri-
vate of H. maura S-30, which carries an epsA: lacZ transcriptional 
fusion (Arco et al., 2005).

Generation of monomers including propanediols, butanedi-
ols, diamines, and terpenoids by microorganism through easier 
biosynthetic pathways was also reported (Lee et al., 2011, 2012; 
Curran and Alper, 2012). Additionally, production of monomers 
has been improved using systems biology approaches (Yim et al., 
2011; Ng et al., 2012).

Genome-scale metabolic model-guided metabolic engineer-
ing approach has been performed and successfully used to 
improve production yields of various biopolymers and their 
precursors in synthetic material industry. �e microbial pro-
duction of monomers such as butanediols that are important 
raw materials in this industry are enhanced by genome-scale 
metabolic model strategies (Xu et  al., 2013). For instance, Ng 
et al. (2012) have designed and constructed S. cerevisiae strains 
with improved production of 2,3-butanediol with gene deletion 
strategy, in which disruption of alcohol dehydrogenase (ADH) 
pathway is required, by performing in silico genome-scale meta-
bolic analysis. Yim et al. (2011) have used biopathway prediction 
algorithm to elucidate possible pathways for 1,4-butanediol 
(BDO) biosynthesis. Strain development was performed by engi-
neering the E. coli host to enhance anaerobic operation of the 
oxidative tricarboxylic acid cycle and drive the BDO pathway. 
�e engineered strain was able to produce BDO from glucose, 
xylose, sucrose and biomass-derived mixed sugar streams. 
Furthermore, the productions of some important carboxylic 
acid monomers, used as raw materials in synthetic material 
industry, such as formic acid, malic acid, and succinic acid were 
improved in engineered S. cerevisiae or E. coli via genome-scale 
metabolic models-guided metabolic engineering strategies (Lee 
et al., 2005b; Wang et al., 2006; Moon et al., 2008; Kennedy et al., 
2009). �ese successfully implemented studies will be helpful 
to improve microbial EPS production and to design industrial 
strategies.

Systems metabolic engineering of E. coli or Corynebacterium 
glutamicum as e�cient cell factories has resulted in overpro-
duction of 1,5-diaminopentane as building block for novel 
biopolymers (Kind and Wittmann, 2011). �e importance of the 
Entner–Doudoro� pathway in PHB production was predicted 
by stoichiometric �ux analysis of recombinant E. coli metabolic 
model and con�rmed experimentally (Hong et  al., 2003). �e 
dynamics of PHA copolymer structure and properties were iden-
ti�ed by mathematical models during its in  vivo accumulation 
(Aldor and Keasling, 2003). Besides, an optimal carbon source 
switching strategy for the production of block copolymers was 
described by a population balance model in Ralstonia eutropha 
system (Mantzaris et al., 2001).

Previously genome-scale metabolic model reconstructions 
of biopolymer producer strain such as Pseduomonas putida 
(Nogales et  al., 2008; Puchalka et  al., 2008) and Pseudomonas 
aeruginosa (Oberhardt et al., 2008) have been published, as they 
could be used to elucidate biopolymer synthesis mechanism and 
improvement of production.

�ermophilic microorganism Brevibacillus thermoruber 423 
is able to produce high levels of EPS (Yasar Yildiz et al., 2015). 
Recently, dra� genome sequence and whole-genome analysis 
of this bacterium have been reported. Whole-genome analysis 
of this bacterium was performed by a systems-based approach 
to understand the biological mechanisms and whole-genome 
organization of thermophilic EPS producers. �erefore, 
strategies for the genetic and metabolic optimization of EPS 
production could be developed. Genome annotation was used 
to detect essential genes associated with EPS biosynthesis and 
a hypothetical mechanism for EPS biosynthesis was generated 
considering the experimental evidences. �e genome sequence 
of B. thermoruber strain 423 is being used to reconstruct a 
genome-scale metabolic model to develop metabolic engineer-
ing strategies since the metabolic model will be used to optimize 
medium compositions, to modify the microorganism genetically, 
to improve production yields, and to modify EPS monomer 
composition (Yasar Yildiz et al., 2014).

Nadkarni et  al. (2014) performed comparative genome 
analysis of Lactobacillus rhamnosus clinical isolates to identify 
EPS cluster. In this study, transcriptional orientation of the eps 
cluster genes, the presence of two genes homologous to priming 
glycosytransferases, the absence of rmlACBD genes involved in 
the dTDP-rhamnose biosynthetic pathway, and the presence 
of a family 2 GTF in the eps cluster of both clinical isolates of 
L. rhamnosus, is predicted to alter EPS composition and could 
in�uence pathogenicity.

�e �rst complete genome sequence of Russia origin 
Bi�dobacterium longum subsp. longum strain GT15, comparative 
genome analysis, identi�cation, and characterization of regulatory 
genes, in silico analysis of all the most signi�cant probiotic genes 
and considered genes have been reported. �e genomic analysis 
for polysaccharides was also performed, and it was observed that 
most of the genes in the carbohydrate metabolism category were 
involved in the utilization of oligo-polysaccharides. �e genome 
also contains genes predicted to encode proteins involved in the 
production of capsular EPS, which are most likely involved in 
bacteria–host interactions (Zakharevich et al., 2015).

Genome sequence of moderately halophilic and EPS-
producing Salipiger mucosus DSM 16094T and the presence of a 
high number of genes associated with biosynthesis of EPSs have 
been reported. Genes associated with the synthesis of polyhy-
droxyalkanoates have been also found (Riedel et al., 2014).

Acidithiobacillus ferrooxidans was the �rst biomining micro-
organism whose genome was sequenced and the genes involved 
in the biosynthesis EPSs precursors have been studied (Valdés 
et al., 2008). �e cluster of �ve genes proposed to be involved in 
the biosynthesis of EPSs precursors via the Leloir pathway have 
been also identi�ed previously (Barreto et al., 2005).

A curdlan producer Agrobacterium sp. ATCC 31749’s genome 
was sequenced and the curdlan biosynthesis operon (crdASC) 
was identi�ed (Ru�ng et  al., 2011). Moreover, transcriptome 
analysis of this microorganism has been performed to understand 
the regulation of EPS biosynthesis (Ru�ng and Chen, 2012). In 
this study, transcriptome pro�ling was used to identify genes that 
expressed during curdlan biosynthesis and carry out targeted 
gene knockouts to investigate their roles in the transcriptional 
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regulation of curdlan production. �e analysis showed that 
curdlan synthesis operon was upregulated by up to 100-fold 
upon nitrogen depletion. Moreover, novel regulation mecha-
nisms including RpoN-independent NtrC regulation and 
intracellular pH regulation by acidocalcisomes were identi�ed.

Engineering studies for LAB, particularly members of the 
genera Lactococcus and Lactobacillus, have been performed for 
the production of platform chemicals, such as lactate l- and 
d-stereoisomers,1,3-propanediol, and 2,3-butanediol, food 
�avors and sweeteners, vitamins, and complex polysaccharides 
(Gaspar et al., 2013).

Exopolysaccharide biosynthetic pathways in LAB have 
been engineered to have challenges greater than manipulat-
ing speci�c steps in primary metabolism (Patel et  al., 2011). 
Since EPSs enhance potential health bene�ts of fermented 
food products, many metabolic engineering approaches 
are employed to improve productivity and structure of EPS 
(Gaspar et al., 2013).

Omics studies can be used to improve the understanding of 
metabolism in food industry microorganisms. �e metagenomic 
studies for fermented food were performed to analyze the meta-
bolic potentials of LAB bacteria, which is very important in indus-
trial fermentations. Jung et  al. (2011) performed metagenomic 
studies changes in bacterial populations, metabolic potential, and 
the overall genetic features of the microbial community during 
a 29-day fermentation process of the traditional Korean food 
kimchi. �e transcriptome response has been analyzed in yogurt 
fermentation (Sieuwerts et al., 2010) and in milk (Goh et al., 2011).

�e �rst genome-scale model for L. lactis (Oliveira et al., 2005), 
and since whole-genome metabolic reconstructions for Lb. plan-
tarum (Teusink et al., 2005) and S. thermophilus (Pastink et al., 
2009) have been reported. Functional genomics and other studies 
have performed to investigate genomic diversity in LAB and the 
�ndings highlighted the variety of carbon substrates potentially 
used by LAB including simple sugars, complex carbohydrates 
such as xylan, starch, and fructans, α-galactosides (e.g., ra�nose 
and stachyose), pentoses (D arabinose and D-xylose), and the 
cheap C3 carbon source glycerol (Teusink et al., 2009; Siezen and 
van Hylckama Vlieg, 2011).

Complete genomic sequence of Lb. bulgaricus 2038 has been 
reported and genomic analysis of EPS biosynthesis has been per-
formed. Two neighboring eps clusters with signi�cant di�erences 
were identi�ed when compared with genome sequence of Lb. bul-
garicus species by comparative genomic analysis (Hao et al., 2011).

Genomic studies microbial EPSs producer of deep-sea bacte-
ria such as Zunongwangia profunda SM-A87, Pseudoalteromonas 
sp. SM9913, Pseudoalteromonas haloplanktis TAC125 (Qin et al., 
2011), have been also performed and analyzed for EPS gene 
clusters (Finore et  al., 2014). In addition, genome sequence of 
several deep-sea isolates such as Idiomarina loihiensis (Hou et al., 
2004) and Alteromonas macleodii (Ivars-Martinez et  al., 2008) 
demonstrated the EPS biosynthesis genes (Finore et al., 2014).

Such omic studies and works from systems biology perspective 
will play an important role both scienti�cally and economically, 
since there is a great need for developing e�cient method-
ologies for enhanced EPS biosynthesis. More information on the 
genome of the microorganism will enable to develop strategies 

to successfully enhance production rate and also to engineer 
EPSs properties by modifying composition and chain length. 
Systems-based modeling approach constitutes an important step 
toward understanding the interplay between metabolism and 
EPS biosynthesis.

Systems biology approaches and metabolic reconstruction 
studies of microbial EPS have been also reported for two impor-
tant EPSs: xanthan and levan. �ese studies and their �ndings 
were given in detail in the following sections. Besides, these two 
important EPSs researches on pullulan and dextran were also 
discussed and the general properties and applications for all these 
important EPSs were summarized in Table 1.

XANTHAN

�e commercially most important microbial EPS is known as 
Xanthan which is produced by the plant-pathogen-proteobac-
terium Xanthomonas campestris pv. campestris (Xcc) (Vorhölter 
et al., 2008; Frese et al., 2014). It is a heteropolysaccharide com-
posed of repetitive pentasaccharide units consisting of monomeric 
units of two glucose, two mannose, and one GlcA residues with 
with a backbone chain consisting of (1-4)-β-d-glucan cellulose 
(Khan et al., 2007). Due to its superior properties and rheological 
characteristics, xanthan has found a wide range of applications 
as a thickening or stabilizing agent in food, cosmetics and oil 
drilling industries (Schatschneider et. al, 2013; Chivero et  al., 
2015). It has been described as a “benchmark” product based on 
its signi�cance in food and non-food applications which include 
dairy products, drinks, confectionary, dressing, bakery products, 
syrups, and pet foods, as well as the oil, pharmaceutical, cosmetic, 
paper, paint, and textile industries (Patel and Prajapati, 2013; 
Cho and Yoo, 2015). Xanthan was also employed in non-food 
applications such stabilizing cattle feed supplements, calf milk 
substitutes, agricultural herbicides, fungicides, pesticides, and 
fertilizers, and to impart thixotropy into toothpaste preparations 
(Morris, 2006). Considering the commercial importance of this 
microbial EPS, omics studies and metabolic model reconstruc-
tions were performed to clarify xanthan biosynthesis mechanism.

�e genomes of �ve Xanthomonas strains X. campestris pv. 
campestris strains ATCC 33913 (da Silva et al., 2002) and 8004 
(Qian et  al., 2005), X. campestris pv.vesicatoria strain 85-10 
(�ieme et al., 2005), X. oryzae pv. oryzae strains KACC10331 
(Lee et al., 2005a,b) and MAFF 311018 (Ochiai et al., 2005), X. 
axonopodis pv. citri strain 306 (da Silva et al., 2002) have been 
sequenced. �e complete genome sequence of the xanthan pro-
ducer strain Xanthomonas campestris pv. campestris strain B100 
and its use for mechanistic model for biosynthesis of xanthan 
have been also reported (Vorhölter et al., 2008). In this study, the 
gene products and metabolic pathways for xanthan polymeriza-
tion were investigated in detail. �e gene products of gumJ, gumC, 
gumD, and gumE were analyzed to establish detailed functions in 
a xanthan polymerization. Moreover, the mechanistic model for 
the biosynthesis of xanthan was established.

In vivo proteome analysis X. campestris pv. campestris has been 
performed to investigate protein expression of the microorgan-
ism during host–plant interaction. Peptide mass �ngerprinting or 
de novo sequencing methods were utilized for identi�cation of the 
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TABLE 1 | General description of significantly important microbial EPSs.

Microbial 

EPS

Monomeric 

units

Microorganism Industrial applications Omic studies Metabolic model

Xanthan Glucose, 

mannose and 

glucuronate

Xanthamonas sp. Thickening, stabilizing agent, food additive, 

etc.

Genome sequence, 

Proteomics

Available 

(Schatschneider et al., 

2013)

Levan Fructose Halomonas smyrnensis AAD6T, 

Zymomonas mobilis, Bacillus 

subtilis (natto)

Emulsifier, stabilizer and thickener, 

encapsulating agent, food and feed additive, 

osmoregulator, and cryoprotector, etc.

Genome sequence Available (Ates et al., 

2013; Diken et al., 

2015)

Pullulan Glucose Aureobasidium pullulans Thickening, stabilizing, texturizing, gelling 

agents, etc.

Genome sequence, 

proteomics, genome shuffling

Not available

Dextran Glucose Leuconostoc spp. and 

Streptococcus spp.

Blood plasma extender and  

chromatography media

Genome sequence Not available
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functions of proteins. �is approach will be used to determine the 
roles of proteins in pathogenicity mechanismsand also xanthan 
biosynthesis (Andrade et al., 2008).

Schatschneider et al. (2013) has reported the �rst large-scale 
metabolic model for Xanthomonas campestris (Xcc), which 
was reconstructed from genome data of, manually curated and 
further expanded in size. �e impact of xanthan production was 
studied in  vivo and in  silico and compared with gumD mutant 
strain. �is veri�ed metabolic model is also the �rst model focus-
ing on bacterial EPS synthesis and it can be used for detailed 
systems biology analyses and synthetic biology reengineering of 
Xcc. Moreover, dra� genome of X. campestris B-1459, which was 
used in pioneering studies of xanthan biotechnology, and it can 
be used to analyze the genetic basis of xanthan biosynthesis has 
been reported recently (Wibberg et al., 2015).

LEVAN

Levan is a naturally occurring polymer that is composed of 
β-d-fructofuranose with β(2-6) linkages between fructose rings. 
It is synthesized by the action of a secreted levansucrase (EC 
2.4.1.10) that directly converts sucrose into the polymer (Han 
and Clarke, 1990). As a homopolysaccharide with many distin-
guished properties such as high solubility in oil and water, strong 
adhesivity, good biocompatibility, and �lm-forming ability, it has 
great potential as a novel functional biopolymer in foods, feeds, 
cosmetics, pharmaceutical, and chemical industries (Kang et al., 
2009; Kazak Sarilmiser et  al., 2015). In fact, a recent literature 
analysis on microbial EPSs attributed levan together with xanthan, 
curdlan, and pullulan as the most promising polysaccharides for 
various industrial sectors (Donot et al., 2012).

Due to its exceptionally high production costs, levan could 
never �nd its proper place in the polymer market, and therefore, 
high-level levan producing microbial systems gain escalat-
ing industrial importance. Levan is produced as an EPS from 
sucrose-based substrates by a variety of microorganisms, includ-
ing the halophilic bacterium Halomonas smyrnensis AAD6T, 
which has been reported as the �rst levan producer extremophile 
(Poli et al., 2009).

�e gram-negative halophilic bacterium H. smyrnensis 
AAD6T, which was isolated from Çamaltı Saltern Area in Turkey 
(Poli et al., 2009, 2013), was found to excrete high levels of levan 

(Poli et al., 2009). With this microbial system, productivity levels 
were further improved by use of cheap sucrose substitutes such 
as molasses (Kucukasik, 2010; Kucukasik et al., 2011) as well as 
other cheap biomass resources (Toksoy Oner, 2013) as fermenta-
tion substrate. Further research on the potential uses of levan 
produced by H. smyrnensis AAD6T as a bio�occulating agent 
(Sam et al., 2011), its nanostructured thin �lms (Sima et al., 2011, 
2012), its suitability for peptide-based drug nanocarrier systems 
(Sezer et al., 2011), and its adhesive mulitilayer �lms (Costa et al., 
2013) have been reported.

Increasing signi�cance of levan in industrial and medical 
biotechnology calls for the elucidation of the interrelations 
between metabolic pathways and levan biosynthesis mechanism 
in order to control and hence enhance its microbial produc-
tivity. However, there is very limited information about the 
mechanisms involved in the biosynthesis of levan from extre-
mophiles (Nicolaus et al., 2010) and no report about a systematic 
approach to analyze levan production by H. smyrnensis AAD6T. 
Considering this fact, systems-based approaches were applied to 
improve the levan production capacity of H. smyrnensis AAD6T 
cultures (Ates et al., 2013).

�e genome sequence forms the basis for metabolic model 
reconstruction; however, there was a lack for genome information 
of H. smyrnensis AAD6T. Only recently, its dra� genome sequence 
has been announced. De novo assembly of the whole sequencing 
reads were carried out in this study. Consequently, several genes 
related to EPS biosynthesis, including the genes for levansucrase 
and ExoD were revealed by genome analysis (Sogutcu et al., 2012). 
Due to the absence of genomic information, �rst, comprehensive 
metabolic model of a taxonomically close halophilic bacterium, 
namely, C. salexigens DSM3043 have been reconstructed (Ates 
et al., 2011). �en, in order to investigate levan biosynthesis by a 
metabolic systems analysis approach, the genome-scale metabolic 
network of C. salexigens was recruited and adopted to H. smyrn-
ensis AAD6T via integration of the available biochemical, physi-
ological, and phenotypic features of H. smyrnensis AAD6T. �e 
in silico metabolic model was veri�ed with dynamic experimental 
data on di�erent medium compositions and was then systemati-
cally analyzed to identify critical network elements (i.e., enzymes, 
biochemical transformations, and metabolites) related to levan 
biosynthesis mechanism. �e �ndings manifested mannitol as a 
signi�cant metabolite for levan biosynthesis, which was further 
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veri�ed experimentally. In the previous study, 1.844  g/L levan 
yield from the stationary phase bioreactor cultures using a de�ned 
media containing sucrose as sole carbon source with almost four-
fold increase of levan production was reported (Ates et al., 2013).

Recently, Diken et  al. (2015) performed the whole-genome 
analysis of H. smyrnensis AAD6T to investigate biological mecha-
nisms, and furthermore, the genome-scale metabolic model 
iKYA1142, which included 980 metabolites and 1142 metabolic 
reactions, was reconstructed. �e genomic analysis �gured out 
the biotechnological potential of this microorganism as a result 
of its capacity to produce levan, Pel exopolysaccharide, polyhy-
droxyalkanoates (PHA), and osmoprotectants. Genes related 
to EPS biosynthesis and intracellular PHA biosynthesis were 
detected. Hs_SacB gene encoding the extracellular levansucrase 
enzyme (EC 2.4.1.10), Pel polysaccharide gene cluster (PelA, PelB, 
PelC, PelD, PelE, PelF, and PelG), Alginate lyase precursor (EC 
4.2.2.3), and “Alginate biosynthesis protein Alg8” genes were 
predicted. �e genome information and metabolic model will 
have a signi�cant role on levan biosynthesis since they will be 
utilized to improve levan production by metabolic engineering 
strategies and medium optimization.

PULLULAN

A fungal glucan “pullulan” that is a linear homopolysaccharide 
composed of maltotriose reduplicative units connected by 
α-1,4-linkages is produced by Aureobasidium pullulans (Singh 
et al., 2008; Sheng et al., 2014; Özcan et al., 2014). Although pul-
lulan production studies mostly focused on A. pullulans, other 
producer strains such as Remella mesenterica, Cryphonectria 
parasitica, and Teloschistes �avicans were also reported (Cheng 
et al., 2011). Biosynthesis of pullulan was occurred intracellularly 
at the cell wall or cell membrane and microorganisms secreted 
this EPS out to the cell surface to form a loose and slimy layer 
(Ma et  al., 2015). Its solubility in water is excellent as a result 
of the linkage pattern. Moreoever, it has outstanding chemical 
and physical properties, such as low viscosity, non-toxicity, slow 
digestibility, high plasticity, and excellent �lm-forming (Cheng 
et al., 2011; Sheng et al., 2014).

�e major market for pullulan is food industry and also its 
potential applications in pharmaceutical, agricultural, chemical, 
cosmetic, biomedical, and environmental remediation areas 
have been reported (Özcan et al., 2014; Ma et al., 2015). Due to 
its superior properties, pullulan can be used as non-polluting 
wrapping material for food supplements, oxygen impermeable, 
edible, and biodegradable and highly water soluble �lms, denture 
adhesives, emulsi�ers and stabilizers for various food products, 
binder, lubricant, gelling agent, oral care products, and blood 
plasma substitute. Since it is non-immunogenic, non-toxic, 
non-carcinogenic, and non-mutagenic, pullulan can �nd novel 
application areas such as gene therapy, targeting drugs, and gene 
delivery (Cheng et al., 2011; Singh et al., 2015). Pullulan has been 
commercialized in various countries, used as a safe food ingredi-
ent and pharmaceutical bulking agent and in Japan.

�e molecular biosynthesis of pullulan is a complex metabolic 
process therefore the molecular basis of this process is not clearly 
identi�ed. �e three signi�cant enzymes for pullulan biosynthesis 

are α-phosphoglucose mutase (PGM, EC 5.4.2.2), UDP-glucose 
pyrophosphorylase (UGP, EC 2.7.7.9), and glucosyltransferase 
(FKS, EC 2.4.1.34). Nitrogen is the major component for the 
cultivation of A. pullulans in pullulan fermentation (Wang et al., 
2015). Wang et  al. (2015) analyzed gene expression of the key 
enzymes (PGM, UGP, FKS) to improve pullulan production. 
�ey have reported the improved pullulan production correlated 
to the high activities of PGM and FKS, increased the activities of 
α-phosphoglucose mutase and glucosyltransferase, and upregu-
lated the transcriptional levels of pgm1 and �s genes by nitrogen 
limitation.

Kang et  al. (2011) studied genome shu�ing A. pullulans 
N3.387 by ethyl methane sulfonaten (EMS) and ultraviolet (UV) 
mutagenesis to improve pullulan biosynthesis and developed a 
mutant that could produce more pullulan than wild type strain.

Sheng et al. (2014) performed proteomic studies of pullulan 
production in A. pullulans to understand the e�ect of di�er-
ent concentrations of (NH4)2SO4 which would be useful to 
optimize industrial pullulan production. �e proteomic studies 
demonstrated the expression of antioxidant related enzymes and 
energy-generating enzymes and the depression of the enzymes 
concerning amino acid biosynthesis, glycogen biosynthesis, gly-
colysis, protein transport, and transcriptional regulation under 
nitrogen limitation, resulted in conversion of metabolic �ux from 
the glycolysis pathway to the pullulan biosynthesis pathway.

Dra� genome of Aureobasidium pullulans AY4 was determined 
and genome analysis revealed the presences of genes coding for 
commercially important enzymes such as pullulanases, dextra-
nases, amylases, and cellulases (Chan et al., 2012). Gostin et al. 
(2014) performed de novo genome sequencing and genome 
analysis of the four varieties of A. pullulans to investigate the 
genomic basis of pullulan biosynthesis potential. Single-copy 
genes for phosphoglucose mutase and uridine diphosphoglucose 
pyrophosphorylase, which are the key enzymes for converting 
glucose units into pullulan, were present in four varieties of A. 
pullulans. Genomic analysis also revealed that these microorgan-
isms included all of the putative enzymes that were proposed to be 
involved in pullulan biosynthesis (Gostin et al., 2014). �e genome 
sequences of A. pullulans species will be facilitated to clarify 
biosynthesis mechanism of pullulan and improve its production.

DEXTRAN

Dextran, which is a homopolysaccharides composed of α-1,6 
glycosidic linkages, is produced by L. mesenteroides hydrolases 
in the precense of sucrose. Various strains of bacteria such as 
Streptococcus and Acetobacter have been also found to pro-
duce dextran bacteria (e.g., Leuconostoc and Streptococcus), 
through the use of speci�c enzymes like glucansucrases (Patel 
et al., 2011; Casettari et al., 2015). Since dextran has a �exible 
structure as a result of free rotation of glycosidic bond and it 
is highly soluble in water, biocompatible, and biodegradable, it 
becomes a functional hydrocolloid (Ahmad et al., 2015). It has 
commercial applications in food, pharmaceutical and chemical 
industries as adjuvant, emulsi�er, thickener, carrier, and stabi-
lizer. Moreoever, dextran is used as therapeutic agent to restore 
blood volume, for the matrix preparation of chromatography 
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columns, for synthesizing dextran sulfate for blood coagula-
tion prevention and blood �ow facilitation, as osmotic agents, 
lubricant in eye drops and for increase of blood sugar levels, 
iron carrier, anticoagulant for pharmacy (Patel et al., 2011; Han 
et al., 2014).

Dextrans have also found use in di�erent areas such as veteri-
nary medicines, biosensor material, food syrup stabilizers, dough 
improvers, metal-plating processes, enhanced oil recovery, stabi-
lizing coating for protecting metal nanoparticles against oxida-
tion, and coating on biomaterials to prevent undesirable protein 
absorption. Dextran and its derivatives such as cyclodextran are 
utilized in the pharmaceutical industry like cariostatic, anti-HIV, 
and anti-ulcer agent (Ahmad et al., 2015; Casettari et al., 2015).

Various genome sequence and genome analysis studies were 
carried out with dextran producer strains. For instance, the 
genome of LAB Leuconostoc gasicomitatum was sequenced and 
genome analysis was performed to understand the growth and 
spoilage potentials. �e genomic analysis revealed genes for 
two dextransucrases catalyzing the formation of dextran from 
sucrose: epsA (LEGAS_0699) is part of a large EPS cluster, while 
dsrA (LEGAS_1012) is located as a single gene in the chromo-
some (Johansson et al., 2011). Saulnier et al. (2011) performed the 
metabolic pathway reconstruction, genome pro�ling, genomic, 
and transcriptomic comparisons of the Lactobacillus reuteri 
strains to de�ne functional probiotic features. Genome-wide 
comparison resulted in dextranase gene that predicted to encode 
the synthesis of EPS. �e �rst genome sequence of Weissella 
species has been announced for Weissella confusa (formerly 
Lactobacillus confusus) LBAE C39-2, which was also found prom-
ising for in situ production of dextran in sourdoughs (Amari et al., 
2012). A dra� genome sequence of dextran producer Leuconostoc 
lactis EFEL005 has been announced and genomic analysis was 
performed to understand its probiotic properties as a starter for 
fermented foods (Moon et al., 2015). �e increased number of 

genome sequences will accelerate systems-based works for dex-
tran biosynthesis mechanism.

CONCLUSION AND  
RECOMMENDATIONS

In microbial EPS production, a better understanding of biosyn-
thesis mechanism is a signi�cant issue for optimization of produc-
tion yields, improvement of product quality and properties, and 
also for the design of novel strains. As most of the novel bacterial 
EPS with unique properties have expensive production costs and 
economic hurdles need to be overcome, this valuable information 
about biosynthesis is also be important to lower these charges.

More information on the genome of the EPS producer microor-
ganisms will enable to develop additional strategies to successfully 
enhance EPSs production rate and also to engineer their properties 
by modifying composition and chain length. Since genome-scale 
reconstruction includes every reaction of target organism through 
integrating genome annotation and biochemical information, a 
systems-based metabolic modeling approach constitutes an impor-
tant step toward understanding the interplay between metabolism 
and EPSs biosynthesis. Since microbial biopolymer biosynthesis is 
a result of a complex system of many metabolic processes, systems-
based approaches are needed to control and optimize production 
in order to improve the formerly reported yields.

Furthermore, the genome-scale metabolic model based on 
genome sequence will have the capacity to consider gene expres-
sion, metabolomics, and proteomics data to get accurate predic-
tion at di�erent environmental conditions.
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