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Abstract
With the availability of quantitative data on the transcriptome and proteome level, there is an

increasing interest in formal mathematical models of gene expression and regulation.

International conferences, research institutes and research groups concerned with systems

biology have appeared in recent years and systems theory, the study of organisation and

behaviour per se, is indeed a natural conceptual framework for such a task. This is, however,

not the ®rst time that systems theory has been applied in modelling cellular processes. Notably

in the 1960s systems theory and biology enjoyed considerable interest among eminent

scientists, mathematicians and engineers. Why did these early attempts vanish from research

agendas? Here we shall review the domain of systems theory, its application to biology and the

lessons that can be learned from the work of Robert Rosen. Rosen emerged from the early

developments in the 1960s as a main critic but also developed a new alternative perspective to

living systems, a concept that deserves a fresh look in the post-genome era of bioinformatics.

INTRODUCTION
We see an ever-increasing move towards

inter- and trans-disciplinary attacks upon

problems in the life sciences. The reason

is the diversity of organisation and

behaviour in natural systems. The size of

data sets and complexity of patterns

hidden in them has led to a renewed

interest in mathematical techniques that

allows us to identify formal models of

natural systems. The next step in the post-

genome era is not simply assigning

biological function to identi®ed genes but

to analyse the organisation and control of

genetic pathways. These pathways are of

course dynamic systems; non-linear,

adaptive and anticipatory systems to be

precise.

Systems biology is an emerging ®eld of

biological research that aims at a system-

level understanding of genetic or

metabolic pathways by investigating

interrelationships (organisation or structure)

and interactions (dynamics or behaviour) of

genes, proteins and metabolites. Recently,

international conferences, institutes,1,2

research groups and articles,2 focusing on

systems biology, have appeared. The

reason for this renewed interest in systems

thinking is the rapid technological advance

in the area of genomics. Genomics is the

®eld of biological research taking us from

the DNA sequence of a gene to a structure

of the product for which it codes (usually a

protein) to the activity of that protein and

its function within a cell and, ultimately,

the organism. Crossing several scale-layers

from molecules to organisms, we ®nd that

organisms, cells, genes and proteins are

de®ned as complex structures of

interdependent and subordinate components

whose relationships and properties are

largely determined by their function in the

whole. This de®nition coincides with the

most general de®nition of a system as a set

of components or objects and relations

among them.3 Systems theory is then the

study of organisation and behaviour per se

and a natural conclusion is therefore to

consider systems biology as the application

of systems theory to genomics.

The idea to use systems theory in

biology is, however, not new; notably in

the 1960s a number of eminent

2 5 8 & HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F O R M A T I C S . VOL 2. NO 3. 258±270. SEPTEMBER 2001

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/2/3/258/240259 by guest on 16 August 2022



researchers took a systems approach to

`search for general biological laws

governing the behavior and evolution of

living matter in a way analogous to the

relation of the physical laws and non-

living matter'.4±6 It was the transfer of

ideas from physics to biology and the

perception that biological systems are a

special case of physical systems that led to

criticism which cumulated in the most

comprehensive discussion of the

limitations of `classical' systems biology in

the work of Robert Rosen.7±10 In the

following sections, we review the need

for mathematical modelling, the usual

approaches to modelling biological

systems and problems arising from them.

In this paper we will focus on Rosen's

relational biology, `metabolic-repair'

(M,R)-systems, his discussion of

anticipatory behaviour and causality. We

show that, for metabolism and repair

de®ned as mappings, replication is

implicitly de®ned. Anticipatory behaviour

or intrinsic control is realised through the

boundary conditions of the repair and

replication map. Finally, it can be shown

that the category that de®nes the (M,R)-

system is rich enough in entailment to

allow the repair and replication maps to

be entailed by something and hence

avoiding a ®nality argument when

discussing causal entailment.

THE CASE FOR
MATHEMATICAL
MODELLING
The engineering sciences are a good

example of how mathematics has been

used effectively in a wide range of

applications. One could argue that many

biologists ®nd themselves now in a similar

situation to engineers about six decades

ago when they were faced with the need

to analyse and control complex dynamic

systems for which empirical means are

inappropriate. Also, both species,

engineers and biologists, are not born as

mathematicians. Engineers have learned

to use mathematics towards their ends and

a symbiosis of researchers from both areas

should allow both to advance successfully.

For the engineer, the underlying strategy

is to represent the natural system by a set

of random and/or state variables and then

to investigate relationships among those

variables within a formal system (Figure

1). This approach cumulates into a

philosophy whereby, as Henri PoincareÂ

suggested, `the aim of science is not things

in themselves but the relations between

things; outside these relations there is no

reality knowable.'11

The importance of what we now call

systems biology was pointed out by

Norbert Wiener in his book `Cybernetics,

on Control and Communication in the

Animal and the Machine', published in

1948.12 In 1970, cybernetics or feedback

regulatory mechanism on a molecular

level were described by Jacob and

Monod13,14 who investigated regulatory

proteins and the interactions of allosteric

enzymes in particular. Organisms as a

whole are self-regulating, adaptive and

anticipatory systems and numerous

examples have been published. While the

control of physiological mechanisms

requires the processing of information, the

actual processes are sustained by energy

Figure 1: The modelling relation between a
natural system N and a formal system F.

8
If

the modelling relation brings both systems
into congruence by suitable modes of
encoding and decoding, it describes a natural
principle. In this case F is a model of N, that is,
N is a realisation of F
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obtained from the environment. The

acquisition, transfer and utilisation of

energy have subsequently been seen as

major components in the analysis of

biological systems.15 Systems biology has a

past and the books by Ashby4 and

Bertalanffy5 are a `must read' for anyone

attracted to the area of systems biology.

Bertalanffy provides a general

introduction of system theory but also

reviews applications in biology with a

discussion on models of open systems and

organisms considered as physical systems.

For an up-to-date account of the systems

sciences, including a historical

perspective, the reader is referred to Klir's

book3 and the Principia Cybernetica

Web.16 Speci®cally referring to

applications in biology, the volume

`Systems Theory and Biology' edited by

Mihajlo MesarovicÂ17 is valuable. Minhajlo

MesarovicÂ initiated and developed one of

the most comprehensive mathematical

systems theories.18,19 The most extensive

discussion of systems thinking in biology

is James G. Miller's book on a `general

theory of living systems'.20 Miller provides

the most detailed account of living

systems in eight levels of increasing

complexity ± from molecules to cells,

organs, organisms and societies. Reality is

described as a continuous dynamic

process, best represented as a system of

systems and natural systems are studied as

a structure of processes evolving through

spatio-temporal events. The conclusion is

that despite the endless complexity of life,

it can be organised and repeated patterns

appear at different levels. Indeed, the fact

that the incomprehensible presents itself as

comprehensible has been a necessary

condition for the sanity and salary of

scientists.

CAUSING PROBLEMS
The principal purpose of mathematical

models applied in the natural sciences is to

identify sets of rules, statements about

local associations or dependencies among

variables. In genomics, mathematical

models may be expected not only to

describe associations but also to explain

dependencies among genes. A `causal

law', which is not strictly bound to any

speci®c philosophical perspective, is then

understood as a `causal dependency', a

general proposition by virtue of which it

is possible to infer the existence of an

event from the existence of another. It is

the explanatory aspect of mathematical

modelling that leads us to the limits of

systems biology but it is also the most

exciting aspect of the developments in the

post-genome area. We ®nd that the

`causal problem' is an ontological, not a

logical question, it cannot be reduced to

logical terms but it can be analysed with

the help of formal reasoning. In the words

of Bertrand Russell: `Inferences of science

and common sense differ from those of

deductive logic and mathematics in a very

important respect, namely, when the

premises are true and the reasoning

correct, the conclusion is only probable.'21

The ®rst comprehensive theory of

causation was Aristotle's. It distinguishes

four types of cause: the material cause (or

stuff ), the formal (formative) cause (or

shape), the ef®cient cause (or force) and

the ®nal cause (or goal). For a formal

logical system, given an `effect', say

proposition P, axioms correspond to the

material cause of P, production rules are

understood as the ef®cient cause of P and

the speci®cation of particular sequences of

production rules or an algorithm is

identi®ed as the formal cause. For a

dynamic system a state can itself be

entailed only by a preceding state. If for a

chronicle f(n, f (n))g we ask why the nth

entry gives the particular value f (n), the

answer is because of the initial condition

f (0), ie f (0) is the material cause; and

because of a state transition mapping T for

which f (n� 1) � T [ f (n)], ie T

corresponds to the ef®cient cause; and

because of exponent n from which f (n) is

obtained by iterating the transition map n

times beginning with f (0); ie n refers to

the formal cause. As shall be discussed in

further detail below, in Rosen's relational

biology, for a component f : A! B,

such that a 7! f (a), the question `why

f (a)?' is answered by `because f ' and

Causality
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`because a'. In other words, `a entails f (a)'

or formally f ) (a) f (a)). Here f

corresponds to the ef®cient cause of

(`effect f (a)'), and a refers to the material

cause of f (a). One of Rosen's

achievements is that he introduced a

formalism rich enough in entailment to

allow ®nal causation without implying

teleology. The conceptual framework in

which he developed his relational biology is

category theory.22,23

TOWARDS A RELATIONAL
BIOLOGY
The problems of applying systems theory

in biology can be summarised by (a) the

dif®culty of building precise and yet

general models, (b) the `openness' of

biological systems, the fact that these

systems are hierarchical and highly

interconnected, and (c) that models based

on differential equations cannot represent

anticipatory behaviour as present in

cellular processes.

Modelling systems with sets of ®rst

order differential equations,

d f j

dt
� ö j( f1, . . . , f r), j � 1, . . . , r

the rate of change of observable (state

variable) f j depends only on present and

past states but cannot be dependent upon

future states. In other words, these systems

can only be reactive but not anticipatory.8

The reactive paradigm embodies one of

the most important assumptions of

science: effects should not precede their

causes. And yet simple biological systems

suggest the notion of self-reference, an

implicit model of knowledge of itself.

The following example of a biosynthetic

reaction network is due to Robert

Rosen8 (see also Casti24). Let metabolites

Ai represent the substrates for the

enzymes Ei that catalyses it at stage i. As

illustrated in Figure 2, the initial substrate

A0 activates the enzyme En (ie increases

its reaction rate). Under the foregoing

hypotheses, with concentration A0 at

time t the concentration of An at some

future time is predicted in order to

maintain homeostasis in the pathway. The

ambient concentration of A0 serves as a

predictor, which in effect `tells' the enzyme

En that there will be an increase in the

concentration Anÿ1 of its substrate, and

thereby pre-adapts the pathway so that it

can deal with the expected changes.

The second problem faced by

representing cellular processes with sets of

linear differential equations is captured by

Zadeh's uncertainty principle:25

As the complexity of a system

increases, our ability to make precise

and yet signi®cant statements about its

behavior diminishes until a threshold is

reached beyond which precision and

signi®cance (or relevance) become

almost exclusive characteristics.

The problem is that perturbations to cells

have multi-gene/multi-transcript/multi-

protein responses, `closing' the system, ie

restricting the model to a small set of

variables, inevitably leads to an often

unacceptable level of uncertainty in the

inference.

The tradition of describing cellular

systems in terms of energy and masses

with forces acting on them is rooted in

the realm of Newtonian mechanics. In

this context a system is closed by

internalising external in¯uences through

added state variables and more parameters

to the system. Take for example the

simplest of dynamical systems, a single

Figure 2: An anticipatory chemical reaction network
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particle moving along a line under the

action of a constant force. The motion is

governed by Newton's Second Law,

which de®nes the force F acting on a

mass point m to be the rate of change of

momentum (mv):

F � m
dv

dt
� m

d2x

dt2

with v denoting the velocity which, in

turn, is de®ned as rate of change of

position or displacement x from some

origin of coordinates. Conceptual closure

amounts to the assumption of constancy

for the external factors and the fact that

external forces are described as a function

of something inside the system:

F(x, v) � ÿèx

where è is a parameter speci®c to the

system under consideration. Rewritten as

a set of ®rst order differential equations,

this system has two state variables, f1

denoted by x and f2 denoted by v, where

dx

dt
� v and

dv

dt
� ÿ è

m
x

The model is deterministic in that the

object's state at time t is fully determined

from the initial conditions (if known) and

therefore permits the prediction of future

states by integrating the set of differential

equations. Newton's laws of motion,

which state that the acceleration of an

object is directly proportional to the force

acting on it and inversely proportional to

its mass, imply that the future behaviour

of a system of bodies is determined

completely and precisely for all time in

terms of the initial positions and velocities

of all the bodies at a given instant of time,

and of the forces acting on the bodies.

These forces may be external forces, which

arise outside the system investigated, or

they may be internal forces of interactions

between the various bodies that make up

the system in question. Rosen described

the response of a system to forces as the

`inertial' aspect while the exertion of

forces by the system corresponds to the

system's `gravitational' aspect. He

suggested a shift attention from

exclusively `inertial', ie structural aspects

such as the DNA molecule and its

sequence, to `gravitational' concepts.

Instead of concerning us with material

causation of behaviour, manifested in state

sets, he suggested formal and ef®cient

causations as the focus of attention. Such a

shift of perspective is exempli®ed in

category theory, Rosen's preferred

language to discuss these problems in the

abstract, by studying mappings between

sets (of objects) rather than analysing the

objects themselves.

Phenotypes are what we can observe

dirctly about organisms. They are

tangible, material properties that we can

measure, can compare and experiment

with. The phenotype is seen as being

`caused' or `forced' by the genotype. As

Rosen points out,10 the phenotype±

genotype dualism is allied to the

Newtonian dualism between states and

the forces that change the states. In

Aristotelian language, the states represent

material causation of behaviour, while the

forces are an amalgam of formal and

ef®cient causation. Biological phenotypes,

considered as material systems, are open.

They are open to `forcing' by genes as

well as open to interactions with their

environment. To study an open system it

is therefore necessary to consider the

`outside', the environment, in order to

understand what is going on `inside'. The

Newtonian paradigm, underlying the

traditional approach to modelling

biological systems, is frequently seen as

synonymous with reductionism and its

failure to supply the whole from its parts.

On the basis of this analysis and

continuing the work of Rashevsky,

Rosen argued his case for a new

approach, called relational biology. He

emphasised that we must look for

principles that govern the way in which

physical phenomena are organised,

principles that govern the organisation of

phenomena, rather than the phenomena

themselves. Relational biology is

therefore about organisation and describes

entailment without states. The association

of energy or matter, described by states

Relational biology
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and dynamical laws, is to be replaced by

the description of a system in terms of its

components, their function and

contribution to the organisation of the

system. An example of this approach for

molecular systems is Rosen's concept of

metabolism-repair or (M,R)-systems.

METABOLISM-REPAIR
SYSTEMS
Driven by technological advances and the

sequencing of genomes, at present, more

hypotheses are generated than tested.

However, with the availability of data,

biologists will soon return to re®ned

biological questions, `zooming in' to

speci®c genetic pathways. With the boom

in bioinformatics, the attempts to explain

genetic systems are likely to proceed from

the Cartesian metaphor, viewing

organisms as performing computations,

describing biological principles in the

same way as machines are. This tradition

has its roots in Newtonian mechanics and

formal logic, embodied in reductionism.

As we witness a shift of focus from

molecular charaterisation to an

understanding of functional activity in

genomics, this strategy is prone to repeat

historical failures as outlined in Rosen's

`Comprehensive inquiry into the nature,

origin, and fabrication of life'.9 As

bioinformaticians dream of in silico models

of cellular systems, Rosen developed a

new biology on paper. Starting from the

modelling relation, illustrated in Figure 1, he

began by considering two natural systems

N1 and N2 as analogues when they realise

a common formalism F. This relation of

analogy between natural systems is then

independent of their material

constitution. The formal system F is

relational, consisting of a set of formal,

interrelated, components. Any two natural

systems that realise this formalism are said

to manifest a common organisation. In

relational biology a component is de®ned

by a mapping

f : A! B

where the `identity' of the component is

embodied in the mapping itself, while the

in¯uence of surrounding components of

the natural system N and the external

environment are embedded in the speci®c

arguments in the domain A on which the

mapping can operate.

The previous section introduced the

anticipatory character of biological

systems. The basis for anticipatory

behaviour is a form of self-reference on

internal modelling. A cell is a good

example of a self-referential system. We

can describe a cell functionally as

consisting of two major functional

components, re¯ecting the morphological

partition between nucleus (genome) and

cytoplasm (phenome). The metabolic or

ergonic component represents its basic

chemical activity through the acquisition,

transfer and utilisation of energy. The

repair or cybernetic component ensures

continued viability of the cell in the face

of external disturbances. The latter

requires the processing and utilisation of

information to permit the control of what

the cell does and characterising its

temporal characteristics. Essential for the

maintenance of life, both components are

closely interrelated in jointly sustaining

the steady state.15 Rosen devised a class of

relational cell models called metabolism-

repair (M,R)-systems to characterise the

minimal organisation a material system

would have to manifest or realise what is

called a cell.9 The present section addresses

Rosen's answer to the problems of

causation and anticipatory behaviour

described above. We are going to review

Rosen's arguments and show (in the

abstract) that the presence of `metabolism'

and `repair' components imply the

existence of a `replication' principle. The

key point is that replication comes

without in®nite regress in modelling and

hence allows the discussion of ®nal

causation while avoiding the explanation

of phenomena by the purpose they serve

rather than by postulated causes

(teleology). To achieve this, we require a

conceptual framework rich enough in

entailment ± such as category theory.

Let A represent the set of

environmental inputs to the cell, while B

(M, R)-systems
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is the set of outputs, ie products the cell is

capable of producing. The mapping f

could be described as an abstract

`enzyme', which converts substrate a 2 A

into `product' b 2 B:

f : a! B, f 2 H(A, B)

a 7! f (a) � b
(1)

Further, letH(A, B) be the set of

metabolisms that are realisable by the cell,

ie a set of mappings from A to B. As

pointed out by Casti,26 the set of

physically realisable cellular metabolisms

H(A, B) is determined by various

physicochemical constraints and the

classical Newtonian machinery has been

used to capture many aspects of the cell's

metabolic activity in respect of the

mapping f above. However, both Rosen

and subsequently Casti have argued that

these formalisms lack a structure to

account for repair and replication. The

purpose of repair is to stabilise cellular

metabolic activity against ¯uctuations and

disturbances in both its environmental

inputs and in the metabolic map f itself.

In other words the repair is to copy f

while we refer to replication as the

process of copying the repair mechanism.

To arrive at a repair mechanism we

consider the following diagram:

A!f B!g C (2)

In the diagram, a entails f (a) and referring

to the discussion in the section on

`causing problems' we can answer the

question `why f (a)?' in two ways: because

a entails f (a) and because f acting on a

entails f (a). We can summarise the

entailment in the diagram by

8a 2 A, f ) (a) f (a))

and

g) (b) g(b)) 8b 2 B

If an element b 2 B is entailed, then it

must lie in the range of mapping f and

we can write f (a) � b for some element a

in the domain of f and obtain

g) ( f (a)) g( f (a)))

Suppose the set C in the diagram denotes

the collection of mappings from A to B,

H(A, B), we then ®nd that g in fact

generates a new f for any b 2 B. In other

words, g(b) is itself a mapping such that g

entails f :

g( f (a)) � f

In this case we denote this `repair map' by

Ö and illustrate the repair process by the

following augmented diagram:

A!f B!Ö H(A, B)

To allow some form of internal control,

the repair map Ö converts the abstract

products b into new versions of f :

Ö : B! H(A, B) (3)

For any speci®c activity, we denote the

metabolism for which the cellular process

is designed by f �; ie in the absence of

disturbances, given the environmental

input a� 2 A, f � produces the cellular

output b� 2 B. If there is a disturbance to

the metabolic function f � or a change

from the environment a�, the cell

`repairs' the situation by generating new

f � for any b�. The repair or control is

implicit in the boundary condition of the

repair map Ö. If there is neither a change

from the metabolic map f � nor from the

environment a�, then Ö ought to

produce f �:
Ö f �(b

�) � f �

stabilising the cell's metabolic behaviour

in response to external in¯uences and/or

errors. While in the simple diagram (1),

representing a metabolism, we could

answer the question of `why f (a)', f itself

was unentailed. The ®nality argument

would be to answer `because f ', f is to

bring A into B and yet f is itself

unentailed if we had not Ö in place.

However, with the introduction of the

repair function Ö) ( f (a)) f ), the

question `why f ?' is answered `because

Ö', Ö being the ef®cient cause of f and

`because f (a)', where f is entailed by its

value, the material cause.

The construction of the repair map

Causal entailment
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immediately poses the question to what

replicates Ö? One solution is to add yet

another function to the diagram (2) but

this would lead to an in®nite regress in

the discussion of causal entailment. The

cell's metabolic processing apparatus,

through information stored in the DNA,

allows replication and it was Rosen's

major achievement to show that, using

category theory,22,23 replication is in fact

already built into the scheme outlined in

diagram (2). Although we can add a

replication map to the diagram, we do not

need to argue for this map through an

addition to (2) as it already implicitly

exists.

To arrive at this conclusion, we view

the quadruple (A, B, f , Ö) as a simple

(M,R)-system on the category C. A

category comprises a collection of objects

such as A, B and associated arrows

(mappings) such as for example

f : A! B, where A is the domain of f

and B its co-domain. The collection of all

mappings with domain A and co-domain

B is denotedH(A, B). We suppose that

C is a concrete category, ie its objects are

structured sets and its arrows are mappings

compatible with their structure. If C is

closed under cartesian products, ie if A,

B, C, D are objects of C, f 2 H(A, B),

and g 2 H(A, B) are maps of C, then

A 3 C and B 3 D are objects of C, and

f 3 g 2 H(A 3 C, B 3 D), where

( f 3 g)(a, c) � ( f (a), g(c)), then for

H(A, B) de®ning an object in C, we

introduce for this special case a new

notation:

BA � f f j f : A! Bg
In (3) above we have in fact assumed that

H(A, B) � BA is an object in the

category to which A and B belong

because only then can BA be the range of

another mapping in the category and

hence can be entailed within the category.

In other words, for Ö to entail f , the

exponential (function set or map object)

BA must exist. Note that BA does not

necessarily exist as an object in C; there is,

for example, no analogous construction in

the category of monoids. If BA exists as an

object of the category C, it is associated

with the existence of a special evaluation

mapping e:

ef : (BA 3 A)! B, (4)

( f , a) 7! ef ( f , a) � f (a)

Note that we use subscript f in ef not to

denote a dependency on f but to

distinguish it from evaluations associated

with maps other that f .

Returning to our cellular (M,R)-

system

A!f B!Ö BA (5)

the map Ö is an element of the set of

mappings from B to the set of mappings

from A to B:

Ö 2 (BA)B

For this set to exist as an object in the

category C, following the general model

(4), there then must exist the evaluation

map

eÖ : ((BA)B 3 B)! BA, (6)

(Ö, b) 7! eÖ(Ö, b) � Ö(b)

The existence of the evaluation map eÖ
can be explained as follows. The value

f � Ö(b) can be viewed as depending on

two things: b as well as Ö. Although we

do not usually think that way with

functions, there is no reason why Ö is

®xed in the setting of (M,R)-ststems. We

can express this dependency on both Ö
and b as a two-valued mapping

(Ö, b) 7! f

Suppose we want to evaluate this map,

which we denote by h for now: we can

describe this as a two-step process which

effectively turns the mapping h(Ö, b) of

two variables into a map H(Ö) of one

variable Ö but with values H(Ö) which

are a function of the second variable b.

The formal de®nition of this map H reads

(H(Ö))(b) � h(Ö, b) (7)

where Ö 2 (BA)B and b 2 B:

Category theory
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Here each value H(Ö) is a function of b,

hence an element of the exponential set:

(BA)B � fÖ jÖ : B! BAg
such that

H : B! (BA)B

In formula (7) on the left-hand side the

mapping H(Ö) is evaluated at argument b

and h may therefore be called an

evaluation map and denoted by eÖ, leading

us to the de®nition in (6).

Our reasoning so far can be

summarised as follows. For Ö, the repair

of f , being entailed by something (being

replicated), it is required that the set of

mappings from B to BA exists as an object

in C. Then, if such a map object

(exponent) exists, it is associated with the

evaluation map eÖ. The evaluation map

in turn was explained by the bijection

h : (BA)B 3 B! BA

H : B! (BA)B

between functions h in two variables and

those H in one variable but which maps

into (BA)B, the space in which Ö resides!

In other words, given the metabolic

function f : A! B, and repair map

Ö : B! BA, these imply the replication

of Ö. With replication of Ö in place, we

can introduce a replication map, denoted � ,

� : BA ! (BA)B (8)

such that Ö is entailed by f . As previously

de®ned for the repair map, the boundary

condition for a stable operation is

� ( f ) � Ö f . The boundary conditions

are important as they de®ne the (M,R)-

systems as a controlled process. In

conventional control engineering the

existence of a separate control component

is assumed. The control action is an

external in¯uence on the process and we

may refer to this type of control as

extrinsic (exogenous). For (M,R)-systems

there is no direct control input and the

separation between controller and process

is not recognisable (intrinsic or

endogenous control). Instead the

`anticipatory regulation' is implicit in the

boundary conditions for Ö and � . The

boundary conditions imply an internal

self-model of the cell. Given A, B and

H(A, B), it is possible to directly

construct the maps Ö f � and � f � , ie repair

(of metabolism f ) and replication (of the

repair map Ö) emerge `naturally' from the

existence of an abstract metabolic

component. An argument in support of

theoretical or mathematical biology is that

such results, abstract they may be, are

neither the outcome of in vivo, in vitro or

in silico analysis but can also be obtained,

on papyrus. . ..
We can realise an (M,R)-system in

different ways and initially automata

theory was considered. However as

demonstrated by John Casti,26 since

Rosen introduced the concept,

considerable advances in the mathematical

theory of dynamic systems should enable

us to take his ideas further. Casti

developed a theory of linear (M,R)-

systems.27 In the model above we can

consider a as an input time-series leading

to output b. The input/output space A

and B are then ®nite-dimensional vector

spaces whose elements are sequences of

vectors from Rm and R p respectively:

A � fa: a � [u0, u1, . . . , uN ]g, ui 2 Rm

B � fb: b � [y1, y2, y3 . . .]g, yi 2 R p

Mathematical causation is acknowledged

by the fact that the ®rst output appears

one discrete time step after the ®rst input.

If f is further assumed to be linear and

constant (autonomous), we can express

the relationship between cellular inputs

and outputs by the following equation:

yt �
Xtÿ1

i � 0

Atÿiui, t � 1, 2, . . . (9)

where Ak 2 R p3m denotes the coef®cient

matrix that characterises the process.

The (M,R)-system consists of

f : A! B such that f (a�) � b� plus

Ö: B! BA such that Ö(b�) � f �. With

a linear realisation (9) we are now in a

position to investigate how the (M,R)-

system restores or stabilises disturbances in

the cellular environment a and/or

metabolic map f . A change in the
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external environment, a� ! a, for a ®xed

metabolic map f � leads to f �(a) � bnew

subsequently to Ö( f �(a)) � f new. For a

stable process, we require that

f �(a) � f �(a�) or f new(a) � b� for the

cell to recover fully from the disturbance.

The cell's metabolic activity would be

permanently changed to f new if

Ö( f new(a)) � f new. If we had

Ö( f new(a)) � f �, then the cell's

metabolism would only undergo periodic

changes cycling back and forth between

f � and f new.

In case of a ®xed environment a�,
®xed repair map Ö f � with a disturbance

f � ! f , we require Ö f �( f (a�)) � f � in

order to restore the original design-

metabolism f �. This in fact describes a

map f 7! Ö f �( f (a�)). Let us denote this

map as follows

Ø f �,a� : BA ! BA

f 7! Ö f �( f (a�))
We may ®nd that for disturbances f the

repair mechanism stabilises the system to

Ö f �( f (a�)) � f � but in some cases the

system could settle for the new

metabolism f such that Ö f �( f (a�)) � f .

This situation is represented by ®xed

points of the map Ø f �,a� . One such ®xed

point is of course f �, for which our basic

system is working normally such that

Ö f �( f �(a�)) � f �.
Casti addresses other biological

questions such as mutations and

Lamarckian inheritance.24,26 We may

conclude that Rosen's somewhat abstract

formulation of (M,R)-systems, initially

argued for by calling upon category

theory and thereby allowing us to reason

about more fundamental properties of

cellular systems, has also more `applied'

formulations in the form of sequential

machines and linear dynamic systems.

The formal tools required for such an

analysis are familiar to control engineers.

John Casti described various properties of

such systems and established further links

of these ideas to a number of other areas

of science and engineering.24,27 The, for

many, unexpected link between

biological questions and engineering

analysis should encourage control

engineers in particular to take an interest

in systems biology. We can expect that

over the coming years new technology

will allow us to measure gene expression

in time. Similar approaches to those

discussed here should then be developed

to study gene interactions.

CONCLUSIONS AND
DISCUSSION
The principal aim of systems biology is to

provide both a conceptual basis and

working methodologies for the scienti®c

explanation of biological phenomena.

System theory is not a collection of facts

but a way of thinking, which can help

biologists to decide which variables to

measure and to validate their `mental

models'. Frequently it is the process of

formal modelling rather than the

mathematical model obtained that is the

valuable outcome (Figure 3). In

engineering it is a common experience

that we often learn most from those

models that fail. The purpose of a

conceptual framework is therefore to help

explain unknown relationships, to make

predictions and to help design

Figure 3: Systems biology: systems thinking
in genomics
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experiments, suggesting to us which

variables to measure and why. Or, as the

mathematician David Hilbert once noted,

we might think that `there is nothing

more practical than a good theory'.

The need for mathematical models

becomes apparent as we begin to analyse

the organisation and control of genetic

pathways. The complexity of molecular

processes combined with the dif®culties

in observing them and measuring

quantitative data lead inevitably to

uncertainty in their analysis. Mathematical

models, providing suf®ciently accurate

numerical predictions, are possible in

some cases as demonstrated in the areas of

metabolic engineering and control. With

applications in biotechnology the inner

structure of models in this area is less

important than the ability to replicate

observable phenomena in simulations. If

however, on the other hand, we are

trying to answer more fundamental

questions regarding the mechanisms,

principles or causal entailment in genetic

pathways, we ®nd that the ancient

problem of causality haunts us once again.

Differential equations may be used to

model a speci®c form of causal entailment

in natural systems; the equations by

themselves, however, do not state that

changes are produced by anything, but

only that they are either accompanied or

followed by certain other changes.

Considering d f =dt � ö(t) or equivalently

d f � ö(t)dt, it merely asserts that the

change d f undergone during the time

interval dt equals ö(t)dt. The notion of

causality is not a syntactic problem but a

semantic one; it has to do with the

interpretation rather than with the

formulation of theories or formal systems.

In other words, hypothesising causal

entailment in general, and gene/protein

interactions in particular, remains a task of

the biologist, possibly supported by his or

her choice of mathematical model

(conceptual framework). As problems of

genomics become conceptual as well as

empirical, and models are expected to

explain principles rather than just

simulating them, we are therefore likely

to witness interesting debates on the

merits of alternative theories.

Scienti®c theories deal with concepts

not with reality, and mathematical models

are representations, not re¯ecting what

things are in themselves. All theoretical

results are derived from certain formal

assumptions in a deductive manner. In the

biological sciences, as in the physical

sciences, the theories are formulated as to

correspond in some useful sense to the

real world, whatever that may mean.

Energy or matter is the primary object of

physics. Its study in the phenomenal

world is based on changes and for

anything to be different from anything

else, either space or time has to be pre-

supposed, or both. Immanuel Kant

identi®ed the concepts of space, time and

causality as a priori and therefore

conditional for experience. Changes in

space and time are the essence of causal

entailment and as the philosopher Arthur

Schopenhauer discovered, the subjective

correlative of matter or causality, for the

two are one and the same, is the

understanding. `To know causality is the

sole function of the understanding and its

only power. Conversely, all causality,

hence all matter, and consequently the

whole of reality, is only for the

understanding, through the

understanding, in the understanding'.28 In

his famous essay `What is life?',29 the

physicist Erwin SchroÈdinger comes to the

conclusion that `our sense perceptions

constitute our sole knowledge about

things. This objective world remains a

hypothesis, however natural', echoing

Albert Einstein's observation that `as far as

the laws of mathematics refer to reality,

they are not certain; and as far as they are

certain, they do not refer to reality.'

The work of Robert Rosen is

important in that he not only identi®ed

the weaknesses of our common approach

to represent natural systems but he also

outlined a possible way to transcend the

reactive paradigm in order to obtain

representations of anticipatory systems.

Rosen was looking for ways to

characterise molecular and genetic systems
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in a general way and quite independently

of their physical or chemical constitution.

His (M,R)-systems, which are reviewed

here, are unlikely to become a

methodology that is useful to biologists.

However, they serve as an example of a

mathematical study of basic biological

principles. His conceptual framework

arose from a criticism of the transfer of

principles of Newtonian physics to

biology. It is in this context that his work

deserves renewed interest in the post-

genome era of biology and bionformatics.

One of the challenges for the emerging

®eld of systems biology is then to link

abstract mathematical models, like for

example (M,R)-systems, to speci®c

current problems of genomics. An

important difference from the 1960s is the

availability of three types of gene

expression data at different levels: genome

level (sequences), transcriptome level

(microarrays) and proteome level (mass

spectroscopy, gel techniques). In

particular with microarrays we can now

conduct time course experiments,

generating data suitable for time-series

analysis. With the shift of focus from

molecular characterisation to an

understanding of functional activity in

genomics, systems biology can provide us

with methodologies to study the

organisation and dynamics of complex

multivariable genetic pathways. What are

then the conditions for systems biology to

succeed?

Mihajlo MesarovicÂ wrote in 1968 that

`in spite of the considerable interest and

efforts, the application of systems theory

in biology has not quite lived up to

expectations . . . one of the main reasons

for the existing lag is that systems theory

has not been directly concerned with

some of the problems of vital importance

in biology.' His advice for the biologists

was that progress could be made by more

direct and stronger interactions with

system scientists. `The real advance in the

application of systems theory to biology

will come about only when the biologists

start asking questions which are based on

the system-theoretic concepts rather than

using these concepts to represent in still

another way the phenomena which are

already explained in terms of biophysical

or biochemical principles . . . then we will

not have the ``application of engineering

principles to biological problems'' but

rather a ®eld of systems biology with its

own identity and in its own right.'6
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