
Systems Chronobiology: Global Analysis of Gene
Regulation in a 24-Hour Periodic World
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Mammals have evolved an internal timing system, the circadian clock, which synchronizes
physiology and behavior to the daily light and dark cycles of the Earth. The master clock,
located in the suprachiasmatic nucleus (SCN) of the brain, takes fluctuating light input from
the retina and synchronizes other tissues to the same internal rhythm. The molecular clocks
that drive these circadian rhythms are ticking in nearly all cells in the body. Efforts in systems
chronobiology are now being directed at understanding, on a comprehensive scale, how the
circadian clock controls different layers of gene regulation to provide robust timing cues at
the cellular and tissue level. In this review, we introduce some basic concepts underlying
periodicity of gene regulation, and then highlight recent genome-wide investigations on the
propagation of rhythms across multiple regulatory layers in mammals, all the way from
chromatin conformation to protein accumulation.

TEMPORAL GENE REGULATION THROUGH
THE LENS OF THE CIRCADIAN CLOCK

Circadian rhythms in behavior and physiol-
ogy are widespread across living organisms

ranging from cyanobacteria to humans (Bell-
Pedersen et al. 2005). Unlike other temporally
ordered processes, such as embryonic develop-
ment or response to acute stimuli, gene regula-
tion considered over a normal day recurs with a
well-defined period of 24 hours (Doherty and
Kay 2010). These periodic patterns depend on
the interactions between environmental cycles
and endogenously ticking clocks (Partch et al.
2014). In mammals, these biological clocks con-
sist of a network of hierarchical oscillators in
which the master clock, located in the suprachi-

asmatic nucleus (SCN), controls rhythms in
behavior (Mohawk and Takahashi 2011) and
coordinates physiological rhythms across pe-
ripheral organs through systemic signals such
as hormones and temperature rhythms (Mo-
hawk et al. 2012). Natural light cycling in the
environment constitutes the main “clock-
driver,” or Zeitgeber, and synchronizes the cen-
tral clock in the SCN with the environment.
Nevertheless, other Zeitgebers, such as temper-
ature fluctuations and feeding rhythms, con-
tribute to the entrainment of clocks in tissues
outside of the SCN (Damiola et al. 2000; Stok-
kan et al. 2001). To decipher how deep the
circadian rhythms are encoded within the or-
ganism, single-cell analyses have shown that cir-
cadian oscillations rely on a cell-autonomous
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process, suggesting that potentially every cell in
an organism can resonate with environmental
time (Nagoshi et al. 2004; Welsh et al. 2004).

Thus, a major challenge in systems chrono-
biology is to unravel how the clock synchronizes
physiology across distinct organs, and in partic-
ular how the clock modulates the different lay-
ers of gene regulation. In this review, we first
refresh concepts underlying how rhythmic in-
formation is transmitted across each gene regu-
latory layer. Next, we highlight recent systems
approaches that extend our understanding of
circadian gene regulation, all the way from chro-
matin conformation to translation and protein
accumulation.

CONSTRAINTS ON TRANSMISSION
OF RHYTHMIC INFORMATION ACROSS
MULTIPLE REGULATORY LAYERS OF GENE
EXPRESSION

To start with a natural and simple scenario, let
us consider a product X synthesized according
to a rhythmic synthesis function s(t), with a
mean and relative amplitude, and is then trans-
formed or degraded at a temporally fixed rate k
(Fig. 1A). From this model, the relative ampli-
tude of X is damped and its rhythm delayed
compared with the source s (Fig. 1A). A longer
lifetime (large 1/k) relative to the circadian pe-
riod increases this damping and the delay (Figs.
1A,B). For example, a half-life of 2 hours for a
protein (such as DBP, a protein with robust os-
cillations) (Fonjallaz et al. 1996) is accompanied
by a reduction in relative amplitude by a factor
of 0.8 compared with the originating mRNA.
Moreover, this damping is accompanied with
a delay of 2.5 hours (Fig. 1B).

A basic model of protein expression that
involves several of such steps sequentially,

from transcription to translation, would predict
damping and delays that depend on the half-
lives of all gene products (Fig. 1C,D). Indeed,
amplitude damping and phase delays have been
observed as rhythms propagate from transcrip-
tion to mRNA as well as from mRNA to protein
(Le Martelot et al. 2012; Mauvoisin et al. 2014).
These simple models illustrate that, without
further regulation, it is in principle more diffi-
cult to transmit rhythmic information that is
encoded at the transcriptional level compared
with protein degradation or protein localiza-
tion. However, additional active regulations re-
lieve constraints on damping and delays. For
example, half-lives that are rhythmic, rather
than constant, allow phases to shift arbitrarily
and boost relative amplitudes (Luck et al. 2014).
Half-lives were reported to vary in circadian
genes through mechanisms including mRNA-
binding proteins, alternative splicing (Preuss-
ner et al. 2014), RNA methylation (Fustin et
al. 2013), and phosphorylation of proteins
(Vanselow et al. 2006; Mehra et al. 2009; Zhou
et al. 2015). Overall, the circadian system repre-
sents an attractive model to study the dynamics
of gene regulation at every layer from transcrip-
tion to translation.

STATISTICAL METHODS FOR THE
IDENTIFICATION OF PERIODIC GENE
EXPRESSION PATTERNS

In this section, we discuss the main methods
that are commonly applied to identify temporal
patterns in periodic gene expression. The prob-
lem of identifying periodic signals has a long
history (Fisher 1929; Hartley 1949). In the con-
text of circadian “omics” experiments, it has
been mostly tackled as a univariate problem,
in which each gene in the data set is tested for

Figure 1. (Continued) With increasing half-life, relative amplitudes (or fold change) are damped and X(t) is
delayed up to a maximum of 6 hours. Tau ¼ 1/k; es ¼ relative amplitude of synthesis. (C) Simple model for
protein expression. Transcription s(t) produces pre-mRNA ( p), which can be processed into mature mRNA
(m). Proteins are synthesized at a rate proportional to the accumulation of mRNA. In the simplest model, the
half-life of each gene product is assumed to be independent of time. (D) Damping (left) and delays (right) of
rhythms in short-lived versus long-lived mRNAs and proteins. Gene products with shorter half-lives preserve
rhythmic information more efficiently than those with longer half-lives. Initial fold change of s(t) was chosen as
9 to illustrate damping of amplitude.
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periodic expression independently. To account
for testing multiple genes, this procedure is
usually followed by a correction for multiple
testing (Noble 2009). Because this problem
has been extensively discussed (Wijnen et al.
2005; Luck and Westermark 2016), we will not
be exhaustive but will only illustrate the main
ideas. Methods can be broadly classified as
parametric and nonparametric. A common
parametric method is harmonic regression, in
which a sine wave is fitted to the data assuming
Gaussian noise, which leads to F-statistics
(Fisher 1929). One way to handle periodic sig-
nals that deviate from sinusoids is to allow for
higher harmonics, coupled with model selec-
tion (Costa et al. 2013). Overall, the methods
based on linear transformation are simple and
can be extended to handle more complex situ-
ations, such as comparisons across multiple
conditions. However, caution must be taken
when periodic signals deviate from sinusoids
and when the noise in gene expression is far
from Gaussian, such as in counts data encoun-
tered in RNA-sequencing data sets (Love et al.
2014).

Nonparametric methods may be better suit-
ed when the periodic patterns deviate from si-
nusoids or when there are outliers. One ap-
proach uses the ranks of the data points to
analyze how the data increases and decreases
over time. JTK_CYCLE compares the rank of
values against an underlying sinusoidal wave-
form (Hughes et al. 2010). RAIN builds on
the strengths of JTK_CYCLE and expands the
method to detect nonsymmetrical waveforms,
where the increasing and decreasing segments
may be unrelated (Thaben and Westermark
2014). Nonparametric methods handle non-
standard rhythmic patterns but could be more
difficult to extend to accommodate compari-
sons across multiple conditions.

On the other hand, the comparison of
rhythmic patterns across different conditions
(e.g., across tissues, genotypes, feeding condi-
tions) has been less studied. Although many
comparative studies have intersected lists of
rhythmic genes based on cutoffs, this approach
is often unsatisfactory because of its dependence
on arbitrary cutoffs. A more refined approach is

to ask whether two or more patterns are rhyth-
mic with the same amplitude and phase. Within
the framework of linear regression, the Chow
test can be used for two conditions and a model
selection approach can be used for three or more
conditions (Chow 1960; Atger et al. 2015).
Finally, we note that, with some exceptions
(Leng et al. 2015; Hughey et al. 2016), the prob-
lem has been tackled gene by gene. Multivariate
approaches that leverage rhythmic or mean sig-
nals across multiple genes may provide addi-
tional insights toward the regulation of gene
modules across conditions.

In the remaining sections, we discuss recent
advances toward obtaining a comprehensive
view of circadian gene expression programs,
and the mechanisms by which certain molecu-
lar machineries resonate with diurnal fluctua-
tions.

MODEL OF THE MAMMALIAN CORE CLOCK

At the cellular level, molecular oscillators en-
code circadian rhythms (Bell-Pedersen et al.
2005). In mammals, although the nature of
the molecular pacemaker is still not resolved
(Edgar et al. 2012), it is assumed that transcrip-
tional–translational feedback loops (TTFLs)
play an important role (Partch et al. 2014; Ro-
binson and Reddy 2014). In the current TTFL
model, the CLOCK-BMAL1 transcription fac-
tor heterodimer binds E-box DNA sequence
and drives the expression of Period (Per1, Per2,
and Per3) and Cryptochrome (Cry1 and Cry2)
genes. In turn, PER and CRY proteins negatively
regulate CLOCK-BMAL1 trans-activation effect
and repress their own transcription (Gekakis
et al. 1998; Sangoram et al. 1998; Kume et al.
1999; Zheng et al. 1999). A second loop consists
of the transcriptional control of the nuclear-re-
ceptors Rev-Erba/b and Rora/b/g by the
CLOCK-BMAL1 complex (Everett and Lazar
2014). By competitive binding to RORE-respon-
sive-elements (RREs) on the DNA, REVERB
and ROR proteins, respectively, repress or acti-
vate Bmal1 gene transcription (Preitner et al.
2002; Akashi and Takumi 2005; Guillaumond
et al. 2005; Takeda et al. 2012).
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TRANSCRIPTIONAL REGULATION
OF CLOCK CONTROLLED GENES

Core clock transcription factors regulate clock-
controlled output genes such as the PAR bZIP
transcription factors, TEF, HLF, and DBP, which
bind D-boxes’ DNA sequences in the genome
and regulate target gene expression (Gachon
et al. 2006; Stratmann et al. 2012). Interestingly,
the PAR bZIP transcription factors oscillate
with high amplitudes in the liver but with low
amplitudes in most brain regions (Gachon et al.
2004). In mammals, a large number of tran-
scripts show circadian accumulation, many of
which are tissue specific (Panda et al. 2002;
Storch et al. 2002; Zhang et al. 2014). The core
clock machinery can generate tissue-specific
circadian transcriptomes indirectly by activat-
ing tissue-specific transcription factors in a
rhythmic manner or directly by cooperating
with tissue-specific transcription factors to out-
put rhythmic gene expression in a specific tissue
(Andrews et al. 2010; Korencic et al. 2014;
Zhang et al. 2015).

The mouse liver, because of its cellular ho-
mogeneity and the large amount of biological
material obtainable, has been extensively stud-
ied at the genome-wide level. Around 10%–
15% of genes in the liver were described as
rhythmically transcribed (Hughes et al. 2009;
Vollmers et al. 2009), although this figure de-
pends entirely on the applied criteria, such as
cutoffs or the set of genes considered. For ex-
ample, diurnal rhythms in gene expression
were shown to represent �50% of the liver
transcriptome (Mauvoisin et al. 2014). Howev-
er, even in the liver, the number of cyclic
mRNAs with large amplitudes (e.g., larger
than twofold) remains relatively low (Korn-
mann et al. 2007). This fluctuating transcrip-
tion is in part the consequence of temporal
changes in the recruitment of core clock tran-
scription factors themselves to the chromatin,
as well as rhythmic RNA polymerase II (RNA
pol II) loading (Cho et al. 2012; Koike et al.
2012; Le Martelot et al. 2012). For example,
BMAL1 binds to .2000 sites in the genome
including genes implicated in carbohydrate
and lipid metabolism (Rey et al. 2011). Histone

modifications and chromatin remodeling,
which are signatures of gene activity (Bernstein
et al. 2007), are also rhythmic around the clock.

Indeed, many studies reported histone
modifiers and remodelers as part of the clock-
work machinery, such as the histone acetyl-
transferase (HAT) p300 (Etchegaray et al.
2003), the histone methyltransferases MLL1
(Katada and Sassone-Corsi 2010), and MLL3
(Valekunja et al. 2013). The CLOCK protein
itself was reported to show HAT activity (Doi
et al. 2006). BMAL1 was recently described as
a pioneer transcription factor capable of open-
ing the chromatin (Menet et al. 2014). This is
particularly interesting because rhythmic chro-
matin remodeling and time varying nucleo-
some occupancy were previously observed
(Ripperger and Schibler 2006). On the other
hand, biochemical analyses led to the identifi-
cation of transcriptional repressors associated
with core clock components such as the nucle-
osome remodeling and deacetylases (NuRD)
complex (Kim et al. 2014), the nuclear receptor
corepressor (NCoR) (Yin and Lazar 2005), Poly-
comb group proteins (Etchegaray et al. 2006),
and histone deacetylases (Feng et al. 2011).

An interesting property of the clockwork
machinery resides in its capability to sense
the cellular environment through coregulators.
In mouse liver, SIRT1, an NADþ-dependent
HDAC, inhibits BMAL1-CLOCK activity (Na-
kahata et al. 2008). Moreover, CLOCK-BMAL1
activates the transcription of the rate-limiting
enzyme, NAMPT, which is involved in NADþ

biosynthesis (Ramsey et al. 2009), ultimately
resulting in SIRT1 activation and BMAL1-
CLOCK inhibition. This mechanism uses me-
tabolites to integrate energy status of the cell
with the circadian clock (Berger and Sassone-
Corsi 2015).

Although a more detailed understanding of
circadian regulation of transcription is emerg-
ing, many aspects remain unclear. For example,
how does the circadian clock associate with tis-
sue-specific components as well as signals to
transcribe the proper genetic repertoire at the
right moment in the right organ and, in fine,
optimize circadian physiological function? This
question has been the purpose of a recent review

Systems Chronobiology
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series (Hussain and Pan 2015). Also, the roles of
histone variants (Menet et al. 2014) and distal
regulatory sequences in controlling circadian
transcription are still understudied and chal-
lenging. For example, a large fraction of
BMAL1 binding sites (60%) is located .10 kb
away from the nearest TSS (Rey et al. 2011),
raising questions about whether these distal
sites are enhancers. Interestingly, recent RNA-
sequencing experiments revealed the presence
of thousands of circadian enhancer-RNAs
(eRNAs) in mouse liver (Fang et al. 2014). As
is often performed in similar studies in other
fields, candidate enhancers are assigned to tar-
get promoters according to genomic proximity;
however, physical distance (measured in 3D)
would be functionally more relevant. In the
next section, we discuss recent work exploring
chromatin conformation, both in general and in
the context of circadian biology.

RHYTHMIC TRANSCRIPTION IN A THREE-
DIMENSIONAL NUCLEUS

Our current understanding of the global spatial
organization of the mammalian genome has
benefitted from two main experimental ap-
proaches. First, chromosome conformation-
capture assays, or “C”-based techniques, which
evaluate the frequency of cross-links between
genomic regions (de Wit and de Laat 2012).
Among the “C” techniques, 3C reveals contact
frequencies between few selected pairs of geno-
mic fragments (Dekker et al. 2002), 4C between
one locus (the bait) and the entire genome (Si-
monis et al. 2006), 5C between many and many
loci (Dostie et al. 2006), and Hi-C monitors
interactions between pairs of genomic sites ge-
nome-wide (Lieberman-Aiden et al. 2009).
Moreover, ChIA-PET can identify chromatin
hubs bound by a given protein (Fullwood et
al. 2009). Thus, owing to the biochemical meth-
ods involved, “C” techniques usually provide
information on chromatin conformation aver-
aged over millions of cells. Second, fluorescence
in-situ hybridization (FISH) uses microscopy
to directly measure physical distances between
genomic loci in individual cells, but with a lim-

ited throughput on the number of pairs (Fraser
et al. 2015).

The emerging picture can be recapitulated
as a hierarchical compartmentalization of the
mammalian genome (Bickmore and van Steen-
sel 2013; Dekker and Heard 2015). Briefly,
individual chromosomes occupy discrete terri-
tories in the nucleus (Cremer and Cremer 2001)
and gene rich chromosomes tend to be located
near the center of the nucleus. Inside chromo-
some territories, different chromatin compart-
ments segregate according to chromatin states
(Lieberman-Aiden et al. 2009). Recently, Hi-C
experiments revealed that mammalian genome
folds into structures called topologically associ-
ating domains (TADs) (Dixon et al. 2012).
TADs are 100-kb to 1-Mb scale chromatin do-
mains that appear to be conserved between
mammals (Dixon et al. 2012; Vietri Rudan
et al. 2015). Moreover, CTCF and cohesin pro-
tein complexes appear to play a major role in
governing the contours of chromatin folds,
such as TAD boundaries and enhancer–pro-
moter contacts (Dixon et al. 2012; Seitan et al.
2013; Rao et al. 2014; Zuin et al. 2014; Vietri
Rudan et al. 2015). Importantly, functional in-
teractions between genomic loci, such as pro-
moter–enhancer pairs, mainly occur within a
genomic scale typical of TADs, that is, dozens
to hundreds of kilobases, and can be cell-type-
specific (Hughes et al. 2014; Mifsud et al. 2015;
Schoenfelder et al. 2015). Recently, elegant ex-
periments using CRISPR-Cas9 genome engi-
neering tools showed that chromatin contacts
can be rearranged and transcription perturbed
by removing CTCF sites or TAD boundaries
(Guo et al. 2015; Tsujimura et al. 2015). So
far, the best examples that explore chromatin
conformation and their functional significance
for processes such as transcription have come
from developmental biology. The locus control
region (LCR) controlling the transcription of
b-globin genes directly contacts target promot-
ers in specific tissues and developmental stages
(Tolhuis et al. 2002; Chang et al. 2013; Deng
et al. 2014; Bartman et al. 2016). Also, Hox genes
and chromatin domains orchestrate folding re-
arrangements and switches in transcriptional
states (Chambeyron and Bickmore 2004; Noor-
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dermeer et al. 2011, 2014). Altogether, these
studies illustrate the tight connections between
chromatin folding and gene expression.

As previously mentioned, the circadian os-
cillator offers a unique model to study periodic
transcriptional regulation. The circadian system
is also an ideal system to explore temporal dy-
namics in the spatial organization of the ge-
nome and associated function on gene regula-
tion. Does the global folding of the genome
oscillate in a circadian manner? Do circadian
genes cluster together? Do regulatory sequences
rhythmically contact circadian gene promoters?
So far, only a few studies have addressed these
questions. The first one used chromosome con-
formation capture on chip (4C) in wild-type
and clock-deficient mouse embryonic fibro-
blasts (MEFs) to evaluate chromatin contacts
involving the Dbp promoter (Aguilar-Arnal
et al. 2013). Interestingly, although most geno-
mic contacts remained globally stable, there
were also circadian fluctuations and clock-de-
pendent chromatin interactions connecting
Dbp promoter. These rhythmically contacting
regions included circadian genes and genomic
elements such as E-boxes, which were support-
ed by DNA-FISH (Aguilar-Arnal et al. 2013).
However, this study focused exclusively on in-
teractions with regions on trans-chromosomes.
A more recent study took advantage of paired-
end sequencing of 4C libraries to reconstruct
networks surrounding the H19 imprinting lo-
cus in human ES cells (Zhao et al. 2015). First,
the investigators found the locus Pard3 among
the contacted hubs in human embryonic stem
(ES) cells. Then in human HCT116 cells, in
which Pard3 was expressed in a circadian man-
ner, the locus was rhythmically recruited to the
nuclear lamina, a well-known repressive com-
partment of the nucleus (Kind et al. 2015). In-
terestingly, this recruitment was dependent on
CTCF and PARP1 protein functions, the latter
having been previously linked to the clockwork
machinery in the mouse liver (Asher et al.
2010). Moreover, the rhythmic recruitment of
Pard3 to the lamina was corroborated with 3D
DNA-FISH experiments and appeared essential
for its oscillating transcription (Zhao et al.
2015). To correlate chromatin structure with

gene expression, Hi-C and 3D imaging were
compared with RNA-Seq around the clock,
which showed correlations between chromatin
folding and transcription dynamics for certain
genes involved in the cell cycle and circadian
rhythms (Chen et al. 2015). In this study, com-
paring the structure and function of the genome
suggested correlation between physically inter-
acting gene pairs. For example, 3D DNA-FISH
showed that distances between Per2 and Clock
rhythmically fluctuate over the day; the two
genes were close together when mRNA accumu-
lation of Per2 was low and Clock was high (Chen
et al. 2015). Overall, these studies suggest a link
between circadian transcription and dynamics
of chromatin folding (Fig. 2B). Future investi-
gations combining ChIP-sequencing for factors
such as CTCF and cohesin subunits with high-
resolution chromosome conformation capture
assays and genome editing would help to fur-
ther establish functional relationships between
chromatin folding and the molecular clocks.
Interestingly, recent findings suggested a role
for CTCF and cohesin in insulating phases of
circadianly expressed genes, probably through
their function in delimiting TAD, as well as via a
functional role of cohesin in connecting gene
promoters to distal regulatory elements (Xu
et al. 2016).

So far, we have discussed circadian fluctua-
tions in transcription, with an emphasis on the
potential role of three-dimensional conforma-
tions of the chromatin. However, only a limited
overlap was found between the rhythmic accu-
mulation of pre-mRNA and that of mature
mRNA (Koike et al. 2012; Menet et al. 2012),
suggesting a role of posttranscriptional mecha-
nisms in circadian gene regulation. In the next
section, we discuss recent advances in the un-
derstanding of posttranscriptional regulation in
circadian biology.

CIRCADIAN POSTTRANSCRIPTIONAL
REGULATION AT THE RNA LEVEL

With constant half-lives of gene products, am-
plitudes damp and the phase is delayed (Fig. 1).
However, additional regulations, such as the
rhythmic degradation of intermediate prod-
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ucts, can further modulate gene expression, for
example, by tuning the amplitude or shifting
the phase of the driving rhythm (Le Martelot
et al. 2012; Luck et al. 2014). One straightfor-
ward way to identify transcriptional and post-
transcriptional regulatory events underlying
circadian gene expression is to compare mea-
sures of transcription, mRNA accumulation,
translation efficiency, and protein accumula-
tion. Recently, many studies used different tech-
niques to analyze transcriptional activity and

mRNA accumulation in mouse liver around
the clock. For example, the process of transcrip-
tion was measured by quantifying nascent RNA
chains that are associated with the chromatin
(Menet et al. 2012). Others have compared
RNA Pol II loading in gene bodies as a proxy
for transcription with mRNA accumulation
using microarrays (Le Martelot et al. 2012).
Furthermore, total RNA-Seq is assumed to si-
multaneously estimate transcriptional activity
(intronic reads) and accumulation of mature
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Figure 2. Circadian regulation of gene expression. (A) Circadian rhythms can impact gene expression at virtually
any step between transcription to translation. In mammals, although many steps of gene regulation such as
transcription, mRNA, and protein accumulation are known to fluctuate over the day, the role of the clock in
other steps such as splicing and mRNA transport is less understood. Recent advances have highlighted other
levels of regulation involving the circadian clock, such as chromatin structure and translation. (B) Recent
advances highlighted the role of chromatin conformation in regulating circadian genes. For instance, rhythmic
contacts between distal genomic regulatory sequences and gene promoters contribute to circadian gene expres-
sion. (C) By measuring translation rate around the clock, ribosome-profiling experiments found that transla-
tion efficiency fluctuates over the diurnal cycle. Thus, although TOP and TISU motif mRNAs accumulate
constantly in mouse liver, the rhythmic translation rate of these mRNAs allows fluctuating protein synthesis
encoding ribosomal (TOP) and mitochondrial (TISU) functions.
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mRNAs (exonic reads) (Koike et al. 2012; Du
et al. 2014; Atger et al. 2015; Gaidatzis et al.
2015).

Although studies have identified notable
genes regulated at the posttranscriptional level,
such as Tfrc (Janich et al. 2015) and Cirbp (Morf
et al. 2012), the genome-wide extent of post-
transcriptional regulation of the circadian tran-
scriptome varies from different studies (Koike
et al. 2012; Le Martelot et al. 2012; Menet et al.
2012). This divergence is likely a result of dif-
ferent experimental and analysis methods used
(Luck et al. 2014). A recent meta-analysis and
data modeling approach considered production
and degradation rates as circadian parameters,
and concluded that 30% of circadian genes are
regulated posttranscriptionally (Luck et al.
2014).

Altogether, genome-wide approaches mea-
suring transcription, RNA processing, and
accumulation, as well as single-gene studies,
emphasized that a non-negligible amount of
circadian genes are subjected to posttranscrip-
tional regulation (Kojima et al. 2011; Beckwith
and Yanovsky 2014). For example, perturbation
of RNA methylation leads to a longer circadian
period phenotype in both human and murine
cells (Fustin et al. 2013). An important mecha-
nism of RNA processing that greatly expands the
diversity of transcripts is alternative splicing
(Nilsen and Graveley 2010). Although this pro-
cess could, in principle, regulate circadian accu-
mulation of many transcripts, surprisingly few
works have analyzed the contribution of alter-
native splicing to mammalian circadian gene
expression. In fact, exon arrays have shown
that relatively few circadian transcripts (0.4%)
are regulated at the splicing level in mouse liver
(McGlincy et al. 2012), although these tran-
scripts included notable clock components
such as Clock and Npas2. Single-gene analysis
reported that rhythmic degradation of PER1 is
regulated by circadian alternative splicing of the
U2AF26 factor (Preussner et al. 2014). In cul-
tured mouse cells, the temperature entrainment
of the clock was shown to involve posttranscrip-
tional mechanisms. Notably, the cold-inducible
RNA-binding protein (CIRBP) is involved in
temperature entrainment of the clock, possibly

by binding to transcripts encoding circadian
oscillator proteins, such as clock (Morf et al.
2012). Interestingly, CIRBP and RBM3, another
RNA-binding protein, dictate the choice of pol-
yadenylation sites of target transcripts in a cir-
cadian manner (Liu et al. 2013).

Circadian rhythms in poly(A) tail lengths
have been known for a long time (Robinson et
al. 1988). Using comprehensive methods, hun-
dreds of transcripts showed a circadian poly(A)
tail length in mouse liver, some of which corre-
lated with circadian transcription as well as
protein abundance (Kojima et al. 2012). Thus,
rhythmic deadenylation of transcripts could
affect circadian transcripts half-life and trans-
lation efficiency. Nocturnin (NOCT) is a cyto-
plasmic deadenylase rhythmically expressed
and controlled by the clock. Furthermore,
NOCT KO mice showed resistance to diet-in-
duced obesity (Green et al. 2007; Li et al. 2008).
Therefore, it may be tempting to speculate that
NOCT could regulate the global circadian fluc-
tuations in the length of poly(A) tails of
mRNAs, but recent mouse mutant studies
have not confirmed this hypothesis (Kojima
et al. 2015). Interestingly, NOCT itself is post-
transcriptionally regulated by the microRNA
(miRNA) miR-122 (Kojima et al. 2010). miR-
122 is important for hepatic circadian functions
and targets genes involved in cholesterol and
lipid metabolism (Gatfield et al. 2009). Using
an inducible DICER knockout, an elegant study
evaluated the global contribution of miRNAs to
circadian gene expression in mouse liver (Du
et al. 2014). Although a non-negligible fraction
of circadian transcripts was affected by
miRNAs, this study emphasized the resilience
of the circadian clock to perturbations in
miRNA biogenesis (Du et al. 2014). Taken to-
gether, these results underscore the importance
of posttranscriptional regulation of molecular
clocks. However, the underlying mechanisms
are still not well understood and further efforts
are needed to better appreciate the usage of dif-
ferent strategies controlling circadian gene ex-
pression at multiple steps. In the next section,
we discuss recent works highlighting the role of
translation in circadian biology using ribosome
profiling and quantitative mass-spectrometry.
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CIRCADIAN REGULATION IN
TRANSLATION EFFICIENCY

The process of translating mRNA into protein is
tightly regulated but its contribution to circadi-
an biology remains poorly studied. A few re-
ports have indicated that RNA-binding proteins
such as LARK and heterogeneous nuclear ribo-
nucleoprotein (hnRNP) complexes are impli-
cated in circadian modulation of translation in
mammals (Kojima et al. 2007; Kim et al. 2010;
Lee et al. 2012). The first study to assess trans-
lation efficiency globally used microarrays of
polyribosome occupancy in mouse liver around
the clock (Jouffe et al. 2013). Interestingly, this
work revealed that the expression of translation
factors such as initiation factors, ribosomal pro-
teins, and ribosomal RNAs underlie circadian
regulation. Moreover, the rhythmic expression
of ribosome biogenesis intermediates and
translation initiation factors were impaired in
clock-deficient mice (Jouffe et al. 2013). This
link between the circadian clock, ribosome
synthesis, and translation initiation raises the
question of whether translation rate itself can
be rhythmic. To comprehensively address this,
ribosome profiling, which consists of measur-
ing ribosomal occupancy on transcripts, is the
method of choice. Translation efficiency is esti-
mated by comparing ribosomal occupancy to
transcript abundance. This approach was ap-
plied to human cell line (Jang et al. 2015) and
mouse liver around the clock (Atger et al. 2015;
Janich et al. 2015). The results suggested that,
for most genes, when transcription fluctuates in
a circadian manner, mRNA accumulation and
protein synthesis follows. Nevertheless, the
three studies found a few exceptions. Protein
synthesis can be rhythmic from mRNAs whose
abundances are constant. Conversely, mRNA
abundance can be rhythmic but lead to flat
ribosomal occupancy (Atger et al. 2015; Jang
et al. 2015; Janich et al. 2015). For example,
iron metabolism mRNAs accumulate constant-
ly but are rhythmically translated in mouse liver
(Janich et al. 2015). Because ribosome-profiling
studies detect only relative effects on translation
rate of individual transcripts, quantifying the
absolute ribosome occupancy requires internal

controls such as RNA spike-ins (Lian et al.
2016).

A remarkable observation in mouse liver
and human cells is the presence of upstream
open reading frame (uORFs) in core clock
mRNAs (Jang et al. 2015; Janich et al. 2015).
Although the functions of the short peptides
translated from these uORFs are unknown, dis-
ruption of translation reinitiation perturbed the
circadian period length of mouse fibroblast
(Janich et al. 2015). The most complete in-
vestigation on translation efficiency included
clock-deficient animals and different feeding
regimen (Atger et al. 2015). Interestingly, gene
sets encompassing TOP and TISU motifs in the
50UTRs were rhythmically translated but had
constant mRNA abundance (Fig. 2C). These
gene sets were associated with ribosomal func-
tion, reinforcing previous observations that cir-
cadian rhythms are integrated with translation
machinery (Jouffe et al. 2013). Importantly,
comparing clock wild type with BMAL1 mutant
suggested that feeding, rather than the clock, is
the main driver of rhythmic translation in the
liver (Atger et al. 2015). This is intriguing be-
cause the BMAL1 protein itself was linked to
translation function (Lipton et al. 2015). In-
deed, in MEFs, mass spectrometry of compo-
nents precipitating with BMAL1 revealed the
presence of proteins related to translation.
BMAL1 was associated with translation initia-
tion factors in the cytoplasm and promoted
cap-dependent translation initiation. Further-
more, the role of BMAL1 in translation was
linked to the mTOR pathway (Lipton et al.
2015).

Altogether, these findings suggest that
translation is an integral part of the clockwork
machinery. The dynamics of protein accumula-
tion throughout the day is discussed in the next
section.

CIRCADIAN RHYTHMS IN PROTEIN
ACCUMULATION

The first studies evaluating temporal changes in
protein accumulation used 2D-gel electropho-
resis performed over the clock. This technique
revealed that proteins in mouse liver and other
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organs accumulated in a circadian manner
(Reddy et al. 2006; Podobed et al. 2014). Inter-
estingly, the identified proteins were involved in
key physiological functions such as sugar me-
tabolism in liver. More recently, stable isotope
labeling of amino acids (SILAC) followed by
mass spectrometry enabled quantitative analy-
sis of the circadian proteome. This approach
quantified the relative abundances of an un-
precedented number of proteins in the SCN
(Chiang et al. 2014) and liver (Mauvoisin
et al. 2014; Robles et al. 2014) of mice. Overall,
5% to 10% of the detected proteins accumulat-
ed in a circadian manner, encoding essential
biological processes such as mitochondrial ox-
idative phosphorylation in the SCN (Chiang
et al. 2014), detoxification (Robles et al. 2014),
and protein secretion in mouse liver (Mauvoi-
sin et al. 2014). A remarkable observation in
mouse liver is that virtually all secreted proteins
accumulate rhythmically with a peak at Zeitge-
ber Time 18 but are encoded by flat mRNAs.
This emphasizes the possible relevance of the
circadian rhythms in controlling systemic sig-
nals. Comparing the proteomes of liver in wild-
type versus clock-deficient mice suggested that
feeding was the main driver of rhythmic protein
accumulation (Mauvoisin et al. 2014). Notably,
about half of rhythmic proteins did not come
from rhythmic mRNAs, suggesting active circa-
dian translation or rhythmic degradation. Inter-
estingly, for the other half, the amplitudes of
rhythmic proteins were damped and phases
were shifted by an average of 5.5 h. Simple ki-
netic models incorporating protein half-life
data predicted a delay of 6 h and damped of
amplitudes (Fig. 1C), suggesting that the re-
duced protein amplitudes likely originated
from long protein half-lives.

Taken together, these proteomics data, de-
spite relatively low sensitivity compared with
DNA and RNA-sequencing approaches, sug-
gested that proteins accumulate rhythmically
over the day and in a tissue-specific manner.
These results were complemented by absolute
quantifications of copy number for core clock-
proteins over the circadian cycle in mouse liver
(Narumi et al. 2016). Future studies investigat-
ing the circadian dynamics of the distribution

of proteins across different cellular subcom-
partments might be more informative. Interest-
ingly, recent findings suggest that mitochondria
also show circadian proteome content mediated
by the PERIOD complex (Neufeld-Cohen et al.
2016). Finally, critical posttranslational mecha-
nisms such as protein folding, transport, and
biochemical modifications are not discussed
here.

PERSPECTIVES IN SYSTEMS
CHRONOBIOLOGY

In this review, we discussed recent advances
coming from large-scale molecular explorations
of the mammalian circadian clock. Because the
circadian system provides a unique dynamic
context, it represents an exciting model for ex-
ploring functional genomics. Over the last dec-
ade, temporal analyses of gene regulation em-
phasized a vast and continuous regulatory
landscape underlying the mammalian molecu-
lar clocks. This includes transcription, RNA-
processing, and translation to mention only
the most obvious.

However, important questions in circadian
biology remain. The building of a comprehen-
sive map of chromatin organization, alternative
splicing, RNA transport, protein turnover, and
posttranslational modifications around the
clock remains exciting challenges. Furthermore,
most studies on circadian biology have focused
on populations of cells. Recent advances in sin-
gle-cell technologies will reveal new aspects of
circadian gene regulation, such as cell-to-cell
variability in chromosome conformation, tran-
scription, and mRNA accumulation (Suter et al.
2011; Nagano et al. 2013; Achim et al. 2015;
Battich et al. 2015). New large-scale approaches
coupled with computational modeling will be
needed to tackle these critical challenges.
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