
Fitzgerald, B. (2000) Systems Development Methodologies: The Problem of Tenses, Information
Technology & People, Vol. 13, No. 3, pp. 13-22.

SYSTEMS DEVELOPMENT METHODOLOGIES: THE PROBLEM OF TENSES

Brian Fitzgerald
Executive Systems Research Centre

University College Cork
Ireland

Email: bf@ucc.ie

Abstract
This paper presents two fundamental arguments. Firstly, it is proposed that most
of the currently-available systems development methodologies are founded on
concepts which emerged in the period from about 1967 to 1977. This argument is
presented through the use of literature references. The second argument is that the
profile of the development environment now faced in organisations is very
different from that which prevailed in the period 1967 to 1977. This is illustrated
through original empirical research carried out by the author which supports this
argument, and by contrasting these findings with those of previous studies in the
literature. It is therefore argued that there is a need to update ‘tenses’ by deriving
new methodological canons more appropriate to the needs of the current
development environment. Some suggestions for new methodological canons
appropriate to the current development environment are provided.

Keywords: IS development methodologies, IS development methods and tools,

Systems development techniques, IS development strategies.

1. Introduction
Most of the systems development methodologies in use today have their origins in
a set of concepts that came to prominence in the 10-year period from about 1967
to 1977. Thus, overarching concepts such as the systems development lifecycle,
prototyping, and user participation can be traced to this period. Fundamental
design strategies such as functional decomposition, information hiding, and
techniques such as data flow diagramming and entity relationship modelling also
stem from this era. Even the origins of object-orientation can be traced to this
period. This paper provides some empirical evidence which supports the
contention that the profile of development is very different from that faced in the
past when these methodologies were first promoted. It is therefore argued that a
‘problem of tenses’ (cf. Friedman, 1989) also exists in relation to systems
development methodologies, viz., there is a need to move from the past imperfect
to the future by deriving new methodological canons more appropriate to the
needs of the current development environment.
The paper is structured as follows. In the next section, the foundational concepts
underpinning most methodologies are identified and traced to the ‘golden decade’,
1967 to 1977. Following this, empirical evidence is provided which suggests that
the profile of the organisational development environment faced currently is
vastly different from that of the period 1967 to 1977. Finally, some new canons to
guide modern systems development are proposed and conclusions drawn.

 2

2. Foundational Concepts of Systems Development Methodologies
As already mentioned, most of the systems development methodologies in use
today have their origins in a set of concepts that came to prominence in the 10-
year period from about 1967 to 1977.1 The following is a brief summary of the
concepts involved and the relevant supporting literature:
The systems development lifecycle (SDLC) was first applied in relation to systems
development in this era (Royce, 1970). It has been reckoned to be the basis for
most methodologies (Davis et al., 1988; Orr, 1989), and it has been described as
the “cornerstone” and a “hallmark of every development effort” (Ahituv et al.,
1984). A lifecycle concept is common in many branches of engineering, and its
introduction into the systems development area in this period coincided with the
desire to establish an engineering approach to systems development (cf. Friedman,
1989; Kraft, 1977). In the early years of systems development, developers were
typically scientific researchers with a strong mathematical or engineering
background who developed their own programs to address the particular areas in
which they were carrying out research. Given this type of environment, there was
little need for direct management control or for any methodological support for
development. Thus, these early programmers operated in an environment which
Friedman (1989) terms as loose responsible autonomy with little management
control or project management focus.
The move to the SDLC approach represented a shift towards tighter control of the
development process (Friedman, 1989). However, the traditional lifecycle proved
to be problematic, and a common response to such problems was the adoption of
prototyping amongst many practising developers (cf. Bally et al., 1977). Indeed,
prototyping has become a common feature in many of the development
methodologies which are now being marketed (cf. e.g. Boehm, 1988, Downs et
al., 1992). Some researchers have identified a construct which forms a superset
relationship with development methodologies which they have labelled a process
model (Lyytinen, 1987; Wynekoop & Russo, 1993). The two most common
process models which underpin most current methodologies are suggested to be
the SDLC and prototyping ones (Wynekoop & Russo, 1993).
The concept of user participation in the development process also has its origins
in this period (Emery & Trist, 1969; Herbst, 1974). During the 1970’s it was
becoming increasingly recognised that the Taylorist assumptions which guided
systems development were problematic, often resulting in systems which were
rejected by the end-users (Cherns, 1976). Hence there emerged a focus on
sociotechnical systems, which considered the joint optimization of both technical
and social aspects of systems design.
The structured approach which is documented in an early form in Yourdon
(1967), has since been reckoned to be the most widely used methodology in North
America and Europe (Yourdon, 1991). Its principal concepts such as information
hiding—the idea that each module should hide exactly one design decision and
reveal as little as possible about its inner workings or the data it uses (Parnas,
1972), functional decomposition—the progressive subdivision of primary
functions into sub-functions until some primitive level is reached, cohesion, and
coupling all emerged in this era (De Marco, 1978; Stevens, Myers & Constantine,

1 It should be noted that some of these concepts emerged in an earlier period also. For
example, the sytems development lifecycle (cf. Canning, 1956) and object orientation (cf.
Dyke & Kunz, 1989) may be traced to the mid-1950s. However, the argument in this paper is
that they became prominent in the decade, 1967-1977.

 3

1974). Furthermore, techniques which are invariably present in many
methodologies, such as entity relationship diagrams (Chen, 1976), data-flow
diagrams and data dictionaries (De Marco, 1978) are also clearly from this era.
Also, SSADM, the most widely used methodology in the UK and Ireland (Downs
et al., 1992), has its antecedents in the MODUS methodology which was in use
between 1965 and 1977. Another popular methodology, Jackson Structured
Programming (Jackson, 1973), is founded on the principles of Bohm and Jacopini
(1966) which proved that all programming and data structures could be
represented by three primitive constructs.
Some researchers have identified object-orientation as the new paradigm for
systems development (Thomann, 1994), and, indeed, OO has recently been a
major influence in the methodology literature. Evidence of the growing interest in
OO can be found in the Ovum estimate that the OO market will have reached $2
billion by 1996 (Topper, 1992). However, the newness of the concepts
underpinning the OO paradigm is questionable. Its origins can be traced directly
to the Simula programming language in use in Norway from 1967, and also before
this, OO principles such as encapsulation were used in the design of the
Minuteman missile in the late 1950s (Dyke and Kunz, 1989). In addition, it seems
to be the case that many of the recent methodologies which are based on the OO
approach are often just evolutionary outgrowths of earlier approaches (cf. Berard,
1995; Firesmith, 1993; Iivari, 1994; Monarchi & Puhr, 1992).

3. Altered Profile of the Prevailing Development Environment
The previous section provides some significant evidence to argue that many
current methodologies are founded upon concepts derived between about 1967
and 1977. However, in order to argue that it is now time to ‘update tenses’ in
relation to methodologies, it is necessary to demonstrate that there are profound
differences between the development environment currently faced and that which
prevailed when these methodologies were first promoted. This is addressed in this
section by drawing on recent literature, including the results of various empirical
studies carried out by the author (Fitzgerald, 1994, 1997, 1998) which illustrate
these differences. These issues have to do with the changing nature of the business
environment in general, the changing profile of the systems development
environment in particular, and the need for more rapid delivery of systems to meet
short-term needs.
The accelerating pace of change characteristic of the business environment facing
organisations today is a common theme in contemporary research. Rockart and De
Long (1988) refer to the "faster metabolism of business today" which requires
organisations to act more effectively in shorter time-frames. Baskerville et al.
(1992) also discuss the relevance of the nature of the prevailing business
environment to the systems development issue. They argue that most
methodologies are oriented towards large-scale development with a long
development time, but the continuous change that organisations are now faced
with, means that short-term needs dominate, and these in turn mean that the
economics of formalised systems development is dwindling.
Researchers in the area of rapid development make similar points in advocating a
change in development approach. Folkes and Stubenvoll (1992) cite the change in
the nature of the demand for systems, and they argue for a concomitant change to
an accelerated development approach. The main thrust of rapid delivery is to
produce frequent tangible results, that is, every few months some functional
capability is delivered. This concept is also central to Gilb's (1988) incremental

 4

engineering approach.
Recent empirical research carried out by the author (cf. Fitzgerald, 1994, 1997,
1998) also provides evidence of a change in the prevailing development profile.
Firstly, a large-scale postal survey, involving a total of 776 named individuals in
different organisations who were likely to be directly involved or responsible for
systems development, was conducted. The findings of the survey are documented
in detail in Fitzgerald (1998). The data in Table 1 is drawn from this survey and is
reproduced here to illustrate the profile of the current development environment.

 Mean
Development Profile:
 % systems development in-house ..47
 % systems development outsourced ..13
 % use/customisation of packages ...40

Development Project Profile:
 No. of developers... 3.47
 Duration (in months)... 5.72

 Hardware platform
 Mainframe...20%
 Mini ..26%
 PC ...33%
 Mixture/Other...21%

Table 1 Profile of Current Development Environment

An interesting feature of Table 1 is the high-level of package customisation
(average of 40 percent), and also the level of outsourcing (average of 13 percent).
Given these figures, it would appear that in-house development is no longer
predominant in companies. In addition, the fact that typical development projects
comprised about three developers for less than six months, seems to reflect a
profile of small-scale, rapid development, which contrasts greatly with findings
from earlier studies. For example, Taylor and Standish (1982) report project
durations of up to 5 years.
The second phase of the empirical research involved in-depth field interviews
with 16 experienced developers in eight organisations. The findings are reported
in detail in Fitzgerald (1997), and the salient aspects reported here. The emphasis
on shortened development project duration was borne out in the interviews.
Several interviewees expressed the view that development projects of long
duration were not tolerable as the underlying business could have changed
dramatically in the interim.
Further evidence of an altered development profile may perhaps be gained from
the survey finding that only 20 per cent of development was on a mainframe
platform, with the most common platform for development being the PC one (33
per cent), again not one typically associated with large-scale development projects
in the past. This contrasts with the findings of an earlier study by Sumner and
Sitek (1986) which reported 57 per cent of development on a mainframe platform,

 5

with only 2 per cent on a PC platform. Granted, PCs were in a state of relative
infancy at that time. However, it is clear that the PC platform is becoming a more
common one.
The survey also revealed that 60 percent of respondents did not use a development
methodology, and that only 14 percent claimed to use a formalised commerical
methodology2 (see Table 2). Previous studies of systems development in practice
have reported usage rates for methodologies of 87 percent (Jenkins et al., 1984)
and 62 percent (Necco et al., 1987). The predominant reason for non-use cited by
respondents was that currently available methodologies did not suit the profile of
the development prevailing in the organisations studied. In the field interview
research (Fitzgerald, 1997), it emerged that those organisations who were using
methodologies had tailored them very precisely to meet the needs of their
particular development environment. However, they were almost always framed
at a higher level of granularity, in that they provided broad guidelines rather than a
large number of low-level steps to be carried out in a prescribed sequence. Similar
methodology adaptation has been reported in other studies (e.g. Russo et al.,
1995). Thus, a methodology derived in one software house emphasised issues to
do with testing, version control, and telephone support, as these are critical issues
in their business sector. Similarly, a large bureaucratic government department
had constructed a methodology which focused on tender and request for proposal
(RFP) issues, as these were critical given the level of outsourcing in the
organisation. Also, a major bank had emphasised those methodology phases
which had to do with strategic planning, as they considered it important that all
systems development projects would be underpinned by a business case.

Organizations not using any methodology....................................... 60%

Organizations using a formalised commercial methodology.......... 14%

Organizations using internal methodology based on a
 commercial one... 12%

Organizations using internal methodology not based on a
 commercial one... 14%

Table 2 Methodology Usage

Table 3 analyses the survey findings in relation to the average percentage of time

2 The term 'formalised' is used here to denote formally-defined, brand-named or publshed development
methodologies, of which there are many examples in the literature, rather than an ad-hoc approach to
systems development, of which there are many examples in practice. Some writers use the term 'formal'
in this context. However, this leads to confusion with those methodologies which have a mathematical
basis for specification and design, which are also labelled as formal.

 6

spent on various development activities by methodology users and non-users.
Although the findings do not reveal significant differences, it appears that there is
a slightly more even distribution of time when a methodology is being followed.
Thus, slightly more time appears to be allocated to the analysis and design
activities. However, the differences really are very marginal, which serves to
question the extent to which methodologies play a significant role in ensuring that
specific activities take place, as has been suggested (Ahituv et al., 1984;
Baskerville et al., 1992). Several researchers have recommended that more time
be allocated to early development phases (e.g. Couger et al., 1982; Necco et al.,
1987), with McKeen (1983) reporting a relationship between the amount of time
allocated to the analysis phase and greater user satisfaction. However, the results
of this study would suggest that methodologies per se do not ensure that this
occurs, since there is so little difference in the proportion of time allocated to
these activities by methodology users and non-users.

Avg. percentage of dev.
time allocated by those
using a methodology

Avg. percentage of dev.
time allocated by those

not using a methodology

Activity
Systems Planning
Systems Analysis
Systems Design

Programming
Testing

Installation
Evaluation

Other

%
10
17
15
28
17
8
3
2

%
10
14
12
31
17
10
4
1

Table 3 Average Percentage of Development Time Allocated to Development
Activities

Table 4 analyses the percentage of respondents citing the use of various
development tools and techniques. As can be seen from the table, the most
popular tools and techniques are prototyping, data flow diagramming, data
dictionaries. and entity relationship models. The interesting finding here is that
those using methodologies use all of these tools and techniques to a far greater
extent than those not using methodologies. This lends support to the argument that
methodologies provide a suitable framework to co-ordinate the purposeful
application of tools and techniques (cf. Bantleman & Jones, 1984; Holloway,
1989). It has been suggested that methodologies generally assume some
underlying philosophy and fundamental principles in relation to the phases and
activities of systems development (Jayaratna, 1994). However, given that there is
no real difference in emphasis on particular development phases, the extent to
which methodology users assimilate the deeper underpinning principles of
methodologies is questionable.

 7

Organizations using a

methodology

Organizations not using

a methodology

Tools/Techniques
Joint Application Design (JAD)

Prototyping
Data Flow Diagramming

Entity Relationship Modelling
Entity Life Histories

Flow Charting
Data Dictionary

Process Mini-Specifications
Structured Walkthrough

Other

%
31
75
71
63
19
55
74
40
48
9

%
20
57
37
19
6

35
34
25
23
5

Table 4 Percentage of Respondents Using Various Development
Techniques

4. New Canons for Systems Development
The Chinese leader, Mao Tse Tung, is credited with the observation that
revolutions are needed every 20 years or so as human beings tend to settle into
numbing routines which actually prevent advances taking place (Patton, 1990).
Certainly, there is support for the view that dramatic upheavals or paradigm shifts
are necessary for scientific progress throughout the philosophy of science (Kuhn,
1970). Locating the argument in the software development area, Cox (1990)
draws parallels with the craft of the gunsmith to argue cogently that there are
usually limits to what can be achieved as one optimises any given process. In the
traditional gunsmithing craft, gunsmiths were striving to make the process as
efficient as possible. However, with the new technology of production afforded by
the Industrial Revolution, a new process for gun-making emerged with much
higher productivity levels. This new process represented a step change and there
was no way the traditional gunsmith craftsmen could bridge the gap to compete.
In calling for an “Industrial Revolution” in how software is developed, Cox argues
that there is a need for radically new approaches which are more appropriate to the
needs of the environment as it evolves. Also, as already mentioned, in the specific
area of information systems development, Friedman (1989) has identified the
“problem of tenses” whereby common-place practice often lags best practice by
quite some time. Thus, there is much to be learned from best practice situations.
As illustrated in the previous section, the profile of the development environment
is vastly different from that which prevailed when many of the currently available
commercial methodologies were first proposed some 25 to 30 year ago. Thus,
there is a need to ‘update the clock’ by deriving sensible methodological canons
more suited to the needs of the current development climate. The following are
offered as issues that should be taken account of in the derivation of new
development methodologies:

1. As can be seen from the empirical evidence presented above, both

 8

integration and customisation of packages and outsourcing are quite
prevalent in today’s environment, yet few methodologies cater for these
phenomena. However, this mode of configuration development with higher-
level building blocks facilitates initiatives such as timeboxing, frequent
tangible returns etc., integral to rapid application development (RAD)
approaches.

2. Business systems development is often algorithmically simple. Thus,
methodologies which may be strong in the area of real-time engineering
systems design may not be as appropriate for business systems development.
This is possibly even more relevant given the emergence of OO
methodologies as many of the latter have been derived from experiences
with real-time applications, as object persistence—a fundamental feature of
business applications where data storage is a key issue—is not necessary.

3. Neither the top-down SDLC approach which implies the elicitation and
freezing of requirements in advance, nor the bottom-up prototyping and
iterative development approach which views requirements as emerging as
the development process takes place, are sufficient in isolation. Rather, a
mix of strategies may be more appropriate. Thus, in an application of the
Pareto principle, some system functions may be developed in a top-down
fashion using the traditional lifecycle, perhaps even with an exaggerated
absence of user involvement. This may represent about 60 to 70 percent of
requirements, and the remaining system functions may be developed in a
bottom-up fashion using a prototyping approach.

4. While methodologies can introduce rigour to the development process,
productivity may necessarily suffer, and this trade-off is not tolerable given
the current organisational climate. Thus, there may be a sense in which
‘good enough’ systems can be developed in an appropriate time-scale, rather
than striving towards delivering optimum solutions in an unreasonable time-
scale.

5. The development process can be over-intellectualised, and in some
circumstances a methodology may prescribe an overly-complex approach
whereas a simpler one may be more appropriate given the nature of
development in many organisations. In these circumstances, the
methodology becomes something of a 'mother hen'—overly cautious and
conservative, thus leading to an inflexible and cumbersome development
process.

6. A degree of responsible autonomy prevails in relation to the development
process in many organisations, with much left to the discretion of
developers. Methodologies cannot be inflicted upon developers; thus,
departures from the prescribed steps of methodologies are common in
practice; however, these departures are conscious and deliberate rather than
arbitrary. This could be viewed as evidence, perhaps, of a maturity on the
part of developers in relation to methodology usage.

7. Also, the level of granularity of methodological steps needs to be different,
with the methodology specifying at a higher level of abstraction the outcome
to be achieved, with the precise manner in which it is achieved left to the
discretion of the developer. Thus, rather than prescribing the minutiae of
steps which developers are expected to follow, the focus should be on
higher-level goals and deliverables, and the precise manner in which these
are actually achieved should be left to the developer.

 9

8. The prevailing business climate requires that organisations act more
effectively in shorter time-frames. There is a need for more rapid systems
delivery than that which is currently being achieved with the monolithic
development approaches inherent in traditional system development
methodologies. In fact, the latter may impose a considerable degree of
inertia on the development process. Also, given the strong arguments in
favour of informating the workplace and empowering employees, the
expectation implicit in many methodologies, that developers will plod
robotically through standardised checklists, is not valid.

5. Conclusion
It is undoubtedly the case that practice should inform theory. This view is
supported by the fact that practice has often preceded theory in the field. The
systems development lifecycle and prototyping were both areas in which practice
led theory (Agresti, 1986, Friedman, 1989), as were programming style, compiler
writing, and user-interface design (Glass, 1991). Also, the Sage missile-defense
system and the SABRE airline reservation system, developed in the 1950s and
1960s, were both examples of sophisticated interactive systems which far
exceeded the maturity of the theory at the time (Shaw, 1990). Thus, it may be the
case that empirical explorations of systems development may reveal the types of
practice upon which the new generation of system development methodologies
should be based. This has certainly been the case in the research reported here.
The importance of successful systems development persists as an issue of central
significance and concern in the IS field, especially in light of the well-documented
problems associated with system development. However, as has been argued in
this paper, many methodologies in use today are derived from practices and
concepts relevant to a very different organisational environment, and there is a
need to reconsider their role in view of changes in organisational forms and work
practices, and the increasingly-complex applications that need to be developed to
suit the complexity of the current organisational environment. Given the
significant 'push' factor that this environment represents, there is an urgent need to
leverage new developments, both technological and in organisational work
practices, which enable new development approaches more appropriate to this
organisational climate. Further research is therefore needed which would
investigate the true nature of the current systems development environment in real
organisational situations, and on real development projects. Practitioners have in
many cases assimilated good practices and techniques and may be rejecting
methodologies for pragmatic reasons rather than due to ignorance as has been
suggested (cf. Ward, 1991; Yourdon, 1991). The next generation of
methodologies require a new set of foundational concepts. However, these should
be drawn in large measure from the ‘best practice’ development situations which
prevail at present.

 10

References

Agresti, W. (1986) New Paradigms for Software Development. IEEE Computer Society

Press, Washington DC.

Ahituv, N., Hadass, M. and Neumann, S. (1984) A flexible approach to information
system development. MIS Quarterly, 8, 2, 69-78.

Bally, M., Britton, J. and Wagner, K. (1977) A prototyping approach to information
systems design and management, Information & Management, 1, 1, 21-26.

Bantleman, J. and Jones, A. (1984) Systems analysis methodologies: a research project.
In Bemelmans, T. (ed.) Beyond Productivity: Information Systems Development for
Organizational Effectiveness, Elsevier, North Holland Press, 213-227.

Baskerville, R., Travis, J. and Truex, D. (1992) Systems without method: the impact of
new technologies on information systems development projects. In Kendall, K.,
DeGross, J. and Lyytinen, K. (eds.) The Impact of Computer Supported Technologies
on Information Systems Development, Elsevier., North Holland Press, 241-269.

Berard, E. (1995) Object-oriented methodologies, Online document available at
http://www.toa.com.

Boehm, B. (1988) A spiral model of software development and maintenance. IEEE
Computer, 21, 5, 61-72.

Bohm, C. and Jacopini, G. (1966). Flow diagrams, Turing machines and languages with
only two formation rules. Communications of the ACM, May, 366-371.

Canning, R. (1956). in Agresti, W. (1986) New Paradigms for Software Development.
IEEE Computer Society Press, Washington DC.

Chen, P. (1976) The entity relationship model—towards a unified view of data, ACM
Transactions on Database Systems, 1, 1, 9-36.

Cherns, A. (1976) The principles of sociotechnical design. Human Relations, 29, 8, 783-
792.

Couger, J., Colter, M. & Knapp, R. (1982) Advanced System Development Feasibility
Techniques, Wiley & Sons, New York.

Cox, B. (1990) Planning the software industrial revolution, IEEE Software, November,
pp.25-33.

Davis, A., Bersoff, E. and Comer, E. (1988) A strategy for comparing alternative
software development life cycle models. IEEE Transactions on Software
Engineering, October, 1453-1460.

DeMarco, T. (1978) Structured Analysis and System Specification, Yourdon Press, New
Jersey.

Downs, E., Clare, P. and Coe, I. (1992) Structured Systems Analysis and Design Method:
Application and Context. Prentice-Hall International(UK), Hertfordshire.

Dyke, R. and Kunz, J. (1989) Object-oriented programming. IBM Systems Journal, 28, 3.

 11

Emery, F.E. and Trist, E. (1969) Form and Content in Industrial Democracy. Tavistock.

Firesmith, D. (1993) Object-Oriented Requirements Analysis and Logical Design, Wiley
and Sons, New York.

Fitzgerald, B. (1994) Whither Systems Development: Time to Move the Lamppost,
in Lissoni, C. et al (Eds) Proceedings of Second Conference on Information
Systems Methodologies, BCS Publications, Swindon, pp. 371-380.

Fitzgerald, B. (1997) The Use of Systems Development Methodologies in Practice:
A Field Study, The Information Systems Journal, Vol. 7, pp. 201-212.

Fitzgerald, B. (1998) An Empirical Investigation into the Adoption of ISD
Methodologies, Information & Management, Vol. 21, No. 6.

Friedman, A. (1989) Computer Systems Development: History, Organisation and
Implementation, Wiley & Sons, Chichester.

Folkes, S. and Stubenvoll, S. (1992) Accelerated Systems Development, Prentice Hall,
London.

Gilb, T. (1988) Principles of Software Engineering Management, Addison Wesley, UK.

Glass, R. (1991) Software Conflict: Essays on the Art and Science of Software
Engineering. Yourdon Press, Prentice Hall, Englewood Cliffs, New Jersey.

Herbst, P. (1974) Socio-technical Design: strategies in multi-disciplinary research.
Tavistock.

Holloway, S. (1989) Methodology Handbook for Information Managers, Gower
Technical, Aldershot.

Iivari, J. (1994) Object-oriented information systems analysis: a comparison of six OOA
methods. In Verrijn-Stuart and Olle (Eds.) Methods and Associated Tools for the IS
life cycle, IFIP North Holland, 85-110.

Jayaratna, N. (1994) Understanding and Evaluating Methodologies, McGraw-Hill,
London

Jenkins, A., Naumann, J. and Wetherbe, J. (1984) Empirical investigation of systems
development practices and results. Information & Management, 7, 73-82.

Kraft, P. (1977) Programmers and Managers: The Routinization of Computer
Programming in the United States, Springer-Verlag, New York.

Kuhn, T. (1970) The Structure of Scientific Revolutions, University of Chicago Press,
Chicago.

Jackson, M. (1973) Principles of Program Design, Academic Press, London. p.407-413.

Lyytinen, K. (1987) A taxonomic perspective on information systems development, in
Boland, R and Hirschheim, R. (eds.) Critical Issues in Information Systems
Research, John Wiley and Sons, Chichester.

McKeen, J. (1983) Successful development strategies for business application systems,
MIS Quarterly, 7, 3, 47-66.

 12

Monarchi, D. and Puhr, G. (1992) A research typology for OO analysis and design.
Communications of the ACM, 35, 9, 35-47.

Necco, C., Gordon, C. and Tsai, N. (1987) Systems analysis and design: current practices.
MIS Quarterly, December, 1987.

Orr, K. (1989) Methodology: the experts speak. BYTE, April, 221-233.

Parnas, D. (1972) On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15, 12, 1053-1058.

Patton, M. (1990) Qualitative Evaluation and Research Methods (2nd Edition), Sage
Publications, London.

Rockart, J. and De Long, D. (1988) Executive Support Systems, Dow Jones-Irwin,
Homewood, Illinois.

Royce, W. (1970) Managing the development of large software systems. Proceedings of
IEEE Wescon.

Russo, N., Wynekoop, J, and Walz, D. (1995) The use and adaptation of systems
development methodologies, in Khosrowpour, M. (Ed), Managing Information &
Communications in a Changing Global Environment, Idea Group Publishing, PA.

Shaw, M. (1990) Prospects for an engineering discipline of software. IEEE Software,
November, 15-24.

Stevens, W., Myers, G. and Constantine, L. (1974) Structured design. IBM Systems
Journal, 13, 2, 115-139.

Sumner, M. and Sitek, J. (1986) Are structured methods for systems analysis and design
being used? Journal of Systems Management, June, 18-23.

Taylor, T, and Standish, T. (1982) Initial thoughts on rapid prototyping techniques, ACM
SIGSOFT Software Engineering Notes, 7, 5, 160-166.

Thomann, J. (1994) Data modelling in an OO world. American Programmer, 7, 10, 44-
53.

Topper, A. (1992) Building a case for object-oriented development, American
Programmer, 5, 8, 36-47.

Ward, P. (1991) The evolution of structured analysis: Part I--the early years. American
Programmer, 4, 11, 4-16.

Wynekoop, J. and Russo, N. (1993) System development methodologies: unanswered
questions and the research practice gap. In De Gross, J. et al., (eds) Proceedings of
the 14th International Conference on Information Systems, ACM, New York, 181-
190.

Yourdon, E. (1967) The emergence of structured analysis, Computer Decisions, 8, 4, 58-
69.

Yourdon, E. (1991) Sayonara, once again, structured stuff. American Programmer, 4, 8,
31-38.

