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Systems Factorial Technology with R

Joseph W. Houpt
Wright State University, Dayton, Ohio

Leslie M. Blaha, John P. McIntire and Paul R.
Havig

U.S. Air Force Research Laboratory, Wright-Patterson Air

Force Base, Ohio

James T. Townsend
Indiana University, Bloomington, Indiana

Systems Factorial Technology (SFT) comprises a set of powerful nonparametric models and

measures, together with a theory-driven experiment methodology termed the Double Factorial

Paradigm (DFP), for assessing the cognitive information processing mechanisms supporting

the processing of multiple sources of information in a given task (Townsend & Nozawa, 1995).

We provide an overview of the model-based measures of SFT together with a tutorial on de-

signing a DFP experiment to take advantage of all SFT measures in a single experiment. Illus-

trative examples are given to highlight the breadth of applicability of these techniques across

psychology. We further introduce and demonstrate a new package for performing SFT analyses

using R for Statistical Computing.

Introduction

Systems Factorial Technology (SFT) is a framework for

studying how different sources of information combine in

cognitive processing (Townsend & Nozawa, 1995). These

sources can be as similar as visual information from the left

and right visual field or as disparate as the demands of two

different tasks such as driving while talking on a cell phone.

SFT stands out as a particularly powerful framework because

the various ways in which information can be combined are

classified based on mathematically defined model properties.

Despite the constraints due to the rigor of the definitions,

SFT is quite general in that it requires no distributional or

parametric assumptions about the cognitive processes. Us-

ing these precise mathematical definitions, there are a num-

ber of tests within the SFT framework to reject large classes

of possible processing properties and support very specific

properties.
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While the mathematical rigor is an advantage of the

framework, the technical details can be overwhelming. In

this paper, we describe the general process of SFT experi-

mental design and analysis and introduce a package for the

R statistical software (R Development Core Team, 2011),

while leaving the description of the mathematical details to

others (Townsend, 1972, 1974; Townsend & Ashby, 1983;

Townsend & Nozawa, 1995; Townsend & Wenger, 2004;

Townsend & Honey, 2007; Dzhafarov, Schweickert, & Sung,

2004; Houpt & Townsend, 2010b, 2011, 2012). We begin by

outlining the general purpose of SFT and the specific ques-

tions the methodology can and cannot address. We then de-

scribe the measures in SFT, the Mean and Survivor Interac-

tion Contrasts and the workload capacity coefficients. We

cover the necessary experimental manipulations to use the

measures, the statistical tests associated with the measures,

and how to use the R package for the measures. We will

end with a description of the Double Factorial Paradigm, an

experimental setup that allows one to use both the Survivor

Interaction Contrast and the capacity coefficients. In each

section, we will describe the relevant functions in the sft R

package and give a brief example. For reference, a complete

list of the functions currently implemented in the package is

given in Table 1.

The Goals of SFT

As stated in the introduction, SFT is a framework for un-

derstanding the cognitive processing of multiple sources of

information. These multiple sources could take the form of

information from different modalities, such as audio and vi-

sual information, or different properties of a stimulus within
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Function Description

capacity.and Calculates the capacity coefficient for exhaustive (AND) processing.

capacity.or Calculates the capacity coefficient for first-terminating (OR) processing.

capacityGroup Performs workload capacity analysis on each participant and each condition.

estimateNAH Calculates the Nelson-Aalen estimator of the cumulative hazard function.

estimateNAK Calculates the Nelson-Aalen estimator of the cumulative reverse hazard function.

estimateUCIPand Estimates the cumulative reverse hazard function of an UCIP process on an AND task.

estimateUCIPor Estimates the cumulative hazard function of an UCIP process on an OR task.

mic.test Performs either an Adjusted Rank Transform or ANOVA test for an interaction at the

mean level.

sic Calculates the Survivor Interaction Contrast and associated measures.

sic.test A nonparametric test of for significant positive and negative parts of an SIC.

sicGroup Performs SIC analysis on each individual and each condition of a DFP experiment.

siDominance Tests for the ordering of survivor functions implied by selective influence using KS

tests.

ucip.test A nonparametric test for capacity values significantly different than those predicted

by the estimated UCIP model.
Table 1

A complete list of the functions included in the sft package with a brief description. The capacity and sic functions are

explicated in the text below. UCIP refers to unlimited capacity, independent, parallel. For more details on the syntax for each

function, the manual is available on the Comprehensive R Archive Network (http://cran.r-project.org/web/packages/sft/sft.pdf).

a modality, such as color and shape. In many cases the

sources are based on the experimental design and not nec-

essarily on psychologically meaningful features, such as the

top half and bottom half of a face (cf. Burns, Pei, Houpt,

& Townsend, 2009). Questions about how the sources are

processed together can be grouped into four classes: archi-

tecture, stopping rule, stochastic dependence and workload

capacity, each of which will be defined below (cf. Townsend,

1974).

Before going into the details of each of those properties,

we first want to point out that SFT is not designed for study-

ing a single source in isolation. Psychologists are often in-

terested in how changes in a single dimension of a stimulus

correspond to changes in performance. This includes finding

psychometric curves, just noticeable differences, etc. SFT

is not the appropriate tool for these questions. The SFT ap-

proach is focused on multiple sources of information, each

of which can be used to make a response. Additionally, the

theoretical tools described in this paper were developed for

high accuracy tasks, although the general theory can be ex-

tended to include variations in accuracy (e.g., Townsend &

Altieri, 2012).

Architecture

Within the SFT framework, architecture refers to the tem-

poral organization of the processes.1 Within this approach

we are interested in assessing if the processes fall into one of

a few broad classes of architectures, in order to qualitatively

characterize the system structure. One such class, founda-

tional to the early work in response time research (e.g., Don-

Figure 1. Serial architectures with OR (above) and AND

(below) stopping rules. In serial processes, each target is

processed sequentially. In an OR process, the participant can

stop once either A or B has completed. In an AND process,

both A and B must complete before a response is made.

ders, 1969), is a serial architecture. When a serial architec-

ture is employed, each source of information is processed

one at a time in a sequence, i.e., serially. For example, if a

participant is watching the left and right side of a display to

1In other areas of cognitive modeling, architecture is used to

refer to fixed properties of the cognitive system. In some cases,

this may include the temporal organization of the information pro-

cessing, but they are distinct concepts. Architecture in the sense

of this paper may vary with a participant’s strategy, especially on

high level cognitive tasks in which a participant has a fair amount

of control over strategy (Fifić, Nosofsky, & Townsend, 2008; C.-

T. Yang, 2011; C.-T. Yang, Hsu, Huang, & Yeh, 2011; C.-T. Yang,

Chang, & Wu, 2012). Architecture in the other sense could refer to

properties that we classify under other monikers, such as workload

constraints on information processing efficiency.
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determine if a small dot appears (see Townsend & Nozawa,

1995), a serial architecture would mean she first checks if the

dot has appeared on one side, then the other. Note that a serial

architecture does not necessarily mean the dots are checked

in a specific order or even the same order each time, but only

that one side is checked before the other on each trial. Two

types of serial architecture are depicted in Figure 1. The dif-

ference between these serial processes is the stopping rule,

which is discussed in the next section.

Figure 2. Parallel architectures with OR (above) and AND

(below) stopping rules. In parallel processes, each target is

processed at the same time. In an OR process, the partici-

pant can stop once either A or B has completed. In an AND

process, both A and B must complete before a response is

made.

In contrast, both sources of information may be processed

simultaneously, i.e., in parallel. With a parallel architec-

ture, the participant watching the monitor would concur-

rently check both the left and right sides for the appearance

of a dot. Parallel architectures are depicted in Figure 2. Like

the serial models in Figure 1, the difference between these

parallel processes is the stopping rule, which is discussed in

the next section.

As another example of the distinction between parallel

and serial processing, consider a categorization task in which

categories are determined by two different dimensions, say

color and form (see Fifić, Little, & Nosofsky, 2010). In a se-

rial process one would first check which category is indicated

by the shape (color) of the object, then check which category

is indicated by the color (shape). In a parallel process, both

color and shape are examined at the same time.

Figure 3. A coactive model, based on the summed activation

of the channels.

A special case of parallel processing, referred to as coac-

tive processing, is when the information is pooled before a

decision is made. In a standard parallel model (e.g., those

depicted in Figure 2), a decision about each source of infor-

mation is made separately; then each of those individual de-

cisions are combined (usually according to a stopping rule,

defined below) for the final decision or action. In a coac-

tive architecture, all of the information is used together to

directly make the final decision. The pooling can take differ-

ent forms, although the most well developed coactive models

assume the information is summed and the total is compared

to a threshold to make a decision (e.g., Schwarz, 1989, 1994;

Townsend & Nozawa, 1995; Houpt & Townsend, 2011).

This coactive model is depicted in Figure 3.

An interesting example of a case when coactive process-

ing is possible is when information sources from different

modalities are processed together (e.g., Miller, 1982). Sup-

pose you need to determine if someone speaking had said

“bad” or “dad” based on seeing the speaker’s mouth and

hearing the word spoken (see Altieri & Townsend, 2011).

If you first check for the difference between the “b” and “d”

based only on what you hear, then based only on how the

speaker’s mouth looked when she pronounced the word, this

would be a serial process. If you simultaneously process the

visual cues and the aural cues, you are using a parallel pro-

cess. Coactive processing is the special case in which, in-

stead of separately determining if the mouth indicates “bad”

and the sound indicates “bad,” you pool evidence from both

modalities to make the decision.

Other architectures may be possible, particularly with

more than two sources of information. Many of those pos-

sible architectures can be formulated in terms of combina-

tions of parallel and serial processes. These more advanced

models are beyond the scope of this paper, but the theoretical

work on SFT for more than two sources continues to evolve.

Stopping Rule

A second question that arises with respect to the combi-

nation of multiple sources of information is that of the stop-

ping rule, or how many sources of information are processed

before a person responds.2 Similar to the SFT approach to

architecture, the SFT approach is concerned with the qual-

itative classes of stopping rule, rather than exact quantita-

tive measures of information, and so the methods will assess

which class of stopping rule is engaged given a particular

2In many models, the amount of information required to stop

processing a given source (i.e., the threshold in an information ac-

cumulator model, cf. Link & Heath, 1975; Ratcliff & Smith, 2004;

Brown & Heathcote, 2008) can vary. This also falls under the gen-

eral category of stopping rule. However, the SFT approach does not

include the more detailed analyses involved in identifying changes

in the amount of information needed for each sub-process to finish.
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task. One possibility is that a person must exhaustively pro-

cess all of the information available before responding. We

will often refer to this as AND processing, in reference to the

Boolean rule combining the decision on each source, but it is

also known as an exhaustive or maximum time stopping rule.

AND stopping rules can be used with serial models (bottom

of Figure 1) and parallel models (bottom of Figure 2).

Alternatively, a person may respond as soon as he detects

a target, regardless of how many other sources of informa-

tion are present. This stopping rule is often referred to as

self-terminating. Self-terminating stopping rules encompass

a variety of possible decision situations ranging from deci-

sions based on a single target among distractor information

to needing to identify a subset of multiple targets for a de-

cision, although not all targets as in the AND case. In the

special case in which all sources of information indicate a

target (also known as a redundant-targets task), a person can

respond as soon as any one source is finished processing.

This is referred to as a first-terminating process, or often,

simply OR, again in reference to the Boolean logic rule. Self-

terminating stopping rules can be combined with serial mod-

els (top of Figure 1) and parallel models (top of Figure 2).

The design and demands of an experiment will often re-

quire a participant to use a particular stopping rule to cor-

rectly respond. For example, if participants were asked to

respond positively only if they detected both a dot above the

midline and a dot below the midline of a display, then they

would need to check both above and below before respond-

ing (e.g., Townsend & Nozawa, 1995; Eidels & Townsend,

2009). If the instructions change so that a positive response

is made if there is a dot detected in at least one position,

above or below (or both), then the task no long requires the

AND stopping rule but allows for self-terminating responses.

However, even when the task allows for a self-terminating

process, people may still exhaustively process the informa-

tion, as observed in some clinical populations (e.g., Johnson,

Blaha, Houpt, & Townsend, 2010).

Stochastic Dependence and Selective Influence

Another well-studied property of combined information

processing is the extent to which each process depends on

the others. We formalize this construct with the probabilistic

definition of independence. If the distribution of the pro-

cessing times of all of the sources is equal to the product

of the distributions of the processing time of each individual

source, we say that they are independent. Otherwise, they

are dependent.

A closely related, although not identical concept is that

of selective influence. An experimental manipulation se-

lectively influences the processing of a source if that fac-

tor changes the processing of that source, but processing of

all other sources is unchanged. In the dot detection experi-

ment described above, selective influence of the contrast ma-

nipulation of a dot would mean that reducing or increasing

the contrast of the dot above fixation does not change how

quickly dots below fixation are detected and vice versa. For

a more formal treatment of selective influence, see Dzhafarov

(2003) and Dzhafarov and Gluhovsky (2006).

There are different ways that the independence might fail,

some of which may also cause failures of selective influ-

ence. One way that a dependence between the processing

times could arise is when an external factor, such as attention,

speeds up or slows down the processing of all of the sources.

When a person is more focused on the task, processing times

will be faster for all sources. When he is less focused, pro-

cessing times will be slower. Thus, if the processing time

for one source is known to be fast, it is more likely that

the person was focused and hence processing times for the

other sources are likely to be faster. Therefore, the process-

ing times are dependent. Despite this dependence, selective

influence may still hold, as long as the experimental manip-

ulation does not affect the participant’s attention.

Completion times may also be dependent due to inter-

actions among the processes (e.g., Townsend & Wenger,

2004; Eidels, Houpt, Pei, Altieri, & Townsend, 2011),

which will also lead to failures of selective influence

(cf. Townsend & Thomas, 1994). For example, with config-

ural stimuli, such as faces (Fifić & Townsend, 2010) or words

(Houpt & Townsend, 2010a), different sources of informa-

tion within the stimulus can facilitate each other. One way

this may occur in faces is that the more detail one perceives

from the left side of a face image, the more information one

has about the right side of that same face image. Facilitation

among sources of information can also occur when partici-

pants are highly trained with a stimulus such that the compo-

nents are unitized and practiced (e.g., Blaha, 2010).

A further potential source of dependence arises if partici-

pants discern, even implicitly, conditional stimulus probabil-

ities based on the presentation rates of different stimulus el-

ements (Mordkoff & Yantis, 1991). This dependence can be

mitigated by careful experimental design, and we will return

to discuss this issue in greater detail in the ‘Stimulus Rates

and Contingencies’ section.

Workload Capacity

A fourth property characterizing the processing of multi-

ple sources is how the processing rate of each source changes

as more sources are added. This characteristic is termed

workload capacity, which is a special case of the general

system information processing capacity (see Townsend &

Ashby, 1983). Note that in the SFT context, ‘capacity’

refers to the information throughput characteristics of the

system, addressing the question of how much work can be

completed (i.e., information processed) in a given amount of

time. Additionally, ‘workload’ refers to the manipulation of

the number of sources of information (e.g., number of stimu-
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lus modalities, number of features in an object). Thus, work-

load capacity assesses how much information is processed

over time when the amount of information available to be

processed is manipulated. For example, a recent study ap-

plied the workload capacity construct to inform models of

the Thatcher illusion (Donnelly, Cornes, & Menneer, 2012).

They showed that, although participants were faster at de-

tecting a manipulation of the features when multiple manip-

ulations were present in the stimulus, there was no evidence

that the processing of each feature had changed. This result

is evidence against positive interactions between the feature-

specific processes, a common explanation of the Thatcher

illusion.

As with architecture and stopping rule, the SFT approach

is to qualitatively assess any changes in processing rates by

classifying capacity into one of three categories: limited, un-

limited, and super capacity. Limited capacity processing is

when performance on each individual source degrades as the

number of sources increases. This degradation is typically

interpreted as a slowing of individual information sources’

processing rates in the presence of additional sources. Un-

limited capacity refers to performance which reflects no ef-

fect of an increased workload on each individual process

(i.e., the additional sources do not influence the processing

rate of the original information sources). Finally, super ca-

pacity is when performance on each source is better under in-

creased workloads, meaning that the addition of more infor-

mation sources has resulted in increased processing speed for

the other individual sources. Humans are not likely to be un-

limited capacity, let alone super capacity, with a large num-

ber of sources. Nonetheless super capacity is often observed

in experimental settings using a limited number of sources

(e.g., Houpt & Townsend, 2010a; Blaha, 2010). In some

cases, this is the result of facilitation (a positive stochastic

dependence) among the processes. Another situation that

would result in super capacity is if participants exhibit less

focused attention on single source tasks, perhaps because

they are relatively easy, but focus more attention on the task

when there are multiple sources present.3 Further research on

how super capacity can arise is an exciting direction for SFT

in applied cognitive psychology (cf. Repperger et al., 2009).

Under this capacity taxonomy, the aforementioned Thatcher

illusion study by Donnelly et al. (2012) found unlimited ca-

pacity, despite the popular notion that the perception of face

parts is super capacity when the parts are presented in their

normal configuration.

The Measures in SFT

Having delineated the basic processing aspects, we now

turn to the SFT measures available for analyzing these prop-

erties. We note that all four of the constructs above are inde-

pendent properties, so a system can be defined by any com-

bination of architecture, stopping rule, (in)dependence, and

workload capacity level. If it were possible to directly ob-

serve the time it takes for each process to complete, analy-

sis would be greatly simplified. Unfortunately, observed re-

sponse times are based on the aggregate of the various prop-

erties. For example, when an audio target and visual target

are present in an OR task, a given response time could be

produced by any combination of each of the properties above

(Townsend, 1972; Townsend & Ashby, 1983). Even if we

know how long responses to audio and visual targets take in

isolation, all combinations are still possible, although some

trade-offs are necessary depending on the observed response

times on the OR task. For example, slower response times

in the redundant target condition could be due to limited-

capacity, parallel processing or unlimited-capacity, serial

processing. It is therefore critical to find ways to analyze

all four properties simultaneously from a single set of mea-

surements.

SFT includes measurements that are informative with re-

gards to architecture, stopping-rule, workload capacity and

stochastic dependence. The Mean Interaction Contrast and

the Survivor Interaction Contrast are tools for analyzing ar-

chitecture and stopping rules and can, in some cases, also

be informative about stochastic dependencies. The capacity

coefficients for OR processes, COR(t), and AND processes,

CAND(t), are useful for measuring workload capacity and

stochastic dependencies; some inferences about architecture

may also be possible from the capacity coefficients.4

One important feature of the SFT measures is that they

are nonparametric in nature, thereby enabling researchers to

investigate the information processing properties for a given

task without any parametric assumptions about the response

time distribution. All of the measures present here are based

on some transformation of the empirical response time dis-

tribution.

The Survivor Interaction Contrast and Mean Interaction

Contrast

The Survivor Interaction Contrast (SIC; Townsend &

Nozawa, 1995) indicates the architecture and stopping-rule

of the underlying information processing system. To esti-

mate the SIC for a participant in a given task, response times

are needed from conditions in which the speed of process-

ing each individual source of target information is factorially

manipulated. Then an interaction contrast of the estimated

survivor functions of the response times for those conditions

is taken.

3We do not wish to claim that participants frequently, or even

ever, attend more to the task when there are multiple sources of

information. We only wish to indicate that it is not entirely an un-

reasonable possibility.
4Each of the tools in isolation are relatively weak with respect

to analyzing stochastic dependence, but are powerful when used

together (Eidels et al., 2011).



6 SFT WITH R

0 200 400 600

0
.0

0
0

0
.0

0
4

Density

0 200 400 600

0
.0

0
.4

0
.8

CDF

0 200 400 600

0
.0

0
.4

0
.8

Survivor

0 200 400 600

0
4

8

Cumulative
Hazard

0 200 400 600

−
1
0

−
6

−
2

Cumulative
Reverse Hazard

Figure 4. Different functions describing the same random variable (in this case, an exGausian random variable). On the far

left is the probability density function (or PDF). Next is the CDF, Pr{X ≤ t}, then the survivor function, Pr{X > t}. The final

two graphs are the cumulative hazard function, H(t), and the cumulative reverse hazard function, K(t).

The survivor function, S (t), is the probability that an event

has not yet occurred by time t, i.e., the survivor function of a

random variable X is S X(t) = Pr{X > t}. See Figure 4 for a

depiction of the various descriptions of a random variable.

For response times, it is the probability that a participant

has not responded by a given time. S (t) is the complement

of the more familiar cumulative distribution function (CDF),

FX(t) = Pr{X ≤ t},

FX = Pr{X ≤ t} = 1 − Pr{X > t} = 1 − S X(t).

Much of the early work with the SIC focused on simple

visual detection tasks, so an experimental manipulation to

speed up and slow down processing is frequently referred

to as a salience manipulation. Conditions that should lead

to faster processing are usually denoted by an “H” for high

salience; slow conditions are usually denoted by an “L” for

low salience. For example, SHL(t) is the survivor function of

the response times when the first target is high salience and

the second target is low salience.

With all of the notation in place, we now can state the SIC

for two sources of target information,

SIC(t) = [SLL(t) − SLH(t)] − [SHL(t) − SHH(t)] . (1)

Each of the two parts of the contrast in brackets should

generally be positive: Response times in a low salience con-

dition should tend to be slower than in a high salience con-

dition, and slower response times lead to larger survivor

functions relative to the high salience conditions. While

this ordering does not always hold, the assumption of ef-

fective selective influence is sufficient to guarantee the sur-

vivor functions are ordered as expected, SHH < {SLH,SHL}

and SLL > {SLH,SHL} (see Figure 5).5 Effective selective

influence does not imply any particular relationship between

SHL and SLH and their order does no effect any conclusions

about the models.

When effective selective influence holds, each of the par-

allel and serial models with OR and AND stopping rules,

have unique SIC forms regardless of the distributions of the

individual channel completion times (Townsend & Nozawa,

1995; Dzhafarov et al., 2004). Figure 6 depicts these SIC

forms. A parallel model with an OR stopping rule has an en-

tirely positive SIC. A parallel model with an AND stopping

rule has the opposite, an entirely negative SIC. Serial pro-

cesses with OR stopping rules have flat SICs, equal to zero

for all times. A serial process with an AND stopping rule is

first negative, then positive, producing an s-shaped signature.

Additionally, two types of coactive models, one based

on Poisson processes (Townsend & Nozawa, 1995) and the

other based on diffusion processes (Houpt & Townsend,

2011), also have SIC forms that differ from the serial and

parallel models. Like the serial-AND models, these coac-

tive processes have an SIC that is first negative then positive.

The SIC for a coactive model is shown in Figure 7. The fea-

ture that distinguishes the serial-AND and coactive models is

the relative negative and positive areas under the SIC curve;

serial-AND processes have equal positive and negative areas

while coactive processes have more positive area under the

SIC curve. To measure the area under the curve, we use the

integrated SIC. Due to a useful property of positive random

variables (such as response times), the integrated SIC turns

out to be an interaction contrast of the mean response times,

MIC(t) = [MLL(t) −MLH(t)] − [MHL(t) −MHH(t)] . (2)

Thus, when the SIC exhibits an s-shape, a positive Mean In-

teraction Contrast (MIC) indicates a coactive process and a

zero MIC indicates a serial process with an AND stopping

rule.

Other SIC forms can also arise from channel interactions

(Eidels et al., 2011). These interactions lead to violations of

selective influence, so the SIC forms are no longer required

to be those shown in Figure 6. Instead, depending on the

5The additional adjective “effective” simply means that the

salience manipulation has an effect: Channel processing times

should be faster when the input is high salience. Here we mean

a particularly strong type of faster, that the response times for the

fast condition should stochastically dominate the response times for

the slow condition: S H(t) ≤ S L(t) for all t with S H(t) < S L(t) for at

least some t.
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Figure 5. An example of survivor functions with the or-

der implied by effective selective influence. HH indicates

that both targets are processed relatively fast, i.e., are high

salience. HL indicates that one target is high salience and the

other is low salience; LH and LL follow the same scheme.

Note that the relationships SHH < SHL, SHH < SLH, SLL >

SHL, and SLL > SLH are implied by selective influence, but

a specific ordering relationship between SHL and SLH is not

implied.

degree of interaction, parallel-facilitatory models can have

SIC shapes ranging from the predicted independent form

to matching the s-shaped coactive form. Inhibitory, paral-

lel models with OR stopping rules remain entirely positive,

whereas inhibitory, parallel models with AND stopping rules

can have SIC forms ranging from entirely negative to nearly

entirely positive. The analogous work on interactive serial

models is yet to be completed.

SIC in R. The sft package in R (R Development Core

Team, 2011) includes the function sic to calculate the SIC

and MIC.6 The function takes response times from each of

the salience conditions, HH, LH, HL and LL, and returns a

stepfun object representing the estimated SIC.7 The func-

tion returns additional useful information for interpreting

the SIC. It includes the results of a series of Kolmogorov-

Smirnov tests for distribution ordering used to check for the

expected ordering of survivor functions mentioned above,

SHH < {SLH,SHL} and SLL > {SLH,SHL}. The survivor or-

dering test can also be run in isolation, using the function

siDominance.

The sic function also performs a statistical analysis to de-

Parallel

A
N

D

Serial

O
R

Figure 6. Survivor Interaction Contrast predictions for par-

allel and serial models with AND and OR stopping rules,

assuming selective influence.

Coactive

Figure 7. Survivor Interaction Contrast prediction for the

Poisson and diffusion based information summing coactive

models.

termine whether the positive and negative parts of the SIC

are significantly different from zero. Currently the only

statistical test of the SIC is based on the generalization of

the two-sample Kolmogorov-Smirnov test, as described in

Houpt and Townsend (2010b).8 This test performs two null-

6We will cover the sft functions together with the relevant theory

and definitions without detail regarding data formats; we address

the formatting of data for use in sft in a later section.
7The calculation of the SIC is based on the R function ecdf.

Both the ecdf function and the stepfun class are included in the

stats package as part of R (R Development Core Team, 2011). For

details on these, or any other function or class in R, we suggest the

use of the help function.
8Some researchers have attempted to apply bootstrapping for
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hypothesis tests to separately assess the positive-going de-

viations from S IC(t) = 0 and the negative-going deviations

from S IC(t) = 0. The first test for whether the largest posi-

tive value of the SIC (D+) is significantly different from zero

is a one-sided test with H0 : D+ ≤ 0 and Ha : D+ > 0; the

result of this test is reported as sic$ positive with both the

test statistic value and exact p-value returned. The second

test is a one-sided test for whether the largest negative value

(D−) is significantly different from zero, with H0 : D− ≥ 0

and Ha : D− < 0. The result of this test is reported as

sic$ negative with both the test statistic value and exact p-

value reported.

There is also a separate function, mic.test, for performing

a two-tailed test of the MIC value under the null hypoth-

esis that MIC = 0 against the alternative hypothesis that

MIC , 0. There are two options, if ART=TRUE the ad-

justed rank transform test (ART; Sawilowsky, 1990; Reinach,

1960), a nonparametric test, is used. If ART=FALSE, then

an ANOVA is used. Like the sic function, mic.test takes re-

sponse times from each of the salience conditions as input.

It then returns the exact p-value and test statistic from the

chosen test.

Example 1 demonstrates the use of the sic function ap-

plied to data simulated from a Serial-AND model. The sur-

vivor dominance tests all indicate proper ordering, mean-

ing the SIC shape should be interpretable. Both D+ and D-

are significant, indicating that the SIC has both positive and

negative parts. Both Coactive and Serial-AND models pre-

dict significant positive and negative parts, so we also check

MIC, which is not significantly different from zero. These

results would lead us to reject parallel processes and Serial-

OR models in favor of a Serial-AND model.

Example 1: sic

# Simulate single channel response times

> T1.h <- rweibull(300, shape=2, scale=400)

> T1.l <- rweibull(300, shape=2, scale=800)

> T2.h <- rweibull(300, shape=2, scale=400)

> T2.l <- rweibull(300, shape=2, scale=800)

# Combine into "observed" response times

# assuming a Serial-AND model

> hh <- T1.h + T2.h

> hl <- T1.h + T2.l

> lh <- T1.l + T2.h

> ll <- T1.l + T2.l

# Run the SIC analysis

> SerialAND <- sic(hh,hl,lh,ll)

> SerialAND

$SIC

Step function

Call: stepfun(RTall, c(0, sicall))

x[1:1200] = 87.674, 89.236, 171.39, ...,

1201 plateau levels = 0, 0.0033333, 0,

$Dominance

Test statistic p.value

1 S.hh > S.hl 0.4100000 1.254669e-22

2 S.hh > S.lh 0.3866667 3.314705e-20

3 S.hl > S.ll 0.3300000 6.480362e-15

4 S.lh > S.ll 0.2800000 6.100898e-11

5 S.hh < S.hl 0.0000000 1.000000e+00

6 S.hh < S.lh 0.0000000 1.000000e+00

7 S.hl < S.ll 0.0000000 1.000000e+00

8 S.lh < S.ll 0.0000000 1.000000e+00

$positive

Houpt-Townsend KS-SIC test

data:

HH: HH HL: HL

LH: LH LL: LL

D^+ = 0.17, p-value = 0.0131

alternative hypothesis: the SIC is above 0

at some time

$negative

Houpt-Townsend KS-SIC test

data:

HH: HH HL: HL

LH: LH LL: LL

D^- = 0.24, p-value = 0.0001769

alternative hypothesis: the SIC is below 0

at some time

$MIC

Adjusted Rank Transform test of the MIC

data:

hypothesis testing with the SIC, however there are problems with

that approach. One can estimate pointwise confidence intervals,

then check the confidence interval at each point to see if it includes

zero. If one were to conclude that the function is significantly non-

zero then the type I error rate will be much higher without appropri-

ate correction. With a large number of estimated points on the SIC,

a correction based on the assumption that each test is independent

(e.g., Bonferroni) would make it nearly impossible to find a signifi-

cant value of the SIC. Determining the appropriate correction based

on the true dependencies among the points is possible, but it is more

straightforward to simply treat the SIC as a function for hypothe-

sis testing. Bootstrapping tests are possible for hypothesis about

the function, but asymptotic tests (such as the Houpt & Townsend

(2010b) test) are usually (always?) more powerful. Based on these

issues, we have decided not to include bootstrap tests for SIC and

C(t) measures in either the package or this paper.
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HH: HH HL: HL

LH: LH LL: LL

MIC = 0, p-value = 0.8744

alternative hypothesis: the MIC is not zero

> plot(SerialAND$SIC, do.p=FALSE)
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Figure 8. Plot of a simulated serial-AND SIC from running

the sic function in Example 1.

The Capacity Coefficient

The capacity coefficients are based on the comparison of

performance with multiple sources to a baseline calculated

from performance with each single source of information.

These functions can indicate variations in workload capac-

ity, as well as dependencies among source processing times.

Although a capacity coefficient could be defined for any stop-

ping rule, the most commonly used are the OR capacity co-

efficient (Townsend & Nozawa, 1995) and the AND capacity

coefficient (Townsend & Wenger, 2004). The baseline for

comparison is based on the assumptions that processing of

multiple sources is unlimited-capacity, independent and par-

allel (UCIP).

OR Processes. In an OR process, the probability that

a response has not yet been made (the survivor function of

the response times) is the probability that a target has not

yet been detected on any channel. If we write S AB(t) for the

survivor function of response times when both A and B are

present targets and S A(B)(t) for the survivor functions of the

channel completion times on A when the B target is present

(and likewise for B in the presence of A), then, assuming the

sources are independent,

S AB(t) = S A(B)(t) × S B(A)(t).

With the additional UCIP assumptions, the completion

time distribution of A is unchanged regardless of whether

B is present or not, S A(B)(t) = S A(t) and likewise for B,

S B(A)(t) = S B(t). This is a situation commonly termed con-

text invariance or context independence of the response time

distributions. It follows from context invariance that a UCIP

model predicts that the survivor function when both targets

are present is equal to the product of the survivor functions

for each target in isolation,

S AB(t) = S A(t) × S B(t).

The argument holds more generally; under the UCIP as-

sumption the survivor function for any number of targets is

the product of the survivor function for each of those targets

in isolation,

S 1...n(t) =

n
∏

i=1

S i(t).

For both statistical reasons (cf. Houpt & Townsend,

2012) and interpretability (cf. Townsend & Nozawa, 1995;

Townsend & Ashby, 1983; Townsend & Eidels, 2011), the

OR capacity coefficient is defined using cumulative hazard

functions, H(t).9 To get from survivor functions to cumu-

lative hazard functions one simply needs to take the natu-

ral logarithm, log[S (t)] = −H(t). Thus, because log(xy) =

log(x) + log(y), the cumulative hazard function for the UCIP

processing of n sources is

H1...n(t) = − log [S 1...n(t)] = − log















n
∏

i=1

S i(t)















=

n
∑

i=1

Hi(t).

The OR capacity coefficient is defined as a ratio of a par-

ticipant’s actual performance when all sources are present,

Ĥ1...n(t), to performance predicted from a UCIP system,

COR(t) =
Ĥ1...n(t)
∑n

i=1 Ĥi(t)
. (3)

The denominator is the estimated cumulative hazard function

for the UCIP model, derived from the response times for each

process in isolation, and the numerator is the actual, observed

performance with n target sources.10

9For details on the hazard function and its use in cognitive psy-

chology, see Chechile (2003).
10We have not accounted for the additional time taken by non-

perceptual, non-decision related processes, such as motor move-
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Based on Equation 3, when the observed performance

on all sources is equal to the UCIP model prediction, then

COR(t) = 1, and we can interpret the throughput for the sys-

tem as exhibiting unlimited workload capacity. COR(t) < 1

implies worse performance than the UCIP model, and we

interpret this performance as the system exhibiting limited

workload capacity. This indicates that either there are lim-

ited processing resources, there is inhibition among the sub-

processes, or the items are not processed in parallel (e.g., the

items may be processed serially). COR(t) > 1 implies bet-

ter performance than the UCIP model, in which case we in-

terpret the throughput as exhibiting super workload capacity.

This indicates that either there are more processing resources

available per process when there are more sources of infor-

mation, that there is facilitation among the subprocesses, or

the items are not processed in parallel (e.g., the items may be

processed coactively).

An alternative measure of capacity is based on the differ-

ence of cumulative hazard functions,

COR(t) = Ĥ1...n(t) −

n
∑

i=1

Ĥi(t). (4)

Although this form is non-standard, the variance function of

the estimator can easily be calculated, unlike in the standard

ratio form, thereby enabling a direct statistical test of COR(t)

(see Houpt & Townsend, 2012 for details). The qualitative

workload capacity interpretations of Equation 4 are the same

as Equation 3, but the reference value is now 0 rather than 1

(e.g., COR(t) = 0 is unlimited capacity, etc.).
OR Capacity in R. The Nelson-Aalen estimator of the

cumulative hazard function (Aalen, Borgan, & Gjessing,

2008) can be calculated using the estimateNAH function in

the sft package. It takes the response times as input, and, if

desired, will also take an array indicating whether the partic-

ipant was correct on each trial to adjust the estimate for in-

correct responses. The function estimateUCIPor returns an

estimate of a participant’s cumulative hazard function when

all targets are present, assuming UCIP processing, based on

performance on each of the single target conditions. It takes a

list as input in which each element is an array of the response

times for each of the single target conditions. An additional

list with the correct indicators for each condition can also be

included. If the correct indicators are included, the estimates

will be adjusted to account for incorrect responses (see Houpt

& Townsend, 2012 for details). For both estimateNAH and

estimateUCIPor, if the correct indicators are not provided,

the function assumes all of the response times correspond to

correct trials. Both estimateNAH and estimateUCIPor re-

turn estimated cumulative hazard functions, however estima-

teUCIPor returns an estimate of the cumulative hazard func-

tion if each sub-process were estimated using estimateNAH

and the sub-processes are combined according to a UCIP-OR

model.

The OR capacity coefficient and related statistical test

(Houpt & Townsend, 2012) can be calculated using the ca-

pacity.or function. It takes as input a list containing arrays

of response times from each condition (first the condition

with all target sources present, then each of the single target

source conditions) along with an optional list of correct in-

dicators to use with the estimateNAH and estimateUCIPor

functions. The function also includes an indicator, ratio, for

whether to return the standard OR capacity coefficient (Equa-

tion 3) or the difference variant of the capacity coefficient

(Equation 4).

The capacity.or function returns an approxfun object

representing the standard ratio OR capacity coefficient ratio

function (optional argument ratio=TRUE, which is the de-

fault) or the difference variant (ratio=FALSE) and the out-

come of the ucip.test for OR processing. The ucip.test

function returns the statistic value (a z-score) and p-value

from a two-tailed test of the null-hypothesis of UCIP per-

formance from Houpt and Townsend (2012). Note that if

ratio=FALSE, capacity.or also reports the variance of the

difference variant. If the reported p-value is less than your

chosen Type I error α level, e.g., 0.05, then at least one of the

UCIP assumptions has failed.

Example 2: capacity.or

# Generate single source response times

> rate1 <- 1/800

> rate2 <- 1/600

> pa <- rweibull(100, shape=2,

scale=1/rate1)

> ap <- rweibull(100, shape=2,

scale=1/rate2)

# Simulate a limited capacity

# Parallel-OR model

# Limited capacity means slower

# processing when there are multiple

# sources, so we use .5 times the

# original rate.

> pp.1 <- rweibull(100, shape=2,

scale=1/(.5*rate1))

> pp.2 <- rweibull(100, shape=2,

scale=1/(.5*rate2))

ments, in this derivation. This additional time would complicate the

derivation, but it only has a limited effect on the capacity coefficient

predictions when the variance of the additional time contributes rel-

atively little to the variance of the response time which is reasonable

for human data (Townsend & Honey, 2007). In particular, the ex-

tent to which the additional time changes capacity estimates scales

with the variance of the base time, leading to underestimates of OR

capacity (Townsend & Honey, 2007) and overestimates of AND

capacity (Townsend & Eidels, 2011).
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> pp <- pmin( pp.1, pp.2 )

# Run the capacity analysis

> cap <- capacity.or(list(pp, pa, ap))

> cap$Ctest

Houpt-Townsend UCIP test

data: RT and CR

z = -7.3626, p-value = 1.803e-13

alternative hypothesis: response times

are different than those predicted by

the UCIP-OR model

> plot(cap$Ct, xlim=c(0,2000), ylim=c(0,2))
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Figure 9. Plot of a simulated limited capacity coefficient

from running the capacity.or function in Example 2.

AND Processes. In an AND process, the probability

that a response was made (the CDF of the response times)

is the probability that a target has been detected on all chan-

nels. If we write FAB(t) for the CDF of response times when

both A and B are present targets, FA(B)(t) for the CDF of the

channel completion times on A when the B target is present

(and likewise for B in the presence of A), then, assuming the

sources are independent,

FAB(t) = FA(B)(t) × FB(A)(t).

As part of the UCIP assumptions, the CDF of an individual

target detection time is assumed to not change with respect

to the presence of the other source, FA(B)(t) = FA(t) and like-

wise for B, FB(A)(t) = FB(t). Hence,

FAB(t) = FA(t) × FB(t).

More generally for n sources of information,

F1...n(t) =

n
∏

i=1

Fi(t).

Like the OR capacity coefficient, we take the natural loga-

rithm of both sides to obtain capacity coefficient predictions.

Because the AND model is in terms of the CDF rather than

the survivor function, this results in a cumulative reverse haz-

ard function, log[F(t)] = K(t).11 Hence, the UCIP prediction

for an AND task with n sources is,

K1...n(t) = log [F1...n(t)] = log















n
∏

i=1

Fi(t)















=

n
∑

i=1

Ki(t).

The AND capacity coefficient is defined as a ratio of

the participant’s actual performance when all sources are

present, K̂1...n(t), to his predicted performance if he satisfied

the UCIP assumptions,

CAND(t) =

∑n
i=1 K̂i(t)

K̂1...n(t)
. (5)

The numerator is the estimated cumulative reverse hazard

function for the UCIP model, derived from the response

times for each process in isolation, and the denominator is

the actual performance. The UCIP prediction is in the nu-

merator for CAND(t) so that the interpretation of values rela-

tive to one is consistent with COR(t). Note that this is because

relatively larger cumulative hazard functions (H(t)) indicate

faster processing, while relatively larger cumulative reverse

hazard functions (K(t)) indicate slower processing.

As with Equation 3, unlimited capacity is exhibited by the

system when CAND(t) = 1. CAND(t) < 1 implies worse per-

formance than the UCIP model, interpreted as limited work-

load capacity. This indicates that either there are limited

processing resources, there is inhibition among the subpro-

cesses, or the items are not processed in parallel (e.g., the

items may be processed serially). CAND(t) > 1 implies bet-

ter performance than the UCIP model, interpreted as super

workload capacity. This indicates that either there are more

processing resources available per process when there are

more processes, that there is facilitation among the subpro-

cesses, or the items are not processed in parallel (e.g., the

items may be processed coactively).

As with the OR capacity coefficient, there is also a differ-

ence variant,

CAND(t) = K̂1...n(t) −

n
∑

i=1

K̂i(t). (6)

11For details on the reverse hazard function and its use in cogni-

tive psychology, see Chechile (2011).
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Again, this version allows the variance function of the es-

timator to be more easily calculated, enabling a direct sta-

tistical test of the null hypothesis CAND(t) = 0 (Houpt &

Townsend, 2012). The interpretation of Equation 6 remains

the same as Equation 5, but the reference value is now 0

rather than 1 (e.g., CAND(t) = 0 is unlimited capacity, etc.).

AND Capacity in R. The estimator of the cumulative

reverse hazard function developed in Houpt and Townsend

(2012) can be calculated using the estimateNAK function in

the sft package. It takes the response times as input, and, if

desired, will also take an array indicating whether the par-

ticipant was correct on each trial to adjust the estimate for

incorrect responses. The function estimateUCIPand returns

an estimate of a participant’s cumulative reverse hazard func-

tion for processing all targets, assuming UCIP processing,

based on performance in each of the single target conditions.

It takes a list as input in which each element is an array of

the response times for each of the single target conditions.

An additional list with the correct indicators for each condi-

tion can also be included. For both estimateNAK and es-

timateUCIPand, if the correct indicators are not provided,

the function assumes all of the response times correspond to

correct trials.

The AND capacity coefficient and related statistical test

(Houpt & Townsend, 2012) can be calculated using the ca-

pacity.and function. It takes as input a list containing arrays

of response times from each condition along with an optional

list of correct indicators to use with the estimateNAK and

estimateUCIPand functions. The function assumes that the

first item in the list corresponds to the condition with all tar-

gets present and each subsequent item corresponds to a sin-

gle target condition. The function also includes an indicator,

ratio, for whether to return the standard AND capacity coef-

ficient (Equation 5) or the difference variant of the capacity

coefficient (Equation 6).

The capacity.and function returns an approxfun object

representing the AND capacity coefficient ratio function (op-

tional argument ratio=TRUE, which is the default) or the

difference variant (ratio=FALSE) and the outcome of the

ucip.test for AND processing. Note that if ratio=FALSE,

capacity.and also reports the variance of the capacity co-

efficient difference variant. If the p-value is less than your

predetermined Type I error α level, then at least one of the

UCIP assumptions has failed.

Additional R Functionality. To run the statistical test

without returning the additional approxfun objects for the

capacity coefficient and variance, the function ucip.test is

available. Like the capacity coefficient functions, it takes

as input a list of response time arrays and a list of correct

indicator arrays with the first element corresponding to the

all targets present trials. The function also has a flag to in-

dicate whether to test the data against UCIP OR processing

(OR=TRUE) or UCIP AND process (OR=FALSE).

Example 3: capacity.and

# Generate single source response times

> rate1 <- 1/800

> rate2 <- 1/600

> pa <- rweibull(100, shape=2,

scale=1/rate1)

> ap <- rweibull(100, shape=2,

scale=1/rate2)

# Simulate an unlimited capacity

# Parallel-AND model

> pp.1 <- rweibull(100, shape=2,

scale=1/rate1)

> pp.2 <- rweibull(100, shape=2,

scale=1/rate2)

> pp <- pmax( pp.1, pp.2 )

# Run the capacity analysis

> cap <- capacity.and(list(pp, pa, ap),

ratio=FALSE)

> cap$Ctest

Houpt-Townsend UCIP test

data: RT and CR

z = -0.3614, p-value = 0.7178

alternative hypothesis: response times

are different than those predicted by

the UCIP-AND model

> plot(1:2000, cap$Ct(1:2000),

ylim=c(-1,1), type=’l’)

# To run the statistical test, without

# returning the capacity coefficient

> ucip.test(list(pp,pa,ap), OR=FALSE)

There are also parametric methods for analyzing the ca-

pacity coefficient, based on fitting the Linear Ballistic Ac-

cumulator model (Brown & Heathcote, 2008) to the data.

The procedures are outlined in Eidels, Donkin, Brown, and

Heathcote (2010). We hope to add this functionality to the

sft package in the near future.

The Joint Use of the SIC and C(t)

When the experimental manipulations selectively influ-

ence the intended process, the SIC gives a clear indication

of the architecture and stopping rule of a system. When se-

lective influence fails, such as would occur if there are in-

teractions between the processes, it is more difficult to draw

conclusions from the SIC alone. Eidels et al. (2011) demon-
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Figure 10. Plot of a simulated unlimited capacity coefficient

from running the capacity.and function in Example 3.

strated that under some levels of interaction between pro-

cesses, the SIC from one type of model can mimic the SIC

signature of another model. For example, they simulated a

Parallel-AND model with facilitation that produces a SIC

that was indistinguishable from the serial-AND SIC (Fig-

ure 6, top-right).

While this mimicry may be problematic when attempting

to use the SIC in isolation, Eidels et al. (2011) also show

that the capacity coefficient can help to discriminate among

model possibilities. Because the capacity coefficient com-

pares performance to an unlimited capacity, independent,

parallel baseline, facilitatory parallel systems will be rela-

tively faster and thus exhibit super capacity relative to the

UCIP baseline. In contrast, unlimited capacity, independent,

serial processes (also referred to as the standard serial model)

are relatively slower and exhibit have limited capacity coef-

ficient values. Consequently, when a partially negative, par-

tially positive SIC is observed and the MIC is zero, the capac-

ity coefficient can be used to distinguish between facilitatory

parallel and independent serial processes. For full details on

the use of the SIC with the capacity coefficient, refer to Eidels

et al. (2011), particularly Figures 3 and 4.

Although the SIC and capacity coefficient can be used to-

gether to analyze processing characteristics, it is important to

remember that any combination of underlying characteristics

is possible. For example, it is possible to have a limited ca-

pacity, facilitatory, parallel, exhaustive process. Whether the

capacity coefficient will indicate super, unlimited, or limited

capacity will depend on the relative degree of facilitation and

workload capacity limitation. The form of the SIC will also

depend on the degree of facilitation, ranging from all nega-

tive to nearly all positive. Nonetheless, the degree of facilita-

tion does not in any way cause the architecture (or vice versa)

just as the facilitation and architecture are distinct from the

underlying workload capacity.

Clearly the interpretation of the data is more difficult when

there are interactions among the processes, so whenever pos-

sible, it is best to use experimental factors that selectively

influence the intended processes. When there is selective in-

fluence, the SIC forms in Figure 6 will hold regardless of the

workload capacity level.

Designing Experiments for SFT

While all the SFT measures defined herein can be used in-

dividually, Townsend and Nozawa (1995) developed a single

experimental paradigm integrating all the manipulations nec-

essary to utilize both the SIC and C(t) measures on a single

set of data. This experimental design is known as the Dou-

ble Factorial Paradigm (DFP). There are two critical types of

manipulations that comprise the DFP: manipulation of work-

load and manipulation of salience. The name ‘Double Fac-

torial’ is a reference to the use of a full factorial combination

of the two manipulations with each manipulation incorpo-

rating at least two levels of each factor. In this section, we

will illustrate two types of DFP designs for experiments with

and without distractors in the stimuli. Example designs are

shown in Figures 11, 12, and 13.

The first manipulation needed in the DFP is a workload

manipulation. This manipulation is necessary to assess the

workload capacity of the system, or the information through-

put as the number of sources or targets increases. In a task

with n possible sources of information (e.g,. n = 4 letters in

a word as in Houpt & Townsend, 2010a), there are two crit-

ical levels of workload needed for the capacity coefficient:

one condition in which all n sources/targets are presented si-

multaneously (e.g., all 4 letters presented as a word or letter

string), and n conditions in which each of the sources/targets

are presented individually (e.g., each single letter presented

individually for a total of 4 single-source conditions). The

latter condition is necessary for formulating the UCIP model

predictions in the capacity coefficients (Equations 3 and 5),

while the former is needed to compare actual performance to

the UCIP prediction.

In its purest form, the workload manipulation is a change

in the absolute number of physical items in the stimulus, such

as the number of items in a visual search display or the num-

ber of features present in a face or object. However, there

are times when is it not possible to have the pure absence

of some stimulus characteristic, such as hierarchical forms

wherein the global configuration would not exist without the

local features, or when the experimental question demands
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the use of distractors in order to assess the information con-

tained in the stimuli, like separable or integral dimensions.

Workload in these cases can be considered a manipulation of

the number of target information sources against either a neu-

tral non-target or even distractor information. No matter the

class of stimuli used, it is important that the aforementioned

two condition types are present: a condition in which partici-

pants respond to all target sources together and all individual

target conditions for estimating the UCIP model prediction.

The salience manipulation is needed to assess the process-

ing architecture and stopping rule with the SIC (and MIC

when needed). This manipulation changes the processing

speed for the different targets or sources of information. The

variation of the processing rates of each source of informa-

tion enables inferences about the spatio-temporal arrange-

ment of those subprocesses (i.e., the architecture) based on

the measurement of a single response time. Often the choice

of salience manipulation will depend on the task and the use

of distractors in the class of stimuli. We will review be-

low some example manipulations previously used in tasks

with and without distractors. Regardless of the design, how-

ever, the choice of physical salience manipulation must meet

the assumption of selective influence, i.e., each manipulation

must affect only the speed of processing of one of the sub-

processes of interest.

Example DFP without Distractors. Figure 11 illus-

trates a DFP experimental design for a simple visual detec-

tion task in which there are only targets and no possible dis-

tractor information from Eidels and Townsend (2009). This

is a variation on the original DFP design by Townsend and

Nozawa (1995) in which participants were asked to make

responses about the detection of one or more dots of light

presented in a dark environment. In this task, the workload

manipulation is the presence or absence of two possible tar-

gets: a dot above fixation and a dot below fixation. When a

target is absent, it is not replaced by a distractor, so the work-

load in this task, corresponding to the physical information

in the stimulus, directly translates to the number of possible

targets. With two possible targets, each of which could be

present or absent, the whole task has three possible target

workload levels: 0 (target absent), 1 (single target present)

or 2 (double/redundant target present). The two single target

conditions provide the data for the UCIP prediction in the ca-

pacity coefficient, and the double target present, also called

redundant target, condition provides the data to be compared

to the UCIP prediction in the capacity coefficients.

When a target is present in Figure 11, it can occur at one

of two contrast levels, as illustrated by the lighter and darker

grey dots, representing higher and lower contrast levels, re-

spectively. This is the manipulation of target salience. The

high contrast dots are well above detection threshold levels,

appearing very bright to the participants, resulting in fast de-

tection response times. The lower contrast level results in

slower detection because it is not as bright as the high con-

trast level. Note that this low contrast does not need to be at

the participant’s absolute detection threshold, it only needs

to be low enough to produce slower response times relative

to the high contrast dots, in accordance with the selective

influence assumption. In fact, it is desirable to find a lower

contrast level here that will order the response time distribu-

tions according to selective influence but that still results in

high detection accuracy.

When the workload manipulation is combined with the

salience manipulation, there are multiple redundant target

stimuli. In this dot task with two salience levels and two

targets, there are four redundant target stimuli that provide

the data for computing the SIC.

Figure 11. Double Factorial Paradigm simple visual detec-

tion task design. High salience of the dots is a higher contrast

level against the black background than the low salience con-

trast level, which was closer to threshold detection levels. In

this task, the light from the lower dot is one source and the

light from the upper dot is the second source.

Note that the stimuli in Figure 11 can be used for

both AND and OR decision rules, depending on the pre-

determined stimulus-response assignment structure. If par-

ticipants are asked to respond when they detect the presence

of any dot, then the response rule is OR because they can

correctly respond ‘yes’ when presented with the the top dot

alone, the bottom dot alone, or both dots together. If partic-

ipants are asked to respond ‘yes’ only when they detect two

dots on the screen, then they are following an AND stop-

ping rule; they can only respond ‘yes’ correctly when the top

and bottom dots are presented (upper left quadrant of Fig-

ure 11 only), and must respond no when zero or one dot is



SFT WITH R 15

presented. Note that the decision rule for this task is not de-

pendent on the salience manipulation of the targets.

Example DFP with Distractors. The DFP can be mod-

ified for use on tasks involving distractors in lieu of the pres-

ence/absence manipulation. There are two ways in which

distractor information can be conceptualized in the DFP

framework: as an uninformative placeholder for the absence

of a target (especially when true absence is not possible) or

as another source of information about the appropriate re-

sponse. The use of distractors is particularly critical for tasks

in which a pure absence manipulation is not possible, such

as a global-local object discrimination task. An example of a

hierarchical forms DFP design used by Johnson et al. (2010)

is illustrated in Figure 12; we note here that the use of distrac-

tor information is critical in this task because a global object

cannot exist without the local objects. Figure 12 illustrates

a design in which the distractor is simply a placeholder: a

single distractor dash is used to signify the absence of a tar-

get and provides a baseline shape from which the salience

manipulation (the ‘pointy-ness’ of the arrowhead) can be de-

fined (high is more pointy (a more pronounced arrowhead),

while low is less pronounced and more similar to the dash).

The assumption here is that because the distractor only has a

single value, it is providing minimal competing information

during the task. Thus, the single target conditions (global

right arrow with local dashes and global dash composed of

local right arrows) provide the single target conditions for the

UCIP prediction in C(t), and the redundant arrow conditions

(global right arrows composed of local right arrows) provide

the all-targets condition for C(t) as well as the four redundant

target stimuli (HH, HL, LH, LL) for the SIC and MIC cal-

culations. In Johnson et al. (2010), participants were asked

to make an OR decision similar to the above dot detection

task: respond ‘yes’ when you see any right-pointing arrows,

global or local or both, and respond ‘no’ only when you see

no right-pointing arrows (the dash composed of dashes). But

just as in the dot detection task, this same set of stimuli could

be utilized in an AND decision task, where ‘yes’ responses

are only to the redundant global-local right-pointing arrows.

Distractors can also be conceptualized as a second

source of information and can be manipulated (number and

salience) just as the target sources are. Such manipulation

is critical for experiments addressing questions about the

nature of information in multidimensional stimuli, such as

whether the dimensions are integral or separable (Garner &

Felfoldy, 1970; Garner, 1974). Manipulations of distrac-

tors are needed for modeling classification or discrimination

tasks, for example, and variable distractors play a key role in

visual and memory search tasks. Figure 13 illustrates a way

to use distractors as additional, possibly competing, infor-

mation sources with the global-local arrows. In this design,

rather than the target absent being a single neutral non-target

dash, the non-target distractors are left-pointing arrows that

Figure 12. Global-local arrow stimuli in the target

present/absent DFP design from Johnson, et al. (2010). Ar-

row salience is defined relative to the neutral dash that points

neither left nor right. The low salience right pointing arrows

have smaller arrowheads and are harder (slower RT) to dis-

tinguish from the dash than the high salience right pointing

arrows with the more pronounced arrowheads.

can also vary in salience. The task here could be an OR de-

cision (respond ‘yes’ if there are any right-pointing arrows,

global, local or both) or AND (respond ‘yes’ only when both

the global and local arrows are pointing right). Interestingly

in this example, when there is an AND decision on the re-

dundant right pointing arrows, there is a corresponding OR

decision being made about the left arrows. When there is

an OR decision on the right arrows, there is a corresponding

AND decision on the redundant left arrows. Additionally, for

assessing response biases and counterbalancing the experi-

ment, the experimenter can leverage this to provide instruc-

tions emphasizing the AND or OR rule for the right or left ar-

rows simply by changing the experimenter-made assignment

of arrow direction to target/distractor class or response key.

Because both the targets and distractors are manipulated in

their number and salience, it is possible to model both types

of stimuli with the SFT measures to enumerate the process-

ing characteristics of both the targets and the distractors, al-

though we cannot say whether or not the same mechanisms

are engaged in both cases.

Stimulus Rates and Contingencies. Consideration

must be given early in the DFP design process to the pre-

sentation rates for each stimulus or stimulus type (redun-

dant/double targets, single targets, target absent, etc.), in or-
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Figure 13. Global-local arrow stimuli in the target versus distractor discrimination DFP design where targets are right-pointing

arrows and distractors are left-pointing arrows. Arrow salience is defined by the relative sizes of the arrowheads which make

the direction harder (slower RT) or easier (faster RT) to determine.

der to minimize or eliminate two sources of bias that can

arise from stimulus contingencies. It is possible that cor-

relations between different target sources and/or between

target and non-target items can be introduced through the

rates of presentation for the target and non-target fea-

tures/stimuli/sources. Participants can often, even implicitly,

pick up on such correlations, which can then bias task per-

formance. Of particular concern to the present effort is that,

within the DFP, it is not possible to eliminate all non-zero

contingencies, as we will illustrate below. Thus, as experi-

menters, we must be aware of these correlations, particularly

if they provide any advantage to redundant target conditions,

because such advantages have been shown to affect the size

of the redundant-signals effect and influence the comparison

between parallel and coactive models (Mordkoff & Yantis,

1991). As we discuss the possible contingencies, we will

review the stimulus rates for DFP that will minimize the

amount of rate-based contingencies present in target detec-

tion tasks and target/distractor discrimination tasks.

The statistical relationships between the various tar-

gets and non-targets are called inter-stimulus contingen-

cies (ISCs), which can result in stochastic dependencies in

the form of interchannel crosstalk between the information

sources. Mordkoff and Yantis (1991) describe mathemati-

cal expressions that can be used to derive the ISCs that may

be present in an experimental design. ISC computations are

based on the difference between the conditional probability

of one stimulus element given a second element and the base

rate of the first stimulus element. In general, it is desirable for

all potential ISCs in an experimental design to be 0, so that

there is no potential for biasing performance based on the

presence or absence of a particular stimulus element. That

is, knowing that a target or non-target is present in one chan-

nel should give you no information about whether or not a

target is present in the other channel. For a full discussion of

the influence ISCs can have on race model performance and

model identification, refer to Mordkoff and Yantis (1991).

For our discussion of ISCs and to foreshadow the coding

scheme for the sft package, we will use the following nota-

tion:
A The first source of information to be processed.

B The second source of information to be processed.

A2 High salience target stimulus on first source.

A1 Low salience target stimulus on first source.

A0 No stimulus on first source of information.

A−1 Distractor stimulus on first source of information.

Using this notation, the ISC between a non-target and a

target element is given by

IS C(A0 ⇒ B1) = P[B1|A0] − P[B1]
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or

IS C(B0 ⇒ A1) = P[A1|B0] − P[A1].

There are two ISCs of interest in the basic detection DFP

illustrated in Figures 11 and 12: the relationship between a

target in one channel and a non-target element in the other,

and the relationship of the target elements to each other. The

ISCs of interest are:

ISC(A0 ⇒ B1) = P[B1|A0] − P[B1]

ISC(B0 ⇒ A1) = P[A1|B0] − P[A1]

ISC(A1 ⇒ B1) = P[B1|A1] − P[B1]

ISC(B1 ⇒ A1) = P[A1|B1] − P[A1]

The first two lines give the interstimulus contingencies of

a target appearing in one channel given that a target is not

present in the other. Similarly, the third and fourth lines are

the interstimulus contingencies of a target appearing in one

channel given that a target is present in the other.

There are two commonly utilized task structures for the

target detection DFP design that will exhibit ISC = 0 for all

of the above ISCs of interest. In one structure, which we

refer to as the equal category rates design we first consider

the four trial types within the DFP design: redundant targets

(AiB j where i, j ∈ {1, 2}), single targets on the first source

(AiB0 where i ∈ {1, 2}), single targets on the second source

(A0B j where j ∈ {1, 2}), and target absent trails (A0B0). We

set the base rate of presentation of each stimulus type to be

equal, with i, j ∈ {1, 2}:

P[AiB j] = P[AiB0] = P[A0B j] = P[A0B0] = .25.

This makes the unconditional probabilities of each target

P[Ai] = P[B j] = .5. The relevant conditional probabilities in

this task, with i, j ∈ {1, 2}, are

P[B j|Ai] = .5

P[Ai|B j] = .5.

Thus, all the target ISC values are 0.

Note that in the equal category rate design, while the four

types of trials are presented with equal likelihood, the rates

for each individual stimulus in the design (i.e. the individual

stimuli that incorporate the salience manipulations) are not

equal. Rather, the rates for the individual stimuli depend on

the number of stimuli that fall into the four trial categories;

because there are different numbers of stimuli in each cate-

gory, the individual rates vary by category. Assuming that the

stimuli within a category are presented with equal likelihood,

this design results in individual stimulus rates of:

P[A2B2] = P[A2B1] = P[A1B2] = P[A1B1] =
1

16

P[A2B0] = P[A1B0] = P[A0B2] = P[A0B1] =
1

8

P[A0B0] =
1

4
.

A second possible DFP design, which we refer to as the

equal stimulus rates design starts by assuming that all nine

individual stimuli in the DFP target detection design are pre-

sented equally, P[AiB j] = 1
9

for i, j = 0, 1, 2, rather than bas-

ing the rate on the trial type categories. In this case, the un-

conditional probability of each target is P[Ai] = P[B j] = 2
3
,

and the relevant conditional probabilities, again with i, j ∈

{1, 2}, are,

P[B j|A0] =
2

3

P[Ai|B0] =
2

3

P[B j|Ai] =
2

3

P[Ai|B j] =
2

3

Thus, the ISC values are all 0. Note that ISC = 0 holds

if we break down all the probabilities by the stimulus level,

high (2) or low (1), in which case all the unconditional and

conditional probabilities are equal to 1
3
.

Potential ISCs in an experiment must be further bal-

anced out with nontarget-driven decision biases that may be

present in the task which can also be determined through

contingency information (Mordkoff & Yantis, 1991). Where

ISCs concern the statistical relationship between the identity

(target/non-target) information from each source (and do not

consider the assignment of each stimulus to a response rule),

nontarget-driven decision biases are concerned with the in-

fluence that the presence of a non-target in the stimulus may

have on biasing the decision process for a given task. These

biases are captured in the computation of non-target response

contingencies (NRCs). The NRC is computed as the differ-

ence between the conditional probability of a ‘target present’

response given a particular non-target item and the baseline

proportion of ‘target present’ trials in the experiment. That

is,

NRC(N) = P[+|N] − P[+]

where P[+] is the unconditional probability of a ‘target

present’ trial and P[+|N] is the conditional probability of a

‘target present’ trial given the presence of a non-target stim-

ulus item.

For the DFP target detection designs, we want to consider

the NRCs for two stopping rules, OR and AND, using the

two common designs outlined in the previous section. In the

equal category rates design, in which P[AiB j] = P[AiB0] =

P[A0B j] = P[A0B0] = .25, for the OR stopping rule:

POR[+] =
3

4

POR[+|A0] = POR[+|B0] =
1

2

NRC(A0) = NRC(B0) =
1

2
−

3

4
=
−1

4
.
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And for the AND stopping rule:

PAND[+] =
1

4

PAND[+|A0] = PAND[+|B0] = 0

NRC(A0) = NRC(B0) = 0 −
1

4
=
−1

4
.

Thus for both stopping rules, we see by the negative NRC

values that in the DFP detection design, the presence of a

non-target trial is correlated with a ‘target absent’ response.

Now consider the equal stimulus rates design in which all

nine stimuli are presented at equal rates. Starting again with

the OR stopping rule:

POR[+] =
8

9

POR[+|A0] = POR[+|B0] =
2

3

NRC(A0) = NRC(B0) =
2

3
−

8

9
=
−2

9
.

And for the AND stopping rule:

PAND[+] =
4

9

PAND[+|A0] = PAND[+|B0] = 0

NRC(A0) = NRC(B0) = 0 −
4

9
=
−4

9
.

Again, for both the OR and AND decision rules, we see neg-

ative NRC values, implying that the presence of a non-target

trial is correlated with a ‘target absent’ response.

Thus, we can see that for DFP target detection designs,

whether your workload manipulation is target absense or the

presence of a non-varying distractor, the DFP designs that

exhibit IS C = 0 consistently produce an NRC that is is non-

zero. It is critical, then, for NRC to be minimized in a DFP

design, and as our results show, this can be dependent on

the stopping rule chosen for the experiment. In Table 2, we

highlight a good choice of stimulus rates for both the OR

and AND stopping rules that will minimize NRC, according

to the above computations.

In addition to stopping rule, the NRC value is also de-

pendent on the total number of stimuli in an experiment.

Consider the target/distractor discrimination task illustrated

in Figure 13 in which the distractor arrows are also varying

in their salience. This design contains the same four trial

type categories (redundant targets, single targets on the first

source (global arrows), single targets on the second source

(local arrows), and target absence or, in this case, double dis-

tractors). However, a key difference between this design and

the target detection with distractors in Figure 12 is the total

number of stimuli; each category in this design contains four

stimuli, for a total of 16 stimuli in the experiment instead of

nine. It follows that the equal category rates design and equal

stimulus rates design are essentially the same. Thus, for ei-

ther an OR or AND decision rule, utilizing P[AiB j] = 1
16

for i, j = ±1,±2 as the likelihood of any individual stimulus

will produce relevant ISC values of 0. Under this choice of

stimulus rate, the NRC = −1
4

indicating a negative nontarget-

decision bias in either type of task. Thus, for target/distractor

discrimination with variable distractors, the stimulus rates

that exhibit IS C = 0 and minimize NRC are the same for

both the OR and AND tasks. We have listed this in Table 3,

showing the same choice of stimulus rates for OR and AND,

unlike Table 2 which has different recommendations for OR

and AND tasks.

Importantly, across DFP designs that have been developed

in the published literature, we know of no possible DFP stim-

ulus rate structure in which the ISC values are all 0 and there

is simultaneously an absence of nontarget-driven decision

bias (i.e., NRC = 0). However, considering the above re-

sults, we can see that it may be possible to choose the stimu-

lus rates so as to minimize the nontarget-driven decision bias.

This choice may be dependent on both the choice of stopping

rule and on the total number of stimuli in the experiment. For

the OR stopping rule in the detection task with nine stimuli,

the NRC value is lower for the equal stimulus rates design,

where the presentation rates of all nine stimuli are equated.

But for the AND stopping rule in the detection task with nine

stimuli, the NRC value for the equal category rates design

is lower, so equating the presentation of the stimulus types,

rather than individual stimuli, will minimize the nontarget-

driven decision bias. When the task switches to one with

variable distractors, the OR and AND designs minimizing

NRC utilize the same presentation rates. Bear in mind that if

you choose to use or develop a DFP design for another type

of task or decision rule (Same-Different, Go/No-Go, Cate-

gorization/Classification, etc.), you will want to utilize the

above equations for ISC and NRC to optimize your stimulus

presentation rates so as to minimize the possible biases in

your design. Again, the reader is referred to Mordkoff and

Yantis (1991) for additional details on stimulus contingen-

cies.

The effect of ISC and NRC on performance and model

interpretation can be determined by manipulating both types

of contingencies and measuring the changes of the response

times in the condition(s) of interest (like the redundant target

condition). As of yet, theoretical work relating the influence

of non-zero ISC or non-zero NRC values to the SFT mea-

sures is lacking, but is an important topic of future research.

DFP Data for sft

The sft package has additional tools that allow for ana-

lyzing multiple participants and conditions at once, as long

as the data are in the proper format. The basic format is a

data frame with six (or more) variables: Subject, Condition,



SFT WITH R 19

Correct, RT, Channel1, Channel2, . . . , Channeln. Each row

in the data frame corresponds to a single trial. Subject and

Condition are only used by the program to group data, so

any coding scheme can be used. Correct is a logical vari-

able indicating whether the participant correctly responded

on that trial. RT is the time the participant took to respond

on a given trial. Each Channel column indicates the level of

the stimulus presented for a particular source. The possible

values are ±2,±1 or 0, where 2 indicates high salience, 1 in-

dicates low salience and 0 indicates there was no information

presented for that source. Positive values indicate that tar-

get information was presented on that source while negative

values indicate distractor information. Because the focus of

SFT is on analyzing multiple sources of information, at least

two Channels are required, but any number are possible. The

group SIC analysis in sicGroup is currently limited to two

channels, but the capacity function, capacityGroup, is capa-

ble of analyzing data with more than two channels.

These variables will be sufficient to complete an SFT anal-

ysis of a DFP experiment with two targets/sources of infor-

mation (i.e., two channels to be modeled). Additional vari-

ables may be included in your data frame, particularly any

additional metadata like Gender, Age, Trial Number, Testing

Session Number, etc. But these variables will be ignored by

the sft functions.

Let us consider how the arrow stimuli from Figure 12

would be coded, as summarized in Table 2. For the global-

local arrows, two channels are needed, with Channel1 cod-

ing the global arrow information and Channel2 coding the

local arrow information. On either channel, the target absent

condition (the dash pointing neither right nor left) is given

the value 0; the high salience arrows are given a value of

+2 and the low salience arrows are coded by +1. This same

coding scheme can be utilized for any DFP design with tar-

get present/absent as the workload manipulation. Note that

in Table 2, we have given the recommended coding scheme

for the sft package as well as the recommended trial rates for

minimizing NRCs in the designs while maintaining IS C = 0.

Now let us consider an alternative DFP design where the

target absent condition is replaced by a distractor stimulus

containing competing information. The recommended sft

data coding and trial presentation rates are summarized in

Table 3. For the arrows design in Figure 13, this means that

when a target right-pointing arrow is not present, rather than

a dash, the global or local arrow is a left-pointing arrow, con-

taining distractor directional information. With two salience

levels for both target and distractor stimuli, this design im-

plements the ±1, ±2 coding scheme described above.

For an experimental design with more than two channels,

n channels can be identified by creating a Channelα vari-

able for each α in α = 1, 2, . . . , n. For example, in a 4-

channel experiment, like the 4-letter words studied by Houpt

and Townsend (2010a), the values on the channels should

be coded in four variables: Channel1, Channel2, Channel3,

Channel4. It is important that for however many channels

are coded, the channel variables must be listed numerically

and consecutively, following the naming convention outlined

herein. Note also that as of this publication, only the capacity

functions are capable of analyzing more than two channels;

the SIC functions, sic and sicGroup, are capable of analyz-

ing only the 2-channel DFP data. Extensions to additional

numbers of factors (e.g., 2x2x2) or additional numbers of

levels per factor (e.g., 3x3) are possible as the theory and

measures can extend to n sources of information; we will add

the appropriate extensions to the sft package as such theory

is developed and published.

A set of sample data is included in the sft package, called

dots. These data, from Eidels and Townsend (2009), include

response time and accuracy from nine participants that com-

pleted two versions of the DFP task with the dots stimuli

illustrated in Figure 11. Stimuli were either two dots, one

above fixation and one below, a single dot above fixation, a

single dot below fixation, or a blank screen. The salience ma-

nipulation was the contrast level of the dots, such that each

dot was shown at either high or low contrast when present.

In the OR decision task, participants were asked to respond

“yes” if either of the dots was present; in the AND decision

task, they were asked to respond “yes” only when both dots

were present. More details of the task are available in Eidels

and Townsend (2009) or Houpt and Townsend (2010b).

The dots data is a data frame containing the six required

variables: Subject, Condition, Correct, RT, Channel1, Chan-

nel2. Subject is a character vector indicating the participant

identifier code; here we have two letter codes for each of the

nine participants. Condition is a character vector indicating

which version of the task (OR or AND) the data are from.

Correct is a logical vector indicating if the response on each

trial was correct (TRUE or 1) or not (FALSE or 0). RT is the

numeric vector of response times. Channel1 and Channel2

are numeric vectors indicating the stimulus level for the two

dots, with Channel1 giving the value for the upper dot and

Channel2 giving the value for the lower dot. There were no

distractors in this task, so there are three possible values for

Channel1 and Channel2: 0 = target absent, 1 = target present

at low contrast, 2 = target present at high contrast.

The rows in the dots data frame are the individual trials

of the experiment. That is, all data from every trial by every

participant is included. This is critical for estimating the full

response time distributions for the SFT analyses.

Example 4: dots

# Load the dots data.

data(dots)

head(dots)

summary(dots)
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sft Data Coding Trial Rates*

Trial Type Source 1 Source 2 Channel1 Channel2 OR AND

High Target High Target 2 2 1
9

1
16

Redundant High Target Low Target 2 1 1
9

1
16

Targets Low Target High Target 1 2 1
9

1
16

Low Target Low Target 1 1 1
9

1
16

Single High Target Absent 2 0 1
9

1
8

Target A Low Target Absent 1 0 1
9

1
8

Single Absent High Target 0 2 1
9

1
8

Target B Absent Low Target 0 1 1
9

1
8

Target Absent Absent Absent 0 0 1
9

1
4

Table 2

Channel Codes for DFP Target Detection Designs
*Trial Rates are the proportion of the total trials recommended for minimizing the non-target response contingencies; see text

for details. The OR task is based on the equal stimulus rate design and the AND task is based on the equal category rate

design.

sft Data Coding Trial Rates*

Trial Type Source 1 Source 2 Channel1 Channel2 OR & AND

High Target High Target 2 2 1
16

Redundant High Target Low Target 2 1 1
16

Targets Low Target High Target 1 2 1
16

Low Target Low Target 1 1 1
16

High Target High Distractor 2 -2 1
16

Single High Target Low Distractor 2 -1 1
16

Target A Low Target High Distractor 1 -2 1
16

Low Target Low Distractor 1 -1 1
16

High Distractor High Target -2 2 1
16

Single High Distractor Low Target -2 1 1
16

Target B Low Distractor High Target -1 2 1
16

Low Distractor Low Target -1 1 1
16

Target High Distractor High Distractor -2 -2 1
16

Absent / High Distractor Low Distractor -2 -1 1
16

Redundant Low Distractor High Distractor -1 -2 1
16

Distractors Low Distractor Low Distractor -1 -1 1
16

Table 3

Channel Codes for DFP Target-Distractor Discrimination Designs
*Trial Rates are the proportion of the total trials recommended for minimizing the non-target response contingencies while

maintaining interstimulus contingencies equal to zero; see text for details.

# Calculate and analyze the SIC for each

# participant in each condition.

sicGroup(dots)

# Calculate Cor and Cand for each

# participant in each condition.

capacityGroup(dots)

We do not include the extensive output here. Instead, we

encourage readers to install the sft package and familiarize

themselves with the functionality using the dots data.

General Notes on Design

Since the emergence of the DFP in 1995, the design has

been adapted from the original detection task (similar to Fig-

ure 11) to target discrimination (e.g., Johnson et al., 2010; In-

gvalson & Wenger, 2005), same-different judgments (Perry,

Blaha, & Townsend, 2008), categorization (Fifić et al., 2008;
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Fifić & Townsend, 2010), memory search (Townsend & Fi-

fić, 2004), and visual search (Fific, Townsend, & Eidels,

2008), and has been applied across a variety of stimuli such

as alpha-numeric characters, faces, and novel visual ob-

jects. It is possible that with a good choice of workload and

salience manipulations, any type of perceptual or cognitive

decision making task on any class of stimuli can be adapted

to a DFP design. Note that while we have illustrated the DFP

with visual cognitive stimuli and tasks, DFP is not limited

to the visual modality. For example, Altieri and Townsend

(2011) utilized the DFP to analyze audio-visual speech per-

ception using a design in which one source of information

was the visual stimulus of a person mouthing a word and the

other source of information was the auditory stimulus of the

spoken word.

Whatever the task, stimulus class, and modality, there are

some key things to keep in mind about the choices of both

the workload and salience manipulations:

Workload Manipulation

• Workload refers to the number of target sources, which

is sometimes the pure number of items in the display or the

number of targets relative to a constant load of distractors.

• When using distractors, keep the number constant so

that only the number of target sources is varying.

• When modeling both targets and distractors, have bal-

anced conditions of fixed numbers of distractors relative to

varying numbers of targets and fixed numbers of targets rel-

ative to varying numbers of distractors.

• Context, background or noise may be added to a stim-

ulus, but should be held constant across all conditions in the

design so as not to add another source of information com-

peting with the target sources.

• The workload manipulation should be independent of

or orthogonal to the salience manipulation so that the same

physical manipulation is not being used to influence both the

presence of a target and the speed of processing of that target.

Salience Manipulation

• The manipulations of stimuli to affect the relative pro-

cessing speeds should exhibit effective selective influence,

so that a single physical manipulation of the stimulus affects

only the speed of one subprocess at a time.

• Salience is a relative manipulation in that the low

salience manipulation should result in slower processing

than is observed in the high salience condition. For exam-

ple, a point of light near threshold is detected more slowly

than a point of light well above threshold in its bright-

ness or contrast. Thus, there is no absolute right or wrong

amount/intensity of salience manipulation here, as long as

the chosen factor levels result in an strong ordering of the

response time distributions, S high(t) < S low(t), without sig-

nificantly lowering accuracy.

• Manipulations of target salience should be independent

of the stopping rule or decision criteria for a given task.

• The salience manipulation should be independent of or

orthogonal to the workload manipulation so that the same

physical manipulation is not being used to influence both the

presence of a target and the speed of processing of that target.

In our explication of the SFT measures, particularly SIC,

we focused on the case of two targets or two processing chan-

nels, for both clarity and tractability and because most of

the studies cited herein have utilized manipulations only two

sources of information. Importantly, these measures are not

limited to only two targets and are scalable to n sources for

a given task. For an example of a three factor SFT study

(2x2x2 factorial), see Perry et al. (2008). Work is currently

under way to generalize the SIC to more sources of informa-

tion. As these advances and others are published, they will

be included in the R sft package.

Conclusion

Systems Factorial Technology has been applied in a wide

variety of psychological studies, from basic psychophysical

tasks (C.-T. Yang et al., 2011), visual cognition (Zehetleitner,

Krummenacher, & Müller, 2009), aural cognition (Altieri

& Townsend, 2011), memory (Townsend & Fifić, 2004), to

more complex tasks in social psychology (H. Yang, Houpt,

Khodadadi, & Townsend, 2011), developmental psychology

(Von Der Heide, Wenger, Gilmore, & Elbich, 2011) and clin-

ical psychology (Johnson et al., 2010; Neufeld, Townsend,

& Jetté, 2007). Despite this diverse range of applicability,

the use of SFT is fairly limited within psychology. One

major factor contributing to its lack of use is the difficulty

in translating from the complex mathematical derivations

(Townsend & Nozawa, 1995; Townsend & Wenger, 2004;

Houpt & Townsend, 2010b, 2012) to applied settings. By

developing a package for the popular data analysis software

R (R Development Core Team, 2011), we hope to alleviate

this difficulty.

In addition to making the basic tools of SFT more acces-

sible, the sft package can also serve as a repository for re-

lated code as new advances to the methodology arise. For

example, forthcoming work on the use of functional princi-

pal components analysis with the capacity coefficient (Burns,

Houpt, & Townsend, 2013) will soon be added to the sft

package.
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